ip_mroute.c revision 105570
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 *
11 * MROUTING Revision: 3.5
12 * $FreeBSD: head/sys/netinet/ip_mroute.c 105570 2002-10-20 21:59:00Z rwatson $
13 */
14
15#include "opt_mac.h"
16#include "opt_mrouting.h"
17#include "opt_random_ip_id.h"
18
19#include <sys/param.h>
20#include <sys/kernel.h>
21#include <sys/lock.h>
22#include <sys/mac.h>
23#include <sys/malloc.h>
24#include <sys/mbuf.h>
25#include <sys/protosw.h>
26#include <sys/signalvar.h>
27#include <sys/socket.h>
28#include <sys/socketvar.h>
29#include <sys/sockio.h>
30#include <sys/sx.h>
31#include <sys/sysctl.h>
32#include <sys/syslog.h>
33#include <sys/systm.h>
34#include <sys/time.h>
35#include <net/if.h>
36#include <net/route.h>
37#include <netinet/in.h>
38#include <netinet/igmp.h>
39#include <netinet/in_systm.h>
40#include <netinet/in_var.h>
41#include <netinet/ip.h>
42#include <netinet/ip_encap.h>
43#include <netinet/ip_mroute.h>
44#include <netinet/ip_var.h>
45#include <netinet/udp.h>
46#include <machine/in_cksum.h>
47
48#ifndef MROUTING
49extern u_long	_ip_mcast_src(int vifi);
50extern int	_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
51		    struct ip_moptions *imo);
52extern int	_ip_mrouter_done(void);
53extern int	_ip_mrouter_get(struct socket *so, struct sockopt *sopt);
54extern int	_ip_mrouter_set(struct socket *so, struct sockopt *sopt);
55extern int	_mrt_ioctl(int req, caddr_t data);
56
57/*
58 * Dummy routines and globals used when multicast routing is not compiled in.
59 */
60
61struct socket  *ip_mrouter  = NULL;
62u_int		rsvpdebug = 0;
63
64int
65_ip_mrouter_set(so, sopt)
66	struct socket *so;
67	struct sockopt *sopt;
68{
69	return(EOPNOTSUPP);
70}
71
72int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
73
74
75int
76_ip_mrouter_get(so, sopt)
77	struct socket *so;
78	struct sockopt *sopt;
79{
80	return(EOPNOTSUPP);
81}
82
83int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
84
85int
86_ip_mrouter_done()
87{
88	return(0);
89}
90
91int (*ip_mrouter_done)(void) = _ip_mrouter_done;
92
93int
94_ip_mforward(ip, ifp, m, imo)
95	struct ip *ip;
96	struct ifnet *ifp;
97	struct mbuf *m;
98	struct ip_moptions *imo;
99{
100	return(0);
101}
102
103int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
104		   struct ip_moptions *) = _ip_mforward;
105
106int
107_mrt_ioctl(int req, caddr_t data)
108{
109	return EOPNOTSUPP;
110}
111
112int (*mrt_ioctl)(int, caddr_t) = _mrt_ioctl;
113
114void
115rsvp_input(m, off)		/* XXX must fixup manually */
116	struct mbuf *m;
117	int off;
118{
119    /* Can still get packets with rsvp_on = 0 if there is a local member
120     * of the group to which the RSVP packet is addressed.  But in this
121     * case we want to throw the packet away.
122     */
123    if (!rsvp_on) {
124	m_freem(m);
125	return;
126    }
127
128    if (ip_rsvpd != NULL) {
129	if (rsvpdebug)
130	    printf("rsvp_input: Sending packet up old-style socket\n");
131	rip_input(m, off);
132	return;
133    }
134    /* Drop the packet */
135    m_freem(m);
136}
137
138int (*legal_vif_num)(int) = 0;
139
140/*
141 * This should never be called, since IP_MULTICAST_VIF should fail, but
142 * just in case it does get called, the code a little lower in ip_output
143 * will assign the packet a local address.
144 */
145u_long
146_ip_mcast_src(int vifi) { return INADDR_ANY; }
147u_long (*ip_mcast_src)(int) = _ip_mcast_src;
148
149int
150ip_rsvp_vif_init(so, sopt)
151    struct socket *so;
152    struct sockopt *sopt;
153{
154    return(EINVAL);
155}
156
157int
158ip_rsvp_vif_done(so, sopt)
159    struct socket *so;
160    struct sockopt *sopt;
161{
162    return(EINVAL);
163}
164
165void
166ip_rsvp_force_done(so)
167    struct socket *so;
168{
169    return;
170}
171
172#else /* MROUTING */
173
174#define M_HASCL(m)	((m)->m_flags & M_EXT)
175
176static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
177
178#ifndef MROUTE_KLD
179/* The socket used to communicate with the multicast routing daemon.  */
180struct socket  *ip_mrouter  = NULL;
181#endif
182
183#if defined(MROUTING) || defined(MROUTE_KLD)
184static struct mrtstat	mrtstat;
185SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
186    &mrtstat, mrtstat, "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
187#endif
188
189static struct mfc	*mfctable[MFCTBLSIZ];
190static u_char		nexpire[MFCTBLSIZ];
191static struct vif	viftable[MAXVIFS];
192static u_int	mrtdebug = 0;	  /* debug level 	*/
193#define		DEBUG_MFC	0x02
194#define		DEBUG_FORWARD	0x04
195#define		DEBUG_EXPIRE	0x08
196#define		DEBUG_XMIT	0x10
197static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
198static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
199
200static struct callout_handle expire_upcalls_ch;
201
202#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
203#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
204
205/*
206 * Define the token bucket filter structures
207 * tbftable -> each vif has one of these for storing info
208 */
209
210static struct tbf tbftable[MAXVIFS];
211#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
212
213/*
214 * 'Interfaces' associated with decapsulator (so we can tell
215 * packets that went through it from ones that get reflected
216 * by a broken gateway).  These interfaces are never linked into
217 * the system ifnet list & no routes point to them.  I.e., packets
218 * can't be sent this way.  They only exist as a placeholder for
219 * multicast source verification.
220 */
221static struct ifnet multicast_decap_if[MAXVIFS];
222
223#define ENCAP_TTL 64
224#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
225
226/* prototype IP hdr for encapsulated packets */
227static struct ip multicast_encap_iphdr = {
228#if BYTE_ORDER == LITTLE_ENDIAN
229	sizeof(struct ip) >> 2, IPVERSION,
230#else
231	IPVERSION, sizeof(struct ip) >> 2,
232#endif
233	0,				/* tos */
234	sizeof(struct ip),		/* total length */
235	0,				/* id */
236	0,				/* frag offset */
237	ENCAP_TTL, ENCAP_PROTO,
238	0,				/* checksum */
239};
240
241/*
242 * Private variables.
243 */
244static vifi_t	   numvifs = 0;
245static const struct encaptab *encap_cookie = NULL;
246
247/*
248 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
249 * given a datagram's src ip address.
250 */
251static u_long last_encap_src;
252static struct vif *last_encap_vif;
253
254static u_long	X_ip_mcast_src(int vifi);
255static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo);
256static int	X_ip_mrouter_done(void);
257static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
258static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
259static int	X_legal_vif_num(int vif);
260static int	X_mrt_ioctl(int cmd, caddr_t data);
261
262static int get_sg_cnt(struct sioc_sg_req *);
263static int get_vif_cnt(struct sioc_vif_req *);
264static int ip_mrouter_init(struct socket *, int);
265static int add_vif(struct vifctl *);
266static int del_vif(vifi_t);
267static int add_mfc(struct mfcctl *);
268static int del_mfc(struct mfcctl *);
269static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
270static int set_assert(int);
271static void expire_upcalls(void *);
272static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
273		  vifi_t);
274static void phyint_send(struct ip *, struct vif *, struct mbuf *);
275static void encap_send(struct ip *, struct vif *, struct mbuf *);
276static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
277static void tbf_queue(struct vif *, struct mbuf *);
278static void tbf_process_q(struct vif *);
279static void tbf_reprocess_q(void *);
280static int tbf_dq_sel(struct vif *, struct ip *);
281static void tbf_send_packet(struct vif *, struct mbuf *);
282static void tbf_update_tokens(struct vif *);
283static int priority(struct vif *, struct ip *);
284
285/*
286 * whether or not special PIM assert processing is enabled.
287 */
288static int pim_assert;
289/*
290 * Rate limit for assert notification messages, in usec
291 */
292#define ASSERT_MSG_TIME		3000000
293
294/*
295 * Hash function for a source, group entry
296 */
297#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
298			((g) >> 20) ^ ((g) >> 10) ^ (g))
299
300/*
301 * Find a route for a given origin IP address and Multicast group address
302 * Type of service parameter to be added in the future!!!
303 */
304
305#define MFCFIND(o, g, rt) { \
306	register struct mfc *_rt = mfctable[MFCHASH(o,g)]; \
307	rt = NULL; \
308	++mrtstat.mrts_mfc_lookups; \
309	while (_rt) { \
310		if ((_rt->mfc_origin.s_addr == o) && \
311		    (_rt->mfc_mcastgrp.s_addr == g) && \
312		    (_rt->mfc_stall == NULL)) { \
313			rt = _rt; \
314			break; \
315		} \
316		_rt = _rt->mfc_next; \
317	} \
318	if (rt == NULL) { \
319		++mrtstat.mrts_mfc_misses; \
320	} \
321}
322
323
324/*
325 * Macros to compute elapsed time efficiently
326 * Borrowed from Van Jacobson's scheduling code
327 */
328#define TV_DELTA(a, b, delta) { \
329	    register int xxs; \
330		\
331	    delta = (a).tv_usec - (b).tv_usec; \
332	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
333	       switch (xxs) { \
334		      case 2: \
335			  delta += 1000000; \
336			      /* FALLTHROUGH */ \
337		      case 1: \
338			  delta += 1000000; \
339			  break; \
340		      default: \
341			  delta += (1000000 * xxs); \
342	       } \
343	    } \
344}
345
346#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
347	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
348
349#ifdef UPCALL_TIMING
350u_long upcall_data[51];
351static void collate(struct timeval *);
352#endif /* UPCALL_TIMING */
353
354
355/*
356 * Handle MRT setsockopt commands to modify the multicast routing tables.
357 */
358static int
359X_ip_mrouter_set(so, sopt)
360	struct socket *so;
361	struct sockopt *sopt;
362{
363	int	error, optval;
364	vifi_t	vifi;
365	struct	vifctl vifc;
366	struct	mfcctl mfc;
367
368	if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
369		return (EPERM);
370
371	error = 0;
372	switch (sopt->sopt_name) {
373	case MRT_INIT:
374		error = sooptcopyin(sopt, &optval, sizeof optval,
375				    sizeof optval);
376		if (error)
377			break;
378		error = ip_mrouter_init(so, optval);
379		break;
380
381	case MRT_DONE:
382		error = ip_mrouter_done();
383		break;
384
385	case MRT_ADD_VIF:
386		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
387		if (error)
388			break;
389		error = add_vif(&vifc);
390		break;
391
392	case MRT_DEL_VIF:
393		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
394		if (error)
395			break;
396		error = del_vif(vifi);
397		break;
398
399	case MRT_ADD_MFC:
400	case MRT_DEL_MFC:
401		error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
402		if (error)
403			break;
404		if (sopt->sopt_name == MRT_ADD_MFC)
405			error = add_mfc(&mfc);
406		else
407			error = del_mfc(&mfc);
408		break;
409
410	case MRT_ASSERT:
411		error = sooptcopyin(sopt, &optval, sizeof optval,
412				    sizeof optval);
413		if (error)
414			break;
415		set_assert(optval);
416		break;
417
418	default:
419		error = EOPNOTSUPP;
420		break;
421	}
422	return (error);
423}
424
425#ifndef MROUTE_KLD
426int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
427#endif
428
429/*
430 * Handle MRT getsockopt commands
431 */
432static int
433X_ip_mrouter_get(so, sopt)
434	struct socket *so;
435	struct sockopt *sopt;
436{
437	int error;
438	static int version = 0x0305; /* !!! why is this here? XXX */
439
440	switch (sopt->sopt_name) {
441	case MRT_VERSION:
442		error = sooptcopyout(sopt, &version, sizeof version);
443		break;
444
445	case MRT_ASSERT:
446		error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
447		break;
448	default:
449		error = EOPNOTSUPP;
450		break;
451	}
452	return (error);
453}
454
455#ifndef MROUTE_KLD
456int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
457#endif
458
459/*
460 * Handle ioctl commands to obtain information from the cache
461 */
462static int
463X_mrt_ioctl(cmd, data)
464    int cmd;
465    caddr_t data;
466{
467    int error = 0;
468
469    switch (cmd) {
470	case (SIOCGETVIFCNT):
471	    return (get_vif_cnt((struct sioc_vif_req *)data));
472	    break;
473	case (SIOCGETSGCNT):
474	    return (get_sg_cnt((struct sioc_sg_req *)data));
475	    break;
476	default:
477	    return (EINVAL);
478	    break;
479    }
480    return error;
481}
482
483#ifndef MROUTE_KLD
484int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
485#endif
486
487/*
488 * returns the packet, byte, rpf-failure count for the source group provided
489 */
490static int
491get_sg_cnt(req)
492    register struct sioc_sg_req *req;
493{
494    register struct mfc *rt;
495    int s;
496
497    s = splnet();
498    MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
499    splx(s);
500    if (rt != NULL) {
501	req->pktcnt = rt->mfc_pkt_cnt;
502	req->bytecnt = rt->mfc_byte_cnt;
503	req->wrong_if = rt->mfc_wrong_if;
504    } else
505	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
506
507    return 0;
508}
509
510/*
511 * returns the input and output packet and byte counts on the vif provided
512 */
513static int
514get_vif_cnt(req)
515    register struct sioc_vif_req *req;
516{
517    register vifi_t vifi = req->vifi;
518
519    if (vifi >= numvifs) return EINVAL;
520
521    req->icount = viftable[vifi].v_pkt_in;
522    req->ocount = viftable[vifi].v_pkt_out;
523    req->ibytes = viftable[vifi].v_bytes_in;
524    req->obytes = viftable[vifi].v_bytes_out;
525
526    return 0;
527}
528
529/*
530 * Enable multicast routing
531 */
532static int
533ip_mrouter_init(so, version)
534	struct socket *so;
535	int version;
536{
537    if (mrtdebug)
538	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
539		so->so_type, so->so_proto->pr_protocol);
540
541    if (so->so_type != SOCK_RAW ||
542	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
543
544    if (version != 1)
545	return ENOPROTOOPT;
546
547    if (ip_mrouter != NULL) return EADDRINUSE;
548
549    ip_mrouter = so;
550
551    bzero((caddr_t)mfctable, sizeof(mfctable));
552    bzero((caddr_t)nexpire, sizeof(nexpire));
553
554    pim_assert = 0;
555
556    expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
557
558    if (mrtdebug)
559	log(LOG_DEBUG, "ip_mrouter_init\n");
560
561    return 0;
562}
563
564/*
565 * Disable multicast routing
566 */
567static int
568X_ip_mrouter_done()
569{
570    vifi_t vifi;
571    int i;
572    struct ifnet *ifp;
573    struct ifreq ifr;
574    struct mfc *rt;
575    struct rtdetq *rte;
576    int s;
577
578    s = splnet();
579
580    /*
581     * For each phyint in use, disable promiscuous reception of all IP
582     * multicasts.
583     */
584    for (vifi = 0; vifi < numvifs; vifi++) {
585	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
586	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
587	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
588	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
589								= INADDR_ANY;
590	    ifp = viftable[vifi].v_ifp;
591	    if_allmulti(ifp, 0);
592	}
593    }
594    bzero((caddr_t)tbftable, sizeof(tbftable));
595    bzero((caddr_t)viftable, sizeof(viftable));
596    numvifs = 0;
597    pim_assert = 0;
598
599    untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
600
601    /*
602     * Free all multicast forwarding cache entries.
603     */
604    for (i = 0; i < MFCTBLSIZ; i++) {
605	for (rt = mfctable[i]; rt != NULL; ) {
606	    struct mfc *nr = rt->mfc_next;
607
608	    for (rte = rt->mfc_stall; rte != NULL; ) {
609		struct rtdetq *n = rte->next;
610
611		m_freem(rte->m);
612		free(rte, M_MRTABLE);
613		rte = n;
614	    }
615	    free(rt, M_MRTABLE);
616	    rt = nr;
617	}
618    }
619
620    bzero((caddr_t)mfctable, sizeof(mfctable));
621
622    /*
623     * Reset de-encapsulation cache
624     */
625    last_encap_src = 0;
626    last_encap_vif = NULL;
627    if (encap_cookie) {
628	encap_detach(encap_cookie);
629	encap_cookie = NULL;
630    }
631
632    ip_mrouter = NULL;
633
634    splx(s);
635
636    if (mrtdebug)
637	log(LOG_DEBUG, "ip_mrouter_done\n");
638
639    return 0;
640}
641
642#ifndef MROUTE_KLD
643int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
644#endif
645
646/*
647 * Set PIM assert processing global
648 */
649static int
650set_assert(i)
651	int i;
652{
653    if ((i != 1) && (i != 0))
654	return EINVAL;
655
656    pim_assert = i;
657
658    return 0;
659}
660
661/*
662 * Decide if a packet is from a tunnelled peer.
663 * Return 0 if not, 64 if so.
664 */
665static int
666mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
667{
668    struct ip *ip = mtod(m, struct ip *);
669    int hlen = ip->ip_hl << 2;
670    register struct vif *vifp;
671
672    /*
673     * don't claim the packet if it's not to a multicast destination or if
674     * we don't have an encapsulating tunnel with the source.
675     * Note:  This code assumes that the remote site IP address
676     * uniquely identifies the tunnel (i.e., that this site has
677     * at most one tunnel with the remote site).
678     */
679    if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
680	return 0;
681    }
682    if (ip->ip_src.s_addr != last_encap_src) {
683	register struct vif *vife;
684
685	vifp = viftable;
686	vife = vifp + numvifs;
687	last_encap_src = ip->ip_src.s_addr;
688	last_encap_vif = 0;
689	for ( ; vifp < vife; ++vifp)
690	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
691		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
692		    == VIFF_TUNNEL)
693		    last_encap_vif = vifp;
694		break;
695	    }
696    }
697    if ((vifp = last_encap_vif) == 0) {
698	last_encap_src = 0;
699	return 0;
700    }
701    return 64;
702}
703
704/*
705 * De-encapsulate a packet and feed it back through ip input (this
706 * routine is called whenever IP gets a packet that mroute_encap_func()
707 * claimed).
708 */
709static void
710mroute_encap_input(struct mbuf *m, int off)
711{
712    struct ip *ip = mtod(m, struct ip *);
713    int hlen = ip->ip_hl << 2;
714
715    if (hlen > sizeof(struct ip))
716      ip_stripoptions(m, (struct mbuf *) 0);
717    m->m_data += sizeof(struct ip);
718    m->m_len -= sizeof(struct ip);
719    m->m_pkthdr.len -= sizeof(struct ip);
720
721    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
722
723    (void) IF_HANDOFF(&ipintrq, m, NULL);
724	/*
725	 * normally we would need a "schednetisr(NETISR_IP)"
726	 * here but we were called by ip_input and it is going
727	 * to loop back & try to dequeue the packet we just
728	 * queued as soon as we return so we avoid the
729	 * unnecessary software interrrupt.
730	 */
731}
732
733extern struct domain inetdomain;
734static struct protosw mroute_encap_protosw =
735{ SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
736  mroute_encap_input,	0,	0,		rip_ctloutput,
737  0,
738  0,		0,		0,		0,
739  &rip_usrreqs
740};
741
742/*
743 * Add a vif to the vif table
744 */
745static int
746add_vif(vifcp)
747    register struct vifctl *vifcp;
748{
749    register struct vif *vifp = viftable + vifcp->vifc_vifi;
750    static struct sockaddr_in sin = {sizeof sin, AF_INET};
751    struct ifaddr *ifa;
752    struct ifnet *ifp;
753    int error, s;
754    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
755
756    if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
757    if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
758
759    /* Find the interface with an address in AF_INET family */
760    sin.sin_addr = vifcp->vifc_lcl_addr;
761    ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
762    if (ifa == 0) return EADDRNOTAVAIL;
763    ifp = ifa->ifa_ifp;
764
765    if (vifcp->vifc_flags & VIFF_TUNNEL) {
766	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
767		/*
768		 * An encapsulating tunnel is wanted.  Tell
769		 * mroute_encap_input() to start paying attention
770		 * to encapsulated packets.
771		 */
772		if (encap_cookie == NULL) {
773			encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
774				mroute_encapcheck,
775				(struct protosw *)&mroute_encap_protosw, NULL);
776
777			if (encap_cookie == NULL) {
778				printf("ip_mroute: unable to attach encap\n");
779				return (EIO);	/* XXX */
780			}
781			for (s = 0; s < MAXVIFS; ++s) {
782				multicast_decap_if[s].if_name = "mdecap";
783				multicast_decap_if[s].if_unit = s;
784			}
785		}
786		/*
787		 * Set interface to fake encapsulator interface
788		 */
789		ifp = &multicast_decap_if[vifcp->vifc_vifi];
790		/*
791		 * Prepare cached route entry
792		 */
793		bzero(&vifp->v_route, sizeof(vifp->v_route));
794	} else {
795	    log(LOG_ERR, "source routed tunnels not supported\n");
796	    return EOPNOTSUPP;
797	}
798    } else {
799	/* Make sure the interface supports multicast */
800	if ((ifp->if_flags & IFF_MULTICAST) == 0)
801	    return EOPNOTSUPP;
802
803	/* Enable promiscuous reception of all IP multicasts from the if */
804	s = splnet();
805	error = if_allmulti(ifp, 1);
806	splx(s);
807	if (error)
808	    return error;
809    }
810
811    s = splnet();
812    /* define parameters for the tbf structure */
813    vifp->v_tbf = v_tbf;
814    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
815    vifp->v_tbf->tbf_n_tok = 0;
816    vifp->v_tbf->tbf_q_len = 0;
817    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
818    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
819
820    vifp->v_flags     = vifcp->vifc_flags;
821    vifp->v_threshold = vifcp->vifc_threshold;
822    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
823    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
824    vifp->v_ifp       = ifp;
825    /* scaling up here allows division by 1024 in critical code */
826    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
827    vifp->v_rsvp_on   = 0;
828    vifp->v_rsvpd     = NULL;
829    /* initialize per vif pkt counters */
830    vifp->v_pkt_in    = 0;
831    vifp->v_pkt_out   = 0;
832    vifp->v_bytes_in  = 0;
833    vifp->v_bytes_out = 0;
834    splx(s);
835
836    /* Adjust numvifs up if the vifi is higher than numvifs */
837    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
838
839    if (mrtdebug)
840	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
841	    vifcp->vifc_vifi,
842	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
843	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
844	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
845	    vifcp->vifc_threshold,
846	    vifcp->vifc_rate_limit);
847
848    return 0;
849}
850
851/*
852 * Delete a vif from the vif table
853 */
854static int
855del_vif(vifi)
856	vifi_t vifi;
857{
858    register struct vif *vifp = &viftable[vifi];
859    register struct mbuf *m;
860    struct ifnet *ifp;
861    struct ifreq ifr;
862    int s;
863
864    if (vifi >= numvifs) return EINVAL;
865    if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
866
867    s = splnet();
868
869    if (!(vifp->v_flags & VIFF_TUNNEL)) {
870	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
871	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
872	ifp = vifp->v_ifp;
873	if_allmulti(ifp, 0);
874    }
875
876    if (vifp == last_encap_vif) {
877	last_encap_vif = 0;
878	last_encap_src = 0;
879    }
880
881    /*
882     * Free packets queued at the interface
883     */
884    while (vifp->v_tbf->tbf_q) {
885	m = vifp->v_tbf->tbf_q;
886	vifp->v_tbf->tbf_q = m->m_act;
887	m_freem(m);
888    }
889
890    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
891    bzero((caddr_t)vifp, sizeof (*vifp));
892
893    if (mrtdebug)
894      log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
895
896    /* Adjust numvifs down */
897    for (vifi = numvifs; vifi > 0; vifi--)
898	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
899    numvifs = vifi;
900
901    splx(s);
902
903    return 0;
904}
905
906/*
907 * Add an mfc entry
908 */
909static int
910add_mfc(mfccp)
911    struct mfcctl *mfccp;
912{
913    struct mfc *rt;
914    u_long hash;
915    struct rtdetq *rte;
916    register u_short nstl;
917    int s;
918    int i;
919
920    MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
921
922    /* If an entry already exists, just update the fields */
923    if (rt) {
924	if (mrtdebug & DEBUG_MFC)
925	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
926		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
927		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
928		mfccp->mfcc_parent);
929
930	s = splnet();
931	rt->mfc_parent = mfccp->mfcc_parent;
932	for (i = 0; i < numvifs; i++)
933	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
934	splx(s);
935	return 0;
936    }
937
938    /*
939     * Find the entry for which the upcall was made and update
940     */
941    s = splnet();
942    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
943    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
944
945	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
946	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
947	    (rt->mfc_stall != NULL)) {
948
949	    if (nstl++)
950		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
951		    "multiple kernel entries",
952		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
953		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
954		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
955
956	    if (mrtdebug & DEBUG_MFC)
957		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
958		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
959		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
960		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
961
962	    rt->mfc_origin     = mfccp->mfcc_origin;
963	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
964	    rt->mfc_parent     = mfccp->mfcc_parent;
965	    for (i = 0; i < numvifs; i++)
966		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
967	    /* initialize pkt counters per src-grp */
968	    rt->mfc_pkt_cnt    = 0;
969	    rt->mfc_byte_cnt   = 0;
970	    rt->mfc_wrong_if   = 0;
971	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
972
973	    rt->mfc_expire = 0;	/* Don't clean this guy up */
974	    nexpire[hash]--;
975
976	    /* free packets Qed at the end of this entry */
977	    for (rte = rt->mfc_stall; rte != NULL; ) {
978		struct rtdetq *n = rte->next;
979
980		ip_mdq(rte->m, rte->ifp, rt, -1);
981		m_freem(rte->m);
982#ifdef UPCALL_TIMING
983		collate(&(rte->t));
984#endif /* UPCALL_TIMING */
985		free(rte, M_MRTABLE);
986		rte = n;
987	    }
988	    rt->mfc_stall = NULL;
989	}
990    }
991
992    /*
993     * It is possible that an entry is being inserted without an upcall
994     */
995    if (nstl == 0) {
996	if (mrtdebug & DEBUG_MFC)
997	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
998		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
999		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1000		mfccp->mfcc_parent);
1001
1002	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1003
1004	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1005		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1006
1007		rt->mfc_origin     = mfccp->mfcc_origin;
1008		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1009		rt->mfc_parent     = mfccp->mfcc_parent;
1010		for (i = 0; i < numvifs; i++)
1011		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1012		/* initialize pkt counters per src-grp */
1013		rt->mfc_pkt_cnt    = 0;
1014		rt->mfc_byte_cnt   = 0;
1015		rt->mfc_wrong_if   = 0;
1016		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1017		if (rt->mfc_expire)
1018		    nexpire[hash]--;
1019		rt->mfc_expire	   = 0;
1020	    }
1021	}
1022	if (rt == NULL) {
1023	    /* no upcall, so make a new entry */
1024	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1025	    if (rt == NULL) {
1026		splx(s);
1027		return ENOBUFS;
1028	    }
1029
1030	    /* insert new entry at head of hash chain */
1031	    rt->mfc_origin     = mfccp->mfcc_origin;
1032	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1033	    rt->mfc_parent     = mfccp->mfcc_parent;
1034	    for (i = 0; i < numvifs; i++)
1035		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1036	    /* initialize pkt counters per src-grp */
1037	    rt->mfc_pkt_cnt    = 0;
1038	    rt->mfc_byte_cnt   = 0;
1039	    rt->mfc_wrong_if   = 0;
1040	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1041	    rt->mfc_expire     = 0;
1042	    rt->mfc_stall      = NULL;
1043
1044	    /* link into table */
1045	    rt->mfc_next = mfctable[hash];
1046	    mfctable[hash] = rt;
1047	}
1048    }
1049    splx(s);
1050    return 0;
1051}
1052
1053#ifdef UPCALL_TIMING
1054/*
1055 * collect delay statistics on the upcalls
1056 */
1057static void collate(t)
1058register struct timeval *t;
1059{
1060    register u_long d;
1061    register struct timeval tp;
1062    register u_long delta;
1063
1064    GET_TIME(tp);
1065
1066    if (TV_LT(*t, tp))
1067    {
1068	TV_DELTA(tp, *t, delta);
1069
1070	d = delta >> 10;
1071	if (d > 50)
1072	    d = 50;
1073
1074	++upcall_data[d];
1075    }
1076}
1077#endif /* UPCALL_TIMING */
1078
1079/*
1080 * Delete an mfc entry
1081 */
1082static int
1083del_mfc(mfccp)
1084    struct mfcctl *mfccp;
1085{
1086    struct in_addr 	origin;
1087    struct in_addr 	mcastgrp;
1088    struct mfc 		*rt;
1089    struct mfc	 	**nptr;
1090    u_long 		hash;
1091    int s;
1092
1093    origin = mfccp->mfcc_origin;
1094    mcastgrp = mfccp->mfcc_mcastgrp;
1095    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1096
1097    if (mrtdebug & DEBUG_MFC)
1098	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1099	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1100
1101    s = splnet();
1102
1103    nptr = &mfctable[hash];
1104    while ((rt = *nptr) != NULL) {
1105	if (origin.s_addr == rt->mfc_origin.s_addr &&
1106	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1107	    rt->mfc_stall == NULL)
1108	    break;
1109
1110	nptr = &rt->mfc_next;
1111    }
1112    if (rt == NULL) {
1113	splx(s);
1114	return EADDRNOTAVAIL;
1115    }
1116
1117    *nptr = rt->mfc_next;
1118    free(rt, M_MRTABLE);
1119
1120    splx(s);
1121
1122    return 0;
1123}
1124
1125/*
1126 * Send a message to mrouted on the multicast routing socket
1127 */
1128static int
1129socket_send(s, mm, src)
1130	struct socket *s;
1131	struct mbuf *mm;
1132	struct sockaddr_in *src;
1133{
1134	if (s) {
1135		if (sbappendaddr(&s->so_rcv,
1136				 (struct sockaddr *)src,
1137				 mm, (struct mbuf *)0) != 0) {
1138			sorwakeup(s);
1139			return 0;
1140		}
1141	}
1142	m_freem(mm);
1143	return -1;
1144}
1145
1146/*
1147 * IP multicast forwarding function. This function assumes that the packet
1148 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1149 * pointed to by "ifp", and the packet is to be relayed to other networks
1150 * that have members of the packet's destination IP multicast group.
1151 *
1152 * The packet is returned unscathed to the caller, unless it is
1153 * erroneous, in which case a non-zero return value tells the caller to
1154 * discard it.
1155 */
1156
1157#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1158
1159static int
1160X_ip_mforward(ip, ifp, m, imo)
1161    register struct ip *ip;
1162    struct ifnet *ifp;
1163    struct mbuf *m;
1164    struct ip_moptions *imo;
1165{
1166    register struct mfc *rt;
1167    register u_char *ipoptions;
1168    static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1169    static int srctun = 0;
1170    register struct mbuf *mm;
1171    int s;
1172    vifi_t vifi;
1173    struct vif *vifp;
1174
1175    if (mrtdebug & DEBUG_FORWARD)
1176	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1177	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1178	    (void *)ifp);
1179
1180    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1181	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1182	/*
1183	 * Packet arrived via a physical interface or
1184	 * an encapsulated tunnel.
1185	 */
1186    } else {
1187	/*
1188	 * Packet arrived through a source-route tunnel.
1189	 * Source-route tunnels are no longer supported.
1190	 */
1191	if ((srctun++ % 1000) == 0)
1192	    log(LOG_ERR,
1193		"ip_mforward: received source-routed packet from %lx\n",
1194		(u_long)ntohl(ip->ip_src.s_addr));
1195
1196	return 1;
1197    }
1198
1199    if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1200	if (ip->ip_ttl < 255)
1201		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1202	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1203	    vifp = viftable + vifi;
1204	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1205		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1206		vifi,
1207		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1208		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1209	}
1210	return (ip_mdq(m, ifp, NULL, vifi));
1211    }
1212    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1213	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1214	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1215	if(!imo)
1216		printf("In fact, no options were specified at all\n");
1217    }
1218
1219    /*
1220     * Don't forward a packet with time-to-live of zero or one,
1221     * or a packet destined to a local-only group.
1222     */
1223    if (ip->ip_ttl <= 1 ||
1224	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1225	return 0;
1226
1227    /*
1228     * Determine forwarding vifs from the forwarding cache table
1229     */
1230    s = splnet();
1231    MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1232
1233    /* Entry exists, so forward if necessary */
1234    if (rt != NULL) {
1235	splx(s);
1236	return (ip_mdq(m, ifp, rt, -1));
1237    } else {
1238	/*
1239	 * If we don't have a route for packet's origin,
1240	 * Make a copy of the packet &
1241	 * send message to routing daemon
1242	 */
1243
1244	register struct mbuf *mb0;
1245	register struct rtdetq *rte;
1246	register u_long hash;
1247	int hlen = ip->ip_hl << 2;
1248#ifdef UPCALL_TIMING
1249	struct timeval tp;
1250
1251	GET_TIME(tp);
1252#endif
1253
1254	mrtstat.mrts_no_route++;
1255	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1256	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1257		(u_long)ntohl(ip->ip_src.s_addr),
1258		(u_long)ntohl(ip->ip_dst.s_addr));
1259
1260	/*
1261	 * Allocate mbufs early so that we don't do extra work if we are
1262	 * just going to fail anyway.  Make sure to pullup the header so
1263	 * that other people can't step on it.
1264	 */
1265	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1266	if (rte == NULL) {
1267	    splx(s);
1268	    return ENOBUFS;
1269	}
1270	mb0 = m_copy(m, 0, M_COPYALL);
1271	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1272	    mb0 = m_pullup(mb0, hlen);
1273	if (mb0 == NULL) {
1274	    free(rte, M_MRTABLE);
1275	    splx(s);
1276	    return ENOBUFS;
1277	}
1278
1279	/* is there an upcall waiting for this packet? */
1280	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1281	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1282	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1283		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1284		(rt->mfc_stall != NULL))
1285		break;
1286	}
1287
1288	if (rt == NULL) {
1289	    int i;
1290	    struct igmpmsg *im;
1291
1292	    /* no upcall, so make a new entry */
1293	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1294	    if (rt == NULL) {
1295		free(rte, M_MRTABLE);
1296		m_freem(mb0);
1297		splx(s);
1298		return ENOBUFS;
1299	    }
1300	    /* Make a copy of the header to send to the user level process */
1301	    mm = m_copy(mb0, 0, hlen);
1302	    if (mm == NULL) {
1303		free(rte, M_MRTABLE);
1304		m_freem(mb0);
1305		free(rt, M_MRTABLE);
1306		splx(s);
1307		return ENOBUFS;
1308	    }
1309
1310	    /*
1311	     * Send message to routing daemon to install
1312	     * a route into the kernel table
1313	     */
1314	    k_igmpsrc.sin_addr = ip->ip_src;
1315
1316	    im = mtod(mm, struct igmpmsg *);
1317	    im->im_msgtype	= IGMPMSG_NOCACHE;
1318	    im->im_mbz		= 0;
1319
1320	    mrtstat.mrts_upcalls++;
1321
1322	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1323		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1324		++mrtstat.mrts_upq_sockfull;
1325		free(rte, M_MRTABLE);
1326		m_freem(mb0);
1327		free(rt, M_MRTABLE);
1328		splx(s);
1329		return ENOBUFS;
1330	    }
1331
1332	    /* insert new entry at head of hash chain */
1333	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1334	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1335	    rt->mfc_expire	      = UPCALL_EXPIRE;
1336	    nexpire[hash]++;
1337	    for (i = 0; i < numvifs; i++)
1338		rt->mfc_ttls[i] = 0;
1339	    rt->mfc_parent = -1;
1340
1341	    /* link into table */
1342	    rt->mfc_next   = mfctable[hash];
1343	    mfctable[hash] = rt;
1344	    rt->mfc_stall = rte;
1345
1346	} else {
1347	    /* determine if q has overflowed */
1348	    int npkts = 0;
1349	    struct rtdetq **p;
1350
1351	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1352		npkts++;
1353
1354	    if (npkts > MAX_UPQ) {
1355		mrtstat.mrts_upq_ovflw++;
1356		free(rte, M_MRTABLE);
1357		m_freem(mb0);
1358		splx(s);
1359		return 0;
1360	    }
1361
1362	    /* Add this entry to the end of the queue */
1363	    *p = rte;
1364	}
1365
1366	rte->m 			= mb0;
1367	rte->ifp 		= ifp;
1368#ifdef UPCALL_TIMING
1369	rte->t			= tp;
1370#endif
1371	rte->next		= NULL;
1372
1373	splx(s);
1374
1375	return 0;
1376    }
1377}
1378
1379#ifndef MROUTE_KLD
1380int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1381		   struct ip_moptions *) = X_ip_mforward;
1382#endif
1383
1384/*
1385 * Clean up the cache entry if upcall is not serviced
1386 */
1387static void
1388expire_upcalls(void *unused)
1389{
1390    struct rtdetq *rte;
1391    struct mfc *mfc, **nptr;
1392    int i;
1393    int s;
1394
1395    s = splnet();
1396    for (i = 0; i < MFCTBLSIZ; i++) {
1397	if (nexpire[i] == 0)
1398	    continue;
1399	nptr = &mfctable[i];
1400	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1401	    /*
1402	     * Skip real cache entries
1403	     * Make sure it wasn't marked to not expire (shouldn't happen)
1404	     * If it expires now
1405	     */
1406	    if (mfc->mfc_stall != NULL &&
1407	        mfc->mfc_expire != 0 &&
1408		--mfc->mfc_expire == 0) {
1409		if (mrtdebug & DEBUG_EXPIRE)
1410		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1411			(u_long)ntohl(mfc->mfc_origin.s_addr),
1412			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1413		/*
1414		 * drop all the packets
1415		 * free the mbuf with the pkt, if, timing info
1416		 */
1417		for (rte = mfc->mfc_stall; rte; ) {
1418		    struct rtdetq *n = rte->next;
1419
1420		    m_freem(rte->m);
1421		    free(rte, M_MRTABLE);
1422		    rte = n;
1423		}
1424		++mrtstat.mrts_cache_cleanups;
1425		nexpire[i]--;
1426
1427		*nptr = mfc->mfc_next;
1428		free(mfc, M_MRTABLE);
1429	    } else {
1430		nptr = &mfc->mfc_next;
1431	    }
1432	}
1433    }
1434    splx(s);
1435    expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1436}
1437
1438/*
1439 * Packet forwarding routine once entry in the cache is made
1440 */
1441static int
1442ip_mdq(m, ifp, rt, xmt_vif)
1443    register struct mbuf *m;
1444    register struct ifnet *ifp;
1445    register struct mfc *rt;
1446    register vifi_t xmt_vif;
1447{
1448    register struct ip  *ip = mtod(m, struct ip *);
1449    register vifi_t vifi;
1450    register struct vif *vifp;
1451    register int plen = ip->ip_len;
1452
1453/*
1454 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1455 * input, they shouldn't get counted on output, so statistics keeping is
1456 * separate.
1457 */
1458#define MC_SEND(ip,vifp,m) {                             \
1459                if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1460                    encap_send((ip), (vifp), (m));       \
1461                else                                     \
1462                    phyint_send((ip), (vifp), (m));      \
1463}
1464
1465    /*
1466     * If xmt_vif is not -1, send on only the requested vif.
1467     *
1468     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1469     */
1470    if (xmt_vif < numvifs) {
1471	MC_SEND(ip, viftable + xmt_vif, m);
1472	return 1;
1473    }
1474
1475    /*
1476     * Don't forward if it didn't arrive from the parent vif for its origin.
1477     */
1478    vifi = rt->mfc_parent;
1479    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1480	/* came in the wrong interface */
1481	if (mrtdebug & DEBUG_FORWARD)
1482	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1483		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1484	++mrtstat.mrts_wrong_if;
1485	++rt->mfc_wrong_if;
1486	/*
1487	 * If we are doing PIM assert processing, and we are forwarding
1488	 * packets on this interface, and it is a broadcast medium
1489	 * interface (and not a tunnel), send a message to the routing daemon.
1490	 */
1491	if (pim_assert && rt->mfc_ttls[vifi] &&
1492		(ifp->if_flags & IFF_BROADCAST) &&
1493		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1494	    struct sockaddr_in k_igmpsrc;
1495	    struct mbuf *mm;
1496	    struct igmpmsg *im;
1497	    int hlen = ip->ip_hl << 2;
1498	    struct timeval now;
1499	    register u_long delta;
1500
1501	    GET_TIME(now);
1502
1503	    TV_DELTA(rt->mfc_last_assert, now, delta);
1504
1505	    if (delta > ASSERT_MSG_TIME) {
1506		mm = m_copy(m, 0, hlen);
1507		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1508		    mm = m_pullup(mm, hlen);
1509		if (mm == NULL) {
1510		    return ENOBUFS;
1511		}
1512
1513		rt->mfc_last_assert = now;
1514
1515		im = mtod(mm, struct igmpmsg *);
1516		im->im_msgtype	= IGMPMSG_WRONGVIF;
1517		im->im_mbz		= 0;
1518		im->im_vif		= vifi;
1519
1520		k_igmpsrc.sin_addr = im->im_src;
1521
1522		socket_send(ip_mrouter, mm, &k_igmpsrc);
1523	    }
1524	}
1525	return 0;
1526    }
1527
1528    /* If I sourced this packet, it counts as output, else it was input. */
1529    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1530	viftable[vifi].v_pkt_out++;
1531	viftable[vifi].v_bytes_out += plen;
1532    } else {
1533	viftable[vifi].v_pkt_in++;
1534	viftable[vifi].v_bytes_in += plen;
1535    }
1536    rt->mfc_pkt_cnt++;
1537    rt->mfc_byte_cnt += plen;
1538
1539    /*
1540     * For each vif, decide if a copy of the packet should be forwarded.
1541     * Forward if:
1542     *		- the ttl exceeds the vif's threshold
1543     *		- there are group members downstream on interface
1544     */
1545    for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1546	if ((rt->mfc_ttls[vifi] > 0) &&
1547	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1548	    vifp->v_pkt_out++;
1549	    vifp->v_bytes_out += plen;
1550	    MC_SEND(ip, vifp, m);
1551	}
1552
1553    return 0;
1554}
1555
1556/*
1557 * check if a vif number is legal/ok. This is used by ip_output, to export
1558 * numvifs there,
1559 */
1560static int
1561X_legal_vif_num(vif)
1562    int vif;
1563{
1564    if (vif >= 0 && vif < numvifs)
1565       return(1);
1566    else
1567       return(0);
1568}
1569
1570#ifndef MROUTE_KLD
1571int (*legal_vif_num)(int) = X_legal_vif_num;
1572#endif
1573
1574/*
1575 * Return the local address used by this vif
1576 */
1577static u_long
1578X_ip_mcast_src(vifi)
1579    int vifi;
1580{
1581    if (vifi >= 0 && vifi < numvifs)
1582	return viftable[vifi].v_lcl_addr.s_addr;
1583    else
1584	return INADDR_ANY;
1585}
1586
1587#ifndef MROUTE_KLD
1588u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1589#endif
1590
1591static void
1592phyint_send(ip, vifp, m)
1593    struct ip *ip;
1594    struct vif *vifp;
1595    struct mbuf *m;
1596{
1597    register struct mbuf *mb_copy;
1598    register int hlen = ip->ip_hl << 2;
1599
1600    /*
1601     * Make a new reference to the packet; make sure that
1602     * the IP header is actually copied, not just referenced,
1603     * so that ip_output() only scribbles on the copy.
1604     */
1605    mb_copy = m_copy(m, 0, M_COPYALL);
1606    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1607	mb_copy = m_pullup(mb_copy, hlen);
1608    if (mb_copy == NULL)
1609	return;
1610
1611    if (vifp->v_rate_limit == 0)
1612	tbf_send_packet(vifp, mb_copy);
1613    else
1614	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1615}
1616
1617static void
1618encap_send(ip, vifp, m)
1619    register struct ip *ip;
1620    register struct vif *vifp;
1621    register struct mbuf *m;
1622{
1623    register struct mbuf *mb_copy;
1624    register struct ip *ip_copy;
1625    register int i, len = ip->ip_len;
1626
1627    /*
1628     * copy the old packet & pullup its IP header into the
1629     * new mbuf so we can modify it.  Try to fill the new
1630     * mbuf since if we don't the ethernet driver will.
1631     */
1632    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1633    if (mb_copy == NULL)
1634	return;
1635#ifdef MAC
1636    mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
1637#endif
1638    mb_copy->m_data += max_linkhdr;
1639    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1640
1641    if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1642	m_freem(mb_copy);
1643	return;
1644    }
1645    i = MHLEN - M_LEADINGSPACE(mb_copy);
1646    if (i > len)
1647	i = len;
1648    mb_copy = m_pullup(mb_copy, i);
1649    if (mb_copy == NULL)
1650	return;
1651    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1652
1653    /*
1654     * fill in the encapsulating IP header.
1655     */
1656    ip_copy = mtod(mb_copy, struct ip *);
1657    *ip_copy = multicast_encap_iphdr;
1658#ifdef RANDOM_IP_ID
1659    ip_copy->ip_id = ip_randomid();
1660#else
1661    ip_copy->ip_id = htons(ip_id++);
1662#endif
1663    ip_copy->ip_len += len;
1664    ip_copy->ip_src = vifp->v_lcl_addr;
1665    ip_copy->ip_dst = vifp->v_rmt_addr;
1666
1667    /*
1668     * turn the encapsulated IP header back into a valid one.
1669     */
1670    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1671    --ip->ip_ttl;
1672    ip->ip_len = htons(ip->ip_len);
1673    ip->ip_off = htons(ip->ip_off);
1674    ip->ip_sum = 0;
1675    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1676    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1677    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1678
1679    if (vifp->v_rate_limit == 0)
1680	tbf_send_packet(vifp, mb_copy);
1681    else
1682	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1683}
1684
1685/*
1686 * Token bucket filter module
1687 */
1688
1689static void
1690tbf_control(vifp, m, ip, p_len)
1691	register struct vif *vifp;
1692	register struct mbuf *m;
1693	register struct ip *ip;
1694	register u_long p_len;
1695{
1696    register struct tbf *t = vifp->v_tbf;
1697
1698    if (p_len > MAX_BKT_SIZE) {
1699	/* drop if packet is too large */
1700	mrtstat.mrts_pkt2large++;
1701	m_freem(m);
1702	return;
1703    }
1704
1705    tbf_update_tokens(vifp);
1706
1707    /* if there are enough tokens,
1708     * and the queue is empty,
1709     * send this packet out
1710     */
1711
1712    if (t->tbf_q_len == 0) {
1713	/* queue empty, send packet if enough tokens */
1714	if (p_len <= t->tbf_n_tok) {
1715	    t->tbf_n_tok -= p_len;
1716	    tbf_send_packet(vifp, m);
1717	} else {
1718	    /* queue packet and timeout till later */
1719	    tbf_queue(vifp, m);
1720	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1721	}
1722    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1723	/* finite queue length, so queue pkts and process queue */
1724	tbf_queue(vifp, m);
1725	tbf_process_q(vifp);
1726    } else {
1727	/* queue length too much, try to dq and queue and process */
1728	if (!tbf_dq_sel(vifp, ip)) {
1729	    mrtstat.mrts_q_overflow++;
1730	    m_freem(m);
1731	    return;
1732	} else {
1733	    tbf_queue(vifp, m);
1734	    tbf_process_q(vifp);
1735	}
1736    }
1737    return;
1738}
1739
1740/*
1741 * adds a packet to the queue at the interface
1742 */
1743static void
1744tbf_queue(vifp, m)
1745	register struct vif *vifp;
1746	register struct mbuf *m;
1747{
1748    register int s = splnet();
1749    register struct tbf *t = vifp->v_tbf;
1750
1751    if (t->tbf_t == NULL) {
1752	/* Queue was empty */
1753	t->tbf_q = m;
1754    } else {
1755	/* Insert at tail */
1756	t->tbf_t->m_act = m;
1757    }
1758
1759    /* Set new tail pointer */
1760    t->tbf_t = m;
1761
1762#ifdef DIAGNOSTIC
1763    /* Make sure we didn't get fed a bogus mbuf */
1764    if (m->m_act)
1765	panic("tbf_queue: m_act");
1766#endif
1767    m->m_act = NULL;
1768
1769    t->tbf_q_len++;
1770
1771    splx(s);
1772}
1773
1774
1775/*
1776 * processes the queue at the interface
1777 */
1778static void
1779tbf_process_q(vifp)
1780    register struct vif *vifp;
1781{
1782    register struct mbuf *m;
1783    register int len;
1784    register int s = splnet();
1785    register struct tbf *t = vifp->v_tbf;
1786
1787    /* loop through the queue at the interface and send as many packets
1788     * as possible
1789     */
1790    while (t->tbf_q_len > 0) {
1791	m = t->tbf_q;
1792
1793	len = mtod(m, struct ip *)->ip_len;
1794
1795	/* determine if the packet can be sent */
1796	if (len <= t->tbf_n_tok) {
1797	    /* if so,
1798	     * reduce no of tokens, dequeue the packet,
1799	     * send the packet.
1800	     */
1801	    t->tbf_n_tok -= len;
1802
1803	    t->tbf_q = m->m_act;
1804	    if (--t->tbf_q_len == 0)
1805		t->tbf_t = NULL;
1806
1807	    m->m_act = NULL;
1808	    tbf_send_packet(vifp, m);
1809
1810	} else break;
1811    }
1812    splx(s);
1813}
1814
1815static void
1816tbf_reprocess_q(xvifp)
1817	void *xvifp;
1818{
1819    register struct vif *vifp = xvifp;
1820    if (ip_mrouter == NULL)
1821	return;
1822
1823    tbf_update_tokens(vifp);
1824
1825    tbf_process_q(vifp);
1826
1827    if (vifp->v_tbf->tbf_q_len)
1828	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1829}
1830
1831/* function that will selectively discard a member of the queue
1832 * based on the precedence value and the priority
1833 */
1834static int
1835tbf_dq_sel(vifp, ip)
1836    register struct vif *vifp;
1837    register struct ip *ip;
1838{
1839    register int s = splnet();
1840    register u_int p;
1841    register struct mbuf *m, *last;
1842    register struct mbuf **np;
1843    register struct tbf *t = vifp->v_tbf;
1844
1845    p = priority(vifp, ip);
1846
1847    np = &t->tbf_q;
1848    last = NULL;
1849    while ((m = *np) != NULL) {
1850	if (p > priority(vifp, mtod(m, struct ip *))) {
1851	    *np = m->m_act;
1852	    /* If we're removing the last packet, fix the tail pointer */
1853	    if (m == t->tbf_t)
1854		t->tbf_t = last;
1855	    m_freem(m);
1856	    /* it's impossible for the queue to be empty, but
1857	     * we check anyway. */
1858	    if (--t->tbf_q_len == 0)
1859		t->tbf_t = NULL;
1860	    splx(s);
1861	    mrtstat.mrts_drop_sel++;
1862	    return(1);
1863	}
1864	np = &m->m_act;
1865	last = m;
1866    }
1867    splx(s);
1868    return(0);
1869}
1870
1871static void
1872tbf_send_packet(vifp, m)
1873    register struct vif *vifp;
1874    register struct mbuf *m;
1875{
1876    struct ip_moptions imo;
1877    int error;
1878    static struct route ro;
1879    int s = splnet();
1880
1881    if (vifp->v_flags & VIFF_TUNNEL) {
1882	/* If tunnel options */
1883	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1884		  IP_FORWARDING, (struct ip_moptions *)0, NULL);
1885    } else {
1886	imo.imo_multicast_ifp  = vifp->v_ifp;
1887	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1888	imo.imo_multicast_loop = 1;
1889	imo.imo_multicast_vif  = -1;
1890
1891	/*
1892	 * Re-entrancy should not be a problem here, because
1893	 * the packets that we send out and are looped back at us
1894	 * should get rejected because they appear to come from
1895	 * the loopback interface, thus preventing looping.
1896	 */
1897	error = ip_output(m, (struct mbuf *)0, &ro,
1898			  IP_FORWARDING, &imo, NULL);
1899
1900	if (mrtdebug & DEBUG_XMIT)
1901	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1902		vifp - viftable, error);
1903    }
1904    splx(s);
1905}
1906
1907/* determine the current time and then
1908 * the elapsed time (between the last time and time now)
1909 * in milliseconds & update the no. of tokens in the bucket
1910 */
1911static void
1912tbf_update_tokens(vifp)
1913    register struct vif *vifp;
1914{
1915    struct timeval tp;
1916    register u_long tm;
1917    register int s = splnet();
1918    register struct tbf *t = vifp->v_tbf;
1919
1920    GET_TIME(tp);
1921
1922    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1923
1924    /*
1925     * This formula is actually
1926     * "time in seconds" * "bytes/second".
1927     *
1928     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1929     *
1930     * The (1000/1024) was introduced in add_vif to optimize
1931     * this divide into a shift.
1932     */
1933    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1934    t->tbf_last_pkt_t = tp;
1935
1936    if (t->tbf_n_tok > MAX_BKT_SIZE)
1937	t->tbf_n_tok = MAX_BKT_SIZE;
1938
1939    splx(s);
1940}
1941
1942static int
1943priority(vifp, ip)
1944    register struct vif *vifp;
1945    register struct ip *ip;
1946{
1947    register int prio;
1948
1949    /* temporary hack; may add general packet classifier some day */
1950
1951    /*
1952     * The UDP port space is divided up into four priority ranges:
1953     * [0, 16384)     : unclassified - lowest priority
1954     * [16384, 32768) : audio - highest priority
1955     * [32768, 49152) : whiteboard - medium priority
1956     * [49152, 65536) : video - low priority
1957     */
1958    if (ip->ip_p == IPPROTO_UDP) {
1959	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1960	switch (ntohs(udp->uh_dport) & 0xc000) {
1961	    case 0x4000:
1962		prio = 70;
1963		break;
1964	    case 0x8000:
1965		prio = 60;
1966		break;
1967	    case 0xc000:
1968		prio = 55;
1969		break;
1970	    default:
1971		prio = 50;
1972		break;
1973	}
1974	if (tbfdebug > 1)
1975		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1976    } else {
1977	    prio = 50;
1978    }
1979    return prio;
1980}
1981
1982/*
1983 * End of token bucket filter modifications
1984 */
1985
1986int
1987ip_rsvp_vif_init(so, sopt)
1988	struct socket *so;
1989	struct sockopt *sopt;
1990{
1991    int error, i, s;
1992
1993    if (rsvpdebug)
1994	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1995	       so->so_type, so->so_proto->pr_protocol);
1996
1997    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1998	return EOPNOTSUPP;
1999
2000    /* Check mbuf. */
2001    error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2002    if (error)
2003	    return (error);
2004
2005    if (rsvpdebug)
2006	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
2007
2008    s = splnet();
2009
2010    /* Check vif. */
2011    if (!legal_vif_num(i)) {
2012	splx(s);
2013	return EADDRNOTAVAIL;
2014    }
2015
2016    /* Check if socket is available. */
2017    if (viftable[i].v_rsvpd != NULL) {
2018	splx(s);
2019	return EADDRINUSE;
2020    }
2021
2022    viftable[i].v_rsvpd = so;
2023    /* This may seem silly, but we need to be sure we don't over-increment
2024     * the RSVP counter, in case something slips up.
2025     */
2026    if (!viftable[i].v_rsvp_on) {
2027	viftable[i].v_rsvp_on = 1;
2028	rsvp_on++;
2029    }
2030
2031    splx(s);
2032    return 0;
2033}
2034
2035int
2036ip_rsvp_vif_done(so, sopt)
2037	struct socket *so;
2038	struct sockopt *sopt;
2039{
2040	int error, i, s;
2041
2042	if (rsvpdebug)
2043		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2044		       so->so_type, so->so_proto->pr_protocol);
2045
2046	if (so->so_type != SOCK_RAW ||
2047	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2048		return EOPNOTSUPP;
2049
2050	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2051	if (error)
2052		return (error);
2053
2054	s = splnet();
2055
2056	/* Check vif. */
2057	if (!legal_vif_num(i)) {
2058		splx(s);
2059		return EADDRNOTAVAIL;
2060	}
2061
2062	if (rsvpdebug)
2063		printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2064		       viftable[i].v_rsvpd, so);
2065
2066	/*
2067	 * XXX as an additional consistency check, one could make sure
2068	 * that viftable[i].v_rsvpd == so, otherwise passing so as
2069	 * first parameter is pretty useless.
2070	 */
2071	viftable[i].v_rsvpd = NULL;
2072	/*
2073	 * This may seem silly, but we need to be sure we don't over-decrement
2074	 * the RSVP counter, in case something slips up.
2075	 */
2076	if (viftable[i].v_rsvp_on) {
2077		viftable[i].v_rsvp_on = 0;
2078		rsvp_on--;
2079	}
2080
2081	splx(s);
2082	return 0;
2083}
2084
2085void
2086ip_rsvp_force_done(so)
2087    struct socket *so;
2088{
2089    int vifi;
2090    register int s;
2091
2092    /* Don't bother if it is not the right type of socket. */
2093    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2094	return;
2095
2096    s = splnet();
2097
2098    /* The socket may be attached to more than one vif...this
2099     * is perfectly legal.
2100     */
2101    for (vifi = 0; vifi < numvifs; vifi++) {
2102	if (viftable[vifi].v_rsvpd == so) {
2103	    viftable[vifi].v_rsvpd = NULL;
2104	    /* This may seem silly, but we need to be sure we don't
2105	     * over-decrement the RSVP counter, in case something slips up.
2106	     */
2107	    if (viftable[vifi].v_rsvp_on) {
2108		viftable[vifi].v_rsvp_on = 0;
2109		rsvp_on--;
2110	    }
2111	}
2112    }
2113
2114    splx(s);
2115    return;
2116}
2117
2118void
2119rsvp_input(m, off)
2120	struct mbuf *m;
2121	int off;
2122{
2123    int vifi;
2124    register struct ip *ip = mtod(m, struct ip *);
2125    static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2126    register int s;
2127    struct ifnet *ifp;
2128
2129    if (rsvpdebug)
2130	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2131
2132    /* Can still get packets with rsvp_on = 0 if there is a local member
2133     * of the group to which the RSVP packet is addressed.  But in this
2134     * case we want to throw the packet away.
2135     */
2136    if (!rsvp_on) {
2137	m_freem(m);
2138	return;
2139    }
2140
2141    s = splnet();
2142
2143    if (rsvpdebug)
2144	printf("rsvp_input: check vifs\n");
2145
2146#ifdef DIAGNOSTIC
2147    if (!(m->m_flags & M_PKTHDR))
2148	    panic("rsvp_input no hdr");
2149#endif
2150
2151    ifp = m->m_pkthdr.rcvif;
2152    /* Find which vif the packet arrived on. */
2153    for (vifi = 0; vifi < numvifs; vifi++)
2154	if (viftable[vifi].v_ifp == ifp)
2155	    break;
2156
2157    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2158	/*
2159	 * If the old-style non-vif-associated socket is set,
2160	 * then use it.  Otherwise, drop packet since there
2161	 * is no specific socket for this vif.
2162	 */
2163	if (ip_rsvpd != NULL) {
2164	    if (rsvpdebug)
2165		printf("rsvp_input: Sending packet up old-style socket\n");
2166	    rip_input(m, off);  /* xxx */
2167	} else {
2168	    if (rsvpdebug && vifi == numvifs)
2169		printf("rsvp_input: Can't find vif for packet.\n");
2170	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2171		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2172	    m_freem(m);
2173	}
2174	splx(s);
2175	return;
2176    }
2177    rsvp_src.sin_addr = ip->ip_src;
2178
2179    if (rsvpdebug && m)
2180	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2181	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2182
2183    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2184	if (rsvpdebug)
2185	    printf("rsvp_input: Failed to append to socket\n");
2186    } else {
2187	if (rsvpdebug)
2188	    printf("rsvp_input: send packet up\n");
2189    }
2190
2191    splx(s);
2192}
2193
2194#ifdef MROUTE_KLD
2195
2196static int
2197ip_mroute_modevent(module_t mod, int type, void *unused)
2198{
2199	int s;
2200
2201	switch (type) {
2202		static u_long (*old_ip_mcast_src)(int);
2203		static int (*old_ip_mrouter_set)(struct socket *,
2204			struct sockopt *);
2205		static int (*old_ip_mrouter_get)(struct socket *,
2206			struct sockopt *);
2207		static int (*old_ip_mrouter_done)(void);
2208		static int (*old_ip_mforward)(struct ip *, struct ifnet *,
2209			struct mbuf *, struct ip_moptions *);
2210		static int (*old_mrt_ioctl)(int, caddr_t);
2211		static int (*old_legal_vif_num)(int);
2212
2213	case MOD_LOAD:
2214		s = splnet();
2215		/* XXX Protect against multiple loading */
2216		old_ip_mcast_src = ip_mcast_src;
2217		ip_mcast_src = X_ip_mcast_src;
2218		old_ip_mrouter_get = ip_mrouter_get;
2219		ip_mrouter_get = X_ip_mrouter_get;
2220		old_ip_mrouter_set = ip_mrouter_set;
2221		ip_mrouter_set = X_ip_mrouter_set;
2222		old_ip_mrouter_done = ip_mrouter_done;
2223		ip_mrouter_done = X_ip_mrouter_done;
2224		old_ip_mforward = ip_mforward;
2225		ip_mforward = X_ip_mforward;
2226		old_mrt_ioctl = mrt_ioctl;
2227		mrt_ioctl = X_mrt_ioctl;
2228		old_legal_vif_num = legal_vif_num;
2229		legal_vif_num = X_legal_vif_num;
2230
2231		splx(s);
2232		return 0;
2233
2234	case MOD_UNLOAD:
2235		if (ip_mrouter)
2236		  return EINVAL;
2237
2238		s = splnet();
2239		ip_mrouter_get = old_ip_mrouter_get;
2240		ip_mrouter_set = old_ip_mrouter_set;
2241		ip_mrouter_done = old_ip_mrouter_done;
2242		ip_mforward = old_ip_mforward;
2243		mrt_ioctl = old_mrt_ioctl;
2244		legal_vif_num = old_legal_vif_num;
2245		splx(s);
2246		return 0;
2247
2248	default:
2249		break;
2250	}
2251	return 0;
2252}
2253
2254static moduledata_t ip_mroutemod = {
2255	"ip_mroute",
2256	ip_mroute_modevent,
2257	0
2258};
2259DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2260
2261#endif /* MROUTE_KLD */
2262#endif /* MROUTING */
2263