ip_mroute.c revision 118622
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 * Modified by Ahmed Helmy, SGI, June 1996
11 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
12 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
13 * Modified by Hitoshi Asaeda, WIDE, August 2000
14 * Modified by Pavlin Radoslavov, ICSI, October 2002
15 *
16 * MROUTING Revision: 3.5
17 * and PIM-SMv2 and PIM-DM support, advanced API support,
18 * bandwidth metering and signaling
19 *
20 * $FreeBSD: head/sys/netinet/ip_mroute.c 118622 2003-08-07 18:16:59Z hsu $
21 */
22
23#include "opt_mac.h"
24#include "opt_mrouting.h"
25#include "opt_random_ip_id.h"
26
27#ifdef PIM
28#define _PIM_VT 1
29#endif
30
31#include <sys/param.h>
32#include <sys/kernel.h>
33#include <sys/lock.h>
34#include <sys/mac.h>
35#include <sys/malloc.h>
36#include <sys/mbuf.h>
37#include <sys/protosw.h>
38#include <sys/signalvar.h>
39#include <sys/socket.h>
40#include <sys/socketvar.h>
41#include <sys/sockio.h>
42#include <sys/sx.h>
43#include <sys/sysctl.h>
44#include <sys/syslog.h>
45#include <sys/systm.h>
46#include <sys/time.h>
47#include <net/if.h>
48#include <net/netisr.h>
49#include <net/route.h>
50#include <netinet/in.h>
51#include <netinet/igmp.h>
52#include <netinet/in_systm.h>
53#include <netinet/in_var.h>
54#include <netinet/ip.h>
55#include <netinet/ip_encap.h>
56#include <netinet/ip_mroute.h>
57#include <netinet/ip_var.h>
58#ifdef PIM
59#include <netinet/pim.h>
60#include <netinet/pim_var.h>
61#endif
62#include <netinet/udp.h>
63#include <machine/in_cksum.h>
64
65/*
66 * Control debugging code for rsvp and multicast routing code.
67 * Can only set them with the debugger.
68 */
69static u_int    rsvpdebug;		/* non-zero enables debugging	*/
70
71static u_int	mrtdebug;		/* any set of the flags below	*/
72#define		DEBUG_MFC	0x02
73#define		DEBUG_FORWARD	0x04
74#define		DEBUG_EXPIRE	0x08
75#define		DEBUG_XMIT	0x10
76#define		DEBUG_PIM	0x20
77
78#define		VIFI_INVALID	((vifi_t) -1)
79
80#define M_HASCL(m)	((m)->m_flags & M_EXT)
81
82static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
83
84static struct mrtstat	mrtstat;
85SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
86    &mrtstat, mrtstat,
87    "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
88
89static struct mfc	*mfctable[MFCTBLSIZ];
90SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
91    &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
92    "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
93
94static struct vif	viftable[MAXVIFS];
95SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
96    &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
97    "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
98
99static u_char		nexpire[MFCTBLSIZ];
100
101static struct callout_handle expire_upcalls_ch;
102
103#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
104#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
105
106/*
107 * Define the token bucket filter structures
108 * tbftable -> each vif has one of these for storing info
109 */
110
111static struct tbf tbftable[MAXVIFS];
112#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
113
114/*
115 * 'Interfaces' associated with decapsulator (so we can tell
116 * packets that went through it from ones that get reflected
117 * by a broken gateway).  These interfaces are never linked into
118 * the system ifnet list & no routes point to them.  I.e., packets
119 * can't be sent this way.  They only exist as a placeholder for
120 * multicast source verification.
121 */
122static struct ifnet multicast_decap_if[MAXVIFS];
123
124#define ENCAP_TTL 64
125#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
126
127/* prototype IP hdr for encapsulated packets */
128static struct ip multicast_encap_iphdr = {
129#if BYTE_ORDER == LITTLE_ENDIAN
130	sizeof(struct ip) >> 2, IPVERSION,
131#else
132	IPVERSION, sizeof(struct ip) >> 2,
133#endif
134	0,				/* tos */
135	sizeof(struct ip),		/* total length */
136	0,				/* id */
137	0,				/* frag offset */
138	ENCAP_TTL, ENCAP_PROTO,
139	0,				/* checksum */
140};
141
142/*
143 * Bandwidth meter variables and constants
144 */
145static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
146/*
147 * Pending timeouts are stored in a hash table, the key being the
148 * expiration time. Periodically, the entries are analysed and processed.
149 */
150#define BW_METER_BUCKETS	1024
151static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
152static struct callout_handle bw_meter_ch;
153#define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
154
155/*
156 * Pending upcalls are stored in a vector which is flushed when
157 * full, or periodically
158 */
159static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
160static u_int	bw_upcalls_n; /* # of pending upcalls */
161static struct callout_handle bw_upcalls_ch;
162#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
163
164#ifdef PIM
165static struct pimstat pimstat;
166SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
167    &pimstat, pimstat,
168    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
169
170/*
171 * Note: the PIM Register encapsulation adds the following in front of a
172 * data packet:
173 *
174 * struct pim_encap_hdr {
175 *    struct ip ip;
176 *    struct pim_encap_pimhdr  pim;
177 * }
178 *
179 */
180
181struct pim_encap_pimhdr {
182	struct pim pim;
183	uint32_t   flags;
184};
185
186static struct ip pim_encap_iphdr = {
187#if BYTE_ORDER == LITTLE_ENDIAN
188	sizeof(struct ip) >> 2,
189	IPVERSION,
190#else
191	IPVERSION,
192	sizeof(struct ip) >> 2,
193#endif
194	0,			/* tos */
195	sizeof(struct ip),	/* total length */
196	0,			/* id */
197	0,			/* frag offset */
198	ENCAP_TTL,
199	IPPROTO_PIM,
200	0,			/* checksum */
201};
202
203static struct pim_encap_pimhdr pim_encap_pimhdr = {
204    {
205	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
206	0,			/* reserved */
207	0,			/* checksum */
208    },
209    0				/* flags */
210};
211
212static struct ifnet multicast_register_if;
213static vifi_t reg_vif_num = VIFI_INVALID;
214#endif /* PIM */
215
216/*
217 * Private variables.
218 */
219static vifi_t	   numvifs;
220static const struct encaptab *encap_cookie;
221
222/*
223 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
224 * given a datagram's src ip address.
225 */
226static u_long last_encap_src;
227static struct vif *last_encap_vif;
228
229static u_long	X_ip_mcast_src(int vifi);
230static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp,
231			struct mbuf *m, struct ip_moptions *imo);
232static int	X_ip_mrouter_done(void);
233static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
234static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
235static int	X_legal_vif_num(int vif);
236static int	X_mrt_ioctl(int cmd, caddr_t data);
237
238static int get_sg_cnt(struct sioc_sg_req *);
239static int get_vif_cnt(struct sioc_vif_req *);
240static int ip_mrouter_init(struct socket *, int);
241static int add_vif(struct vifctl *);
242static int del_vif(vifi_t);
243static int add_mfc(struct mfcctl2 *);
244static int del_mfc(struct mfcctl2 *);
245static int set_api_config(uint32_t *); /* chose API capabilities */
246static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
247static int set_assert(int);
248static void expire_upcalls(void *);
249static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
250static void phyint_send(struct ip *, struct vif *, struct mbuf *);
251static void encap_send(struct ip *, struct vif *, struct mbuf *);
252static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
253static void tbf_queue(struct vif *, struct mbuf *);
254static void tbf_process_q(struct vif *);
255static void tbf_reprocess_q(void *);
256static int tbf_dq_sel(struct vif *, struct ip *);
257static void tbf_send_packet(struct vif *, struct mbuf *);
258static void tbf_update_tokens(struct vif *);
259static int priority(struct vif *, struct ip *);
260
261/*
262 * Bandwidth monitoring
263 */
264static void free_bw_list(struct bw_meter *list);
265static int add_bw_upcall(struct bw_upcall *);
266static int del_bw_upcall(struct bw_upcall *);
267static void bw_meter_receive_packet(struct bw_meter *x, int plen,
268		struct timeval *nowp);
269static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
270static void bw_upcalls_send(void);
271static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
272static void unschedule_bw_meter(struct bw_meter *x);
273static void bw_meter_process(void);
274static void expire_bw_upcalls_send(void *);
275static void expire_bw_meter_process(void *);
276
277#ifdef PIM
278static int pim_register_send(struct ip *, struct vif *,
279		struct mbuf *, struct mfc *);
280static int pim_register_send_rp(struct ip *, struct vif *,
281		struct mbuf *, struct mfc *);
282static int pim_register_send_upcall(struct ip *, struct vif *,
283		struct mbuf *, struct mfc *);
284static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
285#endif
286
287/*
288 * whether or not special PIM assert processing is enabled.
289 */
290static int pim_assert;
291/*
292 * Rate limit for assert notification messages, in usec
293 */
294#define ASSERT_MSG_TIME		3000000
295
296/*
297 * Kernel multicast routing API capabilities and setup.
298 * If more API capabilities are added to the kernel, they should be
299 * recorded in `mrt_api_support'.
300 */
301static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
302					 MRT_MFC_FLAGS_BORDER_VIF |
303					 MRT_MFC_RP |
304					 MRT_MFC_BW_UPCALL);
305static uint32_t mrt_api_config = 0;
306
307/*
308 * Hash function for a source, group entry
309 */
310#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
311			((g) >> 20) ^ ((g) >> 10) ^ (g))
312
313/*
314 * Find a route for a given origin IP address and Multicast group address
315 * Type of service parameter to be added in the future!!!
316 * Statistics are updated by the caller if needed
317 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
318 */
319static struct mfc *
320mfc_find(in_addr_t o, in_addr_t g)
321{
322    struct mfc *rt;
323
324    for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
325	if ((rt->mfc_origin.s_addr == o) &&
326		(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
327	    break;
328    return rt;
329}
330
331/*
332 * Macros to compute elapsed time efficiently
333 * Borrowed from Van Jacobson's scheduling code
334 */
335#define TV_DELTA(a, b, delta) {					\
336	int xxs;						\
337	delta = (a).tv_usec - (b).tv_usec;			\
338	if ((xxs = (a).tv_sec - (b).tv_sec)) {			\
339		switch (xxs) {					\
340		case 2:						\
341		      delta += 1000000;				\
342		      /* FALLTHROUGH */				\
343		case 1:						\
344		      delta += 1000000;				\
345		      break;					\
346		default:					\
347		      delta += (1000000 * xxs);			\
348		}						\
349	}							\
350}
351
352#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
353	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
354
355/*
356 * Handle MRT setsockopt commands to modify the multicast routing tables.
357 */
358static int
359X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
360{
361    int	error, optval;
362    vifi_t	vifi;
363    struct	vifctl vifc;
364    struct	mfcctl2 mfc;
365    struct	bw_upcall bw_upcall;
366    uint32_t	i;
367
368    if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
369	return EPERM;
370
371    error = 0;
372    switch (sopt->sopt_name) {
373    case MRT_INIT:
374	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
375	if (error)
376	    break;
377	error = ip_mrouter_init(so, optval);
378	break;
379
380    case MRT_DONE:
381	error = ip_mrouter_done();
382	break;
383
384    case MRT_ADD_VIF:
385	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
386	if (error)
387	    break;
388	error = add_vif(&vifc);
389	break;
390
391    case MRT_DEL_VIF:
392	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
393	if (error)
394	    break;
395	error = del_vif(vifi);
396	break;
397
398    case MRT_ADD_MFC:
399    case MRT_DEL_MFC:
400	bzero((caddr_t)&mfc, sizeof(mfc)); /* zero out all fields */
401	/*
402	 * select data size depending on API version.
403	 */
404	if (sopt->sopt_name == MRT_ADD_MFC &&
405		mrt_api_config & MRT_API_FLAGS_ALL) {
406	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
407				sizeof(struct mfcctl2));
408	} else {
409	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
410				sizeof(struct mfcctl));
411	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
412			sizeof(mfc) - sizeof(struct mfcctl));
413	}
414	if (error)
415	    break;
416	if (sopt->sopt_name == MRT_ADD_MFC)
417	    error = add_mfc(&mfc);
418	else
419	    error = del_mfc(&mfc);
420	break;
421
422    case MRT_ASSERT:
423	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
424	if (error)
425	    break;
426	set_assert(optval);
427	break;
428
429    case MRT_API_CONFIG:
430	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
431	if (!error)
432	    error = set_api_config(&i);
433	if (!error)
434	    error = sooptcopyout(sopt, &i, sizeof i);
435	break;
436
437    case MRT_ADD_BW_UPCALL:
438    case MRT_DEL_BW_UPCALL:
439	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
440				sizeof bw_upcall);
441	if (error)
442	    break;
443	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
444	    error = add_bw_upcall(&bw_upcall);
445	else
446	    error = del_bw_upcall(&bw_upcall);
447	break;
448
449    default:
450	error = EOPNOTSUPP;
451	break;
452    }
453    return error;
454}
455
456/*
457 * Handle MRT getsockopt commands
458 */
459static int
460X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
461{
462    int error;
463    static int version = 0x0305; /* !!! why is this here? XXX */
464
465    switch (sopt->sopt_name) {
466    case MRT_VERSION:
467	error = sooptcopyout(sopt, &version, sizeof version);
468	break;
469
470    case MRT_ASSERT:
471	error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
472	break;
473
474    case MRT_API_SUPPORT:
475	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
476	break;
477
478    case MRT_API_CONFIG:
479	error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
480	break;
481
482    default:
483	error = EOPNOTSUPP;
484	break;
485    }
486    return error;
487}
488
489/*
490 * Handle ioctl commands to obtain information from the cache
491 */
492static int
493X_mrt_ioctl(int cmd, caddr_t data)
494{
495    int error = 0;
496
497    switch (cmd) {
498    case (SIOCGETVIFCNT):
499	error = get_vif_cnt((struct sioc_vif_req *)data);
500	break;
501
502    case (SIOCGETSGCNT):
503	error = get_sg_cnt((struct sioc_sg_req *)data);
504	break;
505
506    default:
507	error = EINVAL;
508	break;
509    }
510    return error;
511}
512
513/*
514 * returns the packet, byte, rpf-failure count for the source group provided
515 */
516static int
517get_sg_cnt(struct sioc_sg_req *req)
518{
519    int s;
520    struct mfc *rt;
521
522    s = splnet();
523    rt = mfc_find(req->src.s_addr, req->grp.s_addr);
524    splx(s);
525    if (rt == NULL) {
526	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
527	return EADDRNOTAVAIL;
528    }
529    req->pktcnt = rt->mfc_pkt_cnt;
530    req->bytecnt = rt->mfc_byte_cnt;
531    req->wrong_if = rt->mfc_wrong_if;
532    return 0;
533}
534
535/*
536 * returns the input and output packet and byte counts on the vif provided
537 */
538static int
539get_vif_cnt(struct sioc_vif_req *req)
540{
541    vifi_t vifi = req->vifi;
542
543    if (vifi >= numvifs)
544	return EINVAL;
545
546    req->icount = viftable[vifi].v_pkt_in;
547    req->ocount = viftable[vifi].v_pkt_out;
548    req->ibytes = viftable[vifi].v_bytes_in;
549    req->obytes = viftable[vifi].v_bytes_out;
550
551    return 0;
552}
553
554/*
555 * Enable multicast routing
556 */
557static int
558ip_mrouter_init(struct socket *so, int version)
559{
560    if (mrtdebug)
561	log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
562	    so->so_type, so->so_proto->pr_protocol);
563
564    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
565	return EOPNOTSUPP;
566
567    if (version != 1)
568	return ENOPROTOOPT;
569
570    if (ip_mrouter != NULL)
571	return EADDRINUSE;
572
573    ip_mrouter = so;
574
575    bzero((caddr_t)mfctable, sizeof(mfctable));
576    bzero((caddr_t)nexpire, sizeof(nexpire));
577
578    pim_assert = 0;
579
580    expire_upcalls_ch = timeout(expire_upcalls, NULL, EXPIRE_TIMEOUT);
581
582    bw_upcalls_n = 0;
583    bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
584    bw_upcalls_ch = timeout(expire_bw_upcalls_send, NULL, BW_UPCALLS_PERIOD);
585    bw_meter_ch = timeout(expire_bw_meter_process, NULL, BW_METER_PERIOD);
586
587    mrt_api_config = 0;
588
589    if (mrtdebug)
590	log(LOG_DEBUG, "ip_mrouter_init\n");
591
592    return 0;
593}
594
595/*
596 * Disable multicast routing
597 */
598static int
599X_ip_mrouter_done(void)
600{
601    vifi_t vifi;
602    int i;
603    struct ifnet *ifp;
604    struct ifreq ifr;
605    struct mfc *rt;
606    struct rtdetq *rte;
607    int s;
608
609    s = splnet();
610
611    /*
612     * For each phyint in use, disable promiscuous reception of all IP
613     * multicasts.
614     */
615    for (vifi = 0; vifi < numvifs; vifi++) {
616	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
617		!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
618	    struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
619
620	    so->sin_len = sizeof(struct sockaddr_in);
621	    so->sin_family = AF_INET;
622	    so->sin_addr.s_addr = INADDR_ANY;
623	    ifp = viftable[vifi].v_ifp;
624	    if_allmulti(ifp, 0);
625	}
626    }
627    bzero((caddr_t)tbftable, sizeof(tbftable));
628    bzero((caddr_t)viftable, sizeof(viftable));
629    numvifs = 0;
630    pim_assert = 0;
631
632    untimeout(expire_upcalls, NULL, expire_upcalls_ch);
633
634    mrt_api_config = 0;
635    bw_upcalls_n = 0;
636    untimeout(expire_bw_upcalls_send, NULL, bw_upcalls_ch);
637    untimeout(expire_bw_meter_process, NULL, bw_meter_ch);
638
639    /*
640     * Free all multicast forwarding cache entries.
641     */
642    for (i = 0; i < MFCTBLSIZ; i++) {
643	for (rt = mfctable[i]; rt != NULL; ) {
644	    struct mfc *nr = rt->mfc_next;
645
646	    for (rte = rt->mfc_stall; rte != NULL; ) {
647		struct rtdetq *n = rte->next;
648
649		m_freem(rte->m);
650		free(rte, M_MRTABLE);
651		rte = n;
652	    }
653	    free_bw_list(rt->mfc_bw_meter);
654	    free(rt, M_MRTABLE);
655	    rt = nr;
656	}
657    }
658
659    bzero((caddr_t)mfctable, sizeof(mfctable));
660
661    bzero(bw_meter_timers, sizeof(bw_meter_timers));
662
663    /*
664     * Reset de-encapsulation cache
665     */
666    last_encap_src = INADDR_ANY;
667    last_encap_vif = NULL;
668#ifdef PIM
669    reg_vif_num = VIFI_INVALID;
670#endif
671
672    if (encap_cookie) {
673	encap_detach(encap_cookie);
674	encap_cookie = NULL;
675    }
676
677    ip_mrouter = NULL;
678
679    splx(s);
680
681    if (mrtdebug)
682	log(LOG_DEBUG, "ip_mrouter_done\n");
683
684    return 0;
685}
686
687/*
688 * Set PIM assert processing global
689 */
690static int
691set_assert(int i)
692{
693    if ((i != 1) && (i != 0))
694	return EINVAL;
695
696    pim_assert = i;
697
698    return 0;
699}
700
701/*
702 * Configure API capabilities
703 */
704int
705set_api_config(uint32_t *apival)
706{
707    int i;
708
709    /*
710     * We can set the API capabilities only if it is the first operation
711     * after MRT_INIT. I.e.:
712     *  - there are no vifs installed
713     *  - pim_assert is not enabled
714     *  - the MFC table is empty
715     */
716    if (numvifs > 0) {
717	*apival = 0;
718	return EPERM;
719    }
720    if (pim_assert) {
721	*apival = 0;
722	return EPERM;
723    }
724    for (i = 0; i < MFCTBLSIZ; i++) {
725	if (mfctable[i] != NULL) {
726	    *apival = 0;
727	    return EPERM;
728	}
729    }
730
731    mrt_api_config = *apival & mrt_api_support;
732    *apival = mrt_api_config;
733
734    return 0;
735}
736
737/*
738 * Decide if a packet is from a tunnelled peer.
739 * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
740 */
741static int
742mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
743{
744    struct ip *ip = mtod(m, struct ip *);
745    int hlen = ip->ip_hl << 2;
746
747    /*
748     * don't claim the packet if it's not to a multicast destination or if
749     * we don't have an encapsulating tunnel with the source.
750     * Note:  This code assumes that the remote site IP address
751     * uniquely identifies the tunnel (i.e., that this site has
752     * at most one tunnel with the remote site).
753     */
754    if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
755	return 0;
756    if (ip->ip_src.s_addr != last_encap_src) {
757	struct vif *vifp = viftable;
758	struct vif *vife = vifp + numvifs;
759
760	last_encap_src = ip->ip_src.s_addr;
761	last_encap_vif = NULL;
762	for ( ; vifp < vife; ++vifp)
763	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
764		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
765		    last_encap_vif = vifp;
766		break;
767	    }
768    }
769    if (last_encap_vif == NULL) {
770	last_encap_src = INADDR_ANY;
771	return 0;
772    }
773    return 64;
774}
775
776/*
777 * De-encapsulate a packet and feed it back through ip input (this
778 * routine is called whenever IP gets a packet that mroute_encap_func()
779 * claimed).
780 */
781static void
782mroute_encap_input(struct mbuf *m, int off)
783{
784    struct ip *ip = mtod(m, struct ip *);
785    int hlen = ip->ip_hl << 2;
786
787    if (hlen > sizeof(struct ip))
788	ip_stripoptions(m, (struct mbuf *) 0);
789    m->m_data += sizeof(struct ip);
790    m->m_len -= sizeof(struct ip);
791    m->m_pkthdr.len -= sizeof(struct ip);
792
793    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
794
795    netisr_queue(NETISR_IP, m);
796    /*
797     * normally we would need a "schednetisr(NETISR_IP)"
798     * here but we were called by ip_input and it is going
799     * to loop back & try to dequeue the packet we just
800     * queued as soon as we return so we avoid the
801     * unnecessary software interrrupt.
802     *
803     * XXX
804     * This no longer holds - we may have direct-dispatched the packet,
805     * or there may be a queue processing limit.
806     */
807}
808
809extern struct domain inetdomain;
810static struct protosw mroute_encap_protosw =
811{ SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
812  mroute_encap_input,	0,	0,		rip_ctloutput,
813  0,
814  0,		0,		0,		0,
815  &rip_usrreqs
816};
817
818/*
819 * Add a vif to the vif table
820 */
821static int
822add_vif(struct vifctl *vifcp)
823{
824    struct vif *vifp = viftable + vifcp->vifc_vifi;
825    struct sockaddr_in sin = {sizeof sin, AF_INET};
826    struct ifaddr *ifa;
827    struct ifnet *ifp;
828    int error, s;
829    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
830
831    if (vifcp->vifc_vifi >= MAXVIFS)
832	return EINVAL;
833    if (vifp->v_lcl_addr.s_addr != INADDR_ANY)
834	return EADDRINUSE;
835    if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY)
836	return EADDRNOTAVAIL;
837
838    /* Find the interface with an address in AF_INET family */
839#ifdef PIM
840    if (vifcp->vifc_flags & VIFF_REGISTER) {
841	/*
842	 * XXX: Because VIFF_REGISTER does not really need a valid
843	 * local interface (e.g. it could be 127.0.0.2), we don't
844	 * check its address.
845	 */
846	ifp = NULL;
847    } else
848#endif
849    {
850	sin.sin_addr = vifcp->vifc_lcl_addr;
851	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
852	if (ifa == NULL)
853	    return EADDRNOTAVAIL;
854	ifp = ifa->ifa_ifp;
855    }
856
857    if (vifcp->vifc_flags & VIFF_TUNNEL) {
858	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
859	    /*
860	     * An encapsulating tunnel is wanted.  Tell
861	     * mroute_encap_input() to start paying attention
862	     * to encapsulated packets.
863	     */
864	    if (encap_cookie == NULL) {
865		encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
866				mroute_encapcheck,
867				(struct protosw *)&mroute_encap_protosw, NULL);
868
869		if (encap_cookie == NULL) {
870		    printf("ip_mroute: unable to attach encap\n");
871		    return EIO;	/* XXX */
872		}
873		for (s = 0; s < MAXVIFS; ++s) {
874		    multicast_decap_if[s].if_name = "mdecap";
875		    multicast_decap_if[s].if_unit = s;
876		}
877	    }
878	    /*
879	     * Set interface to fake encapsulator interface
880	     */
881	    ifp = &multicast_decap_if[vifcp->vifc_vifi];
882	    /*
883	     * Prepare cached route entry
884	     */
885	    bzero(&vifp->v_route, sizeof(vifp->v_route));
886	} else {
887	    log(LOG_ERR, "source routed tunnels not supported\n");
888	    return EOPNOTSUPP;
889	}
890#ifdef PIM
891    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
892	ifp = &multicast_register_if;
893	if (mrtdebug)
894	    log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
895		    (void *)&multicast_register_if);
896	if (reg_vif_num == VIFI_INVALID) {
897	    multicast_register_if.if_name = "register_vif";
898	    multicast_register_if.if_unit = 0;
899	    multicast_register_if.if_flags = IFF_LOOPBACK;
900	    bzero(&vifp->v_route, sizeof(vifp->v_route));
901	    reg_vif_num = vifcp->vifc_vifi;
902	}
903#endif
904    } else {		/* Make sure the interface supports multicast */
905	if ((ifp->if_flags & IFF_MULTICAST) == 0)
906	    return EOPNOTSUPP;
907
908	/* Enable promiscuous reception of all IP multicasts from the if */
909	s = splnet();
910	error = if_allmulti(ifp, 1);
911	splx(s);
912	if (error)
913	    return error;
914    }
915
916    s = splnet();
917    /* define parameters for the tbf structure */
918    vifp->v_tbf = v_tbf;
919    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
920    vifp->v_tbf->tbf_n_tok = 0;
921    vifp->v_tbf->tbf_q_len = 0;
922    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
923    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
924
925    vifp->v_flags     = vifcp->vifc_flags;
926    vifp->v_threshold = vifcp->vifc_threshold;
927    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
928    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
929    vifp->v_ifp       = ifp;
930    /* scaling up here allows division by 1024 in critical code */
931    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
932    vifp->v_rsvp_on   = 0;
933    vifp->v_rsvpd     = NULL;
934    /* initialize per vif pkt counters */
935    vifp->v_pkt_in    = 0;
936    vifp->v_pkt_out   = 0;
937    vifp->v_bytes_in  = 0;
938    vifp->v_bytes_out = 0;
939    splx(s);
940
941    /* Adjust numvifs up if the vifi is higher than numvifs */
942    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
943
944    if (mrtdebug)
945	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
946	    vifcp->vifc_vifi,
947	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
948	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
949	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
950	    vifcp->vifc_threshold,
951	    vifcp->vifc_rate_limit);
952
953    return 0;
954}
955
956/*
957 * Delete a vif from the vif table
958 */
959static int
960del_vif(vifi_t vifi)
961{
962    struct vif *vifp;
963    int s;
964
965    if (vifi >= numvifs)
966	return EINVAL;
967    vifp = &viftable[vifi];
968    if (vifp->v_lcl_addr.s_addr == INADDR_ANY)
969	return EADDRNOTAVAIL;
970
971    s = splnet();
972
973    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
974	if_allmulti(vifp->v_ifp, 0);
975
976    if (vifp == last_encap_vif) {
977	last_encap_vif = NULL;
978	last_encap_src = INADDR_ANY;
979    }
980
981    /*
982     * Free packets queued at the interface
983     */
984    while (vifp->v_tbf->tbf_q) {
985	struct mbuf *m = vifp->v_tbf->tbf_q;
986
987	vifp->v_tbf->tbf_q = m->m_act;
988	m_freem(m);
989    }
990
991#ifdef PIM
992    if (vifp->v_flags & VIFF_REGISTER)
993	reg_vif_num = VIFI_INVALID;
994#endif
995
996    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
997    bzero((caddr_t)vifp, sizeof (*vifp));
998
999    if (mrtdebug)
1000	log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
1001
1002    /* Adjust numvifs down */
1003    for (vifi = numvifs; vifi > 0; vifi--)
1004	if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
1005	    break;
1006    numvifs = vifi;
1007
1008    splx(s);
1009
1010    return 0;
1011}
1012
1013/*
1014 * update an mfc entry without resetting counters and S,G addresses.
1015 */
1016static void
1017update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1018{
1019    int i;
1020
1021    rt->mfc_parent = mfccp->mfcc_parent;
1022    for (i = 0; i < numvifs; i++) {
1023	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1024	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1025	    MRT_MFC_FLAGS_ALL;
1026    }
1027    /* set the RP address */
1028    if (mrt_api_config & MRT_MFC_RP)
1029	rt->mfc_rp = mfccp->mfcc_rp;
1030    else
1031	rt->mfc_rp.s_addr = INADDR_ANY;
1032}
1033
1034/*
1035 * fully initialize an mfc entry from the parameter.
1036 */
1037static void
1038init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1039{
1040    rt->mfc_origin     = mfccp->mfcc_origin;
1041    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1042
1043    update_mfc_params(rt, mfccp);
1044
1045    /* initialize pkt counters per src-grp */
1046    rt->mfc_pkt_cnt    = 0;
1047    rt->mfc_byte_cnt   = 0;
1048    rt->mfc_wrong_if   = 0;
1049    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1050}
1051
1052
1053/*
1054 * Add an mfc entry
1055 */
1056static int
1057add_mfc(struct mfcctl2 *mfccp)
1058{
1059    struct mfc *rt;
1060    u_long hash;
1061    struct rtdetq *rte;
1062    u_short nstl;
1063    int s;
1064
1065    rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1066
1067    /* If an entry already exists, just update the fields */
1068    if (rt) {
1069	if (mrtdebug & DEBUG_MFC)
1070	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
1071		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
1072		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1073		mfccp->mfcc_parent);
1074
1075	s = splnet();
1076	update_mfc_params(rt, mfccp);
1077	splx(s);
1078	return 0;
1079    }
1080
1081    /*
1082     * Find the entry for which the upcall was made and update
1083     */
1084    s = splnet();
1085    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
1086    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
1087
1088	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1089		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
1090		(rt->mfc_stall != NULL)) {
1091
1092	    if (nstl++)
1093		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
1094		    "multiple kernel entries",
1095		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1096		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1097		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1098
1099	    if (mrtdebug & DEBUG_MFC)
1100		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
1101		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1102		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1103		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
1104
1105	    init_mfc_params(rt, mfccp);
1106
1107	    rt->mfc_expire = 0;	/* Don't clean this guy up */
1108	    nexpire[hash]--;
1109
1110	    /* free packets Qed at the end of this entry */
1111	    for (rte = rt->mfc_stall; rte != NULL; ) {
1112		struct rtdetq *n = rte->next;
1113
1114		ip_mdq(rte->m, rte->ifp, rt, -1);
1115		m_freem(rte->m);
1116		free(rte, M_MRTABLE);
1117		rte = n;
1118	    }
1119	    rt->mfc_stall = NULL;
1120	}
1121    }
1122
1123    /*
1124     * It is possible that an entry is being inserted without an upcall
1125     */
1126    if (nstl == 0) {
1127	if (mrtdebug & DEBUG_MFC)
1128	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
1129		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
1130		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1131		mfccp->mfcc_parent);
1132
1133	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1134	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1135		    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1136		init_mfc_params(rt, mfccp);
1137		if (rt->mfc_expire)
1138		    nexpire[hash]--;
1139		rt->mfc_expire = 0;
1140		break; /* XXX */
1141	    }
1142	}
1143	if (rt == NULL) {		/* no upcall, so make a new entry */
1144	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1145	    if (rt == NULL) {
1146		splx(s);
1147		return ENOBUFS;
1148	    }
1149
1150	    init_mfc_params(rt, mfccp);
1151	    rt->mfc_expire     = 0;
1152	    rt->mfc_stall      = NULL;
1153
1154	    rt->mfc_bw_meter = NULL;
1155	    /* insert new entry at head of hash chain */
1156	    rt->mfc_next = mfctable[hash];
1157	    mfctable[hash] = rt;
1158	}
1159    }
1160    splx(s);
1161    return 0;
1162}
1163
1164/*
1165 * Delete an mfc entry
1166 */
1167static int
1168del_mfc(struct mfcctl2 *mfccp)
1169{
1170    struct in_addr 	origin;
1171    struct in_addr 	mcastgrp;
1172    struct mfc 		*rt;
1173    struct mfc	 	**nptr;
1174    u_long 		hash;
1175    int s;
1176    struct bw_meter	*list;
1177
1178    origin = mfccp->mfcc_origin;
1179    mcastgrp = mfccp->mfcc_mcastgrp;
1180
1181    if (mrtdebug & DEBUG_MFC)
1182	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1183	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1184
1185    s = splnet();
1186
1187    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1188    for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
1189	if (origin.s_addr == rt->mfc_origin.s_addr &&
1190		mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1191		rt->mfc_stall == NULL)
1192	    break;
1193    if (rt == NULL) {
1194	splx(s);
1195	return EADDRNOTAVAIL;
1196    }
1197
1198    *nptr = rt->mfc_next;
1199
1200    /*
1201     * free the bw_meter entries
1202     */
1203    list = rt->mfc_bw_meter;
1204    rt->mfc_bw_meter = NULL;
1205
1206    free(rt, M_MRTABLE);
1207
1208    splx(s);
1209
1210    free_bw_list(list);
1211
1212    return 0;
1213}
1214
1215/*
1216 * Send a message to mrouted on the multicast routing socket
1217 */
1218static int
1219socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1220{
1221    if (s) {
1222	if (sbappendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
1223	    sorwakeup(s);
1224	    return 0;
1225	}
1226    }
1227    m_freem(mm);
1228    return -1;
1229}
1230
1231/*
1232 * IP multicast forwarding function. This function assumes that the packet
1233 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1234 * pointed to by "ifp", and the packet is to be relayed to other networks
1235 * that have members of the packet's destination IP multicast group.
1236 *
1237 * The packet is returned unscathed to the caller, unless it is
1238 * erroneous, in which case a non-zero return value tells the caller to
1239 * discard it.
1240 */
1241
1242#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1243
1244static int
1245X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1246    struct ip_moptions *imo)
1247{
1248    struct mfc *rt;
1249    int s;
1250    vifi_t vifi;
1251
1252    if (mrtdebug & DEBUG_FORWARD)
1253	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1254	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1255	    (void *)ifp);
1256
1257    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1258		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1259	/*
1260	 * Packet arrived via a physical interface or
1261	 * an encapsulated tunnel or a register_vif.
1262	 */
1263    } else {
1264	/*
1265	 * Packet arrived through a source-route tunnel.
1266	 * Source-route tunnels are no longer supported.
1267	 */
1268	static int last_log;
1269	if (last_log != time_second) {
1270	    last_log = time_second;
1271	    log(LOG_ERR,
1272		"ip_mforward: received source-routed packet from %lx\n",
1273		(u_long)ntohl(ip->ip_src.s_addr));
1274	}
1275	return 1;
1276    }
1277
1278    if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1279	if (ip->ip_ttl < 255)
1280	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1281	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1282	    struct vif *vifp = viftable + vifi;
1283
1284	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1285		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1286		vifi,
1287		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1288		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1289	}
1290	return ip_mdq(m, ifp, NULL, vifi);
1291    }
1292    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1293	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1294	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1295	if (!imo)
1296	    printf("In fact, no options were specified at all\n");
1297    }
1298
1299    /*
1300     * Don't forward a packet with time-to-live of zero or one,
1301     * or a packet destined to a local-only group.
1302     */
1303    if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1304	return 0;
1305
1306    /*
1307     * Determine forwarding vifs from the forwarding cache table
1308     */
1309    s = splnet();
1310    ++mrtstat.mrts_mfc_lookups;
1311    rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1312
1313    /* Entry exists, so forward if necessary */
1314    if (rt != NULL) {
1315	splx(s);
1316	return ip_mdq(m, ifp, rt, -1);
1317    } else {
1318	/*
1319	 * If we don't have a route for packet's origin,
1320	 * Make a copy of the packet & send message to routing daemon
1321	 */
1322
1323	struct mbuf *mb0;
1324	struct rtdetq *rte;
1325	u_long hash;
1326	int hlen = ip->ip_hl << 2;
1327
1328	++mrtstat.mrts_mfc_misses;
1329
1330	mrtstat.mrts_no_route++;
1331	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1332	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1333		(u_long)ntohl(ip->ip_src.s_addr),
1334		(u_long)ntohl(ip->ip_dst.s_addr));
1335
1336	/*
1337	 * Allocate mbufs early so that we don't do extra work if we are
1338	 * just going to fail anyway.  Make sure to pullup the header so
1339	 * that other people can't step on it.
1340	 */
1341	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1342	if (rte == NULL) {
1343	    splx(s);
1344	    return ENOBUFS;
1345	}
1346	mb0 = m_copypacket(m, M_DONTWAIT);
1347	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1348	    mb0 = m_pullup(mb0, hlen);
1349	if (mb0 == NULL) {
1350	    free(rte, M_MRTABLE);
1351	    splx(s);
1352	    return ENOBUFS;
1353	}
1354
1355	/* is there an upcall waiting for this flow ? */
1356	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1357	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1358	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1359		    (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1360		    (rt->mfc_stall != NULL))
1361		break;
1362	}
1363
1364	if (rt == NULL) {
1365	    int i;
1366	    struct igmpmsg *im;
1367	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1368	    struct mbuf *mm;
1369
1370	    /*
1371	     * Locate the vifi for the incoming interface for this packet.
1372	     * If none found, drop packet.
1373	     */
1374	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1375		;
1376	    if (vifi >= numvifs)	/* vif not found, drop packet */
1377		goto non_fatal;
1378
1379	    /* no upcall, so make a new entry */
1380	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1381	    if (rt == NULL)
1382		goto fail;
1383	    /* Make a copy of the header to send to the user level process */
1384	    mm = m_copy(mb0, 0, hlen);
1385	    if (mm == NULL)
1386		goto fail1;
1387
1388	    /*
1389	     * Send message to routing daemon to install
1390	     * a route into the kernel table
1391	     */
1392
1393	    im = mtod(mm, struct igmpmsg *);
1394	    im->im_msgtype = IGMPMSG_NOCACHE;
1395	    im->im_mbz = 0;
1396	    im->im_vif = vifi;
1397
1398	    mrtstat.mrts_upcalls++;
1399
1400	    k_igmpsrc.sin_addr = ip->ip_src;
1401	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1402		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1403		++mrtstat.mrts_upq_sockfull;
1404fail1:
1405		free(rt, M_MRTABLE);
1406fail:
1407		free(rte, M_MRTABLE);
1408		m_freem(mb0);
1409		splx(s);
1410		return ENOBUFS;
1411	    }
1412
1413	    /* insert new entry at head of hash chain */
1414	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1415	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1416	    rt->mfc_expire	      = UPCALL_EXPIRE;
1417	    nexpire[hash]++;
1418	    for (i = 0; i < numvifs; i++) {
1419		rt->mfc_ttls[i] = 0;
1420		rt->mfc_flags[i] = 0;
1421	    }
1422	    rt->mfc_parent = -1;
1423
1424	    rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
1425
1426	    rt->mfc_bw_meter = NULL;
1427
1428	    /* link into table */
1429	    rt->mfc_next   = mfctable[hash];
1430	    mfctable[hash] = rt;
1431	    rt->mfc_stall = rte;
1432
1433	} else {
1434	    /* determine if q has overflowed */
1435	    int npkts = 0;
1436	    struct rtdetq **p;
1437
1438	    /*
1439	     * XXX ouch! we need to append to the list, but we
1440	     * only have a pointer to the front, so we have to
1441	     * scan the entire list every time.
1442	     */
1443	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1444		npkts++;
1445
1446	    if (npkts > MAX_UPQ) {
1447		mrtstat.mrts_upq_ovflw++;
1448non_fatal:
1449		free(rte, M_MRTABLE);
1450		m_freem(mb0);
1451		splx(s);
1452		return 0;
1453	    }
1454
1455	    /* Add this entry to the end of the queue */
1456	    *p = rte;
1457	}
1458
1459	rte->m 			= mb0;
1460	rte->ifp 		= ifp;
1461	rte->next		= NULL;
1462
1463	splx(s);
1464
1465	return 0;
1466    }
1467}
1468
1469/*
1470 * Clean up the cache entry if upcall is not serviced
1471 */
1472static void
1473expire_upcalls(void *unused)
1474{
1475    struct rtdetq *rte;
1476    struct mfc *mfc, **nptr;
1477    int i;
1478    int s;
1479
1480    s = splnet();
1481    for (i = 0; i < MFCTBLSIZ; i++) {
1482	if (nexpire[i] == 0)
1483	    continue;
1484	nptr = &mfctable[i];
1485	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1486	    /*
1487	     * Skip real cache entries
1488	     * Make sure it wasn't marked to not expire (shouldn't happen)
1489	     * If it expires now
1490	     */
1491	    if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
1492		    --mfc->mfc_expire == 0) {
1493		if (mrtdebug & DEBUG_EXPIRE)
1494		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1495			(u_long)ntohl(mfc->mfc_origin.s_addr),
1496			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1497		/*
1498		 * drop all the packets
1499		 * free the mbuf with the pkt, if, timing info
1500		 */
1501		for (rte = mfc->mfc_stall; rte; ) {
1502		    struct rtdetq *n = rte->next;
1503
1504		    m_freem(rte->m);
1505		    free(rte, M_MRTABLE);
1506		    rte = n;
1507		}
1508		++mrtstat.mrts_cache_cleanups;
1509		nexpire[i]--;
1510
1511		/*
1512		 * free the bw_meter entries
1513		 */
1514		while (mfc->mfc_bw_meter != NULL) {
1515		    struct bw_meter *x = mfc->mfc_bw_meter;
1516
1517		    mfc->mfc_bw_meter = x->bm_mfc_next;
1518		    free(x, M_BWMETER);
1519		}
1520
1521		*nptr = mfc->mfc_next;
1522		free(mfc, M_MRTABLE);
1523	    } else {
1524		nptr = &mfc->mfc_next;
1525	    }
1526	}
1527    }
1528    splx(s);
1529    expire_upcalls_ch = timeout(expire_upcalls, NULL, EXPIRE_TIMEOUT);
1530}
1531
1532/*
1533 * Packet forwarding routine once entry in the cache is made
1534 */
1535static int
1536ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1537{
1538    struct ip  *ip = mtod(m, struct ip *);
1539    vifi_t vifi;
1540    int plen = ip->ip_len;
1541
1542/*
1543 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1544 * input, they shouldn't get counted on output, so statistics keeping is
1545 * separate.
1546 */
1547#define MC_SEND(ip,vifp,m) {				\
1548		if ((vifp)->v_flags & VIFF_TUNNEL)	\
1549		    encap_send((ip), (vifp), (m));	\
1550		else					\
1551		    phyint_send((ip), (vifp), (m));	\
1552}
1553
1554    /*
1555     * If xmt_vif is not -1, send on only the requested vif.
1556     *
1557     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1558     */
1559    if (xmt_vif < numvifs) {
1560#ifdef PIM
1561	if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1562	    pim_register_send(ip, viftable + xmt_vif, m, rt);
1563        else
1564#endif
1565	MC_SEND(ip, viftable + xmt_vif, m);
1566	return 1;
1567    }
1568
1569    /*
1570     * Don't forward if it didn't arrive from the parent vif for its origin.
1571     */
1572    vifi = rt->mfc_parent;
1573    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1574	/* came in the wrong interface */
1575	if (mrtdebug & DEBUG_FORWARD)
1576	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1577		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1578	++mrtstat.mrts_wrong_if;
1579	++rt->mfc_wrong_if;
1580	/*
1581	 * If we are doing PIM assert processing, send a message
1582	 * to the routing daemon.
1583	 *
1584	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1585	 * can complete the SPT switch, regardless of the type
1586	 * of the iif (broadcast media, GRE tunnel, etc).
1587	 */
1588	if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1589	    struct timeval now;
1590	    u_long delta;
1591
1592#ifdef PIM
1593	    if (ifp == &multicast_register_if)
1594		pimstat.pims_rcv_registers_wrongiif++;
1595#endif
1596
1597	    /* Get vifi for the incoming packet */
1598	    for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
1599		;
1600	    if (vifi >= numvifs)
1601		return 0;	/* The iif is not found: ignore the packet. */
1602
1603	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1604		return 0;	/* WRONGVIF disabled: ignore the packet */
1605
1606	    GET_TIME(now);
1607
1608	    TV_DELTA(rt->mfc_last_assert, now, delta);
1609
1610	    if (delta > ASSERT_MSG_TIME) {
1611		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1612		struct igmpmsg *im;
1613		int hlen = ip->ip_hl << 2;
1614		struct mbuf *mm = m_copy(m, 0, hlen);
1615
1616		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1617		    mm = m_pullup(mm, hlen);
1618		if (mm == NULL)
1619		    return ENOBUFS;
1620
1621		rt->mfc_last_assert = now;
1622
1623		im = mtod(mm, struct igmpmsg *);
1624		im->im_msgtype	= IGMPMSG_WRONGVIF;
1625		im->im_mbz		= 0;
1626		im->im_vif		= vifi;
1627
1628		mrtstat.mrts_upcalls++;
1629
1630		k_igmpsrc.sin_addr = im->im_src;
1631		if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1632		    log(LOG_WARNING,
1633			"ip_mforward: ip_mrouter socket queue full\n");
1634		    ++mrtstat.mrts_upq_sockfull;
1635		    return ENOBUFS;
1636		}
1637	    }
1638	}
1639	return 0;
1640    }
1641
1642    /* If I sourced this packet, it counts as output, else it was input. */
1643    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1644	viftable[vifi].v_pkt_out++;
1645	viftable[vifi].v_bytes_out += plen;
1646    } else {
1647	viftable[vifi].v_pkt_in++;
1648	viftable[vifi].v_bytes_in += plen;
1649    }
1650    rt->mfc_pkt_cnt++;
1651    rt->mfc_byte_cnt += plen;
1652
1653    /*
1654     * For each vif, decide if a copy of the packet should be forwarded.
1655     * Forward if:
1656     *		- the ttl exceeds the vif's threshold
1657     *		- there are group members downstream on interface
1658     */
1659    for (vifi = 0; vifi < numvifs; vifi++)
1660	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1661	    viftable[vifi].v_pkt_out++;
1662	    viftable[vifi].v_bytes_out += plen;
1663#ifdef PIM
1664	    if (viftable[vifi].v_flags & VIFF_REGISTER)
1665		pim_register_send(ip, viftable + vifi, m, rt);
1666	    else
1667#endif
1668	    MC_SEND(ip, viftable+vifi, m);
1669	}
1670
1671    /*
1672     * Perform upcall-related bw measuring.
1673     */
1674    if (rt->mfc_bw_meter != NULL) {
1675	struct bw_meter *x;
1676	struct timeval now;
1677
1678	GET_TIME(now);
1679	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1680	    bw_meter_receive_packet(x, plen, &now);
1681    }
1682
1683    return 0;
1684}
1685
1686/*
1687 * check if a vif number is legal/ok. This is used by ip_output.
1688 */
1689static int
1690X_legal_vif_num(int vif)
1691{
1692    return (vif >= 0 && vif < numvifs);
1693}
1694
1695/*
1696 * Return the local address used by this vif
1697 */
1698static u_long
1699X_ip_mcast_src(int vifi)
1700{
1701    if (vifi >= 0 && vifi < numvifs)
1702	return viftable[vifi].v_lcl_addr.s_addr;
1703    else
1704	return INADDR_ANY;
1705}
1706
1707static void
1708phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1709{
1710    struct mbuf *mb_copy;
1711    int hlen = ip->ip_hl << 2;
1712
1713    /*
1714     * Make a new reference to the packet; make sure that
1715     * the IP header is actually copied, not just referenced,
1716     * so that ip_output() only scribbles on the copy.
1717     */
1718    mb_copy = m_copypacket(m, M_DONTWAIT);
1719    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1720	mb_copy = m_pullup(mb_copy, hlen);
1721    if (mb_copy == NULL)
1722	return;
1723
1724    if (vifp->v_rate_limit == 0)
1725	tbf_send_packet(vifp, mb_copy);
1726    else
1727	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1728}
1729
1730static void
1731encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1732{
1733    struct mbuf *mb_copy;
1734    struct ip *ip_copy;
1735    int i, len = ip->ip_len;
1736
1737    /*
1738     * copy the old packet & pullup its IP header into the
1739     * new mbuf so we can modify it.  Try to fill the new
1740     * mbuf since if we don't the ethernet driver will.
1741     */
1742    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1743    if (mb_copy == NULL)
1744	return;
1745#ifdef MAC
1746    mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1747#endif
1748    mb_copy->m_data += max_linkhdr;
1749    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1750
1751    if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1752	m_freem(mb_copy);
1753	return;
1754    }
1755    i = MHLEN - M_LEADINGSPACE(mb_copy);
1756    if (i > len)
1757	i = len;
1758    mb_copy = m_pullup(mb_copy, i);
1759    if (mb_copy == NULL)
1760	return;
1761    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1762
1763    /*
1764     * fill in the encapsulating IP header.
1765     */
1766    ip_copy = mtod(mb_copy, struct ip *);
1767    *ip_copy = multicast_encap_iphdr;
1768#ifdef RANDOM_IP_ID
1769    ip_copy->ip_id = ip_randomid();
1770#else
1771    ip_copy->ip_id = htons(ip_id++);
1772#endif
1773    ip_copy->ip_len += len;
1774    ip_copy->ip_src = vifp->v_lcl_addr;
1775    ip_copy->ip_dst = vifp->v_rmt_addr;
1776
1777    /*
1778     * turn the encapsulated IP header back into a valid one.
1779     */
1780    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1781    --ip->ip_ttl;
1782    ip->ip_len = htons(ip->ip_len);
1783    ip->ip_off = htons(ip->ip_off);
1784    ip->ip_sum = 0;
1785    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1786    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1787    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1788
1789    if (vifp->v_rate_limit == 0)
1790	tbf_send_packet(vifp, mb_copy);
1791    else
1792	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1793}
1794
1795/*
1796 * Token bucket filter module
1797 */
1798
1799static void
1800tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
1801{
1802    struct tbf *t = vifp->v_tbf;
1803
1804    if (p_len > MAX_BKT_SIZE) {		/* drop if packet is too large */
1805	mrtstat.mrts_pkt2large++;
1806	m_freem(m);
1807	return;
1808    }
1809
1810    tbf_update_tokens(vifp);
1811
1812    if (t->tbf_q_len == 0) {		/* queue empty...		*/
1813	if (p_len <= t->tbf_n_tok) {	/* send packet if enough tokens */
1814	    t->tbf_n_tok -= p_len;
1815	    tbf_send_packet(vifp, m);
1816	} else {			/* no, queue packet and try later */
1817	    tbf_queue(vifp, m);
1818	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1819	}
1820    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1821	/* finite queue length, so queue pkts and process queue */
1822	tbf_queue(vifp, m);
1823	tbf_process_q(vifp);
1824    } else {
1825	/* queue full, try to dq and queue and process */
1826	if (!tbf_dq_sel(vifp, ip)) {
1827	    mrtstat.mrts_q_overflow++;
1828	    m_freem(m);
1829	} else {
1830	    tbf_queue(vifp, m);
1831	    tbf_process_q(vifp);
1832	}
1833    }
1834}
1835
1836/*
1837 * adds a packet to the queue at the interface
1838 */
1839static void
1840tbf_queue(struct vif *vifp, struct mbuf *m)
1841{
1842    int s = splnet();
1843    struct tbf *t = vifp->v_tbf;
1844
1845    if (t->tbf_t == NULL)	/* Queue was empty */
1846	t->tbf_q = m;
1847    else			/* Insert at tail */
1848	t->tbf_t->m_act = m;
1849
1850    t->tbf_t = m;		/* Set new tail pointer */
1851
1852#ifdef DIAGNOSTIC
1853    /* Make sure we didn't get fed a bogus mbuf */
1854    if (m->m_act)
1855	panic("tbf_queue: m_act");
1856#endif
1857    m->m_act = NULL;
1858
1859    t->tbf_q_len++;
1860
1861    splx(s);
1862}
1863
1864/*
1865 * processes the queue at the interface
1866 */
1867static void
1868tbf_process_q(struct vif *vifp)
1869{
1870    int s = splnet();
1871    struct tbf *t = vifp->v_tbf;
1872
1873    /* loop through the queue at the interface and send as many packets
1874     * as possible
1875     */
1876    while (t->tbf_q_len > 0) {
1877	struct mbuf *m = t->tbf_q;
1878	int len = mtod(m, struct ip *)->ip_len;
1879
1880	/* determine if the packet can be sent */
1881	if (len > t->tbf_n_tok)	/* not enough tokens, we are done */
1882	    break;
1883	/* ok, reduce no of tokens, dequeue and send the packet. */
1884	t->tbf_n_tok -= len;
1885
1886	t->tbf_q = m->m_act;
1887	if (--t->tbf_q_len == 0)
1888	    t->tbf_t = NULL;
1889
1890	m->m_act = NULL;
1891	tbf_send_packet(vifp, m);
1892    }
1893    splx(s);
1894}
1895
1896static void
1897tbf_reprocess_q(void *xvifp)
1898{
1899    struct vif *vifp = xvifp;
1900
1901    if (ip_mrouter == NULL)
1902	return;
1903    tbf_update_tokens(vifp);
1904    tbf_process_q(vifp);
1905    if (vifp->v_tbf->tbf_q_len)
1906	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1907}
1908
1909/* function that will selectively discard a member of the queue
1910 * based on the precedence value and the priority
1911 */
1912static int
1913tbf_dq_sel(struct vif *vifp, struct ip *ip)
1914{
1915    int s = splnet();
1916    u_int p;
1917    struct mbuf *m, *last;
1918    struct mbuf **np;
1919    struct tbf *t = vifp->v_tbf;
1920
1921    p = priority(vifp, ip);
1922
1923    np = &t->tbf_q;
1924    last = NULL;
1925    while ((m = *np) != NULL) {
1926	if (p > priority(vifp, mtod(m, struct ip *))) {
1927	    *np = m->m_act;
1928	    /* If we're removing the last packet, fix the tail pointer */
1929	    if (m == t->tbf_t)
1930		t->tbf_t = last;
1931	    m_freem(m);
1932	    /* It's impossible for the queue to be empty, but check anyways. */
1933	    if (--t->tbf_q_len == 0)
1934		t->tbf_t = NULL;
1935	    splx(s);
1936	    mrtstat.mrts_drop_sel++;
1937	    return 1;
1938	}
1939	np = &m->m_act;
1940	last = m;
1941    }
1942    splx(s);
1943    return 0;
1944}
1945
1946static void
1947tbf_send_packet(struct vif *vifp, struct mbuf *m)
1948{
1949    int s = splnet();
1950
1951    if (vifp->v_flags & VIFF_TUNNEL)	/* If tunnel options */
1952	ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
1953    else {
1954	struct ip_moptions imo;
1955	int error;
1956	static struct route ro; /* XXX check this */
1957
1958	imo.imo_multicast_ifp  = vifp->v_ifp;
1959	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1960	imo.imo_multicast_loop = 1;
1961	imo.imo_multicast_vif  = -1;
1962
1963	/*
1964	 * Re-entrancy should not be a problem here, because
1965	 * the packets that we send out and are looped back at us
1966	 * should get rejected because they appear to come from
1967	 * the loopback interface, thus preventing looping.
1968	 */
1969	error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
1970
1971	if (mrtdebug & DEBUG_XMIT)
1972	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1973		(int)(vifp - viftable), error);
1974    }
1975    splx(s);
1976}
1977
1978/* determine the current time and then
1979 * the elapsed time (between the last time and time now)
1980 * in milliseconds & update the no. of tokens in the bucket
1981 */
1982static void
1983tbf_update_tokens(struct vif *vifp)
1984{
1985    struct timeval tp;
1986    u_long tm;
1987    int s = splnet();
1988    struct tbf *t = vifp->v_tbf;
1989
1990    GET_TIME(tp);
1991
1992    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1993
1994    /*
1995     * This formula is actually
1996     * "time in seconds" * "bytes/second".
1997     *
1998     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1999     *
2000     * The (1000/1024) was introduced in add_vif to optimize
2001     * this divide into a shift.
2002     */
2003    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
2004    t->tbf_last_pkt_t = tp;
2005
2006    if (t->tbf_n_tok > MAX_BKT_SIZE)
2007	t->tbf_n_tok = MAX_BKT_SIZE;
2008
2009    splx(s);
2010}
2011
2012static int
2013priority(struct vif *vifp, struct ip *ip)
2014{
2015    int prio = 50; /* the lowest priority -- default case */
2016
2017    /* temporary hack; may add general packet classifier some day */
2018
2019    /*
2020     * The UDP port space is divided up into four priority ranges:
2021     * [0, 16384)     : unclassified - lowest priority
2022     * [16384, 32768) : audio - highest priority
2023     * [32768, 49152) : whiteboard - medium priority
2024     * [49152, 65536) : video - low priority
2025     *
2026     * Everything else gets lowest priority.
2027     */
2028    if (ip->ip_p == IPPROTO_UDP) {
2029	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2030	switch (ntohs(udp->uh_dport) & 0xc000) {
2031	case 0x4000:
2032	    prio = 70;
2033	    break;
2034	case 0x8000:
2035	    prio = 60;
2036	    break;
2037	case 0xc000:
2038	    prio = 55;
2039	    break;
2040	}
2041    }
2042    return prio;
2043}
2044
2045/*
2046 * End of token bucket filter modifications
2047 */
2048
2049static int
2050X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
2051{
2052    int error, vifi, s;
2053
2054    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2055	return EOPNOTSUPP;
2056
2057    error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
2058    if (error)
2059	return error;
2060
2061    s = splnet();
2062
2063    if (vifi < 0 || vifi >= numvifs) {	/* Error if vif is invalid */
2064	splx(s);
2065	return EADDRNOTAVAIL;
2066    }
2067
2068    if (sopt->sopt_name == IP_RSVP_VIF_ON) {
2069	/* Check if socket is available. */
2070	if (viftable[vifi].v_rsvpd != NULL) {
2071	    splx(s);
2072	    return EADDRINUSE;
2073	}
2074
2075	viftable[vifi].v_rsvpd = so;
2076	/* This may seem silly, but we need to be sure we don't over-increment
2077	 * the RSVP counter, in case something slips up.
2078	 */
2079	if (!viftable[vifi].v_rsvp_on) {
2080	    viftable[vifi].v_rsvp_on = 1;
2081	    rsvp_on++;
2082	}
2083    } else { /* must be VIF_OFF */
2084	/*
2085	 * XXX as an additional consistency check, one could make sure
2086	 * that viftable[vifi].v_rsvpd == so, otherwise passing so as
2087	 * first parameter is pretty useless.
2088	 */
2089	viftable[vifi].v_rsvpd = NULL;
2090	/*
2091	 * This may seem silly, but we need to be sure we don't over-decrement
2092	 * the RSVP counter, in case something slips up.
2093	 */
2094	if (viftable[vifi].v_rsvp_on) {
2095	    viftable[vifi].v_rsvp_on = 0;
2096	    rsvp_on--;
2097	}
2098    }
2099    splx(s);
2100    return 0;
2101}
2102
2103static void
2104X_ip_rsvp_force_done(struct socket *so)
2105{
2106    int vifi;
2107    int s;
2108
2109    /* Don't bother if it is not the right type of socket. */
2110    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2111	return;
2112
2113    s = splnet();
2114
2115    /* The socket may be attached to more than one vif...this
2116     * is perfectly legal.
2117     */
2118    for (vifi = 0; vifi < numvifs; vifi++) {
2119	if (viftable[vifi].v_rsvpd == so) {
2120	    viftable[vifi].v_rsvpd = NULL;
2121	    /* This may seem silly, but we need to be sure we don't
2122	     * over-decrement the RSVP counter, in case something slips up.
2123	     */
2124	    if (viftable[vifi].v_rsvp_on) {
2125		viftable[vifi].v_rsvp_on = 0;
2126		rsvp_on--;
2127	    }
2128	}
2129    }
2130
2131    splx(s);
2132}
2133
2134static void
2135X_rsvp_input(struct mbuf *m, int off)
2136{
2137    int vifi;
2138    struct ip *ip = mtod(m, struct ip *);
2139    struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2140    int s;
2141    struct ifnet *ifp;
2142
2143    if (rsvpdebug)
2144	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2145
2146    /* Can still get packets with rsvp_on = 0 if there is a local member
2147     * of the group to which the RSVP packet is addressed.  But in this
2148     * case we want to throw the packet away.
2149     */
2150    if (!rsvp_on) {
2151	m_freem(m);
2152	return;
2153    }
2154
2155    s = splnet();
2156
2157    if (rsvpdebug)
2158	printf("rsvp_input: check vifs\n");
2159
2160#ifdef DIAGNOSTIC
2161    M_ASSERTPKTHDR(m);
2162#endif
2163
2164    ifp = m->m_pkthdr.rcvif;
2165    /* Find which vif the packet arrived on. */
2166    for (vifi = 0; vifi < numvifs; vifi++)
2167	if (viftable[vifi].v_ifp == ifp)
2168	    break;
2169
2170    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2171	/*
2172	 * If the old-style non-vif-associated socket is set,
2173	 * then use it.  Otherwise, drop packet since there
2174	 * is no specific socket for this vif.
2175	 */
2176	if (ip_rsvpd != NULL) {
2177	    if (rsvpdebug)
2178		printf("rsvp_input: Sending packet up old-style socket\n");
2179	    rip_input(m, off);  /* xxx */
2180	} else {
2181	    if (rsvpdebug && vifi == numvifs)
2182		printf("rsvp_input: Can't find vif for packet.\n");
2183	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2184		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2185	    m_freem(m);
2186	}
2187	splx(s);
2188	return;
2189    }
2190    rsvp_src.sin_addr = ip->ip_src;
2191
2192    if (rsvpdebug && m)
2193	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2194	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2195
2196    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2197	if (rsvpdebug)
2198	    printf("rsvp_input: Failed to append to socket\n");
2199    } else {
2200	if (rsvpdebug)
2201	    printf("rsvp_input: send packet up\n");
2202    }
2203
2204    splx(s);
2205}
2206
2207/*
2208 * Code for bandwidth monitors
2209 */
2210
2211/*
2212 * Define common interface for timeval-related methods
2213 */
2214#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
2215#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
2216#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
2217
2218static uint32_t
2219compute_bw_meter_flags(struct bw_upcall *req)
2220{
2221    uint32_t flags = 0;
2222
2223    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2224	flags |= BW_METER_UNIT_PACKETS;
2225    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2226	flags |= BW_METER_UNIT_BYTES;
2227    if (req->bu_flags & BW_UPCALL_GEQ)
2228	flags |= BW_METER_GEQ;
2229    if (req->bu_flags & BW_UPCALL_LEQ)
2230	flags |= BW_METER_LEQ;
2231
2232    return flags;
2233}
2234
2235/*
2236 * Add a bw_meter entry
2237 */
2238static int
2239add_bw_upcall(struct bw_upcall *req)
2240{
2241    struct mfc *mfc;
2242    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2243		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2244    struct timeval now;
2245    struct bw_meter *x;
2246    uint32_t flags;
2247    int s;
2248
2249    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2250	return EOPNOTSUPP;
2251
2252    /* Test if the flags are valid */
2253    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2254	return EINVAL;
2255    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2256	return EINVAL;
2257    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2258	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2259	return EINVAL;
2260
2261    /* Test if the threshold time interval is valid */
2262    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2263	return EINVAL;
2264
2265    flags = compute_bw_meter_flags(req);
2266
2267    /*
2268     * Find if we have already same bw_meter entry
2269     */
2270    s = splnet();
2271    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2272    if (mfc == NULL) {
2273	splx(s);
2274	return EADDRNOTAVAIL;
2275    }
2276    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2277	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2278			   &req->bu_threshold.b_time, ==)) &&
2279	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2280	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2281	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2282	    splx(s);
2283	    return 0;		/* XXX Already installed */
2284	}
2285    }
2286    splx(s);
2287
2288    /* Allocate the new bw_meter entry */
2289    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2290    if (x == NULL)
2291	return ENOBUFS;
2292
2293    /* Set the new bw_meter entry */
2294    x->bm_threshold.b_time = req->bu_threshold.b_time;
2295    GET_TIME(now);
2296    x->bm_start_time = now;
2297    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2298    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2299    x->bm_measured.b_packets = 0;
2300    x->bm_measured.b_bytes = 0;
2301    x->bm_flags = flags;
2302    x->bm_time_next = NULL;
2303    x->bm_time_hash = BW_METER_BUCKETS;
2304
2305    /* Add the new bw_meter entry to the front of entries for this MFC */
2306    s = splnet();
2307    x->bm_mfc = mfc;
2308    x->bm_mfc_next = mfc->mfc_bw_meter;
2309    mfc->mfc_bw_meter = x;
2310    schedule_bw_meter(x, &now);
2311    splx(s);
2312
2313    return 0;
2314}
2315
2316static void
2317free_bw_list(struct bw_meter *list)
2318{
2319    while (list != NULL) {
2320	struct bw_meter *x = list;
2321
2322	list = list->bm_mfc_next;
2323	unschedule_bw_meter(x);
2324	free(x, M_BWMETER);
2325    }
2326}
2327
2328/*
2329 * Delete one or multiple bw_meter entries
2330 */
2331static int
2332del_bw_upcall(struct bw_upcall *req)
2333{
2334    struct mfc *mfc;
2335    struct bw_meter *x;
2336    int s;
2337
2338    if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2339	return EOPNOTSUPP;
2340
2341    s = splnet();
2342    /* Find the corresponding MFC entry */
2343    mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
2344    if (mfc == NULL) {
2345	splx(s);
2346	return EADDRNOTAVAIL;
2347    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2348	/*
2349	 * Delete all bw_meter entries for this mfc
2350	 */
2351	struct bw_meter *list;
2352
2353	list = mfc->mfc_bw_meter;
2354	mfc->mfc_bw_meter = NULL;
2355	splx(s);
2356	free_bw_list(list);
2357	return 0;
2358    } else {			/* Delete a single bw_meter entry */
2359	struct bw_meter *prev;
2360	uint32_t flags = 0;
2361
2362	flags = compute_bw_meter_flags(req);
2363
2364	/* Find the bw_meter entry to delete */
2365	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2366	     x = x->bm_mfc_next) {
2367	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2368			       &req->bu_threshold.b_time, ==)) &&
2369		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2370		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2371		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
2372		break;
2373	}
2374	if (x != NULL) { /* Delete entry from the list for this MFC */
2375	    if (prev != NULL)
2376		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2377	    else
2378		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2379	    splx(s);
2380
2381	    unschedule_bw_meter(x);
2382	    /* Free the bw_meter entry */
2383	    free(x, M_BWMETER);
2384	    return 0;
2385	} else {
2386	    splx(s);
2387	    return EINVAL;
2388	}
2389    }
2390    /* NOTREACHED */
2391}
2392
2393/*
2394 * Perform bandwidth measurement processing that may result in an upcall
2395 */
2396static void
2397bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2398{
2399    struct timeval delta;
2400    int s;
2401
2402    s = splnet();
2403    delta = *nowp;
2404    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2405
2406    if (x->bm_flags & BW_METER_GEQ) {
2407	/*
2408	 * Processing for ">=" type of bw_meter entry
2409	 */
2410	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2411	    /* Reset the bw_meter entry */
2412	    x->bm_start_time = *nowp;
2413	    x->bm_measured.b_packets = 0;
2414	    x->bm_measured.b_bytes = 0;
2415	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2416	}
2417
2418	/* Record that a packet is received */
2419	x->bm_measured.b_packets++;
2420	x->bm_measured.b_bytes += plen;
2421
2422	/*
2423	 * Test if we should deliver an upcall
2424	 */
2425	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2426	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2427		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2428		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2429		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2430		/* Prepare an upcall for delivery */
2431		bw_meter_prepare_upcall(x, nowp);
2432		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2433	    }
2434	}
2435    } else if (x->bm_flags & BW_METER_LEQ) {
2436	/*
2437	 * Processing for "<=" type of bw_meter entry
2438	 */
2439	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2440	    /*
2441	     * We are behind time with the multicast forwarding table
2442	     * scanning for "<=" type of bw_meter entries, so test now
2443	     * if we should deliver an upcall.
2444	     */
2445	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2446		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2447		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2448		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2449		/* Prepare an upcall for delivery */
2450		bw_meter_prepare_upcall(x, nowp);
2451	    }
2452	    /* Reschedule the bw_meter entry */
2453	    unschedule_bw_meter(x);
2454	    schedule_bw_meter(x, nowp);
2455	}
2456
2457	/* Record that a packet is received */
2458	x->bm_measured.b_packets++;
2459	x->bm_measured.b_bytes += plen;
2460
2461	/*
2462	 * Test if we should restart the measuring interval
2463	 */
2464	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2465	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2466	    (x->bm_flags & BW_METER_UNIT_BYTES &&
2467	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2468	    /* Don't restart the measuring interval */
2469	} else {
2470	    /* Do restart the measuring interval */
2471	    /*
2472	     * XXX: note that we don't unschedule and schedule, because this
2473	     * might be too much overhead per packet. Instead, when we process
2474	     * all entries for a given timer hash bin, we check whether it is
2475	     * really a timeout. If not, we reschedule at that time.
2476	     */
2477	    x->bm_start_time = *nowp;
2478	    x->bm_measured.b_packets = 0;
2479	    x->bm_measured.b_bytes = 0;
2480	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2481	}
2482    }
2483    splx(s);
2484}
2485
2486/*
2487 * Prepare a bandwidth-related upcall
2488 */
2489static void
2490bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2491{
2492    struct timeval delta;
2493    struct bw_upcall *u;
2494    int s;
2495
2496    s = splnet();
2497
2498    /*
2499     * Compute the measured time interval
2500     */
2501    delta = *nowp;
2502    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2503
2504    /*
2505     * If there are too many pending upcalls, deliver them now
2506     */
2507    if (bw_upcalls_n >= BW_UPCALLS_MAX)
2508	bw_upcalls_send();
2509
2510    /*
2511     * Set the bw_upcall entry
2512     */
2513    u = &bw_upcalls[bw_upcalls_n++];
2514    u->bu_src = x->bm_mfc->mfc_origin;
2515    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2516    u->bu_threshold.b_time = x->bm_threshold.b_time;
2517    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2518    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2519    u->bu_measured.b_time = delta;
2520    u->bu_measured.b_packets = x->bm_measured.b_packets;
2521    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2522    u->bu_flags = 0;
2523    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2524	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2525    if (x->bm_flags & BW_METER_UNIT_BYTES)
2526	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2527    if (x->bm_flags & BW_METER_GEQ)
2528	u->bu_flags |= BW_UPCALL_GEQ;
2529    if (x->bm_flags & BW_METER_LEQ)
2530	u->bu_flags |= BW_UPCALL_LEQ;
2531
2532    splx(s);
2533}
2534
2535/*
2536 * Send the pending bandwidth-related upcalls
2537 */
2538static void
2539bw_upcalls_send(void)
2540{
2541    struct mbuf *m;
2542    int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2543    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2544    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2545				      0,		/* unused2 */
2546				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2547				      0,		/* im_mbz  */
2548				      0,		/* im_vif  */
2549				      0,		/* unused3 */
2550				      { 0 },		/* im_src  */
2551				      { 0 } };		/* im_dst  */
2552
2553    if (bw_upcalls_n == 0)
2554	return;			/* No pending upcalls */
2555
2556    bw_upcalls_n = 0;
2557
2558    /*
2559     * Allocate a new mbuf, initialize it with the header and
2560     * the payload for the pending calls.
2561     */
2562    MGETHDR(m, M_DONTWAIT, MT_HEADER);
2563    if (m == NULL) {
2564	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2565	return;
2566    }
2567
2568    m->m_len = m->m_pkthdr.len = 0;
2569    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2570    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2571
2572    /*
2573     * Send the upcalls
2574     * XXX do we need to set the address in k_igmpsrc ?
2575     */
2576    mrtstat.mrts_upcalls++;
2577    if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2578	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2579	++mrtstat.mrts_upq_sockfull;
2580    }
2581}
2582
2583/*
2584 * Compute the timeout hash value for the bw_meter entries
2585 */
2586#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2587    do {								\
2588	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2589									\
2590	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2591	(hash) = next_timeval.tv_sec;					\
2592	if (next_timeval.tv_usec)					\
2593	    (hash)++; /* XXX: make sure we don't timeout early */	\
2594	(hash) %= BW_METER_BUCKETS;					\
2595    } while (0)
2596
2597/*
2598 * Schedule a timer to process periodically bw_meter entry of type "<="
2599 * by linking the entry in the proper hash bucket.
2600 */
2601static void
2602schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2603{
2604    int time_hash, s;
2605
2606    if (!(x->bm_flags & BW_METER_LEQ))
2607	return;		/* XXX: we schedule timers only for "<=" entries */
2608
2609    /*
2610     * Reset the bw_meter entry
2611     */
2612    s = splnet();
2613    x->bm_start_time = *nowp;
2614    x->bm_measured.b_packets = 0;
2615    x->bm_measured.b_bytes = 0;
2616    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2617    splx(s);
2618
2619    /*
2620     * Compute the timeout hash value and insert the entry
2621     */
2622    BW_METER_TIMEHASH(x, time_hash);
2623    x->bm_time_next = bw_meter_timers[time_hash];
2624    bw_meter_timers[time_hash] = x;
2625    x->bm_time_hash = time_hash;
2626}
2627
2628/*
2629 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2630 * by removing the entry from the proper hash bucket.
2631 */
2632static void
2633unschedule_bw_meter(struct bw_meter *x)
2634{
2635    int time_hash;
2636    struct bw_meter *prev, *tmp;
2637
2638    if (!(x->bm_flags & BW_METER_LEQ))
2639	return;		/* XXX: we schedule timers only for "<=" entries */
2640
2641    /*
2642     * Compute the timeout hash value and delete the entry
2643     */
2644    time_hash = x->bm_time_hash;
2645    if (time_hash >= BW_METER_BUCKETS)
2646	return;		/* Entry was not scheduled */
2647
2648    for (prev = NULL, tmp = bw_meter_timers[time_hash];
2649	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2650	if (tmp == x)
2651	    break;
2652
2653    if (tmp == NULL)
2654	panic("unschedule_bw_meter: bw_meter entry not found");
2655
2656    if (prev != NULL)
2657	prev->bm_time_next = x->bm_time_next;
2658    else
2659	bw_meter_timers[time_hash] = x->bm_time_next;
2660
2661    x->bm_time_next = NULL;
2662    x->bm_time_hash = BW_METER_BUCKETS;
2663}
2664
2665
2666/*
2667 * Process all "<=" type of bw_meter that should be processed now,
2668 * and for each entry prepare an upcall if necessary. Each processed
2669 * entry is rescheduled again for the (periodic) processing.
2670 *
2671 * This is run periodically (once per second normally). On each round,
2672 * all the potentially matching entries are in the hash slot that we are
2673 * looking at.
2674 */
2675static void
2676bw_meter_process()
2677{
2678    static uint32_t last_tv_sec;	/* last time we processed this */
2679
2680    uint32_t loops;
2681    int i, s;
2682    struct timeval now, process_endtime;
2683
2684    GET_TIME(now);
2685    if (last_tv_sec == now.tv_sec)
2686	return;		/* nothing to do */
2687
2688    s = splnet();
2689    loops = now.tv_sec - last_tv_sec;
2690    last_tv_sec = now.tv_sec;
2691    if (loops > BW_METER_BUCKETS)
2692	loops = BW_METER_BUCKETS;
2693
2694    /*
2695     * Process all bins of bw_meter entries from the one after the last
2696     * processed to the current one. On entry, i points to the last bucket
2697     * visited, so we need to increment i at the beginning of the loop.
2698     */
2699    for (i = (now.tv_sec - loops + 1) % BW_METER_BUCKETS; loops > 0; loops--) {
2700	struct bw_meter *x, *tmp_list;
2701
2702	if (++i >= BW_METER_BUCKETS)
2703	    i = 0;
2704
2705	tmp_list = bw_meter_timers[i];
2706	bw_meter_timers[i] = NULL;
2707
2708	while (tmp_list != NULL) {
2709	    x = tmp_list;
2710	    tmp_list = tmp_list->bm_time_next;
2711
2712	    /* Test if the time interval is over */
2713	    process_endtime = x->bm_start_time;
2714	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2715	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2716		/* Not yet: reschedule, but don't reset */
2717		int time_hash;
2718
2719		BW_METER_TIMEHASH(x, time_hash);
2720		x->bm_time_next = bw_meter_timers[time_hash];
2721		bw_meter_timers[time_hash] = x;
2722		x->bm_time_hash = time_hash;
2723		continue;
2724	    }
2725
2726	    /*
2727	     * Test if we should deliver an upcall
2728	     */
2729	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2730		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2731		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2732		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2733		/* Prepare an upcall for delivery */
2734		bw_meter_prepare_upcall(x, &now);
2735	    }
2736
2737	    /*
2738	     * Reschedule for next processing
2739	     */
2740	    schedule_bw_meter(x, &now);
2741	}
2742    }
2743    splx(s);
2744
2745    /* Send all upcalls that are pending delivery */
2746    bw_upcalls_send();
2747}
2748
2749/*
2750 * A periodic function for sending all upcalls that are pending delivery
2751 */
2752static void
2753expire_bw_upcalls_send(void *unused)
2754{
2755    bw_upcalls_send();
2756
2757    bw_upcalls_ch = timeout(expire_bw_upcalls_send, NULL, BW_UPCALLS_PERIOD);
2758}
2759
2760/*
2761 * A periodic function for periodic scanning of the multicast forwarding
2762 * table for processing all "<=" bw_meter entries.
2763 */
2764static void
2765expire_bw_meter_process(void *unused)
2766{
2767    if (mrt_api_config & MRT_MFC_BW_UPCALL)
2768	bw_meter_process();
2769
2770    bw_meter_ch = timeout(expire_bw_meter_process, NULL, BW_METER_PERIOD);
2771}
2772
2773/*
2774 * End of bandwidth monitoring code
2775 */
2776
2777#ifdef PIM
2778/*
2779 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2780 *
2781 */
2782static int
2783pim_register_send(struct ip *ip, struct vif *vifp,
2784	struct mbuf *m, struct mfc *rt)
2785{
2786    struct mbuf *mb_copy, *mm;
2787
2788    if (mrtdebug & DEBUG_PIM)
2789        log(LOG_DEBUG, "pim_register_send: ");
2790
2791    mb_copy = pim_register_prepare(ip, m);
2792    if (mb_copy == NULL)
2793	return ENOBUFS;
2794
2795    /*
2796     * Send all the fragments. Note that the mbuf for each fragment
2797     * is freed by the sending machinery.
2798     */
2799    for (mm = mb_copy; mm; mm = mb_copy) {
2800	mb_copy = mm->m_nextpkt;
2801	mm->m_nextpkt = 0;
2802	mm = m_pullup(mm, sizeof(struct ip));
2803	if (mm != NULL) {
2804	    ip = mtod(mm, struct ip *);
2805	    if ((mrt_api_config & MRT_MFC_RP) &&
2806		(rt->mfc_rp.s_addr != INADDR_ANY)) {
2807		pim_register_send_rp(ip, vifp, mm, rt);
2808	    } else {
2809		pim_register_send_upcall(ip, vifp, mm, rt);
2810	    }
2811	}
2812    }
2813
2814    return 0;
2815}
2816
2817/*
2818 * Return a copy of the data packet that is ready for PIM Register
2819 * encapsulation.
2820 * XXX: Note that in the returned copy the IP header is a valid one.
2821 */
2822static struct mbuf *
2823pim_register_prepare(struct ip *ip, struct mbuf *m)
2824{
2825    struct mbuf *mb_copy = NULL;
2826    int mtu;
2827
2828    /*
2829     * XXX: take care of delayed checksums.
2830     * XXX: if network interfaces are capable of computing checksum for
2831     * encapsulated multicast data packets, we need to reconsider this.
2832     */
2833    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2834	in_delayed_cksum(m);
2835	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2836    }
2837
2838    /*
2839     * Copy the old packet & pullup its IP header into the
2840     * new mbuf so we can modify it.
2841     */
2842    mb_copy = m_copypacket(m, M_DONTWAIT);
2843    if (mb_copy == NULL)
2844	return NULL;
2845    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2846    if (mb_copy == NULL)
2847	return NULL;
2848
2849    /* take care of the TTL */
2850    ip = mtod(mb_copy, struct ip *);
2851    --ip->ip_ttl;
2852
2853    /* Compute the MTU after the PIM Register encapsulation */
2854    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2855    if (ip_fragment(ip, &mb_copy, mtu, 0, 0) != 0) {
2856	m_freem(mb_copy);
2857	return NULL;
2858    }
2859    return mb_copy;
2860}
2861
2862/*
2863 * Send an upcall with the data packet to the user-level process.
2864 */
2865static int
2866pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2867	struct mbuf *mb_copy, struct mfc *rt)
2868{
2869    struct mbuf *mb_first;
2870    int len = ntohs(ip->ip_len);
2871    struct igmpmsg *im;
2872    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2873
2874    /*
2875     * Add a new mbuf with an upcall header
2876     */
2877    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2878    if (mb_first == NULL) {
2879	m_freem(mb_copy);
2880	return ENOBUFS;
2881    }
2882    mb_first->m_data += max_linkhdr;
2883    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2884    mb_first->m_len = sizeof(struct igmpmsg);
2885    mb_first->m_next = mb_copy;
2886
2887    /* Send message to routing daemon */
2888    im = mtod(mb_first, struct igmpmsg *);
2889    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2890    im->im_mbz		= 0;
2891    im->im_vif		= vifp - viftable;
2892    im->im_src		= ip->ip_src;
2893    im->im_dst		= ip->ip_dst;
2894
2895    k_igmpsrc.sin_addr	= ip->ip_src;
2896
2897    mrtstat.mrts_upcalls++;
2898
2899    if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2900	if (mrtdebug & DEBUG_PIM)
2901	    log(LOG_WARNING,
2902		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
2903	++mrtstat.mrts_upq_sockfull;
2904	return ENOBUFS;
2905    }
2906
2907    /* Keep statistics */
2908    pimstat.pims_snd_registers_msgs++;
2909    pimstat.pims_snd_registers_bytes += len;
2910
2911    return 0;
2912}
2913
2914/*
2915 * Encapsulate the data packet in PIM Register message and send it to the RP.
2916 */
2917static int
2918pim_register_send_rp(struct ip *ip, struct vif *vifp,
2919	struct mbuf *mb_copy, struct mfc *rt)
2920{
2921    struct mbuf *mb_first;
2922    struct ip *ip_outer;
2923    struct pim_encap_pimhdr *pimhdr;
2924    int len = ntohs(ip->ip_len);
2925    vifi_t vifi = rt->mfc_parent;
2926
2927    if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
2928	m_freem(mb_copy);
2929	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2930    }
2931
2932    /*
2933     * Add a new mbuf with the encapsulating header
2934     */
2935    MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2936    if (mb_first == NULL) {
2937	m_freem(mb_copy);
2938	return ENOBUFS;
2939    }
2940    mb_first->m_data += max_linkhdr;
2941    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2942    mb_first->m_next = mb_copy;
2943
2944    mb_first->m_pkthdr.len = len + mb_first->m_len;
2945
2946    /*
2947     * Fill in the encapsulating IP and PIM header
2948     */
2949    ip_outer = mtod(mb_first, struct ip *);
2950    *ip_outer = pim_encap_iphdr;
2951#ifdef RANDOM_IP_ID
2952    ip_outer->ip_id = ip_randomid();
2953#else
2954    ip_outer->ip_id = htons(ip_id++);
2955#endif
2956    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2957    ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2958    ip_outer->ip_dst = rt->mfc_rp;
2959    /*
2960     * Copy the inner header TOS to the outer header, and take care of the
2961     * IP_DF bit.
2962     */
2963    ip_outer->ip_tos = ip->ip_tos;
2964    if (ntohs(ip->ip_off) & IP_DF)
2965	ip_outer->ip_off |= IP_DF;
2966    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2967					 + sizeof(pim_encap_iphdr));
2968    *pimhdr = pim_encap_pimhdr;
2969    /* If the iif crosses a border, set the Border-bit */
2970    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2971	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2972
2973    mb_first->m_data += sizeof(pim_encap_iphdr);
2974    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2975    mb_first->m_data -= sizeof(pim_encap_iphdr);
2976
2977    if (vifp->v_rate_limit == 0)
2978	tbf_send_packet(vifp, mb_first);
2979    else
2980	tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
2981
2982    /* Keep statistics */
2983    pimstat.pims_snd_registers_msgs++;
2984    pimstat.pims_snd_registers_bytes += len;
2985
2986    return 0;
2987}
2988
2989/*
2990 * PIM-SMv2 and PIM-DM messages processing.
2991 * Receives and verifies the PIM control messages, and passes them
2992 * up to the listening socket, using rip_input().
2993 * The only message with special processing is the PIM_REGISTER message
2994 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2995 * is passed to if_simloop().
2996 */
2997void
2998pim_input(struct mbuf *m, int off)
2999{
3000    struct ip *ip = mtod(m, struct ip *);
3001    struct pim *pim;
3002    int minlen;
3003    int datalen = ip->ip_len;
3004    int ip_tos;
3005    int iphlen = off;
3006
3007    /* Keep statistics */
3008    pimstat.pims_rcv_total_msgs++;
3009    pimstat.pims_rcv_total_bytes += datalen;
3010
3011    /*
3012     * Validate lengths
3013     */
3014    if (datalen < PIM_MINLEN) {
3015	pimstat.pims_rcv_tooshort++;
3016	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3017	    datalen, (u_long)ip->ip_src.s_addr);
3018	m_freem(m);
3019	return;
3020    }
3021
3022    /*
3023     * If the packet is at least as big as a REGISTER, go agead
3024     * and grab the PIM REGISTER header size, to avoid another
3025     * possible m_pullup() later.
3026     *
3027     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
3028     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3029     */
3030    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3031    /*
3032     * Get the IP and PIM headers in contiguous memory, and
3033     * possibly the PIM REGISTER header.
3034     */
3035    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3036	(m = m_pullup(m, minlen)) == 0) {
3037	log(LOG_ERR, "pim_input: m_pullup failure\n");
3038	return;
3039    }
3040    /* m_pullup() may have given us a new mbuf so reset ip. */
3041    ip = mtod(m, struct ip *);
3042    ip_tos = ip->ip_tos;
3043
3044    /* adjust mbuf to point to the PIM header */
3045    m->m_data += iphlen;
3046    m->m_len  -= iphlen;
3047    pim = mtod(m, struct pim *);
3048
3049    /*
3050     * Validate checksum. If PIM REGISTER, exclude the data packet.
3051     *
3052     * XXX: some older PIMv2 implementations don't make this distinction,
3053     * so for compatibility reason perform the checksum over part of the
3054     * message, and if error, then over the whole message.
3055     */
3056    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3057	/* do nothing, checksum okay */
3058    } else if (in_cksum(m, datalen)) {
3059	pimstat.pims_rcv_badsum++;
3060	if (mrtdebug & DEBUG_PIM)
3061	    log(LOG_DEBUG, "pim_input: invalid checksum");
3062	m_freem(m);
3063	return;
3064    }
3065
3066    /* PIM version check */
3067    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3068	pimstat.pims_rcv_badversion++;
3069	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3070	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3071	m_freem(m);
3072	return;
3073    }
3074
3075    /* restore mbuf back to the outer IP */
3076    m->m_data -= iphlen;
3077    m->m_len  += iphlen;
3078
3079    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3080	/*
3081	 * Since this is a REGISTER, we'll make a copy of the register
3082	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3083	 * routing daemon.
3084	 */
3085	struct sockaddr_in dst = { sizeof(dst), AF_INET };
3086	struct mbuf *mcp;
3087	struct ip *encap_ip;
3088	u_int32_t *reghdr;
3089
3090	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3091	    if (mrtdebug & DEBUG_PIM)
3092		log(LOG_DEBUG,
3093		    "pim_input: register vif not set: %d\n", reg_vif_num);
3094	    m_freem(m);
3095	    return;
3096	}
3097
3098	/*
3099	 * Validate length
3100	 */
3101	if (datalen < PIM_REG_MINLEN) {
3102	    pimstat.pims_rcv_tooshort++;
3103	    pimstat.pims_rcv_badregisters++;
3104	    log(LOG_ERR,
3105		"pim_input: register packet size too small %d from %lx\n",
3106		datalen, (u_long)ip->ip_src.s_addr);
3107	    m_freem(m);
3108	    return;
3109	}
3110
3111	reghdr = (u_int32_t *)(pim + 1);
3112	encap_ip = (struct ip *)(reghdr + 1);
3113
3114	if (mrtdebug & DEBUG_PIM) {
3115	    log(LOG_DEBUG,
3116		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3117		(u_long)ntohl(encap_ip->ip_src.s_addr),
3118		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3119		ntohs(encap_ip->ip_len));
3120	}
3121
3122	/* verify the version number of the inner packet */
3123	if (encap_ip->ip_v != IPVERSION) {
3124	    pimstat.pims_rcv_badregisters++;
3125	    if (mrtdebug & DEBUG_PIM) {
3126		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3127		    "of the inner packet\n", encap_ip->ip_v);
3128	    }
3129	    m_freem(m);
3130	    return;
3131	}
3132
3133	/* verify the inner packet is destined to a mcast group */
3134	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
3135	    pimstat.pims_rcv_badregisters++;
3136	    if (mrtdebug & DEBUG_PIM)
3137		log(LOG_DEBUG,
3138		    "pim_input: inner packet of register is not "
3139		    "multicast %lx\n",
3140		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3141	    m_freem(m);
3142	    return;
3143	}
3144
3145	/*
3146	 * Copy the TOS from the outer IP header to the inner IP header.
3147	 */
3148	if (encap_ip->ip_tos != ip_tos) {
3149	    /* Outer TOS -> inner TOS */
3150	    encap_ip->ip_tos = ip_tos;
3151	    /* Recompute the inner header checksum. Sigh... */
3152
3153	    /* adjust mbuf to point to the inner IP header */
3154	    m->m_data += (iphlen + PIM_MINLEN);
3155	    m->m_len  -= (iphlen + PIM_MINLEN);
3156
3157	    encap_ip->ip_sum = 0;
3158	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3159
3160	    /* restore mbuf to point back to the outer IP header */
3161	    m->m_data -= (iphlen + PIM_MINLEN);
3162	    m->m_len  += (iphlen + PIM_MINLEN);
3163	}
3164
3165	/* If a NULL_REGISTER, pass it to the daemon */
3166	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3167	    goto pim_input_to_daemon;
3168
3169	/*
3170	 * Decapsulate the inner IP packet and loopback to forward it
3171	 * as a normal multicast packet. Also, make a copy of the
3172	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3173	 * to pass to the daemon later, so it can take the appropriate
3174	 * actions (e.g., send back PIM_REGISTER_STOP).
3175	 * XXX: here m->m_data points to the outer IP header.
3176	 */
3177	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3178	if (mcp == NULL) {
3179	    log(LOG_ERR,
3180		"pim_input: pim register: could not copy register head\n");
3181	    m_freem(m);
3182	    return;
3183	}
3184
3185	/* Keep statistics */
3186	/* XXX: registers_bytes include only the encap. mcast pkt */
3187	pimstat.pims_rcv_registers_msgs++;
3188	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3189
3190	/*
3191	 * forward the inner ip packet; point m_data at the inner ip.
3192	 */
3193	m_adj(m, iphlen + PIM_MINLEN);
3194
3195	if (mrtdebug & DEBUG_PIM) {
3196	    log(LOG_DEBUG,
3197		"pim_input: forwarding decapsulated register: "
3198		"src %lx, dst %lx, vif %d\n",
3199		(u_long)ntohl(encap_ip->ip_src.s_addr),
3200		(u_long)ntohl(encap_ip->ip_dst.s_addr),
3201		reg_vif_num);
3202	}
3203	if_simloop(viftable[reg_vif_num].v_ifp, m, dst.sin_family, 0);
3204
3205	/* prepare the register head to send to the mrouting daemon */
3206	m = mcp;
3207    }
3208
3209pim_input_to_daemon:
3210    /*
3211     * Pass the PIM message up to the daemon; if it is a Register message,
3212     * pass the 'head' only up to the daemon. This includes the
3213     * outer IP header, PIM header, PIM-Register header and the
3214     * inner IP header.
3215     * XXX: the outer IP header pkt size of a Register is not adjust to
3216     * reflect the fact that the inner multicast data is truncated.
3217     */
3218    rip_input(m, iphlen);
3219
3220    return;
3221}
3222#endif /* PIM */
3223
3224static int
3225ip_mroute_modevent(module_t mod, int type, void *unused)
3226{
3227    int s;
3228
3229    switch (type) {
3230    case MOD_LOAD:
3231	s = splnet();
3232	/* XXX Protect against multiple loading */
3233	ip_mcast_src = X_ip_mcast_src;
3234	ip_mforward = X_ip_mforward;
3235	ip_mrouter_done = X_ip_mrouter_done;
3236	ip_mrouter_get = X_ip_mrouter_get;
3237	ip_mrouter_set = X_ip_mrouter_set;
3238	ip_rsvp_force_done = X_ip_rsvp_force_done;
3239	ip_rsvp_vif = X_ip_rsvp_vif;
3240	legal_vif_num = X_legal_vif_num;
3241	mrt_ioctl = X_mrt_ioctl;
3242	rsvp_input_p = X_rsvp_input;
3243	splx(s);
3244	break;
3245
3246    case MOD_UNLOAD:
3247	if (ip_mrouter)
3248	    return EINVAL;
3249
3250	s = splnet();
3251	ip_mcast_src = NULL;
3252	ip_mforward = NULL;
3253	ip_mrouter_done = NULL;
3254	ip_mrouter_get = NULL;
3255	ip_mrouter_set = NULL;
3256	ip_rsvp_force_done = NULL;
3257	ip_rsvp_vif = NULL;
3258	legal_vif_num = NULL;
3259	mrt_ioctl = NULL;
3260	rsvp_input_p = NULL;
3261	splx(s);
3262	break;
3263    }
3264    return 0;
3265}
3266
3267static moduledata_t ip_mroutemod = {
3268    "ip_mroute",
3269    ip_mroute_modevent,
3270    0
3271};
3272DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3273