ieee80211_crypto_tkip.c revision 203673
1/*-
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_crypto_tkip.c 203673 2010-02-08 18:16:59Z bschmidt $");
28
29/*
30 * IEEE 802.11i TKIP crypto support.
31 *
32 * Part of this module is derived from similar code in the Host
33 * AP driver. The code is used with the consent of the author and
34 * it's license is included below.
35 */
36#include "opt_wlan.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/mbuf.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/endian.h>
45
46#include <sys/socket.h>
47
48#include <net/if.h>
49#include <net/if_media.h>
50#include <net/ethernet.h>
51
52#include <net80211/ieee80211_var.h>
53
54static	void *tkip_attach(struct ieee80211vap *, struct ieee80211_key *);
55static	void tkip_detach(struct ieee80211_key *);
56static	int tkip_setkey(struct ieee80211_key *);
57static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, uint8_t keyid);
58static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
59static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
60static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
61
62static const struct ieee80211_cipher tkip  = {
63	.ic_name	= "TKIP",
64	.ic_cipher	= IEEE80211_CIPHER_TKIP,
65	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
66			  IEEE80211_WEP_EXTIVLEN,
67	.ic_trailer	= IEEE80211_WEP_CRCLEN,
68	.ic_miclen	= IEEE80211_WEP_MICLEN,
69	.ic_attach	= tkip_attach,
70	.ic_detach	= tkip_detach,
71	.ic_setkey	= tkip_setkey,
72	.ic_encap	= tkip_encap,
73	.ic_decap	= tkip_decap,
74	.ic_enmic	= tkip_enmic,
75	.ic_demic	= tkip_demic,
76};
77
78typedef	uint8_t u8;
79typedef	uint16_t u16;
80typedef	uint32_t __u32;
81typedef	uint32_t u32;
82
83struct tkip_ctx {
84	struct ieee80211vap *tc_vap;	/* for diagnostics+statistics */
85
86	u16	tx_ttak[5];
87	int	tx_phase1_done;
88	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
89
90	u16	rx_ttak[5];
91	int	rx_phase1_done;
92	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
93	uint64_t rx_rsc;		/* held until MIC verified */
94};
95
96static	void michael_mic(struct tkip_ctx *, const u8 *key,
97		struct mbuf *m, u_int off, size_t data_len,
98		u8 mic[IEEE80211_WEP_MICLEN]);
99static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
100		struct mbuf *, int hdr_len);
101static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
102		struct mbuf *, int hdr_len);
103
104/* number of references from net80211 layer */
105static	int nrefs = 0;
106
107static void *
108tkip_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
109{
110	struct tkip_ctx *ctx;
111
112	ctx = (struct tkip_ctx *) malloc(sizeof(struct tkip_ctx),
113		M_80211_CRYPTO, M_NOWAIT | M_ZERO);
114	if (ctx == NULL) {
115		vap->iv_stats.is_crypto_nomem++;
116		return NULL;
117	}
118
119	ctx->tc_vap = vap;
120	nrefs++;			/* NB: we assume caller locking */
121	return ctx;
122}
123
124static void
125tkip_detach(struct ieee80211_key *k)
126{
127	struct tkip_ctx *ctx = k->wk_private;
128
129	free(ctx, M_80211_CRYPTO);
130	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
131	nrefs--;			/* NB: we assume caller locking */
132}
133
134static int
135tkip_setkey(struct ieee80211_key *k)
136{
137	struct tkip_ctx *ctx = k->wk_private;
138
139	if (k->wk_keylen != (128/NBBY)) {
140		(void) ctx;		/* XXX */
141		IEEE80211_DPRINTF(ctx->tc_vap, IEEE80211_MSG_CRYPTO,
142			"%s: Invalid key length %u, expecting %u\n",
143			__func__, k->wk_keylen, 128/NBBY);
144		return 0;
145	}
146	k->wk_keytsc = 1;		/* TSC starts at 1 */
147	ctx->rx_phase1_done = 0;
148	return 1;
149}
150
151/*
152 * Add privacy headers and do any s/w encryption required.
153 */
154static int
155tkip_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
156{
157	struct tkip_ctx *ctx = k->wk_private;
158	struct ieee80211vap *vap = ctx->tc_vap;
159	struct ieee80211com *ic = vap->iv_ic;
160	uint8_t *ivp;
161	int hdrlen;
162
163	/*
164	 * Handle TKIP counter measures requirement.
165	 */
166	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
167#ifdef IEEE80211_DEBUG
168		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
169#endif
170
171		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
172		    "discard frame due to countermeasures (%s)", __func__);
173		vap->iv_stats.is_crypto_tkipcm++;
174		return 0;
175	}
176	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
177
178	/*
179	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
180	 */
181	M_PREPEND(m, tkip.ic_header, M_NOWAIT);
182	if (m == NULL)
183		return 0;
184	ivp = mtod(m, uint8_t *);
185	memmove(ivp, ivp + tkip.ic_header, hdrlen);
186	ivp += hdrlen;
187
188	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
189	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
190	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
191	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
192	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
193	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
194	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
195	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
196
197	/*
198	 * Finally, do software encrypt if neeed.
199	 */
200	if (k->wk_flags & IEEE80211_KEY_SWENCRYPT) {
201		if (!tkip_encrypt(ctx, k, m, hdrlen))
202			return 0;
203		/* NB: tkip_encrypt handles wk_keytsc */
204	} else
205		k->wk_keytsc++;
206
207	return 1;
208}
209
210/*
211 * Add MIC to the frame as needed.
212 */
213static int
214tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
215{
216	struct tkip_ctx *ctx = k->wk_private;
217
218	if (force || (k->wk_flags & IEEE80211_KEY_SWENMIC)) {
219		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
220		struct ieee80211vap *vap = ctx->tc_vap;
221		struct ieee80211com *ic = vap->iv_ic;
222		int hdrlen;
223		uint8_t mic[IEEE80211_WEP_MICLEN];
224
225		vap->iv_stats.is_crypto_tkipenmic++;
226
227		hdrlen = ieee80211_hdrspace(ic, wh);
228
229		michael_mic(ctx, k->wk_txmic,
230			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
231		return m_append(m, tkip.ic_miclen, mic);
232	}
233	return 1;
234}
235
236static __inline uint64_t
237READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
238{
239	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
240	uint16_t iv16 = (b4 << 0) | (b5 << 8);
241	return (((uint64_t)iv16) << 32) | iv32;
242}
243
244/*
245 * Validate and strip privacy headers (and trailer) for a
246 * received frame.  If necessary, decrypt the frame using
247 * the specified key.
248 */
249static int
250tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
251{
252	struct tkip_ctx *ctx = k->wk_private;
253	struct ieee80211vap *vap = ctx->tc_vap;
254	struct ieee80211_frame *wh;
255	uint8_t *ivp, tid;
256
257	/*
258	 * Header should have extended IV and sequence number;
259	 * verify the former and validate the latter.
260	 */
261	wh = mtod(m, struct ieee80211_frame *);
262	ivp = mtod(m, uint8_t *) + hdrlen;
263	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
264		/*
265		 * No extended IV; discard frame.
266		 */
267		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
268		    "%s", "missing ExtIV for TKIP cipher");
269		vap->iv_stats.is_rx_tkipformat++;
270		return 0;
271	}
272	/*
273	 * Handle TKIP counter measures requirement.
274	 */
275	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
276		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
277		    "discard frame due to countermeasures (%s)", __func__);
278		vap->iv_stats.is_crypto_tkipcm++;
279		return 0;
280	}
281
282	tid = ieee80211_gettid(wh);
283	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
284	if (ctx->rx_rsc <= k->wk_keyrsc[tid]) {
285		/*
286		 * Replay violation; notify upper layer.
287		 */
288		ieee80211_notify_replay_failure(vap, wh, k, ctx->rx_rsc, tid);
289		vap->iv_stats.is_rx_tkipreplay++;
290		return 0;
291	}
292	/*
293	 * NB: We can't update the rsc in the key until MIC is verified.
294	 *
295	 * We assume we are not preempted between doing the check above
296	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
297	 * Otherwise we might process another packet and discard it as
298	 * a replay.
299	 */
300
301	/*
302	 * Check if the device handled the decrypt in hardware.
303	 * If so we just strip the header; otherwise we need to
304	 * handle the decrypt in software.
305	 */
306	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
307	    !tkip_decrypt(ctx, k, m, hdrlen))
308		return 0;
309
310	/*
311	 * Copy up 802.11 header and strip crypto bits.
312	 */
313	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
314	m_adj(m, tkip.ic_header);
315	m_adj(m, -tkip.ic_trailer);
316
317	return 1;
318}
319
320/*
321 * Verify and strip MIC from the frame.
322 */
323static int
324tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
325{
326	struct tkip_ctx *ctx = k->wk_private;
327	struct ieee80211_frame *wh;
328	uint8_t tid;
329
330	wh = mtod(m, struct ieee80211_frame *);
331	if ((k->wk_flags & IEEE80211_KEY_SWDEMIC) || force) {
332		struct ieee80211vap *vap = ctx->tc_vap;
333		int hdrlen = ieee80211_hdrspace(vap->iv_ic, wh);
334		u8 mic[IEEE80211_WEP_MICLEN];
335		u8 mic0[IEEE80211_WEP_MICLEN];
336
337		vap->iv_stats.is_crypto_tkipdemic++;
338
339		michael_mic(ctx, k->wk_rxmic,
340			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
341			mic);
342		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
343			tkip.ic_miclen, mic0);
344		if (memcmp(mic, mic0, tkip.ic_miclen)) {
345			/* NB: 802.11 layer handles statistic and debug msg */
346			ieee80211_notify_michael_failure(vap, wh,
347				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
348					k->wk_rxkeyix : k->wk_keyix);
349			return 0;
350		}
351	}
352	/*
353	 * Strip MIC from the tail.
354	 */
355	m_adj(m, -tkip.ic_miclen);
356
357	/*
358	 * Ok to update rsc now that MIC has been verified.
359	 */
360	tid = ieee80211_gettid(wh);
361	k->wk_keyrsc[tid] = ctx->rx_rsc;
362
363	return 1;
364}
365
366/*
367 * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
368 *
369 * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
370 *
371 * This program is free software; you can redistribute it and/or modify
372 * it under the terms of the GNU General Public License version 2 as
373 * published by the Free Software Foundation. See README and COPYING for
374 * more details.
375 *
376 * Alternatively, this software may be distributed under the terms of BSD
377 * license.
378 */
379
380static const __u32 crc32_table[256] = {
381	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
382	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
383	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
384	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
385	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
386	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
387	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
388	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
389	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
390	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
391	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
392	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
393	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
394	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
395	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
396	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
397	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
398	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
399	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
400	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
401	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
402	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
403	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
404	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
405	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
406	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
407	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
408	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
409	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
410	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
411	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
412	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
413	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
414	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
415	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
416	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
417	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
418	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
419	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
420	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
421	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
422	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
423	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
424	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
425	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
426	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
427	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
428	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
429	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
430	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
431	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
432	0x2d02ef8dL
433};
434
435static __inline u16 RotR1(u16 val)
436{
437	return (val >> 1) | (val << 15);
438}
439
440static __inline u8 Lo8(u16 val)
441{
442	return val & 0xff;
443}
444
445static __inline u8 Hi8(u16 val)
446{
447	return val >> 8;
448}
449
450static __inline u16 Lo16(u32 val)
451{
452	return val & 0xffff;
453}
454
455static __inline u16 Hi16(u32 val)
456{
457	return val >> 16;
458}
459
460static __inline u16 Mk16(u8 hi, u8 lo)
461{
462	return lo | (((u16) hi) << 8);
463}
464
465static __inline u16 Mk16_le(const u16 *v)
466{
467	return le16toh(*v);
468}
469
470static const u16 Sbox[256] = {
471	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
472	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
473	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
474	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
475	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
476	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
477	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
478	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
479	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
480	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
481	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
482	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
483	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
484	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
485	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
486	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
487	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
488	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
489	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
490	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
491	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
492	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
493	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
494	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
495	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
496	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
497	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
498	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
499	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
500	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
501	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
502	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
503};
504
505static __inline u16 _S_(u16 v)
506{
507	u16 t = Sbox[Hi8(v)];
508	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
509}
510
511#define PHASE1_LOOP_COUNT 8
512
513static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
514{
515	int i, j;
516
517	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
518	TTAK[0] = Lo16(IV32);
519	TTAK[1] = Hi16(IV32);
520	TTAK[2] = Mk16(TA[1], TA[0]);
521	TTAK[3] = Mk16(TA[3], TA[2]);
522	TTAK[4] = Mk16(TA[5], TA[4]);
523
524	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
525		j = 2 * (i & 1);
526		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
527		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
528		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
529		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
530		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
531	}
532}
533
534#ifndef _BYTE_ORDER
535#error "Don't know native byte order"
536#endif
537
538static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
539			       u16 IV16)
540{
541	/* Make temporary area overlap WEP seed so that the final copy can be
542	 * avoided on little endian hosts. */
543	u16 *PPK = (u16 *) &WEPSeed[4];
544
545	/* Step 1 - make copy of TTAK and bring in TSC */
546	PPK[0] = TTAK[0];
547	PPK[1] = TTAK[1];
548	PPK[2] = TTAK[2];
549	PPK[3] = TTAK[3];
550	PPK[4] = TTAK[4];
551	PPK[5] = TTAK[4] + IV16;
552
553	/* Step 2 - 96-bit bijective mixing using S-box */
554	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
555	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
556	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
557	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
558	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
559	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
560
561	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
562	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
563	PPK[2] += RotR1(PPK[1]);
564	PPK[3] += RotR1(PPK[2]);
565	PPK[4] += RotR1(PPK[3]);
566	PPK[5] += RotR1(PPK[4]);
567
568	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
569	 * WEPSeed[0..2] is transmitted as WEP IV */
570	WEPSeed[0] = Hi8(IV16);
571	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
572	WEPSeed[2] = Lo8(IV16);
573	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
574
575#if _BYTE_ORDER == _BIG_ENDIAN
576	{
577		int i;
578		for (i = 0; i < 6; i++)
579			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
580	}
581#endif
582}
583
584static void
585wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
586	uint8_t icv[IEEE80211_WEP_CRCLEN])
587{
588	u32 i, j, k, crc;
589	size_t buflen;
590	u8 S[256];
591	u8 *pos;
592	struct mbuf *m;
593#define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
594
595	/* Setup RC4 state */
596	for (i = 0; i < 256; i++)
597		S[i] = i;
598	j = 0;
599	for (i = 0; i < 256; i++) {
600		j = (j + S[i] + key[i & 0x0f]) & 0xff;
601		S_SWAP(i, j);
602	}
603
604	/* Compute CRC32 over unencrypted data and apply RC4 to data */
605	crc = ~0;
606	i = j = 0;
607	m = m0;
608	pos = mtod(m, uint8_t *) + off;
609	buflen = m->m_len - off;
610	for (;;) {
611		if (buflen > data_len)
612			buflen = data_len;
613		data_len -= buflen;
614		for (k = 0; k < buflen; k++) {
615			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
616			i = (i + 1) & 0xff;
617			j = (j + S[i]) & 0xff;
618			S_SWAP(i, j);
619			*pos++ ^= S[(S[i] + S[j]) & 0xff];
620		}
621		m = m->m_next;
622		if (m == NULL) {
623			KASSERT(data_len == 0,
624			    ("out of buffers with data_len %zu\n", data_len));
625			break;
626		}
627		pos = mtod(m, uint8_t *);
628		buflen = m->m_len;
629	}
630	crc = ~crc;
631
632	/* Append little-endian CRC32 and encrypt it to produce ICV */
633	icv[0] = crc;
634	icv[1] = crc >> 8;
635	icv[2] = crc >> 16;
636	icv[3] = crc >> 24;
637	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
638		i = (i + 1) & 0xff;
639		j = (j + S[i]) & 0xff;
640		S_SWAP(i, j);
641		icv[k] ^= S[(S[i] + S[j]) & 0xff];
642	}
643}
644
645static int
646wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
647{
648	u32 i, j, k, crc;
649	u8 S[256];
650	u8 *pos, icv[4];
651	size_t buflen;
652
653	/* Setup RC4 state */
654	for (i = 0; i < 256; i++)
655		S[i] = i;
656	j = 0;
657	for (i = 0; i < 256; i++) {
658		j = (j + S[i] + key[i & 0x0f]) & 0xff;
659		S_SWAP(i, j);
660	}
661
662	/* Apply RC4 to data and compute CRC32 over decrypted data */
663	crc = ~0;
664	i = j = 0;
665	pos = mtod(m, uint8_t *) + off;
666	buflen = m->m_len - off;
667	for (;;) {
668		if (buflen > data_len)
669			buflen = data_len;
670		data_len -= buflen;
671		for (k = 0; k < buflen; k++) {
672			i = (i + 1) & 0xff;
673			j = (j + S[i]) & 0xff;
674			S_SWAP(i, j);
675			*pos ^= S[(S[i] + S[j]) & 0xff];
676			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
677			pos++;
678		}
679		m = m->m_next;
680		if (m == NULL) {
681			KASSERT(data_len == 0,
682			    ("out of buffers with data_len %zu\n", data_len));
683			break;
684		}
685		pos = mtod(m, uint8_t *);
686		buflen = m->m_len;
687	}
688	crc = ~crc;
689
690	/* Encrypt little-endian CRC32 and verify that it matches with the
691	 * received ICV */
692	icv[0] = crc;
693	icv[1] = crc >> 8;
694	icv[2] = crc >> 16;
695	icv[3] = crc >> 24;
696	for (k = 0; k < 4; k++) {
697		i = (i + 1) & 0xff;
698		j = (j + S[i]) & 0xff;
699		S_SWAP(i, j);
700		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
701			/* ICV mismatch - drop frame */
702			return -1;
703		}
704	}
705
706	return 0;
707}
708
709
710static __inline u32 rotl(u32 val, int bits)
711{
712	return (val << bits) | (val >> (32 - bits));
713}
714
715
716static __inline u32 rotr(u32 val, int bits)
717{
718	return (val >> bits) | (val << (32 - bits));
719}
720
721
722static __inline u32 xswap(u32 val)
723{
724	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
725}
726
727
728#define michael_block(l, r)	\
729do {				\
730	r ^= rotl(l, 17);	\
731	l += r;			\
732	r ^= xswap(l);		\
733	l += r;			\
734	r ^= rotl(l, 3);	\
735	l += r;			\
736	r ^= rotr(l, 2);	\
737	l += r;			\
738} while (0)
739
740
741static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
742{
743	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
744}
745
746static __inline u32 get_le32(const u8 *p)
747{
748	return get_le32_split(p[0], p[1], p[2], p[3]);
749}
750
751
752static __inline void put_le32(u8 *p, u32 v)
753{
754	p[0] = v;
755	p[1] = v >> 8;
756	p[2] = v >> 16;
757	p[3] = v >> 24;
758}
759
760/*
761 * Craft pseudo header used to calculate the MIC.
762 */
763static void
764michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
765{
766	const struct ieee80211_frame_addr4 *wh =
767		(const struct ieee80211_frame_addr4 *) wh0;
768
769	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
770	case IEEE80211_FC1_DIR_NODS:
771		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
772		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
773		break;
774	case IEEE80211_FC1_DIR_TODS:
775		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
776		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
777		break;
778	case IEEE80211_FC1_DIR_FROMDS:
779		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
780		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
781		break;
782	case IEEE80211_FC1_DIR_DSTODS:
783		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
784		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
785		break;
786	}
787
788	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
789		const struct ieee80211_qosframe *qwh =
790			(const struct ieee80211_qosframe *) wh;
791		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
792	} else
793		hdr[12] = 0;
794	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
795}
796
797static void
798michael_mic(struct tkip_ctx *ctx, const u8 *key,
799	struct mbuf *m, u_int off, size_t data_len,
800	u8 mic[IEEE80211_WEP_MICLEN])
801{
802	uint8_t hdr[16];
803	u32 l, r;
804	const uint8_t *data;
805	u_int space;
806
807	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
808
809	l = get_le32(key);
810	r = get_le32(key + 4);
811
812	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
813	l ^= get_le32(hdr);
814	michael_block(l, r);
815	l ^= get_le32(&hdr[4]);
816	michael_block(l, r);
817	l ^= get_le32(&hdr[8]);
818	michael_block(l, r);
819	l ^= get_le32(&hdr[12]);
820	michael_block(l, r);
821
822	/* first buffer has special handling */
823	data = mtod(m, const uint8_t *) + off;
824	space = m->m_len - off;
825	for (;;) {
826		if (space > data_len)
827			space = data_len;
828		/* collect 32-bit blocks from current buffer */
829		while (space >= sizeof(uint32_t)) {
830			l ^= get_le32(data);
831			michael_block(l, r);
832			data += sizeof(uint32_t), space -= sizeof(uint32_t);
833			data_len -= sizeof(uint32_t);
834		}
835		/*
836		 * NB: when space is zero we make one more trip around
837		 * the loop to advance to the next mbuf where there is
838		 * data.  This handles the case where there are 4*n
839		 * bytes in an mbuf followed by <4 bytes in a later mbuf.
840		 * By making an extra trip we'll drop out of the loop
841		 * with m pointing at the mbuf with 3 bytes and space
842		 * set as required by the remainder handling below.
843		 */
844		if (data_len == 0 ||
845		    (data_len < sizeof(uint32_t) && space != 0))
846			break;
847		m = m->m_next;
848		if (m == NULL) {
849			KASSERT(0, ("out of data, data_len %zu\n", data_len));
850			break;
851		}
852		if (space != 0) {
853			const uint8_t *data_next;
854			/*
855			 * Block straddles buffers, split references.
856			 */
857			data_next = mtod(m, const uint8_t *);
858			KASSERT(m->m_len >= sizeof(uint32_t) - space,
859				("not enough data in following buffer, "
860				"m_len %u need %zu\n", m->m_len,
861				sizeof(uint32_t) - space));
862			switch (space) {
863			case 1:
864				l ^= get_le32_split(data[0], data_next[0],
865					data_next[1], data_next[2]);
866				data = data_next + 3;
867				space = m->m_len - 3;
868				break;
869			case 2:
870				l ^= get_le32_split(data[0], data[1],
871					data_next[0], data_next[1]);
872				data = data_next + 2;
873				space = m->m_len - 2;
874				break;
875			case 3:
876				l ^= get_le32_split(data[0], data[1],
877					data[2], data_next[0]);
878				data = data_next + 1;
879				space = m->m_len - 1;
880				break;
881			}
882			michael_block(l, r);
883			data_len -= sizeof(uint32_t);
884		} else {
885			/*
886			 * Setup for next buffer.
887			 */
888			data = mtod(m, const uint8_t *);
889			space = m->m_len;
890		}
891	}
892	/*
893	 * Catch degenerate cases like mbuf[4*n+1 bytes] followed by
894	 * mbuf[2 bytes].  I don't believe these should happen; if they
895	 * do then we'll need more involved logic.
896	 */
897	KASSERT(data_len <= space,
898	    ("not enough data, data_len %zu space %u\n", data_len, space));
899
900	/* Last block and padding (0x5a, 4..7 x 0) */
901	switch (data_len) {
902	case 0:
903		l ^= get_le32_split(0x5a, 0, 0, 0);
904		break;
905	case 1:
906		l ^= get_le32_split(data[0], 0x5a, 0, 0);
907		break;
908	case 2:
909		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
910		break;
911	case 3:
912		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
913		break;
914	}
915	michael_block(l, r);
916	/* l ^= 0; */
917	michael_block(l, r);
918
919	put_le32(mic, l);
920	put_le32(mic + 4, r);
921}
922
923static int
924tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
925	struct mbuf *m, int hdrlen)
926{
927	struct ieee80211_frame *wh;
928	uint8_t icv[IEEE80211_WEP_CRCLEN];
929
930	ctx->tc_vap->iv_stats.is_crypto_tkip++;
931
932	wh = mtod(m, struct ieee80211_frame *);
933	if (!ctx->tx_phase1_done) {
934		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
935				   (u32)(key->wk_keytsc >> 16));
936		ctx->tx_phase1_done = 1;
937	}
938	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
939		(u16) key->wk_keytsc);
940
941	wep_encrypt(ctx->tx_rc4key,
942		m, hdrlen + tkip.ic_header,
943		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
944		icv);
945	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
946
947	key->wk_keytsc++;
948	if ((u16)(key->wk_keytsc) == 0)
949		ctx->tx_phase1_done = 0;
950	return 1;
951}
952
953static int
954tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
955	struct mbuf *m, int hdrlen)
956{
957	struct ieee80211_frame *wh;
958	struct ieee80211vap *vap = ctx->tc_vap;
959	u32 iv32;
960	u16 iv16;
961	u8 tid;
962
963	vap->iv_stats.is_crypto_tkip++;
964
965	wh = mtod(m, struct ieee80211_frame *);
966	/* NB: tkip_decap already verified header and left seq in rx_rsc */
967	iv16 = (u16) ctx->rx_rsc;
968	iv32 = (u32) (ctx->rx_rsc >> 16);
969
970	tid = ieee80211_gettid(wh);
971	if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16) || !ctx->rx_phase1_done) {
972		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
973			wh->i_addr2, iv32);
974		ctx->rx_phase1_done = 1;
975	}
976	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
977
978	/* NB: m is unstripped; deduct headers + ICV to get payload */
979	if (wep_decrypt(ctx->rx_rc4key,
980		m, hdrlen + tkip.ic_header,
981	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
982		if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16)) {
983			/* Previously cached Phase1 result was already lost, so
984			 * it needs to be recalculated for the next packet. */
985			ctx->rx_phase1_done = 0;
986		}
987		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
988		    "%s", "TKIP ICV mismatch on decrypt");
989		vap->iv_stats.is_rx_tkipicv++;
990		return 0;
991	}
992	return 1;
993}
994
995/*
996 * Module glue.
997 */
998IEEE80211_CRYPTO_MODULE(tkip, 1);
999