ieee80211_crypto_ccmp.c revision 170360
1/*-
2 * Copyright (c) 2002-2007 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_crypto_ccmp.c 170360 2007-06-06 04:56:04Z sam $");
28
29/*
30 * IEEE 802.11i AES-CCMP crypto support.
31 *
32 * Part of this module is derived from similar code in the Host
33 * AP driver. The code is used with the consent of the author and
34 * it's license is included below.
35 */
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/mbuf.h>
39#include <sys/malloc.h>
40#include <sys/kernel.h>
41#include <sys/module.h>
42
43#include <sys/socket.h>
44
45#include <net/if.h>
46#include <net/if_media.h>
47#include <net/ethernet.h>
48
49#include <net80211/ieee80211_var.h>
50
51#include <crypto/rijndael/rijndael.h>
52
53#define AES_BLOCK_LEN 16
54
55struct ccmp_ctx {
56	struct ieee80211com *cc_ic;	/* for diagnostics */
57	rijndael_ctx	     cc_aes;
58};
59
60static	void *ccmp_attach(struct ieee80211com *, struct ieee80211_key *);
61static	void ccmp_detach(struct ieee80211_key *);
62static	int ccmp_setkey(struct ieee80211_key *);
63static	int ccmp_encap(struct ieee80211_key *k, struct mbuf *, u_int8_t keyid);
64static	int ccmp_decap(struct ieee80211_key *, struct mbuf *, int);
65static	int ccmp_enmic(struct ieee80211_key *, struct mbuf *, int);
66static	int ccmp_demic(struct ieee80211_key *, struct mbuf *, int);
67
68static const struct ieee80211_cipher ccmp = {
69	.ic_name	= "AES-CCM",
70	.ic_cipher	= IEEE80211_CIPHER_AES_CCM,
71	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
72			  IEEE80211_WEP_EXTIVLEN,
73	.ic_trailer	= IEEE80211_WEP_MICLEN,
74	.ic_miclen	= 0,
75	.ic_attach	= ccmp_attach,
76	.ic_detach	= ccmp_detach,
77	.ic_setkey	= ccmp_setkey,
78	.ic_encap	= ccmp_encap,
79	.ic_decap	= ccmp_decap,
80	.ic_enmic	= ccmp_enmic,
81	.ic_demic	= ccmp_demic,
82};
83
84static	int ccmp_encrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
85static	int ccmp_decrypt(struct ieee80211_key *, u_int64_t pn,
86		struct mbuf *, int hdrlen);
87
88/* number of references from net80211 layer */
89static	int nrefs = 0;
90
91static void *
92ccmp_attach(struct ieee80211com *ic, struct ieee80211_key *k)
93{
94	struct ccmp_ctx *ctx;
95
96	MALLOC(ctx, struct ccmp_ctx *, sizeof(struct ccmp_ctx),
97		M_DEVBUF, M_NOWAIT | M_ZERO);
98	if (ctx == NULL) {
99		ic->ic_stats.is_crypto_nomem++;
100		return NULL;
101	}
102	ctx->cc_ic = ic;
103	nrefs++;			/* NB: we assume caller locking */
104	return ctx;
105}
106
107static void
108ccmp_detach(struct ieee80211_key *k)
109{
110	struct ccmp_ctx *ctx = k->wk_private;
111
112	FREE(ctx, M_DEVBUF);
113	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
114	nrefs--;			/* NB: we assume caller locking */
115}
116
117static int
118ccmp_setkey(struct ieee80211_key *k)
119{
120	struct ccmp_ctx *ctx = k->wk_private;
121
122	if (k->wk_keylen != (128/NBBY)) {
123		IEEE80211_DPRINTF(ctx->cc_ic, IEEE80211_MSG_CRYPTO,
124			"%s: Invalid key length %u, expecting %u\n",
125			__func__, k->wk_keylen, 128/NBBY);
126		return 0;
127	}
128	if (k->wk_flags & IEEE80211_KEY_SWCRYPT)
129		rijndael_set_key(&ctx->cc_aes, k->wk_key, k->wk_keylen*NBBY);
130	return 1;
131}
132
133/*
134 * Add privacy headers appropriate for the specified key.
135 */
136static int
137ccmp_encap(struct ieee80211_key *k, struct mbuf *m, u_int8_t keyid)
138{
139	struct ccmp_ctx *ctx = k->wk_private;
140	struct ieee80211com *ic = ctx->cc_ic;
141	u_int8_t *ivp;
142	int hdrlen;
143
144	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
145
146	/*
147	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
148	 */
149	M_PREPEND(m, ccmp.ic_header, M_NOWAIT);
150	if (m == NULL)
151		return 0;
152	ivp = mtod(m, u_int8_t *);
153	ovbcopy(ivp + ccmp.ic_header, ivp, hdrlen);
154	ivp += hdrlen;
155
156	k->wk_keytsc++;		/* XXX wrap at 48 bits */
157	ivp[0] = k->wk_keytsc >> 0;		/* PN0 */
158	ivp[1] = k->wk_keytsc >> 8;		/* PN1 */
159	ivp[2] = 0;				/* Reserved */
160	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
161	ivp[4] = k->wk_keytsc >> 16;		/* PN2 */
162	ivp[5] = k->wk_keytsc >> 24;		/* PN3 */
163	ivp[6] = k->wk_keytsc >> 32;		/* PN4 */
164	ivp[7] = k->wk_keytsc >> 40;		/* PN5 */
165
166	/*
167	 * Finally, do software encrypt if neeed.
168	 */
169	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
170	    !ccmp_encrypt(k, m, hdrlen))
171		return 0;
172
173	return 1;
174}
175
176/*
177 * Add MIC to the frame as needed.
178 */
179static int
180ccmp_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
181{
182
183	return 1;
184}
185
186static __inline uint64_t
187READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
188{
189	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
190	uint16_t iv16 = (b4 << 0) | (b5 << 8);
191	return (((uint64_t)iv16) << 32) | iv32;
192}
193
194/*
195 * Validate and strip privacy headers (and trailer) for a
196 * received frame. The specified key should be correct but
197 * is also verified.
198 */
199static int
200ccmp_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
201{
202	struct ccmp_ctx *ctx = k->wk_private;
203	struct ieee80211_frame *wh;
204	uint8_t *ivp;
205	uint64_t pn;
206
207	/*
208	 * Header should have extended IV and sequence number;
209	 * verify the former and validate the latter.
210	 */
211	wh = mtod(m, struct ieee80211_frame *);
212	ivp = mtod(m, uint8_t *) + hdrlen;
213	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
214		/*
215		 * No extended IV; discard frame.
216		 */
217		IEEE80211_DPRINTF(ctx->cc_ic, IEEE80211_MSG_CRYPTO,
218			"[%s] Missing ExtIV for AES-CCM cipher\n",
219			ether_sprintf(wh->i_addr2));
220		ctx->cc_ic->ic_stats.is_rx_ccmpformat++;
221		return 0;
222	}
223	pn = READ_6(ivp[0], ivp[1], ivp[4], ivp[5], ivp[6], ivp[7]);
224	if (pn <= k->wk_keyrsc) {
225		/*
226		 * Replay violation.
227		 */
228		ieee80211_notify_replay_failure(ctx->cc_ic, wh, k, pn);
229		ctx->cc_ic->ic_stats.is_rx_ccmpreplay++;
230		return 0;
231	}
232
233	/*
234	 * Check if the device handled the decrypt in hardware.
235	 * If so we just strip the header; otherwise we need to
236	 * handle the decrypt in software.  Note that for the
237	 * latter we leave the header in place for use in the
238	 * decryption work.
239	 */
240	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
241	    !ccmp_decrypt(k, pn, m, hdrlen))
242		return 0;
243
244	/*
245	 * Copy up 802.11 header and strip crypto bits.
246	 */
247	ovbcopy(mtod(m, void *), mtod(m, u_int8_t *) + ccmp.ic_header, hdrlen);
248	m_adj(m, ccmp.ic_header);
249	m_adj(m, -ccmp.ic_trailer);
250
251	/*
252	 * Ok to update rsc now.
253	 */
254	k->wk_keyrsc = pn;
255
256	return 1;
257}
258
259/*
260 * Verify and strip MIC from the frame.
261 */
262static int
263ccmp_demic(struct ieee80211_key *k, struct mbuf *m, int force)
264{
265	return 1;
266}
267
268static __inline void
269xor_block(uint8_t *b, const uint8_t *a, size_t len)
270{
271	int i;
272	for (i = 0; i < len; i++)
273		b[i] ^= a[i];
274}
275
276/*
277 * Host AP crypt: host-based CCMP encryption implementation for Host AP driver
278 *
279 * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
280 *
281 * This program is free software; you can redistribute it and/or modify
282 * it under the terms of the GNU General Public License version 2 as
283 * published by the Free Software Foundation. See README and COPYING for
284 * more details.
285 *
286 * Alternatively, this software may be distributed under the terms of BSD
287 * license.
288 */
289
290static void
291ccmp_init_blocks(rijndael_ctx *ctx, struct ieee80211_frame *wh,
292	u_int64_t pn, size_t dlen,
293	uint8_t b0[AES_BLOCK_LEN], uint8_t aad[2 * AES_BLOCK_LEN],
294	uint8_t auth[AES_BLOCK_LEN], uint8_t s0[AES_BLOCK_LEN])
295{
296#define	IS_4ADDRESS(wh) \
297	((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
298#define	IS_QOS_DATA(wh)	IEEE80211_QOS_HAS_SEQ(wh)
299
300	/* CCM Initial Block:
301	 * Flag (Include authentication header, M=3 (8-octet MIC),
302	 *       L=1 (2-octet Dlen))
303	 * Nonce: 0x00 | A2 | PN
304	 * Dlen */
305	b0[0] = 0x59;
306	/* NB: b0[1] set below */
307	IEEE80211_ADDR_COPY(b0 + 2, wh->i_addr2);
308	b0[8] = pn >> 40;
309	b0[9] = pn >> 32;
310	b0[10] = pn >> 24;
311	b0[11] = pn >> 16;
312	b0[12] = pn >> 8;
313	b0[13] = pn >> 0;
314	b0[14] = (dlen >> 8) & 0xff;
315	b0[15] = dlen & 0xff;
316
317	/* AAD:
318	 * FC with bits 4..6 and 11..13 masked to zero; 14 is always one
319	 * A1 | A2 | A3
320	 * SC with bits 4..15 (seq#) masked to zero
321	 * A4 (if present)
322	 * QC (if present)
323	 */
324	aad[0] = 0;	/* AAD length >> 8 */
325	/* NB: aad[1] set below */
326	aad[2] = wh->i_fc[0] & 0x8f;	/* XXX magic #s */
327	aad[3] = wh->i_fc[1] & 0xc7;	/* XXX magic #s */
328	/* NB: we know 3 addresses are contiguous */
329	memcpy(aad + 4, wh->i_addr1, 3 * IEEE80211_ADDR_LEN);
330	aad[22] = wh->i_seq[0] & IEEE80211_SEQ_FRAG_MASK;
331	aad[23] = 0; /* all bits masked */
332	/*
333	 * Construct variable-length portion of AAD based
334	 * on whether this is a 4-address frame/QOS frame.
335	 * We always zero-pad to 32 bytes before running it
336	 * through the cipher.
337	 *
338	 * We also fill in the priority bits of the CCM
339	 * initial block as we know whether or not we have
340	 * a QOS frame.
341	 */
342	if (IS_4ADDRESS(wh)) {
343		IEEE80211_ADDR_COPY(aad + 24,
344			((struct ieee80211_frame_addr4 *)wh)->i_addr4);
345		if (IS_QOS_DATA(wh)) {
346			struct ieee80211_qosframe_addr4 *qwh4 =
347				(struct ieee80211_qosframe_addr4 *) wh;
348			aad[30] = qwh4->i_qos[0] & 0x0f;/* just priority bits */
349			aad[31] = 0;
350			b0[1] = aad[30];
351			aad[1] = 22 + IEEE80211_ADDR_LEN + 2;
352		} else {
353			*(u_int16_t *)&aad[30] = 0;
354			b0[1] = 0;
355			aad[1] = 22 + IEEE80211_ADDR_LEN;
356		}
357	} else {
358		if (IS_QOS_DATA(wh)) {
359			struct ieee80211_qosframe *qwh =
360				(struct ieee80211_qosframe*) wh;
361			aad[24] = qwh->i_qos[0] & 0x0f;	/* just priority bits */
362			aad[25] = 0;
363			b0[1] = aad[24];
364			aad[1] = 22 + 2;
365		} else {
366			*(u_int16_t *)&aad[24] = 0;
367			b0[1] = 0;
368			aad[1] = 22;
369		}
370		*(u_int16_t *)&aad[26] = 0;
371		*(u_int32_t *)&aad[28] = 0;
372	}
373
374	/* Start with the first block and AAD */
375	rijndael_encrypt(ctx, b0, auth);
376	xor_block(auth, aad, AES_BLOCK_LEN);
377	rijndael_encrypt(ctx, auth, auth);
378	xor_block(auth, &aad[AES_BLOCK_LEN], AES_BLOCK_LEN);
379	rijndael_encrypt(ctx, auth, auth);
380	b0[0] &= 0x07;
381	b0[14] = b0[15] = 0;
382	rijndael_encrypt(ctx, b0, s0);
383#undef	IS_QOS_DATA
384#undef	IS_4ADDRESS
385}
386
387#define	CCMP_ENCRYPT(_i, _b, _b0, _pos, _e, _len) do {	\
388	/* Authentication */				\
389	xor_block(_b, _pos, _len);			\
390	rijndael_encrypt(&ctx->cc_aes, _b, _b);		\
391	/* Encryption, with counter */			\
392	_b0[14] = (_i >> 8) & 0xff;			\
393	_b0[15] = _i & 0xff;				\
394	rijndael_encrypt(&ctx->cc_aes, _b0, _e);	\
395	xor_block(_pos, _e, _len);			\
396} while (0)
397
398static int
399ccmp_encrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
400{
401	struct ccmp_ctx *ctx = key->wk_private;
402	struct ieee80211_frame *wh;
403	struct mbuf *m = m0;
404	int data_len, i, space;
405	uint8_t aad[2 * AES_BLOCK_LEN], b0[AES_BLOCK_LEN], b[AES_BLOCK_LEN],
406		e[AES_BLOCK_LEN], s0[AES_BLOCK_LEN];
407	uint8_t *pos;
408
409	ctx->cc_ic->ic_stats.is_crypto_ccmp++;
410
411	wh = mtod(m, struct ieee80211_frame *);
412	data_len = m->m_pkthdr.len - (hdrlen + ccmp.ic_header);
413	ccmp_init_blocks(&ctx->cc_aes, wh, key->wk_keytsc,
414		data_len, b0, aad, b, s0);
415
416	i = 1;
417	pos = mtod(m, uint8_t *) + hdrlen + ccmp.ic_header;
418	/* NB: assumes header is entirely in first mbuf */
419	space = m->m_len - (hdrlen + ccmp.ic_header);
420	for (;;) {
421		if (space > data_len)
422			space = data_len;
423		/*
424		 * Do full blocks.
425		 */
426		while (space >= AES_BLOCK_LEN) {
427			CCMP_ENCRYPT(i, b, b0, pos, e, AES_BLOCK_LEN);
428			pos += AES_BLOCK_LEN, space -= AES_BLOCK_LEN;
429			data_len -= AES_BLOCK_LEN;
430			i++;
431		}
432		if (data_len <= 0)		/* no more data */
433			break;
434		m = m->m_next;
435		if (m == NULL) {		/* last buffer */
436			if (space != 0) {
437				/*
438				 * Short last block.
439				 */
440				CCMP_ENCRYPT(i, b, b0, pos, e, space);
441			}
442			break;
443		}
444		if (space != 0) {
445			uint8_t *pos_next;
446			int space_next;
447			int len, dl, sp;
448			struct mbuf *n;
449
450			/*
451			 * Block straddles one or more mbufs, gather data
452			 * into the block buffer b, apply the cipher, then
453			 * scatter the results back into the mbuf chain.
454			 * The buffer will automatically get space bytes
455			 * of data at offset 0 copied in+out by the
456			 * CCMP_ENCRYPT request so we must take care of
457			 * the remaining data.
458			 */
459			n = m;
460			dl = data_len;
461			sp = space;
462			for (;;) {
463				pos_next = mtod(n, uint8_t *);
464				len = min(dl, AES_BLOCK_LEN);
465				space_next = len > sp ? len - sp : 0;
466				if (n->m_len >= space_next) {
467					/*
468					 * This mbuf has enough data; just grab
469					 * what we need and stop.
470					 */
471					xor_block(b+sp, pos_next, space_next);
472					break;
473				}
474				/*
475				 * This mbuf's contents are insufficient,
476				 * take 'em all and prepare to advance to
477				 * the next mbuf.
478				 */
479				xor_block(b+sp, pos_next, n->m_len);
480				sp += n->m_len, dl -= n->m_len;
481				n = n->m_next;
482				if (n == NULL)
483					break;
484			}
485
486			CCMP_ENCRYPT(i, b, b0, pos, e, space);
487
488			/* NB: just like above, but scatter data to mbufs */
489			dl = data_len;
490			sp = space;
491			for (;;) {
492				pos_next = mtod(m, uint8_t *);
493				len = min(dl, AES_BLOCK_LEN);
494				space_next = len > sp ? len - sp : 0;
495				if (m->m_len >= space_next) {
496					xor_block(pos_next, e+sp, space_next);
497					break;
498				}
499				xor_block(pos_next, e+sp, m->m_len);
500				sp += m->m_len, dl -= m->m_len;
501				m = m->m_next;
502				if (m == NULL)
503					goto done;
504			}
505			/*
506			 * Do bookkeeping.  m now points to the last mbuf
507			 * we grabbed data from.  We know we consumed a
508			 * full block of data as otherwise we'd have hit
509			 * the end of the mbuf chain, so deduct from data_len.
510			 * Otherwise advance the block number (i) and setup
511			 * pos+space to reflect contents of the new mbuf.
512			 */
513			data_len -= AES_BLOCK_LEN;
514			i++;
515			pos = pos_next + space_next;
516			space = m->m_len - space_next;
517		} else {
518			/*
519			 * Setup for next buffer.
520			 */
521			pos = mtod(m, uint8_t *);
522			space = m->m_len;
523		}
524	}
525done:
526	/* tack on MIC */
527	xor_block(b, s0, ccmp.ic_trailer);
528	return m_append(m0, ccmp.ic_trailer, b);
529}
530#undef CCMP_ENCRYPT
531
532#define	CCMP_DECRYPT(_i, _b, _b0, _pos, _a, _len) do {	\
533	/* Decrypt, with counter */			\
534	_b0[14] = (_i >> 8) & 0xff;			\
535	_b0[15] = _i & 0xff;				\
536	rijndael_encrypt(&ctx->cc_aes, _b0, _b);	\
537	xor_block(_pos, _b, _len);			\
538	/* Authentication */				\
539	xor_block(_a, _pos, _len);			\
540	rijndael_encrypt(&ctx->cc_aes, _a, _a);		\
541} while (0)
542
543static int
544ccmp_decrypt(struct ieee80211_key *key, u_int64_t pn, struct mbuf *m, int hdrlen)
545{
546	struct ccmp_ctx *ctx = key->wk_private;
547	struct ieee80211_frame *wh;
548	uint8_t aad[2 * AES_BLOCK_LEN];
549	uint8_t b0[AES_BLOCK_LEN], b[AES_BLOCK_LEN], a[AES_BLOCK_LEN];
550	uint8_t mic[AES_BLOCK_LEN];
551	size_t data_len;
552	int i;
553	uint8_t *pos;
554	u_int space;
555
556	ctx->cc_ic->ic_stats.is_crypto_ccmp++;
557
558	wh = mtod(m, struct ieee80211_frame *);
559	data_len = m->m_pkthdr.len - (hdrlen + ccmp.ic_header + ccmp.ic_trailer);
560	ccmp_init_blocks(&ctx->cc_aes, wh, pn, data_len, b0, aad, a, b);
561	m_copydata(m, m->m_pkthdr.len - ccmp.ic_trailer, ccmp.ic_trailer, mic);
562	xor_block(mic, b, ccmp.ic_trailer);
563
564	i = 1;
565	pos = mtod(m, uint8_t *) + hdrlen + ccmp.ic_header;
566	space = m->m_len - (hdrlen + ccmp.ic_header);
567	for (;;) {
568		if (space > data_len)
569			space = data_len;
570		while (space >= AES_BLOCK_LEN) {
571			CCMP_DECRYPT(i, b, b0, pos, a, AES_BLOCK_LEN);
572			pos += AES_BLOCK_LEN, space -= AES_BLOCK_LEN;
573			data_len -= AES_BLOCK_LEN;
574			i++;
575		}
576		if (data_len <= 0)		/* no more data */
577			break;
578		m = m->m_next;
579		if (m == NULL) {		/* last buffer */
580			if (space != 0)		/* short last block */
581				CCMP_DECRYPT(i, b, b0, pos, a, space);
582			break;
583		}
584		if (space != 0) {
585			uint8_t *pos_next;
586			u_int space_next;
587			u_int len;
588
589			/*
590			 * Block straddles buffers, split references.  We
591			 * do not handle splits that require >2 buffers
592			 * since rx'd frames are never badly fragmented
593			 * because drivers typically recv in clusters.
594			 */
595			pos_next = mtod(m, uint8_t *);
596			len = min(data_len, AES_BLOCK_LEN);
597			space_next = len > space ? len - space : 0;
598			KASSERT(m->m_len >= space_next,
599				("not enough data in following buffer, "
600				"m_len %u need %u\n", m->m_len, space_next));
601
602			xor_block(b+space, pos_next, space_next);
603			CCMP_DECRYPT(i, b, b0, pos, a, space);
604			xor_block(pos_next, b+space, space_next);
605			data_len -= len;
606			i++;
607
608			pos = pos_next + space_next;
609			space = m->m_len - space_next;
610		} else {
611			/*
612			 * Setup for next buffer.
613			 */
614			pos = mtod(m, uint8_t *);
615			space = m->m_len;
616		}
617	}
618	if (memcmp(mic, a, ccmp.ic_trailer) != 0) {
619		IEEE80211_DPRINTF(ctx->cc_ic, IEEE80211_MSG_CRYPTO,
620			"[%s] AES-CCM decrypt failed; MIC mismatch\n",
621			ether_sprintf(wh->i_addr2));
622		ctx->cc_ic->ic_stats.is_rx_ccmpmic++;
623		return 0;
624	}
625	return 1;
626}
627#undef CCMP_DECRYPT
628
629/*
630 * Module glue.
631 */
632static int
633ccmp_modevent(module_t mod, int type, void *unused)
634{
635	switch (type) {
636	case MOD_LOAD:
637		ieee80211_crypto_register(&ccmp);
638		return 0;
639	case MOD_UNLOAD:
640	case MOD_QUIESCE:
641		if (nrefs) {
642			printf("wlan_ccmp: still in use (%u dynamic refs)\n",
643				nrefs);
644			return EBUSY;
645		}
646		if (type == MOD_UNLOAD)
647			ieee80211_crypto_unregister(&ccmp);
648		return 0;
649	}
650	return EINVAL;
651}
652
653static moduledata_t ccmp_mod = {
654	"wlan_ccmp",
655	ccmp_modevent,
656	0
657};
658DECLARE_MODULE(wlan_ccmp, ccmp_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
659MODULE_VERSION(wlan_ccmp, 1);
660MODULE_DEPEND(wlan_ccmp, wlan, 1, 1, 1);
661