ip_mroute.c revision 103124
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 *
11 * MROUTING Revision: 3.5
12 * $FreeBSD: head/sys/netinet/ip_mroute.c 103124 2002-09-09 09:36:47Z sobomax $
13 */
14
15#include "opt_mrouting.h"
16#include "opt_random_ip_id.h"
17
18#include <sys/param.h>
19#include <sys/kernel.h>
20#include <sys/lock.h>
21#include <sys/malloc.h>
22#include <sys/mbuf.h>
23#include <sys/protosw.h>
24#include <sys/signalvar.h>
25#include <sys/socket.h>
26#include <sys/socketvar.h>
27#include <sys/sockio.h>
28#include <sys/sx.h>
29#include <sys/sysctl.h>
30#include <sys/syslog.h>
31#include <sys/systm.h>
32#include <sys/time.h>
33#include <net/if.h>
34#include <net/route.h>
35#include <netinet/in.h>
36#include <netinet/igmp.h>
37#include <netinet/in_systm.h>
38#include <netinet/in_var.h>
39#include <netinet/ip.h>
40#include <netinet/ip_encap.h>
41#include <netinet/ip_mroute.h>
42#include <netinet/ip_var.h>
43#include <netinet/udp.h>
44#include <machine/in_cksum.h>
45
46#ifndef MROUTING
47extern u_long	_ip_mcast_src(int vifi);
48extern int	_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
49		    struct ip_moptions *imo);
50extern int	_ip_mrouter_done(void);
51extern int	_ip_mrouter_get(struct socket *so, struct sockopt *sopt);
52extern int	_ip_mrouter_set(struct socket *so, struct sockopt *sopt);
53extern int	_mrt_ioctl(int req, caddr_t data);
54
55/*
56 * Dummy routines and globals used when multicast routing is not compiled in.
57 */
58
59struct socket  *ip_mrouter  = NULL;
60u_int		rsvpdebug = 0;
61
62int
63_ip_mrouter_set(so, sopt)
64	struct socket *so;
65	struct sockopt *sopt;
66{
67	return(EOPNOTSUPP);
68}
69
70int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
71
72
73int
74_ip_mrouter_get(so, sopt)
75	struct socket *so;
76	struct sockopt *sopt;
77{
78	return(EOPNOTSUPP);
79}
80
81int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
82
83int
84_ip_mrouter_done()
85{
86	return(0);
87}
88
89int (*ip_mrouter_done)(void) = _ip_mrouter_done;
90
91int
92_ip_mforward(ip, ifp, m, imo)
93	struct ip *ip;
94	struct ifnet *ifp;
95	struct mbuf *m;
96	struct ip_moptions *imo;
97{
98	return(0);
99}
100
101int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
102		   struct ip_moptions *) = _ip_mforward;
103
104int
105_mrt_ioctl(int req, caddr_t data)
106{
107	return EOPNOTSUPP;
108}
109
110int (*mrt_ioctl)(int, caddr_t) = _mrt_ioctl;
111
112void
113rsvp_input(m, off)		/* XXX must fixup manually */
114	struct mbuf *m;
115	int off;
116{
117    /* Can still get packets with rsvp_on = 0 if there is a local member
118     * of the group to which the RSVP packet is addressed.  But in this
119     * case we want to throw the packet away.
120     */
121    if (!rsvp_on) {
122	m_freem(m);
123	return;
124    }
125
126    if (ip_rsvpd != NULL) {
127	if (rsvpdebug)
128	    printf("rsvp_input: Sending packet up old-style socket\n");
129	rip_input(m, off);
130	return;
131    }
132    /* Drop the packet */
133    m_freem(m);
134}
135
136int (*legal_vif_num)(int) = 0;
137
138/*
139 * This should never be called, since IP_MULTICAST_VIF should fail, but
140 * just in case it does get called, the code a little lower in ip_output
141 * will assign the packet a local address.
142 */
143u_long
144_ip_mcast_src(int vifi) { return INADDR_ANY; }
145u_long (*ip_mcast_src)(int) = _ip_mcast_src;
146
147int
148ip_rsvp_vif_init(so, sopt)
149    struct socket *so;
150    struct sockopt *sopt;
151{
152    return(EINVAL);
153}
154
155int
156ip_rsvp_vif_done(so, sopt)
157    struct socket *so;
158    struct sockopt *sopt;
159{
160    return(EINVAL);
161}
162
163void
164ip_rsvp_force_done(so)
165    struct socket *so;
166{
167    return;
168}
169
170#else /* MROUTING */
171
172#define M_HASCL(m)	((m)->m_flags & M_EXT)
173
174static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
175
176#ifndef MROUTE_KLD
177/* The socket used to communicate with the multicast routing daemon.  */
178struct socket  *ip_mrouter  = NULL;
179#endif
180
181#if defined(MROUTING) || defined(MROUTE_KLD)
182static struct mrtstat	mrtstat;
183SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
184    &mrtstat, mrtstat, "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
185#endif
186
187static struct mfc	*mfctable[MFCTBLSIZ];
188static u_char		nexpire[MFCTBLSIZ];
189static struct vif	viftable[MAXVIFS];
190static u_int	mrtdebug = 0;	  /* debug level 	*/
191#define		DEBUG_MFC	0x02
192#define		DEBUG_FORWARD	0x04
193#define		DEBUG_EXPIRE	0x08
194#define		DEBUG_XMIT	0x10
195static u_int  	tbfdebug = 0;     /* tbf debug level 	*/
196static u_int	rsvpdebug = 0;	  /* rsvp debug level   */
197
198static struct callout_handle expire_upcalls_ch;
199
200#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
201#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
202
203/*
204 * Define the token bucket filter structures
205 * tbftable -> each vif has one of these for storing info
206 */
207
208static struct tbf tbftable[MAXVIFS];
209#define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
210
211/*
212 * 'Interfaces' associated with decapsulator (so we can tell
213 * packets that went through it from ones that get reflected
214 * by a broken gateway).  These interfaces are never linked into
215 * the system ifnet list & no routes point to them.  I.e., packets
216 * can't be sent this way.  They only exist as a placeholder for
217 * multicast source verification.
218 */
219static struct ifnet multicast_decap_if[MAXVIFS];
220
221#define ENCAP_TTL 64
222#define ENCAP_PROTO IPPROTO_IPIP	/* 4 */
223
224/* prototype IP hdr for encapsulated packets */
225static struct ip multicast_encap_iphdr = {
226#if BYTE_ORDER == LITTLE_ENDIAN
227	sizeof(struct ip) >> 2, IPVERSION,
228#else
229	IPVERSION, sizeof(struct ip) >> 2,
230#endif
231	0,				/* tos */
232	sizeof(struct ip),		/* total length */
233	0,				/* id */
234	0,				/* frag offset */
235	ENCAP_TTL, ENCAP_PROTO,
236	0,				/* checksum */
237};
238
239/*
240 * Private variables.
241 */
242static vifi_t	   numvifs = 0;
243static const struct encaptab *encap_cookie = NULL;
244
245/*
246 * one-back cache used by mroute_encapcheck to locate a tunnel's vif
247 * given a datagram's src ip address.
248 */
249static u_long last_encap_src;
250static struct vif *last_encap_vif;
251
252static u_long	X_ip_mcast_src(int vifi);
253static int	X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo);
254static int	X_ip_mrouter_done(void);
255static int	X_ip_mrouter_get(struct socket *so, struct sockopt *m);
256static int	X_ip_mrouter_set(struct socket *so, struct sockopt *m);
257static int	X_legal_vif_num(int vif);
258static int	X_mrt_ioctl(int cmd, caddr_t data);
259
260static int get_sg_cnt(struct sioc_sg_req *);
261static int get_vif_cnt(struct sioc_vif_req *);
262static int ip_mrouter_init(struct socket *, int);
263static int add_vif(struct vifctl *);
264static int del_vif(vifi_t);
265static int add_mfc(struct mfcctl *);
266static int del_mfc(struct mfcctl *);
267static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
268static int set_assert(int);
269static void expire_upcalls(void *);
270static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
271		  vifi_t);
272static void phyint_send(struct ip *, struct vif *, struct mbuf *);
273static void encap_send(struct ip *, struct vif *, struct mbuf *);
274static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
275static void tbf_queue(struct vif *, struct mbuf *);
276static void tbf_process_q(struct vif *);
277static void tbf_reprocess_q(void *);
278static int tbf_dq_sel(struct vif *, struct ip *);
279static void tbf_send_packet(struct vif *, struct mbuf *);
280static void tbf_update_tokens(struct vif *);
281static int priority(struct vif *, struct ip *);
282
283/*
284 * whether or not special PIM assert processing is enabled.
285 */
286static int pim_assert;
287/*
288 * Rate limit for assert notification messages, in usec
289 */
290#define ASSERT_MSG_TIME		3000000
291
292/*
293 * Hash function for a source, group entry
294 */
295#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
296			((g) >> 20) ^ ((g) >> 10) ^ (g))
297
298/*
299 * Find a route for a given origin IP address and Multicast group address
300 * Type of service parameter to be added in the future!!!
301 */
302
303#define MFCFIND(o, g, rt) { \
304	register struct mfc *_rt = mfctable[MFCHASH(o,g)]; \
305	rt = NULL; \
306	++mrtstat.mrts_mfc_lookups; \
307	while (_rt) { \
308		if ((_rt->mfc_origin.s_addr == o) && \
309		    (_rt->mfc_mcastgrp.s_addr == g) && \
310		    (_rt->mfc_stall == NULL)) { \
311			rt = _rt; \
312			break; \
313		} \
314		_rt = _rt->mfc_next; \
315	} \
316	if (rt == NULL) { \
317		++mrtstat.mrts_mfc_misses; \
318	} \
319}
320
321
322/*
323 * Macros to compute elapsed time efficiently
324 * Borrowed from Van Jacobson's scheduling code
325 */
326#define TV_DELTA(a, b, delta) { \
327	    register int xxs; \
328		\
329	    delta = (a).tv_usec - (b).tv_usec; \
330	    if ((xxs = (a).tv_sec - (b).tv_sec)) { \
331	       switch (xxs) { \
332		      case 2: \
333			  delta += 1000000; \
334			      /* FALLTHROUGH */ \
335		      case 1: \
336			  delta += 1000000; \
337			  break; \
338		      default: \
339			  delta += (1000000 * xxs); \
340	       } \
341	    } \
342}
343
344#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
345	      (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
346
347#ifdef UPCALL_TIMING
348u_long upcall_data[51];
349static void collate(struct timeval *);
350#endif /* UPCALL_TIMING */
351
352
353/*
354 * Handle MRT setsockopt commands to modify the multicast routing tables.
355 */
356static int
357X_ip_mrouter_set(so, sopt)
358	struct socket *so;
359	struct sockopt *sopt;
360{
361	int	error, optval;
362	vifi_t	vifi;
363	struct	vifctl vifc;
364	struct	mfcctl mfc;
365
366	if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
367		return (EPERM);
368
369	error = 0;
370	switch (sopt->sopt_name) {
371	case MRT_INIT:
372		error = sooptcopyin(sopt, &optval, sizeof optval,
373				    sizeof optval);
374		if (error)
375			break;
376		error = ip_mrouter_init(so, optval);
377		break;
378
379	case MRT_DONE:
380		error = ip_mrouter_done();
381		break;
382
383	case MRT_ADD_VIF:
384		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
385		if (error)
386			break;
387		error = add_vif(&vifc);
388		break;
389
390	case MRT_DEL_VIF:
391		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
392		if (error)
393			break;
394		error = del_vif(vifi);
395		break;
396
397	case MRT_ADD_MFC:
398	case MRT_DEL_MFC:
399		error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
400		if (error)
401			break;
402		if (sopt->sopt_name == MRT_ADD_MFC)
403			error = add_mfc(&mfc);
404		else
405			error = del_mfc(&mfc);
406		break;
407
408	case MRT_ASSERT:
409		error = sooptcopyin(sopt, &optval, sizeof optval,
410				    sizeof optval);
411		if (error)
412			break;
413		set_assert(optval);
414		break;
415
416	default:
417		error = EOPNOTSUPP;
418		break;
419	}
420	return (error);
421}
422
423#ifndef MROUTE_KLD
424int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
425#endif
426
427/*
428 * Handle MRT getsockopt commands
429 */
430static int
431X_ip_mrouter_get(so, sopt)
432	struct socket *so;
433	struct sockopt *sopt;
434{
435	int error;
436	static int version = 0x0305; /* !!! why is this here? XXX */
437
438	switch (sopt->sopt_name) {
439	case MRT_VERSION:
440		error = sooptcopyout(sopt, &version, sizeof version);
441		break;
442
443	case MRT_ASSERT:
444		error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
445		break;
446	default:
447		error = EOPNOTSUPP;
448		break;
449	}
450	return (error);
451}
452
453#ifndef MROUTE_KLD
454int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
455#endif
456
457/*
458 * Handle ioctl commands to obtain information from the cache
459 */
460static int
461X_mrt_ioctl(cmd, data)
462    int cmd;
463    caddr_t data;
464{
465    int error = 0;
466
467    switch (cmd) {
468	case (SIOCGETVIFCNT):
469	    return (get_vif_cnt((struct sioc_vif_req *)data));
470	    break;
471	case (SIOCGETSGCNT):
472	    return (get_sg_cnt((struct sioc_sg_req *)data));
473	    break;
474	default:
475	    return (EINVAL);
476	    break;
477    }
478    return error;
479}
480
481#ifndef MROUTE_KLD
482int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
483#endif
484
485/*
486 * returns the packet, byte, rpf-failure count for the source group provided
487 */
488static int
489get_sg_cnt(req)
490    register struct sioc_sg_req *req;
491{
492    register struct mfc *rt;
493    int s;
494
495    s = splnet();
496    MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
497    splx(s);
498    if (rt != NULL) {
499	req->pktcnt = rt->mfc_pkt_cnt;
500	req->bytecnt = rt->mfc_byte_cnt;
501	req->wrong_if = rt->mfc_wrong_if;
502    } else
503	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
504
505    return 0;
506}
507
508/*
509 * returns the input and output packet and byte counts on the vif provided
510 */
511static int
512get_vif_cnt(req)
513    register struct sioc_vif_req *req;
514{
515    register vifi_t vifi = req->vifi;
516
517    if (vifi >= numvifs) return EINVAL;
518
519    req->icount = viftable[vifi].v_pkt_in;
520    req->ocount = viftable[vifi].v_pkt_out;
521    req->ibytes = viftable[vifi].v_bytes_in;
522    req->obytes = viftable[vifi].v_bytes_out;
523
524    return 0;
525}
526
527/*
528 * Enable multicast routing
529 */
530static int
531ip_mrouter_init(so, version)
532	struct socket *so;
533	int version;
534{
535    if (mrtdebug)
536	log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
537		so->so_type, so->so_proto->pr_protocol);
538
539    if (so->so_type != SOCK_RAW ||
540	so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
541
542    if (version != 1)
543	return ENOPROTOOPT;
544
545    if (ip_mrouter != NULL) return EADDRINUSE;
546
547    ip_mrouter = so;
548
549    bzero((caddr_t)mfctable, sizeof(mfctable));
550    bzero((caddr_t)nexpire, sizeof(nexpire));
551
552    pim_assert = 0;
553
554    expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
555
556    if (mrtdebug)
557	log(LOG_DEBUG, "ip_mrouter_init\n");
558
559    return 0;
560}
561
562/*
563 * Disable multicast routing
564 */
565static int
566X_ip_mrouter_done()
567{
568    vifi_t vifi;
569    int i;
570    struct ifnet *ifp;
571    struct ifreq ifr;
572    struct mfc *rt;
573    struct rtdetq *rte;
574    int s;
575
576    s = splnet();
577
578    /*
579     * For each phyint in use, disable promiscuous reception of all IP
580     * multicasts.
581     */
582    for (vifi = 0; vifi < numvifs; vifi++) {
583	if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
584	    !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
585	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
586	    ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
587								= INADDR_ANY;
588	    ifp = viftable[vifi].v_ifp;
589	    if_allmulti(ifp, 0);
590	}
591    }
592    bzero((caddr_t)tbftable, sizeof(tbftable));
593    bzero((caddr_t)viftable, sizeof(viftable));
594    numvifs = 0;
595    pim_assert = 0;
596
597    untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch);
598
599    /*
600     * Free all multicast forwarding cache entries.
601     */
602    for (i = 0; i < MFCTBLSIZ; i++) {
603	for (rt = mfctable[i]; rt != NULL; ) {
604	    struct mfc *nr = rt->mfc_next;
605
606	    for (rte = rt->mfc_stall; rte != NULL; ) {
607		struct rtdetq *n = rte->next;
608
609		m_freem(rte->m);
610		free(rte, M_MRTABLE);
611		rte = n;
612	    }
613	    free(rt, M_MRTABLE);
614	    rt = nr;
615	}
616    }
617
618    bzero((caddr_t)mfctable, sizeof(mfctable));
619
620    /*
621     * Reset de-encapsulation cache
622     */
623    last_encap_src = 0;
624    last_encap_vif = NULL;
625    if (encap_cookie) {
626	encap_detach(encap_cookie);
627	encap_cookie = NULL;
628    }
629
630    ip_mrouter = NULL;
631
632    splx(s);
633
634    if (mrtdebug)
635	log(LOG_DEBUG, "ip_mrouter_done\n");
636
637    return 0;
638}
639
640#ifndef MROUTE_KLD
641int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
642#endif
643
644/*
645 * Set PIM assert processing global
646 */
647static int
648set_assert(i)
649	int i;
650{
651    if ((i != 1) && (i != 0))
652	return EINVAL;
653
654    pim_assert = i;
655
656    return 0;
657}
658
659/*
660 * Decide if a packet is from a tunnelled peer.
661 * Return 0 if not, 64 if so.
662 */
663static int
664mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
665{
666    struct ip *ip = mtod(m, struct ip *);
667    int hlen = ip->ip_hl << 2;
668    register struct vif *vifp;
669
670    /*
671     * don't claim the packet if it's not to a multicast destination or if
672     * we don't have an encapsulating tunnel with the source.
673     * Note:  This code assumes that the remote site IP address
674     * uniquely identifies the tunnel (i.e., that this site has
675     * at most one tunnel with the remote site).
676     */
677    if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
678	return 0;
679    }
680    if (ip->ip_src.s_addr != last_encap_src) {
681	register struct vif *vife;
682
683	vifp = viftable;
684	vife = vifp + numvifs;
685	last_encap_src = ip->ip_src.s_addr;
686	last_encap_vif = 0;
687	for ( ; vifp < vife; ++vifp)
688	    if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
689		if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
690		    == VIFF_TUNNEL)
691		    last_encap_vif = vifp;
692		break;
693	    }
694    }
695    if ((vifp = last_encap_vif) == 0) {
696	last_encap_src = 0;
697	return 0;
698    }
699    return 64;
700}
701
702/*
703 * De-encapsulate a packet and feed it back through ip input (this
704 * routine is called whenever IP gets a packet that mroute_encap_func()
705 * claimed).
706 */
707static void
708mroute_encap_input(struct mbuf *m, int off)
709{
710    struct ip *ip = mtod(m, struct ip *);
711    int hlen = ip->ip_hl << 2;
712
713    if (hlen > sizeof(struct ip))
714      ip_stripoptions(m, (struct mbuf *) 0);
715    m->m_data += sizeof(struct ip);
716    m->m_len -= sizeof(struct ip);
717    m->m_pkthdr.len -= sizeof(struct ip);
718
719    m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
720
721    (void) IF_HANDOFF(&ipintrq, m, NULL);
722	/*
723	 * normally we would need a "schednetisr(NETISR_IP)"
724	 * here but we were called by ip_input and it is going
725	 * to loop back & try to dequeue the packet we just
726	 * queued as soon as we return so we avoid the
727	 * unnecessary software interrrupt.
728	 */
729}
730
731extern struct domain inetdomain;
732static struct protosw mroute_encap_protosw =
733{ SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
734  mroute_encap_input,	0,	0,		rip_ctloutput,
735  0,
736  0,		0,		0,		0,
737  &rip_usrreqs
738};
739
740/*
741 * Add a vif to the vif table
742 */
743static int
744add_vif(vifcp)
745    register struct vifctl *vifcp;
746{
747    register struct vif *vifp = viftable + vifcp->vifc_vifi;
748    static struct sockaddr_in sin = {sizeof sin, AF_INET};
749    struct ifaddr *ifa;
750    struct ifnet *ifp;
751    int error, s;
752    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
753
754    if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
755    if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
756
757    /* Find the interface with an address in AF_INET family */
758    sin.sin_addr = vifcp->vifc_lcl_addr;
759    ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
760    if (ifa == 0) return EADDRNOTAVAIL;
761    ifp = ifa->ifa_ifp;
762
763    if (vifcp->vifc_flags & VIFF_TUNNEL) {
764	if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
765		/*
766		 * An encapsulating tunnel is wanted.  Tell
767		 * mroute_encap_input() to start paying attention
768		 * to encapsulated packets.
769		 */
770		if (encap_cookie == NULL) {
771			encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
772				mroute_encapcheck,
773				(struct protosw *)&mroute_encap_protosw, NULL);
774
775			if (encap_cookie == NULL) {
776				printf("ip_mroute: unable to attach encap\n");
777				return (EIO);	/* XXX */
778			}
779			for (s = 0; s < MAXVIFS; ++s) {
780				multicast_decap_if[s].if_name = "mdecap";
781				multicast_decap_if[s].if_unit = s;
782			}
783		}
784		/*
785		 * Set interface to fake encapsulator interface
786		 */
787		ifp = &multicast_decap_if[vifcp->vifc_vifi];
788		/*
789		 * Prepare cached route entry
790		 */
791		bzero(&vifp->v_route, sizeof(vifp->v_route));
792	} else {
793	    log(LOG_ERR, "source routed tunnels not supported\n");
794	    return EOPNOTSUPP;
795	}
796    } else {
797	/* Make sure the interface supports multicast */
798	if ((ifp->if_flags & IFF_MULTICAST) == 0)
799	    return EOPNOTSUPP;
800
801	/* Enable promiscuous reception of all IP multicasts from the if */
802	s = splnet();
803	error = if_allmulti(ifp, 1);
804	splx(s);
805	if (error)
806	    return error;
807    }
808
809    s = splnet();
810    /* define parameters for the tbf structure */
811    vifp->v_tbf = v_tbf;
812    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
813    vifp->v_tbf->tbf_n_tok = 0;
814    vifp->v_tbf->tbf_q_len = 0;
815    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
816    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
817
818    vifp->v_flags     = vifcp->vifc_flags;
819    vifp->v_threshold = vifcp->vifc_threshold;
820    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
821    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
822    vifp->v_ifp       = ifp;
823    /* scaling up here allows division by 1024 in critical code */
824    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
825    vifp->v_rsvp_on   = 0;
826    vifp->v_rsvpd     = NULL;
827    /* initialize per vif pkt counters */
828    vifp->v_pkt_in    = 0;
829    vifp->v_pkt_out   = 0;
830    vifp->v_bytes_in  = 0;
831    vifp->v_bytes_out = 0;
832    splx(s);
833
834    /* Adjust numvifs up if the vifi is higher than numvifs */
835    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
836
837    if (mrtdebug)
838	log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
839	    vifcp->vifc_vifi,
840	    (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
841	    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
842	    (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
843	    vifcp->vifc_threshold,
844	    vifcp->vifc_rate_limit);
845
846    return 0;
847}
848
849/*
850 * Delete a vif from the vif table
851 */
852static int
853del_vif(vifi)
854	vifi_t vifi;
855{
856    register struct vif *vifp = &viftable[vifi];
857    register struct mbuf *m;
858    struct ifnet *ifp;
859    struct ifreq ifr;
860    int s;
861
862    if (vifi >= numvifs) return EINVAL;
863    if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
864
865    s = splnet();
866
867    if (!(vifp->v_flags & VIFF_TUNNEL)) {
868	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
869	((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
870	ifp = vifp->v_ifp;
871	if_allmulti(ifp, 0);
872    }
873
874    if (vifp == last_encap_vif) {
875	last_encap_vif = 0;
876	last_encap_src = 0;
877    }
878
879    /*
880     * Free packets queued at the interface
881     */
882    while (vifp->v_tbf->tbf_q) {
883	m = vifp->v_tbf->tbf_q;
884	vifp->v_tbf->tbf_q = m->m_act;
885	m_freem(m);
886    }
887
888    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
889    bzero((caddr_t)vifp, sizeof (*vifp));
890
891    if (mrtdebug)
892      log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
893
894    /* Adjust numvifs down */
895    for (vifi = numvifs; vifi > 0; vifi--)
896	if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
897    numvifs = vifi;
898
899    splx(s);
900
901    return 0;
902}
903
904/*
905 * Add an mfc entry
906 */
907static int
908add_mfc(mfccp)
909    struct mfcctl *mfccp;
910{
911    struct mfc *rt;
912    u_long hash;
913    struct rtdetq *rte;
914    register u_short nstl;
915    int s;
916    int i;
917
918    MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
919
920    /* If an entry already exists, just update the fields */
921    if (rt) {
922	if (mrtdebug & DEBUG_MFC)
923	    log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
924		(u_long)ntohl(mfccp->mfcc_origin.s_addr),
925		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
926		mfccp->mfcc_parent);
927
928	s = splnet();
929	rt->mfc_parent = mfccp->mfcc_parent;
930	for (i = 0; i < numvifs; i++)
931	    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
932	splx(s);
933	return 0;
934    }
935
936    /*
937     * Find the entry for which the upcall was made and update
938     */
939    s = splnet();
940    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
941    for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
942
943	if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
944	    (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
945	    (rt->mfc_stall != NULL)) {
946
947	    if (nstl++)
948		log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
949		    "multiple kernel entries",
950		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
951		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
952		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
953
954	    if (mrtdebug & DEBUG_MFC)
955		log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
956		    (u_long)ntohl(mfccp->mfcc_origin.s_addr),
957		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
958		    mfccp->mfcc_parent, (void *)rt->mfc_stall);
959
960	    rt->mfc_origin     = mfccp->mfcc_origin;
961	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
962	    rt->mfc_parent     = mfccp->mfcc_parent;
963	    for (i = 0; i < numvifs; i++)
964		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
965	    /* initialize pkt counters per src-grp */
966	    rt->mfc_pkt_cnt    = 0;
967	    rt->mfc_byte_cnt   = 0;
968	    rt->mfc_wrong_if   = 0;
969	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
970
971	    rt->mfc_expire = 0;	/* Don't clean this guy up */
972	    nexpire[hash]--;
973
974	    /* free packets Qed at the end of this entry */
975	    for (rte = rt->mfc_stall; rte != NULL; ) {
976		struct rtdetq *n = rte->next;
977
978		ip_mdq(rte->m, rte->ifp, rt, -1);
979		m_freem(rte->m);
980#ifdef UPCALL_TIMING
981		collate(&(rte->t));
982#endif /* UPCALL_TIMING */
983		free(rte, M_MRTABLE);
984		rte = n;
985	    }
986	    rt->mfc_stall = NULL;
987	}
988    }
989
990    /*
991     * It is possible that an entry is being inserted without an upcall
992     */
993    if (nstl == 0) {
994	if (mrtdebug & DEBUG_MFC)
995	    log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
996		hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
997		(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
998		mfccp->mfcc_parent);
999
1000	for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
1001
1002	    if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
1003		(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
1004
1005		rt->mfc_origin     = mfccp->mfcc_origin;
1006		rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1007		rt->mfc_parent     = mfccp->mfcc_parent;
1008		for (i = 0; i < numvifs; i++)
1009		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1010		/* initialize pkt counters per src-grp */
1011		rt->mfc_pkt_cnt    = 0;
1012		rt->mfc_byte_cnt   = 0;
1013		rt->mfc_wrong_if   = 0;
1014		rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1015		if (rt->mfc_expire)
1016		    nexpire[hash]--;
1017		rt->mfc_expire	   = 0;
1018	    }
1019	}
1020	if (rt == NULL) {
1021	    /* no upcall, so make a new entry */
1022	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1023	    if (rt == NULL) {
1024		splx(s);
1025		return ENOBUFS;
1026	    }
1027
1028	    /* insert new entry at head of hash chain */
1029	    rt->mfc_origin     = mfccp->mfcc_origin;
1030	    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1031	    rt->mfc_parent     = mfccp->mfcc_parent;
1032	    for (i = 0; i < numvifs; i++)
1033		    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1034	    /* initialize pkt counters per src-grp */
1035	    rt->mfc_pkt_cnt    = 0;
1036	    rt->mfc_byte_cnt   = 0;
1037	    rt->mfc_wrong_if   = 0;
1038	    rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
1039	    rt->mfc_expire     = 0;
1040	    rt->mfc_stall      = NULL;
1041
1042	    /* link into table */
1043	    rt->mfc_next = mfctable[hash];
1044	    mfctable[hash] = rt;
1045	}
1046    }
1047    splx(s);
1048    return 0;
1049}
1050
1051#ifdef UPCALL_TIMING
1052/*
1053 * collect delay statistics on the upcalls
1054 */
1055static void collate(t)
1056register struct timeval *t;
1057{
1058    register u_long d;
1059    register struct timeval tp;
1060    register u_long delta;
1061
1062    GET_TIME(tp);
1063
1064    if (TV_LT(*t, tp))
1065    {
1066	TV_DELTA(tp, *t, delta);
1067
1068	d = delta >> 10;
1069	if (d > 50)
1070	    d = 50;
1071
1072	++upcall_data[d];
1073    }
1074}
1075#endif /* UPCALL_TIMING */
1076
1077/*
1078 * Delete an mfc entry
1079 */
1080static int
1081del_mfc(mfccp)
1082    struct mfcctl *mfccp;
1083{
1084    struct in_addr 	origin;
1085    struct in_addr 	mcastgrp;
1086    struct mfc 		*rt;
1087    struct mfc	 	**nptr;
1088    u_long 		hash;
1089    int s;
1090
1091    origin = mfccp->mfcc_origin;
1092    mcastgrp = mfccp->mfcc_mcastgrp;
1093    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1094
1095    if (mrtdebug & DEBUG_MFC)
1096	log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1097	    (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1098
1099    s = splnet();
1100
1101    nptr = &mfctable[hash];
1102    while ((rt = *nptr) != NULL) {
1103	if (origin.s_addr == rt->mfc_origin.s_addr &&
1104	    mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1105	    rt->mfc_stall == NULL)
1106	    break;
1107
1108	nptr = &rt->mfc_next;
1109    }
1110    if (rt == NULL) {
1111	splx(s);
1112	return EADDRNOTAVAIL;
1113    }
1114
1115    *nptr = rt->mfc_next;
1116    free(rt, M_MRTABLE);
1117
1118    splx(s);
1119
1120    return 0;
1121}
1122
1123/*
1124 * Send a message to mrouted on the multicast routing socket
1125 */
1126static int
1127socket_send(s, mm, src)
1128	struct socket *s;
1129	struct mbuf *mm;
1130	struct sockaddr_in *src;
1131{
1132	if (s) {
1133		if (sbappendaddr(&s->so_rcv,
1134				 (struct sockaddr *)src,
1135				 mm, (struct mbuf *)0) != 0) {
1136			sorwakeup(s);
1137			return 0;
1138		}
1139	}
1140	m_freem(mm);
1141	return -1;
1142}
1143
1144/*
1145 * IP multicast forwarding function. This function assumes that the packet
1146 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1147 * pointed to by "ifp", and the packet is to be relayed to other networks
1148 * that have members of the packet's destination IP multicast group.
1149 *
1150 * The packet is returned unscathed to the caller, unless it is
1151 * erroneous, in which case a non-zero return value tells the caller to
1152 * discard it.
1153 */
1154
1155#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1156
1157static int
1158X_ip_mforward(ip, ifp, m, imo)
1159    register struct ip *ip;
1160    struct ifnet *ifp;
1161    struct mbuf *m;
1162    struct ip_moptions *imo;
1163{
1164    register struct mfc *rt;
1165    register u_char *ipoptions;
1166    static struct sockaddr_in 	k_igmpsrc	= { sizeof k_igmpsrc, AF_INET };
1167    static int srctun = 0;
1168    register struct mbuf *mm;
1169    int s;
1170    vifi_t vifi;
1171    struct vif *vifp;
1172
1173    if (mrtdebug & DEBUG_FORWARD)
1174	log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1175	    (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
1176	    (void *)ifp);
1177
1178    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1179	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1180	/*
1181	 * Packet arrived via a physical interface or
1182	 * an encapsulated tunnel.
1183	 */
1184    } else {
1185	/*
1186	 * Packet arrived through a source-route tunnel.
1187	 * Source-route tunnels are no longer supported.
1188	 */
1189	if ((srctun++ % 1000) == 0)
1190	    log(LOG_ERR,
1191		"ip_mforward: received source-routed packet from %lx\n",
1192		(u_long)ntohl(ip->ip_src.s_addr));
1193
1194	return 1;
1195    }
1196
1197    if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1198	if (ip->ip_ttl < 255)
1199		ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1200	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1201	    vifp = viftable + vifi;
1202	    printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1203		(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
1204		vifi,
1205		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1206		vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1207	}
1208	return (ip_mdq(m, ifp, NULL, vifi));
1209    }
1210    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1211	printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1212	    (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
1213	if(!imo)
1214		printf("In fact, no options were specified at all\n");
1215    }
1216
1217    /*
1218     * Don't forward a packet with time-to-live of zero or one,
1219     * or a packet destined to a local-only group.
1220     */
1221    if (ip->ip_ttl <= 1 ||
1222	ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1223	return 0;
1224
1225    /*
1226     * Determine forwarding vifs from the forwarding cache table
1227     */
1228    s = splnet();
1229    MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1230
1231    /* Entry exists, so forward if necessary */
1232    if (rt != NULL) {
1233	splx(s);
1234	return (ip_mdq(m, ifp, rt, -1));
1235    } else {
1236	/*
1237	 * If we don't have a route for packet's origin,
1238	 * Make a copy of the packet &
1239	 * send message to routing daemon
1240	 */
1241
1242	register struct mbuf *mb0;
1243	register struct rtdetq *rte;
1244	register u_long hash;
1245	int hlen = ip->ip_hl << 2;
1246#ifdef UPCALL_TIMING
1247	struct timeval tp;
1248
1249	GET_TIME(tp);
1250#endif
1251
1252	mrtstat.mrts_no_route++;
1253	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1254	    log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1255		(u_long)ntohl(ip->ip_src.s_addr),
1256		(u_long)ntohl(ip->ip_dst.s_addr));
1257
1258	/*
1259	 * Allocate mbufs early so that we don't do extra work if we are
1260	 * just going to fail anyway.  Make sure to pullup the header so
1261	 * that other people can't step on it.
1262	 */
1263	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
1264	if (rte == NULL) {
1265	    splx(s);
1266	    return ENOBUFS;
1267	}
1268	mb0 = m_copy(m, 0, M_COPYALL);
1269	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1270	    mb0 = m_pullup(mb0, hlen);
1271	if (mb0 == NULL) {
1272	    free(rte, M_MRTABLE);
1273	    splx(s);
1274	    return ENOBUFS;
1275	}
1276
1277	/* is there an upcall waiting for this packet? */
1278	hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1279	for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1280	    if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1281		(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1282		(rt->mfc_stall != NULL))
1283		break;
1284	}
1285
1286	if (rt == NULL) {
1287	    int i;
1288	    struct igmpmsg *im;
1289
1290	    /* no upcall, so make a new entry */
1291	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1292	    if (rt == NULL) {
1293		free(rte, M_MRTABLE);
1294		m_freem(mb0);
1295		splx(s);
1296		return ENOBUFS;
1297	    }
1298	    /* Make a copy of the header to send to the user level process */
1299	    mm = m_copy(mb0, 0, hlen);
1300	    if (mm == NULL) {
1301		free(rte, M_MRTABLE);
1302		m_freem(mb0);
1303		free(rt, M_MRTABLE);
1304		splx(s);
1305		return ENOBUFS;
1306	    }
1307
1308	    /*
1309	     * Send message to routing daemon to install
1310	     * a route into the kernel table
1311	     */
1312	    k_igmpsrc.sin_addr = ip->ip_src;
1313
1314	    im = mtod(mm, struct igmpmsg *);
1315	    im->im_msgtype	= IGMPMSG_NOCACHE;
1316	    im->im_mbz		= 0;
1317
1318	    mrtstat.mrts_upcalls++;
1319
1320	    if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1321		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1322		++mrtstat.mrts_upq_sockfull;
1323		free(rte, M_MRTABLE);
1324		m_freem(mb0);
1325		free(rt, M_MRTABLE);
1326		splx(s);
1327		return ENOBUFS;
1328	    }
1329
1330	    /* insert new entry at head of hash chain */
1331	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1332	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1333	    rt->mfc_expire	      = UPCALL_EXPIRE;
1334	    nexpire[hash]++;
1335	    for (i = 0; i < numvifs; i++)
1336		rt->mfc_ttls[i] = 0;
1337	    rt->mfc_parent = -1;
1338
1339	    /* link into table */
1340	    rt->mfc_next   = mfctable[hash];
1341	    mfctable[hash] = rt;
1342	    rt->mfc_stall = rte;
1343
1344	} else {
1345	    /* determine if q has overflowed */
1346	    int npkts = 0;
1347	    struct rtdetq **p;
1348
1349	    for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1350		npkts++;
1351
1352	    if (npkts > MAX_UPQ) {
1353		mrtstat.mrts_upq_ovflw++;
1354		free(rte, M_MRTABLE);
1355		m_freem(mb0);
1356		splx(s);
1357		return 0;
1358	    }
1359
1360	    /* Add this entry to the end of the queue */
1361	    *p = rte;
1362	}
1363
1364	rte->m 			= mb0;
1365	rte->ifp 		= ifp;
1366#ifdef UPCALL_TIMING
1367	rte->t			= tp;
1368#endif
1369	rte->next		= NULL;
1370
1371	splx(s);
1372
1373	return 0;
1374    }
1375}
1376
1377#ifndef MROUTE_KLD
1378int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1379		   struct ip_moptions *) = X_ip_mforward;
1380#endif
1381
1382/*
1383 * Clean up the cache entry if upcall is not serviced
1384 */
1385static void
1386expire_upcalls(void *unused)
1387{
1388    struct rtdetq *rte;
1389    struct mfc *mfc, **nptr;
1390    int i;
1391    int s;
1392
1393    s = splnet();
1394    for (i = 0; i < MFCTBLSIZ; i++) {
1395	if (nexpire[i] == 0)
1396	    continue;
1397	nptr = &mfctable[i];
1398	for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1399	    /*
1400	     * Skip real cache entries
1401	     * Make sure it wasn't marked to not expire (shouldn't happen)
1402	     * If it expires now
1403	     */
1404	    if (mfc->mfc_stall != NULL &&
1405	        mfc->mfc_expire != 0 &&
1406		--mfc->mfc_expire == 0) {
1407		if (mrtdebug & DEBUG_EXPIRE)
1408		    log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1409			(u_long)ntohl(mfc->mfc_origin.s_addr),
1410			(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
1411		/*
1412		 * drop all the packets
1413		 * free the mbuf with the pkt, if, timing info
1414		 */
1415		for (rte = mfc->mfc_stall; rte; ) {
1416		    struct rtdetq *n = rte->next;
1417
1418		    m_freem(rte->m);
1419		    free(rte, M_MRTABLE);
1420		    rte = n;
1421		}
1422		++mrtstat.mrts_cache_cleanups;
1423		nexpire[i]--;
1424
1425		*nptr = mfc->mfc_next;
1426		free(mfc, M_MRTABLE);
1427	    } else {
1428		nptr = &mfc->mfc_next;
1429	    }
1430	}
1431    }
1432    splx(s);
1433    expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1434}
1435
1436/*
1437 * Packet forwarding routine once entry in the cache is made
1438 */
1439static int
1440ip_mdq(m, ifp, rt, xmt_vif)
1441    register struct mbuf *m;
1442    register struct ifnet *ifp;
1443    register struct mfc *rt;
1444    register vifi_t xmt_vif;
1445{
1446    register struct ip  *ip = mtod(m, struct ip *);
1447    register vifi_t vifi;
1448    register struct vif *vifp;
1449    register int plen = ip->ip_len;
1450
1451/*
1452 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1453 * input, they shouldn't get counted on output, so statistics keeping is
1454 * separate.
1455 */
1456#define MC_SEND(ip,vifp,m) {                             \
1457                if ((vifp)->v_flags & VIFF_TUNNEL)  	 \
1458                    encap_send((ip), (vifp), (m));       \
1459                else                                     \
1460                    phyint_send((ip), (vifp), (m));      \
1461}
1462
1463    /*
1464     * If xmt_vif is not -1, send on only the requested vif.
1465     *
1466     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1467     */
1468    if (xmt_vif < numvifs) {
1469	MC_SEND(ip, viftable + xmt_vif, m);
1470	return 1;
1471    }
1472
1473    /*
1474     * Don't forward if it didn't arrive from the parent vif for its origin.
1475     */
1476    vifi = rt->mfc_parent;
1477    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1478	/* came in the wrong interface */
1479	if (mrtdebug & DEBUG_FORWARD)
1480	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1481		(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1482	++mrtstat.mrts_wrong_if;
1483	++rt->mfc_wrong_if;
1484	/*
1485	 * If we are doing PIM assert processing, and we are forwarding
1486	 * packets on this interface, and it is a broadcast medium
1487	 * interface (and not a tunnel), send a message to the routing daemon.
1488	 */
1489	if (pim_assert && rt->mfc_ttls[vifi] &&
1490		(ifp->if_flags & IFF_BROADCAST) &&
1491		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1492	    struct sockaddr_in k_igmpsrc;
1493	    struct mbuf *mm;
1494	    struct igmpmsg *im;
1495	    int hlen = ip->ip_hl << 2;
1496	    struct timeval now;
1497	    register u_long delta;
1498
1499	    GET_TIME(now);
1500
1501	    TV_DELTA(rt->mfc_last_assert, now, delta);
1502
1503	    if (delta > ASSERT_MSG_TIME) {
1504		mm = m_copy(m, 0, hlen);
1505		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1506		    mm = m_pullup(mm, hlen);
1507		if (mm == NULL) {
1508		    return ENOBUFS;
1509		}
1510
1511		rt->mfc_last_assert = now;
1512
1513		im = mtod(mm, struct igmpmsg *);
1514		im->im_msgtype	= IGMPMSG_WRONGVIF;
1515		im->im_mbz		= 0;
1516		im->im_vif		= vifi;
1517
1518		k_igmpsrc.sin_addr = im->im_src;
1519
1520		socket_send(ip_mrouter, mm, &k_igmpsrc);
1521	    }
1522	}
1523	return 0;
1524    }
1525
1526    /* If I sourced this packet, it counts as output, else it was input. */
1527    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1528	viftable[vifi].v_pkt_out++;
1529	viftable[vifi].v_bytes_out += plen;
1530    } else {
1531	viftable[vifi].v_pkt_in++;
1532	viftable[vifi].v_bytes_in += plen;
1533    }
1534    rt->mfc_pkt_cnt++;
1535    rt->mfc_byte_cnt += plen;
1536
1537    /*
1538     * For each vif, decide if a copy of the packet should be forwarded.
1539     * Forward if:
1540     *		- the ttl exceeds the vif's threshold
1541     *		- there are group members downstream on interface
1542     */
1543    for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1544	if ((rt->mfc_ttls[vifi] > 0) &&
1545	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1546	    vifp->v_pkt_out++;
1547	    vifp->v_bytes_out += plen;
1548	    MC_SEND(ip, vifp, m);
1549	}
1550
1551    return 0;
1552}
1553
1554/*
1555 * check if a vif number is legal/ok. This is used by ip_output, to export
1556 * numvifs there,
1557 */
1558static int
1559X_legal_vif_num(vif)
1560    int vif;
1561{
1562    if (vif >= 0 && vif < numvifs)
1563       return(1);
1564    else
1565       return(0);
1566}
1567
1568#ifndef MROUTE_KLD
1569int (*legal_vif_num)(int) = X_legal_vif_num;
1570#endif
1571
1572/*
1573 * Return the local address used by this vif
1574 */
1575static u_long
1576X_ip_mcast_src(vifi)
1577    int vifi;
1578{
1579    if (vifi >= 0 && vifi < numvifs)
1580	return viftable[vifi].v_lcl_addr.s_addr;
1581    else
1582	return INADDR_ANY;
1583}
1584
1585#ifndef MROUTE_KLD
1586u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1587#endif
1588
1589static void
1590phyint_send(ip, vifp, m)
1591    struct ip *ip;
1592    struct vif *vifp;
1593    struct mbuf *m;
1594{
1595    register struct mbuf *mb_copy;
1596    register int hlen = ip->ip_hl << 2;
1597
1598    /*
1599     * Make a new reference to the packet; make sure that
1600     * the IP header is actually copied, not just referenced,
1601     * so that ip_output() only scribbles on the copy.
1602     */
1603    mb_copy = m_copy(m, 0, M_COPYALL);
1604    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1605	mb_copy = m_pullup(mb_copy, hlen);
1606    if (mb_copy == NULL)
1607	return;
1608
1609    if (vifp->v_rate_limit == 0)
1610	tbf_send_packet(vifp, mb_copy);
1611    else
1612	tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1613}
1614
1615static void
1616encap_send(ip, vifp, m)
1617    register struct ip *ip;
1618    register struct vif *vifp;
1619    register struct mbuf *m;
1620{
1621    register struct mbuf *mb_copy;
1622    register struct ip *ip_copy;
1623    register int i, len = ip->ip_len;
1624
1625    /*
1626     * copy the old packet & pullup its IP header into the
1627     * new mbuf so we can modify it.  Try to fill the new
1628     * mbuf since if we don't the ethernet driver will.
1629     */
1630    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1631    if (mb_copy == NULL)
1632	return;
1633    mb_copy->m_data += max_linkhdr;
1634    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1635
1636    if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1637	m_freem(mb_copy);
1638	return;
1639    }
1640    i = MHLEN - M_LEADINGSPACE(mb_copy);
1641    if (i > len)
1642	i = len;
1643    mb_copy = m_pullup(mb_copy, i);
1644    if (mb_copy == NULL)
1645	return;
1646    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1647
1648    /*
1649     * fill in the encapsulating IP header.
1650     */
1651    ip_copy = mtod(mb_copy, struct ip *);
1652    *ip_copy = multicast_encap_iphdr;
1653#ifdef RANDOM_IP_ID
1654    ip_copy->ip_id = ip_randomid();
1655#else
1656    ip_copy->ip_id = htons(ip_id++);
1657#endif
1658    ip_copy->ip_len += len;
1659    ip_copy->ip_src = vifp->v_lcl_addr;
1660    ip_copy->ip_dst = vifp->v_rmt_addr;
1661
1662    /*
1663     * turn the encapsulated IP header back into a valid one.
1664     */
1665    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1666    --ip->ip_ttl;
1667    ip->ip_len = htons(ip->ip_len);
1668    ip->ip_off = htons(ip->ip_off);
1669    ip->ip_sum = 0;
1670    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1671    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1672    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1673
1674    if (vifp->v_rate_limit == 0)
1675	tbf_send_packet(vifp, mb_copy);
1676    else
1677	tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1678}
1679
1680/*
1681 * Token bucket filter module
1682 */
1683
1684static void
1685tbf_control(vifp, m, ip, p_len)
1686	register struct vif *vifp;
1687	register struct mbuf *m;
1688	register struct ip *ip;
1689	register u_long p_len;
1690{
1691    register struct tbf *t = vifp->v_tbf;
1692
1693    if (p_len > MAX_BKT_SIZE) {
1694	/* drop if packet is too large */
1695	mrtstat.mrts_pkt2large++;
1696	m_freem(m);
1697	return;
1698    }
1699
1700    tbf_update_tokens(vifp);
1701
1702    /* if there are enough tokens,
1703     * and the queue is empty,
1704     * send this packet out
1705     */
1706
1707    if (t->tbf_q_len == 0) {
1708	/* queue empty, send packet if enough tokens */
1709	if (p_len <= t->tbf_n_tok) {
1710	    t->tbf_n_tok -= p_len;
1711	    tbf_send_packet(vifp, m);
1712	} else {
1713	    /* queue packet and timeout till later */
1714	    tbf_queue(vifp, m);
1715	    timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1716	}
1717    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1718	/* finite queue length, so queue pkts and process queue */
1719	tbf_queue(vifp, m);
1720	tbf_process_q(vifp);
1721    } else {
1722	/* queue length too much, try to dq and queue and process */
1723	if (!tbf_dq_sel(vifp, ip)) {
1724	    mrtstat.mrts_q_overflow++;
1725	    m_freem(m);
1726	    return;
1727	} else {
1728	    tbf_queue(vifp, m);
1729	    tbf_process_q(vifp);
1730	}
1731    }
1732    return;
1733}
1734
1735/*
1736 * adds a packet to the queue at the interface
1737 */
1738static void
1739tbf_queue(vifp, m)
1740	register struct vif *vifp;
1741	register struct mbuf *m;
1742{
1743    register int s = splnet();
1744    register struct tbf *t = vifp->v_tbf;
1745
1746    if (t->tbf_t == NULL) {
1747	/* Queue was empty */
1748	t->tbf_q = m;
1749    } else {
1750	/* Insert at tail */
1751	t->tbf_t->m_act = m;
1752    }
1753
1754    /* Set new tail pointer */
1755    t->tbf_t = m;
1756
1757#ifdef DIAGNOSTIC
1758    /* Make sure we didn't get fed a bogus mbuf */
1759    if (m->m_act)
1760	panic("tbf_queue: m_act");
1761#endif
1762    m->m_act = NULL;
1763
1764    t->tbf_q_len++;
1765
1766    splx(s);
1767}
1768
1769
1770/*
1771 * processes the queue at the interface
1772 */
1773static void
1774tbf_process_q(vifp)
1775    register struct vif *vifp;
1776{
1777    register struct mbuf *m;
1778    register int len;
1779    register int s = splnet();
1780    register struct tbf *t = vifp->v_tbf;
1781
1782    /* loop through the queue at the interface and send as many packets
1783     * as possible
1784     */
1785    while (t->tbf_q_len > 0) {
1786	m = t->tbf_q;
1787
1788	len = mtod(m, struct ip *)->ip_len;
1789
1790	/* determine if the packet can be sent */
1791	if (len <= t->tbf_n_tok) {
1792	    /* if so,
1793	     * reduce no of tokens, dequeue the packet,
1794	     * send the packet.
1795	     */
1796	    t->tbf_n_tok -= len;
1797
1798	    t->tbf_q = m->m_act;
1799	    if (--t->tbf_q_len == 0)
1800		t->tbf_t = NULL;
1801
1802	    m->m_act = NULL;
1803	    tbf_send_packet(vifp, m);
1804
1805	} else break;
1806    }
1807    splx(s);
1808}
1809
1810static void
1811tbf_reprocess_q(xvifp)
1812	void *xvifp;
1813{
1814    register struct vif *vifp = xvifp;
1815    if (ip_mrouter == NULL)
1816	return;
1817
1818    tbf_update_tokens(vifp);
1819
1820    tbf_process_q(vifp);
1821
1822    if (vifp->v_tbf->tbf_q_len)
1823	timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1824}
1825
1826/* function that will selectively discard a member of the queue
1827 * based on the precedence value and the priority
1828 */
1829static int
1830tbf_dq_sel(vifp, ip)
1831    register struct vif *vifp;
1832    register struct ip *ip;
1833{
1834    register int s = splnet();
1835    register u_int p;
1836    register struct mbuf *m, *last;
1837    register struct mbuf **np;
1838    register struct tbf *t = vifp->v_tbf;
1839
1840    p = priority(vifp, ip);
1841
1842    np = &t->tbf_q;
1843    last = NULL;
1844    while ((m = *np) != NULL) {
1845	if (p > priority(vifp, mtod(m, struct ip *))) {
1846	    *np = m->m_act;
1847	    /* If we're removing the last packet, fix the tail pointer */
1848	    if (m == t->tbf_t)
1849		t->tbf_t = last;
1850	    m_freem(m);
1851	    /* it's impossible for the queue to be empty, but
1852	     * we check anyway. */
1853	    if (--t->tbf_q_len == 0)
1854		t->tbf_t = NULL;
1855	    splx(s);
1856	    mrtstat.mrts_drop_sel++;
1857	    return(1);
1858	}
1859	np = &m->m_act;
1860	last = m;
1861    }
1862    splx(s);
1863    return(0);
1864}
1865
1866static void
1867tbf_send_packet(vifp, m)
1868    register struct vif *vifp;
1869    register struct mbuf *m;
1870{
1871    struct ip_moptions imo;
1872    int error;
1873    static struct route ro;
1874    int s = splnet();
1875
1876    if (vifp->v_flags & VIFF_TUNNEL) {
1877	/* If tunnel options */
1878	ip_output(m, (struct mbuf *)0, &vifp->v_route,
1879		  IP_FORWARDING, (struct ip_moptions *)0);
1880    } else {
1881	imo.imo_multicast_ifp  = vifp->v_ifp;
1882	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1883	imo.imo_multicast_loop = 1;
1884	imo.imo_multicast_vif  = -1;
1885
1886	/*
1887	 * Re-entrancy should not be a problem here, because
1888	 * the packets that we send out and are looped back at us
1889	 * should get rejected because they appear to come from
1890	 * the loopback interface, thus preventing looping.
1891	 */
1892	error = ip_output(m, (struct mbuf *)0, &ro,
1893			  IP_FORWARDING, &imo);
1894
1895	if (mrtdebug & DEBUG_XMIT)
1896	    log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1897		vifp - viftable, error);
1898    }
1899    splx(s);
1900}
1901
1902/* determine the current time and then
1903 * the elapsed time (between the last time and time now)
1904 * in milliseconds & update the no. of tokens in the bucket
1905 */
1906static void
1907tbf_update_tokens(vifp)
1908    register struct vif *vifp;
1909{
1910    struct timeval tp;
1911    register u_long tm;
1912    register int s = splnet();
1913    register struct tbf *t = vifp->v_tbf;
1914
1915    GET_TIME(tp);
1916
1917    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1918
1919    /*
1920     * This formula is actually
1921     * "time in seconds" * "bytes/second".
1922     *
1923     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1924     *
1925     * The (1000/1024) was introduced in add_vif to optimize
1926     * this divide into a shift.
1927     */
1928    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1929    t->tbf_last_pkt_t = tp;
1930
1931    if (t->tbf_n_tok > MAX_BKT_SIZE)
1932	t->tbf_n_tok = MAX_BKT_SIZE;
1933
1934    splx(s);
1935}
1936
1937static int
1938priority(vifp, ip)
1939    register struct vif *vifp;
1940    register struct ip *ip;
1941{
1942    register int prio;
1943
1944    /* temporary hack; may add general packet classifier some day */
1945
1946    /*
1947     * The UDP port space is divided up into four priority ranges:
1948     * [0, 16384)     : unclassified - lowest priority
1949     * [16384, 32768) : audio - highest priority
1950     * [32768, 49152) : whiteboard - medium priority
1951     * [49152, 65536) : video - low priority
1952     */
1953    if (ip->ip_p == IPPROTO_UDP) {
1954	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1955	switch (ntohs(udp->uh_dport) & 0xc000) {
1956	    case 0x4000:
1957		prio = 70;
1958		break;
1959	    case 0x8000:
1960		prio = 60;
1961		break;
1962	    case 0xc000:
1963		prio = 55;
1964		break;
1965	    default:
1966		prio = 50;
1967		break;
1968	}
1969	if (tbfdebug > 1)
1970		log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1971    } else {
1972	    prio = 50;
1973    }
1974    return prio;
1975}
1976
1977/*
1978 * End of token bucket filter modifications
1979 */
1980
1981int
1982ip_rsvp_vif_init(so, sopt)
1983	struct socket *so;
1984	struct sockopt *sopt;
1985{
1986    int error, i, s;
1987
1988    if (rsvpdebug)
1989	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1990	       so->so_type, so->so_proto->pr_protocol);
1991
1992    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1993	return EOPNOTSUPP;
1994
1995    /* Check mbuf. */
1996    error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1997    if (error)
1998	    return (error);
1999
2000    if (rsvpdebug)
2001	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
2002
2003    s = splnet();
2004
2005    /* Check vif. */
2006    if (!legal_vif_num(i)) {
2007	splx(s);
2008	return EADDRNOTAVAIL;
2009    }
2010
2011    /* Check if socket is available. */
2012    if (viftable[i].v_rsvpd != NULL) {
2013	splx(s);
2014	return EADDRINUSE;
2015    }
2016
2017    viftable[i].v_rsvpd = so;
2018    /* This may seem silly, but we need to be sure we don't over-increment
2019     * the RSVP counter, in case something slips up.
2020     */
2021    if (!viftable[i].v_rsvp_on) {
2022	viftable[i].v_rsvp_on = 1;
2023	rsvp_on++;
2024    }
2025
2026    splx(s);
2027    return 0;
2028}
2029
2030int
2031ip_rsvp_vif_done(so, sopt)
2032	struct socket *so;
2033	struct sockopt *sopt;
2034{
2035	int error, i, s;
2036
2037	if (rsvpdebug)
2038		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2039		       so->so_type, so->so_proto->pr_protocol);
2040
2041	if (so->so_type != SOCK_RAW ||
2042	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2043		return EOPNOTSUPP;
2044
2045	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
2046	if (error)
2047		return (error);
2048
2049	s = splnet();
2050
2051	/* Check vif. */
2052	if (!legal_vif_num(i)) {
2053		splx(s);
2054		return EADDRNOTAVAIL;
2055	}
2056
2057	if (rsvpdebug)
2058		printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2059		       viftable[i].v_rsvpd, so);
2060
2061	/*
2062	 * XXX as an additional consistency check, one could make sure
2063	 * that viftable[i].v_rsvpd == so, otherwise passing so as
2064	 * first parameter is pretty useless.
2065	 */
2066	viftable[i].v_rsvpd = NULL;
2067	/*
2068	 * This may seem silly, but we need to be sure we don't over-decrement
2069	 * the RSVP counter, in case something slips up.
2070	 */
2071	if (viftable[i].v_rsvp_on) {
2072		viftable[i].v_rsvp_on = 0;
2073		rsvp_on--;
2074	}
2075
2076	splx(s);
2077	return 0;
2078}
2079
2080void
2081ip_rsvp_force_done(so)
2082    struct socket *so;
2083{
2084    int vifi;
2085    register int s;
2086
2087    /* Don't bother if it is not the right type of socket. */
2088    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2089	return;
2090
2091    s = splnet();
2092
2093    /* The socket may be attached to more than one vif...this
2094     * is perfectly legal.
2095     */
2096    for (vifi = 0; vifi < numvifs; vifi++) {
2097	if (viftable[vifi].v_rsvpd == so) {
2098	    viftable[vifi].v_rsvpd = NULL;
2099	    /* This may seem silly, but we need to be sure we don't
2100	     * over-decrement the RSVP counter, in case something slips up.
2101	     */
2102	    if (viftable[vifi].v_rsvp_on) {
2103		viftable[vifi].v_rsvp_on = 0;
2104		rsvp_on--;
2105	    }
2106	}
2107    }
2108
2109    splx(s);
2110    return;
2111}
2112
2113void
2114rsvp_input(m, off)
2115	struct mbuf *m;
2116	int off;
2117{
2118    int vifi;
2119    register struct ip *ip = mtod(m, struct ip *);
2120    static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2121    register int s;
2122    struct ifnet *ifp;
2123
2124    if (rsvpdebug)
2125	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2126
2127    /* Can still get packets with rsvp_on = 0 if there is a local member
2128     * of the group to which the RSVP packet is addressed.  But in this
2129     * case we want to throw the packet away.
2130     */
2131    if (!rsvp_on) {
2132	m_freem(m);
2133	return;
2134    }
2135
2136    s = splnet();
2137
2138    if (rsvpdebug)
2139	printf("rsvp_input: check vifs\n");
2140
2141#ifdef DIAGNOSTIC
2142    if (!(m->m_flags & M_PKTHDR))
2143	    panic("rsvp_input no hdr");
2144#endif
2145
2146    ifp = m->m_pkthdr.rcvif;
2147    /* Find which vif the packet arrived on. */
2148    for (vifi = 0; vifi < numvifs; vifi++)
2149	if (viftable[vifi].v_ifp == ifp)
2150	    break;
2151
2152    if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2153	/*
2154	 * If the old-style non-vif-associated socket is set,
2155	 * then use it.  Otherwise, drop packet since there
2156	 * is no specific socket for this vif.
2157	 */
2158	if (ip_rsvpd != NULL) {
2159	    if (rsvpdebug)
2160		printf("rsvp_input: Sending packet up old-style socket\n");
2161	    rip_input(m, off);  /* xxx */
2162	} else {
2163	    if (rsvpdebug && vifi == numvifs)
2164		printf("rsvp_input: Can't find vif for packet.\n");
2165	    else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2166		printf("rsvp_input: No socket defined for vif %d\n",vifi);
2167	    m_freem(m);
2168	}
2169	splx(s);
2170	return;
2171    }
2172    rsvp_src.sin_addr = ip->ip_src;
2173
2174    if (rsvpdebug && m)
2175	printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2176	       m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2177
2178    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2179	if (rsvpdebug)
2180	    printf("rsvp_input: Failed to append to socket\n");
2181    } else {
2182	if (rsvpdebug)
2183	    printf("rsvp_input: send packet up\n");
2184    }
2185
2186    splx(s);
2187}
2188
2189#ifdef MROUTE_KLD
2190
2191static int
2192ip_mroute_modevent(module_t mod, int type, void *unused)
2193{
2194	int s;
2195
2196	switch (type) {
2197		static u_long (*old_ip_mcast_src)(int);
2198		static int (*old_ip_mrouter_set)(struct socket *,
2199			struct sockopt *);
2200		static int (*old_ip_mrouter_get)(struct socket *,
2201			struct sockopt *);
2202		static int (*old_ip_mrouter_done)(void);
2203		static int (*old_ip_mforward)(struct ip *, struct ifnet *,
2204			struct mbuf *, struct ip_moptions *);
2205		static int (*old_mrt_ioctl)(int, caddr_t);
2206		static int (*old_legal_vif_num)(int);
2207
2208	case MOD_LOAD:
2209		s = splnet();
2210		/* XXX Protect against multiple loading */
2211		old_ip_mcast_src = ip_mcast_src;
2212		ip_mcast_src = X_ip_mcast_src;
2213		old_ip_mrouter_get = ip_mrouter_get;
2214		ip_mrouter_get = X_ip_mrouter_get;
2215		old_ip_mrouter_set = ip_mrouter_set;
2216		ip_mrouter_set = X_ip_mrouter_set;
2217		old_ip_mrouter_done = ip_mrouter_done;
2218		ip_mrouter_done = X_ip_mrouter_done;
2219		old_ip_mforward = ip_mforward;
2220		ip_mforward = X_ip_mforward;
2221		old_mrt_ioctl = mrt_ioctl;
2222		mrt_ioctl = X_mrt_ioctl;
2223		old_legal_vif_num = legal_vif_num;
2224		legal_vif_num = X_legal_vif_num;
2225
2226		splx(s);
2227		return 0;
2228
2229	case MOD_UNLOAD:
2230		if (ip_mrouter)
2231		  return EINVAL;
2232
2233		s = splnet();
2234		ip_mrouter_get = old_ip_mrouter_get;
2235		ip_mrouter_set = old_ip_mrouter_set;
2236		ip_mrouter_done = old_ip_mrouter_done;
2237		ip_mforward = old_ip_mforward;
2238		mrt_ioctl = old_mrt_ioctl;
2239		legal_vif_num = old_legal_vif_num;
2240		splx(s);
2241		return 0;
2242
2243	default:
2244		break;
2245	}
2246	return 0;
2247}
2248
2249static moduledata_t ip_mroutemod = {
2250	"ip_mroute",
2251	ip_mroute_modevent,
2252	0
2253};
2254DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2255
2256#endif /* MROUTE_KLD */
2257#endif /* MROUTING */
2258