zlib.c revision 130799
1/*
2 * This file is derived from various .h and .c files from the zlib-1.0.4
3 * distribution by Jean-loup Gailly and Mark Adler, with some additions
4 * by Paul Mackerras to aid in implementing Deflate compression and
5 * decompression for PPP packets.  See zlib.h for conditions of
6 * distribution and use.
7 *
8 * Changes that have been made include:
9 * - added Z_PACKET_FLUSH (see zlib.h for details)
10 * - added inflateIncomp and deflateOutputPending
11 * - allow strm->next_out to be NULL, meaning discard the output
12 *
13 * $FreeBSD: head/sys/net/zlib.c 130799 2004-06-20 17:42:35Z markm $
14 */
15
16/*
17 *  ==FILEVERSION 971210==
18 *
19 * This marker is used by the Linux installation script to determine
20 * whether an up-to-date version of this file is already installed.
21 */
22
23#define NO_DUMMY_DECL
24#define NO_ZCFUNCS
25#define MY_ZCALLOC
26
27#if defined(__FreeBSD__) && defined(_KERNEL)
28#define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
29#endif
30
31
32/* +++ zutil.h */
33/* zutil.h -- internal interface and configuration of the compression library
34 * Copyright (C) 1995-1996 Jean-loup Gailly.
35 * For conditions of distribution and use, see copyright notice in zlib.h
36 */
37
38/* WARNING: this file should *not* be used by applications. It is
39   part of the implementation of the compression library and is
40   subject to change. Applications should only use zlib.h.
41 */
42
43/* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
44
45#ifndef _Z_UTIL_H
46#define _Z_UTIL_H
47
48#ifdef _KERNEL
49#include <net/zlib.h>
50#else
51#include "zlib.h"
52#endif
53
54#ifdef _KERNEL
55/* Assume this is a *BSD or SVR4 kernel */
56#include <sys/types.h>
57#include <sys/time.h>
58#include <sys/systm.h>
59#include <sys/param.h>
60#include <sys/kernel.h>
61#include <sys/module.h>
62#  define HAVE_MEMCPY
63
64#else
65#if defined(__KERNEL__)
66/* Assume this is a Linux kernel */
67#include <linux/string.h>
68#define HAVE_MEMCPY
69
70#else /* not kernel */
71
72#if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
73#   include <stddef.h>
74#   include <errno.h>
75#else
76    extern int errno;
77#endif
78#ifdef STDC
79#  include <string.h>
80#  include <stdlib.h>
81#endif
82#endif /* __KERNEL__ */
83#endif /* _KERNEL */
84
85#ifndef local
86#  define local static
87#endif
88/* compile with -Dlocal if your debugger can't find static symbols */
89
90typedef unsigned char  uch;
91typedef uch FAR uchf;
92typedef unsigned short ush;
93typedef ush FAR ushf;
94typedef unsigned long  ulg;
95
96extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
97/* (size given to avoid silly warnings with Visual C++) */
98
99#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
100
101#define ERR_RETURN(strm,err) \
102  return (strm->msg = (const char*)ERR_MSG(err), (err))
103/* To be used only when the state is known to be valid */
104
105        /* common constants */
106
107#ifndef DEF_WBITS
108#  define DEF_WBITS MAX_WBITS
109#endif
110/* default windowBits for decompression. MAX_WBITS is for compression only */
111
112#if MAX_MEM_LEVEL >= 8
113#  define DEF_MEM_LEVEL 8
114#else
115#  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
116#endif
117/* default memLevel */
118
119#define STORED_BLOCK 0
120#define STATIC_TREES 1
121#define DYN_TREES    2
122/* The three kinds of block type */
123
124#define MIN_MATCH  3
125#define MAX_MATCH  258
126/* The minimum and maximum match lengths */
127
128#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
129
130        /* target dependencies */
131
132#ifdef MSDOS
133#  define OS_CODE  0x00
134#  ifdef __TURBOC__
135#    include <alloc.h>
136#  else /* MSC or DJGPP */
137#    include <malloc.h>
138#  endif
139#endif
140
141#ifdef OS2
142#  define OS_CODE  0x06
143#endif
144
145#ifdef WIN32 /* Window 95 & Windows NT */
146#  define OS_CODE  0x0b
147#endif
148
149#if defined(VAXC) || defined(VMS)
150#  define OS_CODE  0x02
151#  define FOPEN(name, mode) \
152     fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
153#endif
154
155#ifdef AMIGA
156#  define OS_CODE  0x01
157#endif
158
159#if defined(ATARI) || defined(atarist)
160#  define OS_CODE  0x05
161#endif
162
163#ifdef MACOS
164#  define OS_CODE  0x07
165#endif
166
167#ifdef __50SERIES /* Prime/PRIMOS */
168#  define OS_CODE  0x0F
169#endif
170
171#ifdef TOPS20
172#  define OS_CODE  0x0a
173#endif
174
175#if defined(_BEOS_) || defined(RISCOS)
176#  define fdopen(fd,mode) NULL /* No fdopen() */
177#endif
178
179        /* Common defaults */
180
181#ifndef OS_CODE
182#  define OS_CODE  0x03  /* assume Unix */
183#endif
184
185#ifndef FOPEN
186#  define FOPEN(name, mode) fopen((name), (mode))
187#endif
188
189         /* functions */
190
191#ifdef HAVE_STRERROR
192   extern char *strerror OF((int));
193#  define zstrerror(errnum) strerror(errnum)
194#else
195#  define zstrerror(errnum) ""
196#endif
197
198#if defined(pyr)
199#  define NO_MEMCPY
200#endif
201#if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
202 /* Use our own functions for small and medium model with MSC <= 5.0.
203  * You may have to use the same strategy for Borland C (untested).
204  */
205#  define NO_MEMCPY
206#endif
207#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
208#  define HAVE_MEMCPY
209#endif
210#ifdef HAVE_MEMCPY
211#  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
212#    define zmemcpy _fmemcpy
213#    define zmemcmp _fmemcmp
214#    define zmemzero(dest, len) _fmemset(dest, 0, len)
215#  else
216#    define zmemcpy memcpy
217#    define zmemcmp memcmp
218#    define zmemzero(dest, len) memset(dest, 0, len)
219#  endif
220#else
221   extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
222   extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
223   extern void zmemzero OF((Bytef* dest, uInt len));
224#endif
225
226/* Diagnostic functions */
227#ifdef DEBUG_ZLIB
228#  include <stdio.h>
229#  ifndef verbose
230#    define verbose 0
231#  endif
232   extern void z_error    OF((char *m));
233#  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
234#  define Trace(x) fprintf x
235#  define Tracev(x) {if (verbose) fprintf x ;}
236#  define Tracevv(x) {if (verbose>1) fprintf x ;}
237#  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
238#  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
239#else
240#  define Assert(cond,msg)
241#  define Trace(x)
242#  define Tracev(x)
243#  define Tracevv(x)
244#  define Tracec(c,x)
245#  define Tracecv(c,x)
246#endif
247
248
249typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
250
251voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
252void   zcfree  OF((voidpf opaque, voidpf ptr));
253
254#define ZALLOC(strm, items, size) \
255           (*((strm)->zalloc))((strm)->opaque, (items), (size))
256#define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
257#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
258
259#endif /* _Z_UTIL_H */
260/* --- zutil.h */
261
262/* +++ deflate.h */
263/* deflate.h -- internal compression state
264 * Copyright (C) 1995-1996 Jean-loup Gailly
265 * For conditions of distribution and use, see copyright notice in zlib.h
266 */
267
268/* WARNING: this file should *not* be used by applications. It is
269   part of the implementation of the compression library and is
270   subject to change. Applications should only use zlib.h.
271 */
272
273/* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
274
275#ifndef _DEFLATE_H
276#define _DEFLATE_H
277
278/* #include "zutil.h" */
279
280/* ===========================================================================
281 * Internal compression state.
282 */
283
284#define LENGTH_CODES 29
285/* number of length codes, not counting the special END_BLOCK code */
286
287#define LITERALS  256
288/* number of literal bytes 0..255 */
289
290#define L_CODES (LITERALS+1+LENGTH_CODES)
291/* number of Literal or Length codes, including the END_BLOCK code */
292
293#define D_CODES   30
294/* number of distance codes */
295
296#define BL_CODES  19
297/* number of codes used to transfer the bit lengths */
298
299#define HEAP_SIZE (2*L_CODES+1)
300/* maximum heap size */
301
302#define MAX_BITS 15
303/* All codes must not exceed MAX_BITS bits */
304
305#define INIT_STATE    42
306#define BUSY_STATE   113
307#define FINISH_STATE 666
308/* Stream status */
309
310
311/* Data structure describing a single value and its code string. */
312typedef struct ct_data_s {
313    union {
314        ush  freq;       /* frequency count */
315        ush  code;       /* bit string */
316    } fc;
317    union {
318        ush  dad;        /* father node in Huffman tree */
319        ush  len;        /* length of bit string */
320    } dl;
321} FAR ct_data;
322
323#define Freq fc.freq
324#define Code fc.code
325#define Dad  dl.dad
326#define Len  dl.len
327
328typedef struct static_tree_desc_s  static_tree_desc;
329
330typedef struct tree_desc_s {
331    ct_data *dyn_tree;           /* the dynamic tree */
332    int     max_code;            /* largest code with non zero frequency */
333    static_tree_desc *stat_desc; /* the corresponding static tree */
334} FAR tree_desc;
335
336typedef ush Pos;
337typedef Pos FAR Posf;
338typedef unsigned IPos;
339
340/* A Pos is an index in the character window. We use short instead of int to
341 * save space in the various tables. IPos is used only for parameter passing.
342 */
343
344typedef struct deflate_state {
345    z_streamp strm;      /* pointer back to this zlib stream */
346    int   status;        /* as the name implies */
347    Bytef *pending_buf;  /* output still pending */
348    ulg   pending_buf_size; /* size of pending_buf */
349    Bytef *pending_out;  /* next pending byte to output to the stream */
350    int   pending;       /* nb of bytes in the pending buffer */
351    int   noheader;      /* suppress zlib header and adler32 */
352    Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
353    Byte  method;        /* STORED (for zip only) or DEFLATED */
354    int   last_flush;    /* value of flush param for previous deflate call */
355
356                /* used by deflate.c: */
357
358    uInt  w_size;        /* LZ77 window size (32K by default) */
359    uInt  w_bits;        /* log2(w_size)  (8..16) */
360    uInt  w_mask;        /* w_size - 1 */
361
362    Bytef *window;
363    /* Sliding window. Input bytes are read into the second half of the window,
364     * and move to the first half later to keep a dictionary of at least wSize
365     * bytes. With this organization, matches are limited to a distance of
366     * wSize-MAX_MATCH bytes, but this ensures that IO is always
367     * performed with a length multiple of the block size. Also, it limits
368     * the window size to 64K, which is quite useful on MSDOS.
369     * To do: use the user input buffer as sliding window.
370     */
371
372    ulg window_size;
373    /* Actual size of window: 2*wSize, except when the user input buffer
374     * is directly used as sliding window.
375     */
376
377    Posf *prev;
378    /* Link to older string with same hash index. To limit the size of this
379     * array to 64K, this link is maintained only for the last 32K strings.
380     * An index in this array is thus a window index modulo 32K.
381     */
382
383    Posf *head; /* Heads of the hash chains or NIL. */
384
385    uInt  ins_h;          /* hash index of string to be inserted */
386    uInt  hash_size;      /* number of elements in hash table */
387    uInt  hash_bits;      /* log2(hash_size) */
388    uInt  hash_mask;      /* hash_size-1 */
389
390    uInt  hash_shift;
391    /* Number of bits by which ins_h must be shifted at each input
392     * step. It must be such that after MIN_MATCH steps, the oldest
393     * byte no longer takes part in the hash key, that is:
394     *   hash_shift * MIN_MATCH >= hash_bits
395     */
396
397    long block_start;
398    /* Window position at the beginning of the current output block. Gets
399     * negative when the window is moved backwards.
400     */
401
402    uInt match_length;           /* length of best match */
403    IPos prev_match;             /* previous match */
404    int match_available;         /* set if previous match exists */
405    uInt strstart;               /* start of string to insert */
406    uInt match_start;            /* start of matching string */
407    uInt lookahead;              /* number of valid bytes ahead in window */
408
409    uInt prev_length;
410    /* Length of the best match at previous step. Matches not greater than this
411     * are discarded. This is used in the lazy match evaluation.
412     */
413
414    uInt max_chain_length;
415    /* To speed up deflation, hash chains are never searched beyond this
416     * length.  A higher limit improves compression ratio but degrades the
417     * speed.
418     */
419
420    uInt max_lazy_match;
421    /* Attempt to find a better match only when the current match is strictly
422     * smaller than this value. This mechanism is used only for compression
423     * levels >= 4.
424     */
425#   define max_insert_length  max_lazy_match
426    /* Insert new strings in the hash table only if the match length is not
427     * greater than this length. This saves time but degrades compression.
428     * max_insert_length is used only for compression levels <= 3.
429     */
430
431    int level;    /* compression level (1..9) */
432    int strategy; /* favor or force Huffman coding*/
433
434    uInt good_match;
435    /* Use a faster search when the previous match is longer than this */
436
437    int nice_match; /* Stop searching when current match exceeds this */
438
439                /* used by trees.c: */
440    /* Didn't use ct_data typedef below to supress compiler warning */
441    struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
442    struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
443    struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
444
445    struct tree_desc_s l_desc;               /* desc. for literal tree */
446    struct tree_desc_s d_desc;               /* desc. for distance tree */
447    struct tree_desc_s bl_desc;              /* desc. for bit length tree */
448
449    ush bl_count[MAX_BITS+1];
450    /* number of codes at each bit length for an optimal tree */
451
452    int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
453    int heap_len;               /* number of elements in the heap */
454    int heap_max;               /* element of largest frequency */
455    /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
456     * The same heap array is used to build all trees.
457     */
458
459    uch depth[2*L_CODES+1];
460    /* Depth of each subtree used as tie breaker for trees of equal frequency
461     */
462
463    uchf *l_buf;          /* buffer for literals or lengths */
464
465    uInt  lit_bufsize;
466    /* Size of match buffer for literals/lengths.  There are 4 reasons for
467     * limiting lit_bufsize to 64K:
468     *   - frequencies can be kept in 16 bit counters
469     *   - if compression is not successful for the first block, all input
470     *     data is still in the window so we can still emit a stored block even
471     *     when input comes from standard input.  (This can also be done for
472     *     all blocks if lit_bufsize is not greater than 32K.)
473     *   - if compression is not successful for a file smaller than 64K, we can
474     *     even emit a stored file instead of a stored block (saving 5 bytes).
475     *     This is applicable only for zip (not gzip or zlib).
476     *   - creating new Huffman trees less frequently may not provide fast
477     *     adaptation to changes in the input data statistics. (Take for
478     *     example a binary file with poorly compressible code followed by
479     *     a highly compressible string table.) Smaller buffer sizes give
480     *     fast adaptation but have of course the overhead of transmitting
481     *     trees more frequently.
482     *   - I can't count above 4
483     */
484
485    uInt last_lit;      /* running index in l_buf */
486
487    ushf *d_buf;
488    /* Buffer for distances. To simplify the code, d_buf and l_buf have
489     * the same number of elements. To use different lengths, an extra flag
490     * array would be necessary.
491     */
492
493    ulg opt_len;        /* bit length of current block with optimal trees */
494    ulg static_len;     /* bit length of current block with static trees */
495    ulg compressed_len; /* total bit length of compressed file */
496    uInt matches;       /* number of string matches in current block */
497    int last_eob_len;   /* bit length of EOB code for last block */
498
499#ifdef DEBUG_ZLIB
500    ulg bits_sent;      /* bit length of the compressed data */
501#endif
502
503    ush bi_buf;
504    /* Output buffer. bits are inserted starting at the bottom (least
505     * significant bits).
506     */
507    int bi_valid;
508    /* Number of valid bits in bi_buf.  All bits above the last valid bit
509     * are always zero.
510     */
511
512} FAR deflate_state;
513
514/* Output a byte on the stream.
515 * IN assertion: there is enough room in pending_buf.
516 */
517#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
518
519
520#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
521/* Minimum amount of lookahead, except at the end of the input file.
522 * See deflate.c for comments about the MIN_MATCH+1.
523 */
524
525#define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
526/* In order to simplify the code, particularly on 16 bit machines, match
527 * distances are limited to MAX_DIST instead of WSIZE.
528 */
529
530        /* in trees.c */
531void _tr_init         OF((deflate_state *s));
532int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
533ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
534			  int eof));
535void _tr_align        OF((deflate_state *s));
536void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
537                          int eof));
538void _tr_stored_type_only OF((deflate_state *));
539
540#endif
541/* --- deflate.h */
542
543/* +++ deflate.c */
544/* deflate.c -- compress data using the deflation algorithm
545 * Copyright (C) 1995-1996 Jean-loup Gailly.
546 * For conditions of distribution and use, see copyright notice in zlib.h
547 */
548
549/*
550 *  ALGORITHM
551 *
552 *      The "deflation" process depends on being able to identify portions
553 *      of the input text which are identical to earlier input (within a
554 *      sliding window trailing behind the input currently being processed).
555 *
556 *      The most straightforward technique turns out to be the fastest for
557 *      most input files: try all possible matches and select the longest.
558 *      The key feature of this algorithm is that insertions into the string
559 *      dictionary are very simple and thus fast, and deletions are avoided
560 *      completely. Insertions are performed at each input character, whereas
561 *      string matches are performed only when the previous match ends. So it
562 *      is preferable to spend more time in matches to allow very fast string
563 *      insertions and avoid deletions. The matching algorithm for small
564 *      strings is inspired from that of Rabin & Karp. A brute force approach
565 *      is used to find longer strings when a small match has been found.
566 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
567 *      (by Leonid Broukhis).
568 *         A previous version of this file used a more sophisticated algorithm
569 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
570 *      time, but has a larger average cost, uses more memory and is patented.
571 *      However the F&G algorithm may be faster for some highly redundant
572 *      files if the parameter max_chain_length (described below) is too large.
573 *
574 *  ACKNOWLEDGEMENTS
575 *
576 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
577 *      I found it in 'freeze' written by Leonid Broukhis.
578 *      Thanks to many people for bug reports and testing.
579 *
580 *  REFERENCES
581 *
582 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
583 *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
584 *
585 *      A description of the Rabin and Karp algorithm is given in the book
586 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
587 *
588 *      Fiala,E.R., and Greene,D.H.
589 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
590 *
591 */
592
593/* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
594
595/* #include "deflate.h" */
596
597char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
598/*
599  If you use the zlib library in a product, an acknowledgment is welcome
600  in the documentation of your product. If for some reason you cannot
601  include such an acknowledgment, I would appreciate that you keep this
602  copyright string in the executable of your product.
603 */
604
605/* ===========================================================================
606 *  Function prototypes.
607 */
608typedef enum {
609    need_more,      /* block not completed, need more input or more output */
610    block_done,     /* block flush performed */
611    finish_started, /* finish started, need only more output at next deflate */
612    finish_done     /* finish done, accept no more input or output */
613} block_state;
614
615typedef block_state (*compress_func) OF((deflate_state *s, int flush));
616/* Compression function. Returns the block state after the call. */
617
618local void fill_window    OF((deflate_state *s));
619local block_state deflate_stored OF((deflate_state *s, int flush));
620local block_state deflate_fast   OF((deflate_state *s, int flush));
621local block_state deflate_slow   OF((deflate_state *s, int flush));
622local void lm_init        OF((deflate_state *s));
623local void putShortMSB    OF((deflate_state *s, uInt b));
624local void flush_pending  OF((z_streamp strm));
625local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
626#ifdef ASMV
627      void match_init OF((void)); /* asm code initialization */
628      uInt longest_match  OF((deflate_state *s, IPos cur_match));
629#else
630local uInt longest_match  OF((deflate_state *s, IPos cur_match));
631#endif
632
633#ifdef DEBUG_ZLIB
634local  void check_match OF((deflate_state *s, IPos start, IPos match,
635                            int length));
636#endif
637
638/* ===========================================================================
639 * Local data
640 */
641
642#define NIL 0
643/* Tail of hash chains */
644
645#ifndef TOO_FAR
646#  define TOO_FAR 4096
647#endif
648/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
649
650#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
651/* Minimum amount of lookahead, except at the end of the input file.
652 * See deflate.c for comments about the MIN_MATCH+1.
653 */
654
655/* Values for max_lazy_match, good_match and max_chain_length, depending on
656 * the desired pack level (0..9). The values given below have been tuned to
657 * exclude worst case performance for pathological files. Better values may be
658 * found for specific files.
659 */
660typedef struct config_s {
661   ush good_length; /* reduce lazy search above this match length */
662   ush max_lazy;    /* do not perform lazy search above this match length */
663   ush nice_length; /* quit search above this match length */
664   ush max_chain;
665   compress_func func;
666} config;
667
668local config configuration_table[10] = {
669/*      good lazy nice chain */
670/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
671/* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
672/* 2 */ {4,    5, 16,    8, deflate_fast},
673/* 3 */ {4,    6, 32,   32, deflate_fast},
674
675/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
676/* 5 */ {8,   16, 32,   32, deflate_slow},
677/* 6 */ {8,   16, 128, 128, deflate_slow},
678/* 7 */ {8,   32, 128, 256, deflate_slow},
679/* 8 */ {32, 128, 258, 1024, deflate_slow},
680/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
681
682/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
683 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
684 * meaning.
685 */
686
687#define EQUAL 0
688/* result of memcmp for equal strings */
689
690#ifndef NO_DUMMY_DECL
691struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
692#endif
693
694/* ===========================================================================
695 * Update a hash value with the given input byte
696 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
697 *    input characters, so that a running hash key can be computed from the
698 *    previous key instead of complete recalculation each time.
699 */
700#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
701
702
703/* ===========================================================================
704 * Insert string str in the dictionary and set match_head to the previous head
705 * of the hash chain (the most recent string with same hash key). Return
706 * the previous length of the hash chain.
707 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
708 *    input characters and the first MIN_MATCH bytes of str are valid
709 *    (except for the last MIN_MATCH-1 bytes of the input file).
710 */
711#define INSERT_STRING(s, str, match_head) \
712   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
713    s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
714    s->head[s->ins_h] = (Pos)(str))
715
716/* ===========================================================================
717 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
718 * prev[] will be initialized on the fly.
719 */
720#define CLEAR_HASH(s) \
721    s->head[s->hash_size-1] = NIL; \
722    zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
723
724/* ========================================================================= */
725int deflateInit_(strm, level, version, stream_size)
726    z_streamp strm;
727    int level;
728    const char *version;
729    int stream_size;
730{
731    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
732			 Z_DEFAULT_STRATEGY, version, stream_size);
733    /* To do: ignore strm->next_in if we use it as window */
734}
735
736/* ========================================================================= */
737int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
738		  version, stream_size)
739    z_streamp strm;
740    int  level;
741    int  method;
742    int  windowBits;
743    int  memLevel;
744    int  strategy;
745    const char *version;
746    int stream_size;
747{
748    deflate_state *s;
749    int noheader = 0;
750    static char* my_version = ZLIB_VERSION;
751
752    ushf *overlay;
753    /* We overlay pending_buf and d_buf+l_buf. This works since the average
754     * output size for (length,distance) codes is <= 24 bits.
755     */
756
757    if (version == Z_NULL || version[0] != my_version[0] ||
758        stream_size != sizeof(z_stream)) {
759	return Z_VERSION_ERROR;
760    }
761    if (strm == Z_NULL) return Z_STREAM_ERROR;
762
763    strm->msg = Z_NULL;
764#ifndef NO_ZCFUNCS
765    if (strm->zalloc == Z_NULL) {
766	strm->zalloc = zcalloc;
767	strm->opaque = (voidpf)0;
768    }
769    if (strm->zfree == Z_NULL) strm->zfree = zcfree;
770#endif
771
772    if (level == Z_DEFAULT_COMPRESSION) level = 6;
773
774    if (windowBits < 0) { /* undocumented feature: suppress zlib header */
775        noheader = 1;
776        windowBits = -windowBits;
777    }
778    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
779        windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
780	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
781        return Z_STREAM_ERROR;
782    }
783    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
784    if (s == Z_NULL) return Z_MEM_ERROR;
785    strm->state = (struct internal_state FAR *)s;
786    s->strm = strm;
787
788    s->noheader = noheader;
789    s->w_bits = windowBits;
790    s->w_size = 1 << s->w_bits;
791    s->w_mask = s->w_size - 1;
792
793    s->hash_bits = memLevel + 7;
794    s->hash_size = 1 << s->hash_bits;
795    s->hash_mask = s->hash_size - 1;
796    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
797
798    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
799    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
800    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
801
802    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
803
804    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
805    s->pending_buf = (uchf *) overlay;
806    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
807
808    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
809        s->pending_buf == Z_NULL) {
810        strm->msg = (const char*)ERR_MSG(Z_MEM_ERROR);
811        deflateEnd (strm);
812        return Z_MEM_ERROR;
813    }
814    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
815    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
816
817    s->level = level;
818    s->strategy = strategy;
819    s->method = (Byte)method;
820
821    return deflateReset(strm);
822}
823
824/* ========================================================================= */
825int deflateSetDictionary (strm, dictionary, dictLength)
826    z_streamp strm;
827    const Bytef *dictionary;
828    uInt  dictLength;
829{
830    deflate_state *s;
831    uInt length = dictLength;
832    uInt n;
833    IPos hash_head = 0;
834
835    if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
836	return Z_STREAM_ERROR;
837
838    s = (deflate_state *) strm->state;
839    if (s->status != INIT_STATE) return Z_STREAM_ERROR;
840
841    strm->adler = adler32(strm->adler, dictionary, dictLength);
842
843    if (length < MIN_MATCH) return Z_OK;
844    if (length > MAX_DIST(s)) {
845	length = MAX_DIST(s);
846#ifndef USE_DICT_HEAD
847	dictionary += dictLength - length; /* use the tail of the dictionary */
848#endif
849    }
850    zmemcpy((charf *)s->window, dictionary, length);
851    s->strstart = length;
852    s->block_start = (long)length;
853
854    /* Insert all strings in the hash table (except for the last two bytes).
855     * s->lookahead stays null, so s->ins_h will be recomputed at the next
856     * call of fill_window.
857     */
858    s->ins_h = s->window[0];
859    UPDATE_HASH(s, s->ins_h, s->window[1]);
860    for (n = 0; n <= length - MIN_MATCH; n++) {
861	INSERT_STRING(s, n, hash_head);
862    }
863    if (hash_head) hash_head = 0;  /* to make compiler happy */
864    return Z_OK;
865}
866
867/* ========================================================================= */
868int deflateReset (strm)
869    z_streamp strm;
870{
871    deflate_state *s;
872
873    if (strm == Z_NULL || strm->state == Z_NULL ||
874        strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
875
876    strm->total_in = strm->total_out = 0;
877    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
878    strm->data_type = Z_UNKNOWN;
879
880    s = (deflate_state *)strm->state;
881    s->pending = 0;
882    s->pending_out = s->pending_buf;
883
884    if (s->noheader < 0) {
885        s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
886    }
887    s->status = s->noheader ? BUSY_STATE : INIT_STATE;
888    strm->adler = 1;
889    s->last_flush = Z_NO_FLUSH;
890
891    _tr_init(s);
892    lm_init(s);
893
894    return Z_OK;
895}
896
897/* ========================================================================= */
898int deflateParams(strm, level, strategy)
899    z_streamp strm;
900    int level;
901    int strategy;
902{
903    deflate_state *s;
904    compress_func func;
905    int err = Z_OK;
906
907    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
908    s = (deflate_state *) strm->state;
909
910    if (level == Z_DEFAULT_COMPRESSION) {
911	level = 6;
912    }
913    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
914	return Z_STREAM_ERROR;
915    }
916    func = configuration_table[s->level].func;
917
918    if (func != configuration_table[level].func && strm->total_in != 0) {
919	/* Flush the last buffer: */
920	err = deflate(strm, Z_PARTIAL_FLUSH);
921    }
922    if (s->level != level) {
923	s->level = level;
924	s->max_lazy_match   = configuration_table[level].max_lazy;
925	s->good_match       = configuration_table[level].good_length;
926	s->nice_match       = configuration_table[level].nice_length;
927	s->max_chain_length = configuration_table[level].max_chain;
928    }
929    s->strategy = strategy;
930    return err;
931}
932
933/* =========================================================================
934 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
935 * IN assertion: the stream state is correct and there is enough room in
936 * pending_buf.
937 */
938local void putShortMSB (s, b)
939    deflate_state *s;
940    uInt b;
941{
942    put_byte(s, (Byte)(b >> 8));
943    put_byte(s, (Byte)(b & 0xff));
944}
945
946/* =========================================================================
947 * Flush as much pending output as possible. All deflate() output goes
948 * through this function so some applications may wish to modify it
949 * to avoid allocating a large strm->next_out buffer and copying into it.
950 * (See also read_buf()).
951 */
952local void flush_pending(strm)
953    z_streamp strm;
954{
955    deflate_state *s = (deflate_state *) strm->state;
956    unsigned len = s->pending;
957
958    if (len > strm->avail_out) len = strm->avail_out;
959    if (len == 0) return;
960
961    if (strm->next_out != Z_NULL) {
962	zmemcpy(strm->next_out, s->pending_out, len);
963	strm->next_out += len;
964    }
965    s->pending_out += len;
966    strm->total_out += len;
967    strm->avail_out  -= len;
968    s->pending -= len;
969    if (s->pending == 0) {
970        s->pending_out = s->pending_buf;
971    }
972}
973
974/* ========================================================================= */
975int deflate (strm, flush)
976    z_streamp strm;
977    int flush;
978{
979    int old_flush; /* value of flush param for previous deflate call */
980    deflate_state *s;
981
982    if (strm == Z_NULL || strm->state == Z_NULL ||
983	flush > Z_FINISH || flush < 0) {
984        return Z_STREAM_ERROR;
985    }
986    s = (deflate_state *) strm->state;
987
988    if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
989	(s->status == FINISH_STATE && flush != Z_FINISH)) {
990        ERR_RETURN(strm, Z_STREAM_ERROR);
991    }
992    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
993
994    s->strm = strm; /* just in case */
995    old_flush = s->last_flush;
996    s->last_flush = flush;
997
998    /* Write the zlib header */
999    if (s->status == INIT_STATE) {
1000
1001        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1002        uInt level_flags = (s->level-1) >> 1;
1003
1004        if (level_flags > 3) level_flags = 3;
1005        header |= (level_flags << 6);
1006	if (s->strstart != 0) header |= PRESET_DICT;
1007        header += 31 - (header % 31);
1008
1009        s->status = BUSY_STATE;
1010        putShortMSB(s, header);
1011
1012	/* Save the adler32 of the preset dictionary: */
1013	if (s->strstart != 0) {
1014	    putShortMSB(s, (uInt)(strm->adler >> 16));
1015	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1016	}
1017	strm->adler = 1L;
1018    }
1019
1020    /* Flush as much pending output as possible */
1021    if (s->pending != 0) {
1022        flush_pending(strm);
1023        if (strm->avail_out == 0) {
1024	    /* Since avail_out is 0, deflate will be called again with
1025	     * more output space, but possibly with both pending and
1026	     * avail_in equal to zero. There won't be anything to do,
1027	     * but this is not an error situation so make sure we
1028	     * return OK instead of BUF_ERROR at next call of deflate:
1029             */
1030	    s->last_flush = -1;
1031	    return Z_OK;
1032	}
1033
1034    /* Make sure there is something to do and avoid duplicate consecutive
1035     * flushes. For repeated and useless calls with Z_FINISH, we keep
1036     * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1037     */
1038    } else if (strm->avail_in == 0 && flush <= old_flush &&
1039	       flush != Z_FINISH) {
1040        ERR_RETURN(strm, Z_BUF_ERROR);
1041    }
1042
1043    /* User must not provide more input after the first FINISH: */
1044    if (s->status == FINISH_STATE && strm->avail_in != 0) {
1045        ERR_RETURN(strm, Z_BUF_ERROR);
1046    }
1047
1048    /* Start a new block or continue the current one.
1049     */
1050    if (strm->avail_in != 0 || s->lookahead != 0 ||
1051        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1052        block_state bstate;
1053
1054	bstate = (*(configuration_table[s->level].func))(s, flush);
1055
1056        if (bstate == finish_started || bstate == finish_done) {
1057            s->status = FINISH_STATE;
1058        }
1059        if (bstate == need_more || bstate == finish_started) {
1060	    if (strm->avail_out == 0) {
1061	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1062	    }
1063	    return Z_OK;
1064	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1065	     * of deflate should use the same flush parameter to make sure
1066	     * that the flush is complete. So we don't have to output an
1067	     * empty block here, this will be done at next call. This also
1068	     * ensures that for a very small output buffer, we emit at most
1069	     * one empty block.
1070	     */
1071	}
1072        if (bstate == block_done) {
1073            if (flush == Z_PARTIAL_FLUSH) {
1074                _tr_align(s);
1075	    } else if (flush == Z_PACKET_FLUSH) {
1076		/* Output just the 3-bit `stored' block type value,
1077		   but not a zero length. */
1078		_tr_stored_type_only(s);
1079            } else { /* FULL_FLUSH or SYNC_FLUSH */
1080                _tr_stored_block(s, (char*)0, 0L, 0);
1081                /* For a full flush, this empty block will be recognized
1082                 * as a special marker by inflate_sync().
1083                 */
1084                if (flush == Z_FULL_FLUSH) {
1085                    CLEAR_HASH(s);             /* forget history */
1086                }
1087            }
1088            flush_pending(strm);
1089	    if (strm->avail_out == 0) {
1090	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1091	      return Z_OK;
1092	    }
1093        }
1094    }
1095    Assert(strm->avail_out > 0, "bug2");
1096
1097    if (flush != Z_FINISH) return Z_OK;
1098    if (s->noheader) return Z_STREAM_END;
1099
1100    /* Write the zlib trailer (adler32) */
1101    putShortMSB(s, (uInt)(strm->adler >> 16));
1102    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1103    flush_pending(strm);
1104    /* If avail_out is zero, the application will call deflate again
1105     * to flush the rest.
1106     */
1107    s->noheader = -1; /* write the trailer only once! */
1108    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1109}
1110
1111/* ========================================================================= */
1112int deflateEnd (strm)
1113    z_streamp strm;
1114{
1115    int status;
1116    deflate_state *s;
1117
1118    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1119    s = (deflate_state *) strm->state;
1120
1121    status = s->status;
1122    if (status != INIT_STATE && status != BUSY_STATE &&
1123	status != FINISH_STATE) {
1124      return Z_STREAM_ERROR;
1125    }
1126
1127    /* Deallocate in reverse order of allocations: */
1128    TRY_FREE(strm, s->pending_buf);
1129    TRY_FREE(strm, s->head);
1130    TRY_FREE(strm, s->prev);
1131    TRY_FREE(strm, s->window);
1132
1133    ZFREE(strm, s);
1134    strm->state = Z_NULL;
1135
1136    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1137}
1138
1139/* =========================================================================
1140 * Copy the source state to the destination state.
1141 */
1142int deflateCopy (dest, source)
1143    z_streamp dest;
1144    z_streamp source;
1145{
1146    deflate_state *ds;
1147    deflate_state *ss;
1148    ushf *overlay;
1149
1150    if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1151        return Z_STREAM_ERROR;
1152    ss = (deflate_state *) source->state;
1153
1154    zmemcpy(dest, source, sizeof(*dest));
1155
1156    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1157    if (ds == Z_NULL) return Z_MEM_ERROR;
1158    dest->state = (struct internal_state FAR *) ds;
1159    zmemcpy(ds, ss, sizeof(*ds));
1160    ds->strm = dest;
1161
1162    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1163    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1164    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1165    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1166    ds->pending_buf = (uchf *) overlay;
1167
1168    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1169        ds->pending_buf == Z_NULL) {
1170        deflateEnd (dest);
1171        return Z_MEM_ERROR;
1172    }
1173    /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1174    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1175    zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1176    zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1177    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1178
1179    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1180    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1181    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1182
1183    ds->l_desc.dyn_tree = ds->dyn_ltree;
1184    ds->d_desc.dyn_tree = ds->dyn_dtree;
1185    ds->bl_desc.dyn_tree = ds->bl_tree;
1186
1187    return Z_OK;
1188}
1189
1190/* ===========================================================================
1191 * Return the number of bytes of output which are immediately available
1192 * for output from the decompressor.
1193 */
1194int deflateOutputPending (strm)
1195    z_streamp strm;
1196{
1197    if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1198
1199    return ((deflate_state *)(strm->state))->pending;
1200}
1201
1202/* ===========================================================================
1203 * Read a new buffer from the current input stream, update the adler32
1204 * and total number of bytes read.  All deflate() input goes through
1205 * this function so some applications may wish to modify it to avoid
1206 * allocating a large strm->next_in buffer and copying from it.
1207 * (See also flush_pending()).
1208 */
1209local int read_buf(strm, buf, size)
1210    z_streamp strm;
1211    charf *buf;
1212    unsigned size;
1213{
1214    unsigned len = strm->avail_in;
1215
1216    if (len > size) len = size;
1217    if (len == 0) return 0;
1218
1219    strm->avail_in  -= len;
1220
1221    if (!((deflate_state *)(strm->state))->noheader) {
1222        strm->adler = adler32(strm->adler, strm->next_in, len);
1223    }
1224    zmemcpy(buf, strm->next_in, len);
1225    strm->next_in  += len;
1226    strm->total_in += len;
1227
1228    return (int)len;
1229}
1230
1231/* ===========================================================================
1232 * Initialize the "longest match" routines for a new zlib stream
1233 */
1234local void lm_init (s)
1235    deflate_state *s;
1236{
1237    s->window_size = (ulg)2L*s->w_size;
1238
1239    CLEAR_HASH(s);
1240
1241    /* Set the default configuration parameters:
1242     */
1243    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1244    s->good_match       = configuration_table[s->level].good_length;
1245    s->nice_match       = configuration_table[s->level].nice_length;
1246    s->max_chain_length = configuration_table[s->level].max_chain;
1247
1248    s->strstart = 0;
1249    s->block_start = 0L;
1250    s->lookahead = 0;
1251    s->match_length = s->prev_length = MIN_MATCH-1;
1252    s->match_available = 0;
1253    s->ins_h = 0;
1254#ifdef ASMV
1255    match_init(); /* initialize the asm code */
1256#endif
1257}
1258
1259/* ===========================================================================
1260 * Set match_start to the longest match starting at the given string and
1261 * return its length. Matches shorter or equal to prev_length are discarded,
1262 * in which case the result is equal to prev_length and match_start is
1263 * garbage.
1264 * IN assertions: cur_match is the head of the hash chain for the current
1265 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1266 * OUT assertion: the match length is not greater than s->lookahead.
1267 */
1268#ifndef ASMV
1269/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1270 * match.S. The code will be functionally equivalent.
1271 */
1272local uInt longest_match(s, cur_match)
1273    deflate_state *s;
1274    IPos cur_match;                             /* current match */
1275{
1276    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1277    register Bytef *scan = s->window + s->strstart; /* current string */
1278    register Bytef *match;                       /* matched string */
1279    register int len;                           /* length of current match */
1280    int best_len = s->prev_length;              /* best match length so far */
1281    int nice_match = s->nice_match;             /* stop if match long enough */
1282    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1283        s->strstart - (IPos)MAX_DIST(s) : NIL;
1284    /* Stop when cur_match becomes <= limit. To simplify the code,
1285     * we prevent matches with the string of window index 0.
1286     */
1287    Posf *prev = s->prev;
1288    uInt wmask = s->w_mask;
1289
1290#ifdef UNALIGNED_OK
1291    /* Compare two bytes at a time. Note: this is not always beneficial.
1292     * Try with and without -DUNALIGNED_OK to check.
1293     */
1294    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1295    register ush scan_start = *(ushf*)scan;
1296    register ush scan_end   = *(ushf*)(scan+best_len-1);
1297#else
1298    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1299    register Byte scan_end1  = scan[best_len-1];
1300    register Byte scan_end   = scan[best_len];
1301#endif
1302
1303    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1304     * It is easy to get rid of this optimization if necessary.
1305     */
1306    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1307
1308    /* Do not waste too much time if we already have a good match: */
1309    if (s->prev_length >= s->good_match) {
1310        chain_length >>= 2;
1311    }
1312    /* Do not look for matches beyond the end of the input. This is necessary
1313     * to make deflate deterministic.
1314     */
1315    if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1316
1317    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1318
1319    do {
1320        Assert(cur_match < s->strstart, "no future");
1321        match = s->window + cur_match;
1322
1323        /* Skip to next match if the match length cannot increase
1324         * or if the match length is less than 2:
1325         */
1326#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1327        /* This code assumes sizeof(unsigned short) == 2. Do not use
1328         * UNALIGNED_OK if your compiler uses a different size.
1329         */
1330        if (*(ushf*)(match+best_len-1) != scan_end ||
1331            *(ushf*)match != scan_start) continue;
1332
1333        /* It is not necessary to compare scan[2] and match[2] since they are
1334         * always equal when the other bytes match, given that the hash keys
1335         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1336         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1337         * lookahead only every 4th comparison; the 128th check will be made
1338         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1339         * necessary to put more guard bytes at the end of the window, or
1340         * to check more often for insufficient lookahead.
1341         */
1342        Assert(scan[2] == match[2], "scan[2]?");
1343        scan++, match++;
1344        do {
1345        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1346                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1347                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1348                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1349                 scan < strend);
1350        /* The funny "do {}" generates better code on most compilers */
1351
1352        /* Here, scan <= window+strstart+257 */
1353        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1354        if (*scan == *match) scan++;
1355
1356        len = (MAX_MATCH - 1) - (int)(strend-scan);
1357        scan = strend - (MAX_MATCH-1);
1358
1359#else /* UNALIGNED_OK */
1360
1361        if (match[best_len]   != scan_end  ||
1362            match[best_len-1] != scan_end1 ||
1363            *match            != *scan     ||
1364            *++match          != scan[1])      continue;
1365
1366        /* The check at best_len-1 can be removed because it will be made
1367         * again later. (This heuristic is not always a win.)
1368         * It is not necessary to compare scan[2] and match[2] since they
1369         * are always equal when the other bytes match, given that
1370         * the hash keys are equal and that HASH_BITS >= 8.
1371         */
1372        scan += 2, match++;
1373        Assert(*scan == *match, "match[2]?");
1374
1375        /* We check for insufficient lookahead only every 8th comparison;
1376         * the 256th check will be made at strstart+258.
1377         */
1378        do {
1379        } while (*++scan == *++match && *++scan == *++match &&
1380                 *++scan == *++match && *++scan == *++match &&
1381                 *++scan == *++match && *++scan == *++match &&
1382                 *++scan == *++match && *++scan == *++match &&
1383                 scan < strend);
1384
1385        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1386
1387        len = MAX_MATCH - (int)(strend - scan);
1388        scan = strend - MAX_MATCH;
1389
1390#endif /* UNALIGNED_OK */
1391
1392        if (len > best_len) {
1393            s->match_start = cur_match;
1394            best_len = len;
1395            if (len >= nice_match) break;
1396#ifdef UNALIGNED_OK
1397            scan_end = *(ushf*)(scan+best_len-1);
1398#else
1399            scan_end1  = scan[best_len-1];
1400            scan_end   = scan[best_len];
1401#endif
1402        }
1403    } while ((cur_match = prev[cur_match & wmask]) > limit
1404             && --chain_length != 0);
1405
1406    if ((uInt)best_len <= s->lookahead) return best_len;
1407    return s->lookahead;
1408}
1409#endif /* ASMV */
1410
1411#ifdef DEBUG_ZLIB
1412/* ===========================================================================
1413 * Check that the match at match_start is indeed a match.
1414 */
1415local void check_match(s, start, match, length)
1416    deflate_state *s;
1417    IPos start, match;
1418    int length;
1419{
1420    /* check that the match is indeed a match */
1421    if (zmemcmp((charf *)s->window + match,
1422                (charf *)s->window + start, length) != EQUAL) {
1423        fprintf(stderr, " start %u, match %u, length %d\n",
1424		start, match, length);
1425        do {
1426	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1427	} while (--length != 0);
1428        z_error("invalid match");
1429    }
1430    if (z_verbose > 1) {
1431        fprintf(stderr,"\\[%d,%d]", start-match, length);
1432        do { putc(s->window[start++], stderr); } while (--length != 0);
1433    }
1434}
1435#else
1436#  define check_match(s, start, match, length)
1437#endif
1438
1439/* ===========================================================================
1440 * Fill the window when the lookahead becomes insufficient.
1441 * Updates strstart and lookahead.
1442 *
1443 * IN assertion: lookahead < MIN_LOOKAHEAD
1444 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1445 *    At least one byte has been read, or avail_in == 0; reads are
1446 *    performed for at least two bytes (required for the zip translate_eol
1447 *    option -- not supported here).
1448 */
1449local void fill_window(s)
1450    deflate_state *s;
1451{
1452    register unsigned n, m;
1453    register Posf *p;
1454    unsigned more;    /* Amount of free space at the end of the window. */
1455    uInt wsize = s->w_size;
1456
1457    do {
1458        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1459
1460        /* Deal with !@#$% 64K limit: */
1461        if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1462            more = wsize;
1463
1464        } else if (more == (unsigned)(-1)) {
1465            /* Very unlikely, but possible on 16 bit machine if strstart == 0
1466             * and lookahead == 1 (input done one byte at time)
1467             */
1468            more--;
1469
1470        /* If the window is almost full and there is insufficient lookahead,
1471         * move the upper half to the lower one to make room in the upper half.
1472         */
1473        } else if (s->strstart >= wsize+MAX_DIST(s)) {
1474
1475            zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1476                   (unsigned)wsize);
1477            s->match_start -= wsize;
1478            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1479            s->block_start -= (long) wsize;
1480
1481            /* Slide the hash table (could be avoided with 32 bit values
1482               at the expense of memory usage). We slide even when level == 0
1483               to keep the hash table consistent if we switch back to level > 0
1484               later. (Using level 0 permanently is not an optimal usage of
1485               zlib, so we don't care about this pathological case.)
1486             */
1487            n = s->hash_size;
1488            p = &s->head[n];
1489            do {
1490                m = *--p;
1491                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1492            } while (--n);
1493
1494            n = wsize;
1495            p = &s->prev[n];
1496            do {
1497                m = *--p;
1498                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1499                /* If n is not on any hash chain, prev[n] is garbage but
1500                 * its value will never be used.
1501                 */
1502            } while (--n);
1503            more += wsize;
1504        }
1505        if (s->strm->avail_in == 0) return;
1506
1507        /* If there was no sliding:
1508         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1509         *    more == window_size - lookahead - strstart
1510         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1511         * => more >= window_size - 2*WSIZE + 2
1512         * In the BIG_MEM or MMAP case (not yet supported),
1513         *   window_size == input_size + MIN_LOOKAHEAD  &&
1514         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1515         * Otherwise, window_size == 2*WSIZE so more >= 2.
1516         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1517         */
1518        Assert(more >= 2, "more < 2");
1519
1520        n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1521                     more);
1522        s->lookahead += n;
1523
1524        /* Initialize the hash value now that we have some input: */
1525        if (s->lookahead >= MIN_MATCH) {
1526            s->ins_h = s->window[s->strstart];
1527            UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1528#if MIN_MATCH != 3
1529            Call UPDATE_HASH() MIN_MATCH-3 more times
1530#endif
1531        }
1532        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1533         * but this is not important since only literal bytes will be emitted.
1534         */
1535
1536    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1537}
1538
1539/* ===========================================================================
1540 * Flush the current block, with given end-of-file flag.
1541 * IN assertion: strstart is set to the end of the current match.
1542 */
1543#define FLUSH_BLOCK_ONLY(s, eof) { \
1544   _tr_flush_block(s, (s->block_start >= 0L ? \
1545                   (charf *)&s->window[(unsigned)s->block_start] : \
1546                   (charf *)Z_NULL), \
1547		(ulg)((long)s->strstart - s->block_start), \
1548		(eof)); \
1549   s->block_start = s->strstart; \
1550   flush_pending(s->strm); \
1551   Tracev((stderr,"[FLUSH]")); \
1552}
1553
1554/* Same but force premature exit if necessary. */
1555#define FLUSH_BLOCK(s, eof) { \
1556   FLUSH_BLOCK_ONLY(s, eof); \
1557   if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1558}
1559
1560/* ===========================================================================
1561 * Copy without compression as much as possible from the input stream, return
1562 * the current block state.
1563 * This function does not insert new strings in the dictionary since
1564 * uncompressible data is probably not useful. This function is used
1565 * only for the level=0 compression option.
1566 * NOTE: this function should be optimized to avoid extra copying from
1567 * window to pending_buf.
1568 */
1569local block_state deflate_stored(s, flush)
1570    deflate_state *s;
1571    int flush;
1572{
1573    /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1574     * to pending_buf_size, and each stored block has a 5 byte header:
1575     */
1576    ulg max_block_size = 0xffff;
1577    ulg max_start;
1578
1579    if (max_block_size > s->pending_buf_size - 5) {
1580        max_block_size = s->pending_buf_size - 5;
1581    }
1582
1583    /* Copy as much as possible from input to output: */
1584    for (;;) {
1585        /* Fill the window as much as possible: */
1586        if (s->lookahead <= 1) {
1587
1588            Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1589		   s->block_start >= (long)s->w_size, "slide too late");
1590
1591            fill_window(s);
1592            if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1593
1594            if (s->lookahead == 0) break; /* flush the current block */
1595        }
1596	Assert(s->block_start >= 0L, "block gone");
1597
1598	s->strstart += s->lookahead;
1599	s->lookahead = 0;
1600
1601	/* Emit a stored block if pending_buf will be full: */
1602 	max_start = s->block_start + max_block_size;
1603        if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1604	    /* strstart == 0 is possible when wraparound on 16-bit machine */
1605	    s->lookahead = (uInt)(s->strstart - max_start);
1606	    s->strstart = (uInt)max_start;
1607            FLUSH_BLOCK(s, 0);
1608	}
1609	/* Flush if we may have to slide, otherwise block_start may become
1610         * negative and the data will be gone:
1611         */
1612        if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1613            FLUSH_BLOCK(s, 0);
1614	}
1615    }
1616    FLUSH_BLOCK(s, flush == Z_FINISH);
1617    return flush == Z_FINISH ? finish_done : block_done;
1618}
1619
1620/* ===========================================================================
1621 * Compress as much as possible from the input stream, return the current
1622 * block state.
1623 * This function does not perform lazy evaluation of matches and inserts
1624 * new strings in the dictionary only for unmatched strings or for short
1625 * matches. It is used only for the fast compression options.
1626 */
1627local block_state deflate_fast(s, flush)
1628    deflate_state *s;
1629    int flush;
1630{
1631    IPos hash_head = NIL; /* head of the hash chain */
1632    int bflush;           /* set if current block must be flushed */
1633
1634    for (;;) {
1635        /* Make sure that we always have enough lookahead, except
1636         * at the end of the input file. We need MAX_MATCH bytes
1637         * for the next match, plus MIN_MATCH bytes to insert the
1638         * string following the next match.
1639         */
1640        if (s->lookahead < MIN_LOOKAHEAD) {
1641            fill_window(s);
1642            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1643	        return need_more;
1644	    }
1645            if (s->lookahead == 0) break; /* flush the current block */
1646        }
1647
1648        /* Insert the string window[strstart .. strstart+2] in the
1649         * dictionary, and set hash_head to the head of the hash chain:
1650         */
1651        if (s->lookahead >= MIN_MATCH) {
1652            INSERT_STRING(s, s->strstart, hash_head);
1653        }
1654
1655        /* Find the longest match, discarding those <= prev_length.
1656         * At this point we have always match_length < MIN_MATCH
1657         */
1658        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1659            /* To simplify the code, we prevent matches with the string
1660             * of window index 0 (in particular we have to avoid a match
1661             * of the string with itself at the start of the input file).
1662             */
1663            if (s->strategy != Z_HUFFMAN_ONLY) {
1664                s->match_length = longest_match (s, hash_head);
1665            }
1666            /* longest_match() sets match_start */
1667        }
1668        if (s->match_length >= MIN_MATCH) {
1669            check_match(s, s->strstart, s->match_start, s->match_length);
1670
1671            bflush = _tr_tally(s, s->strstart - s->match_start,
1672                               s->match_length - MIN_MATCH);
1673
1674            s->lookahead -= s->match_length;
1675
1676            /* Insert new strings in the hash table only if the match length
1677             * is not too large. This saves time but degrades compression.
1678             */
1679            if (s->match_length <= s->max_insert_length &&
1680                s->lookahead >= MIN_MATCH) {
1681                s->match_length--; /* string at strstart already in hash table */
1682                do {
1683                    s->strstart++;
1684                    INSERT_STRING(s, s->strstart, hash_head);
1685                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1686                     * always MIN_MATCH bytes ahead.
1687                     */
1688                } while (--s->match_length != 0);
1689                s->strstart++;
1690            } else {
1691                s->strstart += s->match_length;
1692                s->match_length = 0;
1693                s->ins_h = s->window[s->strstart];
1694                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1695#if MIN_MATCH != 3
1696                Call UPDATE_HASH() MIN_MATCH-3 more times
1697#endif
1698                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1699                 * matter since it will be recomputed at next deflate call.
1700                 */
1701            }
1702        } else {
1703            /* No match, output a literal byte */
1704            Tracevv((stderr,"%c", s->window[s->strstart]));
1705            bflush = _tr_tally (s, 0, s->window[s->strstart]);
1706            s->lookahead--;
1707            s->strstart++;
1708        }
1709        if (bflush) FLUSH_BLOCK(s, 0);
1710    }
1711    FLUSH_BLOCK(s, flush == Z_FINISH);
1712    return flush == Z_FINISH ? finish_done : block_done;
1713}
1714
1715/* ===========================================================================
1716 * Same as above, but achieves better compression. We use a lazy
1717 * evaluation for matches: a match is finally adopted only if there is
1718 * no better match at the next window position.
1719 */
1720local block_state deflate_slow(s, flush)
1721    deflate_state *s;
1722    int flush;
1723{
1724    IPos hash_head = NIL;    /* head of hash chain */
1725    int bflush;              /* set if current block must be flushed */
1726
1727    /* Process the input block. */
1728    for (;;) {
1729        /* Make sure that we always have enough lookahead, except
1730         * at the end of the input file. We need MAX_MATCH bytes
1731         * for the next match, plus MIN_MATCH bytes to insert the
1732         * string following the next match.
1733         */
1734        if (s->lookahead < MIN_LOOKAHEAD) {
1735            fill_window(s);
1736            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1737	        return need_more;
1738	    }
1739            if (s->lookahead == 0) break; /* flush the current block */
1740        }
1741
1742        /* Insert the string window[strstart .. strstart+2] in the
1743         * dictionary, and set hash_head to the head of the hash chain:
1744         */
1745        if (s->lookahead >= MIN_MATCH) {
1746            INSERT_STRING(s, s->strstart, hash_head);
1747        }
1748
1749        /* Find the longest match, discarding those <= prev_length.
1750         */
1751        s->prev_length = s->match_length, s->prev_match = s->match_start;
1752        s->match_length = MIN_MATCH-1;
1753
1754        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1755            s->strstart - hash_head <= MAX_DIST(s)) {
1756            /* To simplify the code, we prevent matches with the string
1757             * of window index 0 (in particular we have to avoid a match
1758             * of the string with itself at the start of the input file).
1759             */
1760            if (s->strategy != Z_HUFFMAN_ONLY) {
1761                s->match_length = longest_match (s, hash_head);
1762            }
1763            /* longest_match() sets match_start */
1764
1765            if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1766                 (s->match_length == MIN_MATCH &&
1767                  s->strstart - s->match_start > TOO_FAR))) {
1768
1769                /* If prev_match is also MIN_MATCH, match_start is garbage
1770                 * but we will ignore the current match anyway.
1771                 */
1772                s->match_length = MIN_MATCH-1;
1773            }
1774        }
1775        /* If there was a match at the previous step and the current
1776         * match is not better, output the previous match:
1777         */
1778        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1779            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1780            /* Do not insert strings in hash table beyond this. */
1781
1782            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1783
1784            bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1785                               s->prev_length - MIN_MATCH);
1786
1787            /* Insert in hash table all strings up to the end of the match.
1788             * strstart-1 and strstart are already inserted. If there is not
1789             * enough lookahead, the last two strings are not inserted in
1790             * the hash table.
1791             */
1792            s->lookahead -= s->prev_length-1;
1793            s->prev_length -= 2;
1794            do {
1795                if (++s->strstart <= max_insert) {
1796                    INSERT_STRING(s, s->strstart, hash_head);
1797                }
1798            } while (--s->prev_length != 0);
1799            s->match_available = 0;
1800            s->match_length = MIN_MATCH-1;
1801            s->strstart++;
1802
1803            if (bflush) FLUSH_BLOCK(s, 0);
1804
1805        } else if (s->match_available) {
1806            /* If there was no match at the previous position, output a
1807             * single literal. If there was a match but the current match
1808             * is longer, truncate the previous match to a single literal.
1809             */
1810            Tracevv((stderr,"%c", s->window[s->strstart-1]));
1811            if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1812                FLUSH_BLOCK_ONLY(s, 0);
1813            }
1814            s->strstart++;
1815            s->lookahead--;
1816            if (s->strm->avail_out == 0) return need_more;
1817        } else {
1818            /* There is no previous match to compare with, wait for
1819             * the next step to decide.
1820             */
1821            s->match_available = 1;
1822            s->strstart++;
1823            s->lookahead--;
1824        }
1825    }
1826    Assert (flush != Z_NO_FLUSH, "no flush?");
1827    if (s->match_available) {
1828        Tracevv((stderr,"%c", s->window[s->strstart-1]));
1829        _tr_tally (s, 0, s->window[s->strstart-1]);
1830        s->match_available = 0;
1831    }
1832    FLUSH_BLOCK(s, flush == Z_FINISH);
1833    return flush == Z_FINISH ? finish_done : block_done;
1834}
1835/* --- deflate.c */
1836
1837/* +++ trees.c */
1838/* trees.c -- output deflated data using Huffman coding
1839 * Copyright (C) 1995-1996 Jean-loup Gailly
1840 * For conditions of distribution and use, see copyright notice in zlib.h
1841 */
1842
1843/*
1844 *  ALGORITHM
1845 *
1846 *      The "deflation" process uses several Huffman trees. The more
1847 *      common source values are represented by shorter bit sequences.
1848 *
1849 *      Each code tree is stored in a compressed form which is itself
1850 * a Huffman encoding of the lengths of all the code strings (in
1851 * ascending order by source values).  The actual code strings are
1852 * reconstructed from the lengths in the inflate process, as described
1853 * in the deflate specification.
1854 *
1855 *  REFERENCES
1856 *
1857 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1858 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1859 *
1860 *      Storer, James A.
1861 *          Data Compression:  Methods and Theory, pp. 49-50.
1862 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1863 *
1864 *      Sedgewick, R.
1865 *          Algorithms, p290.
1866 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1867 */
1868
1869/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1870
1871/* #include "deflate.h" */
1872
1873#ifdef DEBUG_ZLIB
1874#  include <ctype.h>
1875#endif
1876
1877/* ===========================================================================
1878 * Constants
1879 */
1880
1881#define MAX_BL_BITS 7
1882/* Bit length codes must not exceed MAX_BL_BITS bits */
1883
1884#define END_BLOCK 256
1885/* end of block literal code */
1886
1887#define REP_3_6      16
1888/* repeat previous bit length 3-6 times (2 bits of repeat count) */
1889
1890#define REPZ_3_10    17
1891/* repeat a zero length 3-10 times  (3 bits of repeat count) */
1892
1893#define REPZ_11_138  18
1894/* repeat a zero length 11-138 times  (7 bits of repeat count) */
1895
1896local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1897   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1898
1899local int extra_dbits[D_CODES] /* extra bits for each distance code */
1900   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1901
1902local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1903   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1904
1905local uch bl_order[BL_CODES]
1906   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1907/* The lengths of the bit length codes are sent in order of decreasing
1908 * probability, to avoid transmitting the lengths for unused bit length codes.
1909 */
1910
1911#define Buf_size (8 * 2*sizeof(char))
1912/* Number of bits used within bi_buf. (bi_buf might be implemented on
1913 * more than 16 bits on some systems.)
1914 */
1915
1916/* ===========================================================================
1917 * Local data. These are initialized only once.
1918 */
1919
1920local ct_data static_ltree[L_CODES+2];
1921/* The static literal tree. Since the bit lengths are imposed, there is no
1922 * need for the L_CODES extra codes used during heap construction. However
1923 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1924 * below).
1925 */
1926
1927local ct_data static_dtree[D_CODES];
1928/* The static distance tree. (Actually a trivial tree since all codes use
1929 * 5 bits.)
1930 */
1931
1932local uch dist_code[512];
1933/* distance codes. The first 256 values correspond to the distances
1934 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1935 * the 15 bit distances.
1936 */
1937
1938local uch length_code[MAX_MATCH-MIN_MATCH+1];
1939/* length code for each normalized match length (0 == MIN_MATCH) */
1940
1941local int base_length[LENGTH_CODES];
1942/* First normalized length for each code (0 = MIN_MATCH) */
1943
1944local int base_dist[D_CODES];
1945/* First normalized distance for each code (0 = distance of 1) */
1946
1947struct static_tree_desc_s {
1948    ct_data *static_tree;        /* static tree or NULL */
1949    intf    *extra_bits;         /* extra bits for each code or NULL */
1950    int     extra_base;          /* base index for extra_bits */
1951    int     elems;               /* max number of elements in the tree */
1952    int     max_length;          /* max bit length for the codes */
1953};
1954
1955local static_tree_desc  static_l_desc =
1956{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1957
1958local static_tree_desc  static_d_desc =
1959{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1960
1961local static_tree_desc  static_bl_desc =
1962{(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1963
1964/* ===========================================================================
1965 * Local (static) routines in this file.
1966 */
1967
1968local void tr_static_init OF((void));
1969local void init_block     OF((deflate_state *s));
1970local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1971local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1972local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1973local void build_tree     OF((deflate_state *s, tree_desc *desc));
1974local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1975local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1976local int  build_bl_tree  OF((deflate_state *s));
1977local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1978                              int blcodes));
1979local void compress_block OF((deflate_state *s, ct_data *ltree,
1980                              ct_data *dtree));
1981local void set_data_type  OF((deflate_state *s));
1982local unsigned bi_reverse OF((unsigned value, int length));
1983local void bi_windup      OF((deflate_state *s));
1984local void bi_flush       OF((deflate_state *s));
1985local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1986                              int header));
1987
1988#ifndef DEBUG_ZLIB
1989#  define send_code(s, c, tree) send_bits(s, tree[(c)].Code, tree[(c)].Len)
1990   /* Send a code of the given tree. c and tree must not have side effects */
1991
1992#else /* DEBUG_ZLIB */
1993#  define send_code(s, c, tree) \
1994     { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1995       send_bits(s, tree[c].Code, tree[c].Len); }
1996#endif
1997
1998#define d_code(dist) \
1999   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
2000/* Mapping from a distance to a distance code. dist is the distance - 1 and
2001 * must not have side effects. dist_code[256] and dist_code[257] are never
2002 * used.
2003 */
2004
2005/* ===========================================================================
2006 * Output a short LSB first on the stream.
2007 * IN assertion: there is enough room in pendingBuf.
2008 */
2009#define put_short(s, w) { \
2010    put_byte(s, (uch)((w) & 0xff)); \
2011    put_byte(s, (uch)((ush)(w) >> 8)); \
2012}
2013
2014/* ===========================================================================
2015 * Send a value on a given number of bits.
2016 * IN assertion: length <= 16 and value fits in length bits.
2017 */
2018#ifdef DEBUG_ZLIB
2019local void send_bits      OF((deflate_state *s, int value, int length));
2020
2021local void send_bits(s, value, length)
2022    deflate_state *s;
2023    int value;  /* value to send */
2024    int length; /* number of bits */
2025{
2026    Tracevv((stderr," l %2d v %4x ", length, value));
2027    Assert(length > 0 && length <= 15, "invalid length");
2028    s->bits_sent += (ulg)length;
2029
2030    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2031     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2032     * unused bits in value.
2033     */
2034    if (s->bi_valid > (int)Buf_size - length) {
2035        s->bi_buf |= (value << s->bi_valid);
2036        put_short(s, s->bi_buf);
2037        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2038        s->bi_valid += length - Buf_size;
2039    } else {
2040        s->bi_buf |= value << s->bi_valid;
2041        s->bi_valid += length;
2042    }
2043}
2044#else /* !DEBUG_ZLIB */
2045
2046#define send_bits(s, value, length) \
2047{ int len = (length);\
2048  if ((s)->bi_valid > (int)Buf_size - len) {\
2049    int val = (value);\
2050    (s)->bi_buf |= (val << (s)->bi_valid);\
2051    put_short((s), (s)->bi_buf);\
2052    (s)->bi_buf = (ush)val >> (Buf_size - (s)->bi_valid);\
2053    (s)->bi_valid += len - Buf_size;\
2054  } else {\
2055    (s)->bi_buf |= (value) << (s)->bi_valid;\
2056    (s)->bi_valid += len;\
2057  }\
2058}
2059#endif /* DEBUG_ZLIB */
2060
2061/* the arguments must not have side effects */
2062
2063/* ===========================================================================
2064 * Initialize the various 'constant' tables. In a multi-threaded environment,
2065 * this function may be called by two threads concurrently, but this is
2066 * harmless since both invocations do exactly the same thing.
2067 */
2068local void tr_static_init()
2069{
2070    static int static_init_done = 0;
2071    int n;        /* iterates over tree elements */
2072    int bits;     /* bit counter */
2073    int length;   /* length value */
2074    int code;     /* code value */
2075    int dist;     /* distance index */
2076    ush bl_count[MAX_BITS+1];
2077    /* number of codes at each bit length for an optimal tree */
2078
2079    if (static_init_done) return;
2080
2081    /* Initialize the mapping length (0..255) -> length code (0..28) */
2082    length = 0;
2083    for (code = 0; code < LENGTH_CODES-1; code++) {
2084        base_length[code] = length;
2085        for (n = 0; n < (1<<extra_lbits[code]); n++) {
2086            length_code[length++] = (uch)code;
2087        }
2088    }
2089    Assert (length == 256, "tr_static_init: length != 256");
2090    /* Note that the length 255 (match length 258) can be represented
2091     * in two different ways: code 284 + 5 bits or code 285, so we
2092     * overwrite length_code[255] to use the best encoding:
2093     */
2094    length_code[length-1] = (uch)code;
2095
2096    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2097    dist = 0;
2098    for (code = 0 ; code < 16; code++) {
2099        base_dist[code] = dist;
2100        for (n = 0; n < (1<<extra_dbits[code]); n++) {
2101            dist_code[dist++] = (uch)code;
2102        }
2103    }
2104    Assert (dist == 256, "tr_static_init: dist != 256");
2105    dist >>= 7; /* from now on, all distances are divided by 128 */
2106    for ( ; code < D_CODES; code++) {
2107        base_dist[code] = dist << 7;
2108        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2109            dist_code[256 + dist++] = (uch)code;
2110        }
2111    }
2112    Assert (dist == 256, "tr_static_init: 256+dist != 512");
2113
2114    /* Construct the codes of the static literal tree */
2115    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2116    n = 0;
2117    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2118    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2119    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2120    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2121    /* Codes 286 and 287 do not exist, but we must include them in the
2122     * tree construction to get a canonical Huffman tree (longest code
2123     * all ones)
2124     */
2125    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2126
2127    /* The static distance tree is trivial: */
2128    for (n = 0; n < D_CODES; n++) {
2129        static_dtree[n].Len = 5;
2130        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2131    }
2132    static_init_done = 1;
2133}
2134
2135/* ===========================================================================
2136 * Initialize the tree data structures for a new zlib stream.
2137 */
2138void _tr_init(s)
2139    deflate_state *s;
2140{
2141    tr_static_init();
2142
2143    s->compressed_len = 0L;
2144
2145    s->l_desc.dyn_tree = s->dyn_ltree;
2146    s->l_desc.stat_desc = &static_l_desc;
2147
2148    s->d_desc.dyn_tree = s->dyn_dtree;
2149    s->d_desc.stat_desc = &static_d_desc;
2150
2151    s->bl_desc.dyn_tree = s->bl_tree;
2152    s->bl_desc.stat_desc = &static_bl_desc;
2153
2154    s->bi_buf = 0;
2155    s->bi_valid = 0;
2156    s->last_eob_len = 8; /* enough lookahead for inflate */
2157#ifdef DEBUG_ZLIB
2158    s->bits_sent = 0L;
2159#endif
2160
2161    /* Initialize the first block of the first file: */
2162    init_block(s);
2163}
2164
2165/* ===========================================================================
2166 * Initialize a new block.
2167 */
2168local void init_block(s)
2169    deflate_state *s;
2170{
2171    int n; /* iterates over tree elements */
2172
2173    /* Initialize the trees. */
2174    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2175    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2176    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2177
2178    s->dyn_ltree[END_BLOCK].Freq = 1;
2179    s->opt_len = s->static_len = 0L;
2180    s->last_lit = s->matches = 0;
2181}
2182
2183#define SMALLEST 1
2184/* Index within the heap array of least frequent node in the Huffman tree */
2185
2186
2187/* ===========================================================================
2188 * Remove the smallest element from the heap and recreate the heap with
2189 * one less element. Updates heap and heap_len.
2190 */
2191#define pqremove(s, tree, top) \
2192{\
2193    top = s->heap[SMALLEST]; \
2194    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2195    pqdownheap(s, tree, SMALLEST); \
2196}
2197
2198/* ===========================================================================
2199 * Compares to subtrees, using the tree depth as tie breaker when
2200 * the subtrees have equal frequency. This minimizes the worst case length.
2201 */
2202#define smaller(tree, n, m, depth) \
2203   (tree[n].Freq < tree[m].Freq || \
2204   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2205
2206/* ===========================================================================
2207 * Restore the heap property by moving down the tree starting at node k,
2208 * exchanging a node with the smallest of its two sons if necessary, stopping
2209 * when the heap property is re-established (each father smaller than its
2210 * two sons).
2211 */
2212local void pqdownheap(s, tree, k)
2213    deflate_state *s;
2214    ct_data *tree;  /* the tree to restore */
2215    int k;               /* node to move down */
2216{
2217    int v = s->heap[k];
2218    int j = k << 1;  /* left son of k */
2219    while (j <= s->heap_len) {
2220        /* Set j to the smallest of the two sons: */
2221        if (j < s->heap_len &&
2222            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2223            j++;
2224        }
2225        /* Exit if v is smaller than both sons */
2226        if (smaller(tree, v, s->heap[j], s->depth)) break;
2227
2228        /* Exchange v with the smallest son */
2229        s->heap[k] = s->heap[j];  k = j;
2230
2231        /* And continue down the tree, setting j to the left son of k */
2232        j <<= 1;
2233    }
2234    s->heap[k] = v;
2235}
2236
2237/* ===========================================================================
2238 * Compute the optimal bit lengths for a tree and update the total bit length
2239 * for the current block.
2240 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2241 *    above are the tree nodes sorted by increasing frequency.
2242 * OUT assertions: the field len is set to the optimal bit length, the
2243 *     array bl_count contains the frequencies for each bit length.
2244 *     The length opt_len is updated; static_len is also updated if stree is
2245 *     not null.
2246 */
2247local void gen_bitlen(s, desc)
2248    deflate_state *s;
2249    tree_desc *desc;    /* the tree descriptor */
2250{
2251    ct_data *tree  = desc->dyn_tree;
2252    int max_code   = desc->max_code;
2253    ct_data *stree = desc->stat_desc->static_tree;
2254    intf *extra    = desc->stat_desc->extra_bits;
2255    int base       = desc->stat_desc->extra_base;
2256    int max_length = desc->stat_desc->max_length;
2257    int h;              /* heap index */
2258    int n, m;           /* iterate over the tree elements */
2259    int bits;           /* bit length */
2260    int xbits;          /* extra bits */
2261    ush f;              /* frequency */
2262    int overflow = 0;   /* number of elements with bit length too large */
2263
2264    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2265
2266    /* In a first pass, compute the optimal bit lengths (which may
2267     * overflow in the case of the bit length tree).
2268     */
2269    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2270
2271    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2272        n = s->heap[h];
2273        bits = tree[tree[n].Dad].Len + 1;
2274        if (bits > max_length) bits = max_length, overflow++;
2275        tree[n].Len = (ush)bits;
2276        /* We overwrite tree[n].Dad which is no longer needed */
2277
2278        if (n > max_code) continue; /* not a leaf node */
2279
2280        s->bl_count[bits]++;
2281        xbits = 0;
2282        if (n >= base) xbits = extra[n-base];
2283        f = tree[n].Freq;
2284        s->opt_len += (ulg)f * (bits + xbits);
2285        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2286    }
2287    if (overflow == 0) return;
2288
2289    Trace((stderr,"\nbit length overflow\n"));
2290    /* This happens for example on obj2 and pic of the Calgary corpus */
2291
2292    /* Find the first bit length which could increase: */
2293    do {
2294        bits = max_length-1;
2295        while (s->bl_count[bits] == 0) bits--;
2296        s->bl_count[bits]--;      /* move one leaf down the tree */
2297        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2298        s->bl_count[max_length]--;
2299        /* The brother of the overflow item also moves one step up,
2300         * but this does not affect bl_count[max_length]
2301         */
2302        overflow -= 2;
2303    } while (overflow > 0);
2304
2305    /* Now recompute all bit lengths, scanning in increasing frequency.
2306     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2307     * lengths instead of fixing only the wrong ones. This idea is taken
2308     * from 'ar' written by Haruhiko Okumura.)
2309     */
2310    for (bits = max_length; bits != 0; bits--) {
2311        n = s->bl_count[bits];
2312        while (n != 0) {
2313            m = s->heap[--h];
2314            if (m > max_code) continue;
2315            if (tree[m].Len != (unsigned) bits) {
2316                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2317                s->opt_len += ((long)bits - (long)tree[m].Len)
2318                              *(long)tree[m].Freq;
2319                tree[m].Len = (ush)bits;
2320            }
2321            n--;
2322        }
2323    }
2324}
2325
2326/* ===========================================================================
2327 * Generate the codes for a given tree and bit counts (which need not be
2328 * optimal).
2329 * IN assertion: the array bl_count contains the bit length statistics for
2330 * the given tree and the field len is set for all tree elements.
2331 * OUT assertion: the field code is set for all tree elements of non
2332 *     zero code length.
2333 */
2334local void gen_codes (tree, max_code, bl_count)
2335    ct_data *tree;             /* the tree to decorate */
2336    int max_code;              /* largest code with non zero frequency */
2337    ushf *bl_count;            /* number of codes at each bit length */
2338{
2339    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2340    ush code = 0;              /* running code value */
2341    int bits;                  /* bit index */
2342    int n;                     /* code index */
2343
2344    /* The distribution counts are first used to generate the code values
2345     * without bit reversal.
2346     */
2347    for (bits = 1; bits <= MAX_BITS; bits++) {
2348        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2349    }
2350    /* Check that the bit counts in bl_count are consistent. The last code
2351     * must be all ones.
2352     */
2353    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2354            "inconsistent bit counts");
2355    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2356
2357    for (n = 0;  n <= max_code; n++) {
2358        int len = tree[n].Len;
2359        if (len == 0) continue;
2360        /* Now reverse the bits */
2361        tree[n].Code = bi_reverse(next_code[len]++, len);
2362
2363        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2364             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2365    }
2366}
2367
2368/* ===========================================================================
2369 * Construct one Huffman tree and assigns the code bit strings and lengths.
2370 * Update the total bit length for the current block.
2371 * IN assertion: the field freq is set for all tree elements.
2372 * OUT assertions: the fields len and code are set to the optimal bit length
2373 *     and corresponding code. The length opt_len is updated; static_len is
2374 *     also updated if stree is not null. The field max_code is set.
2375 */
2376local void build_tree(s, desc)
2377    deflate_state *s;
2378    tree_desc *desc; /* the tree descriptor */
2379{
2380    ct_data *tree   = desc->dyn_tree;
2381    ct_data *stree  = desc->stat_desc->static_tree;
2382    int elems       = desc->stat_desc->elems;
2383    int n, m;          /* iterate over heap elements */
2384    int max_code = -1; /* largest code with non zero frequency */
2385    int node;          /* new node being created */
2386
2387    /* Construct the initial heap, with least frequent element in
2388     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2389     * heap[0] is not used.
2390     */
2391    s->heap_len = 0, s->heap_max = HEAP_SIZE;
2392
2393    for (n = 0; n < elems; n++) {
2394        if (tree[n].Freq != 0) {
2395            s->heap[++(s->heap_len)] = max_code = n;
2396            s->depth[n] = 0;
2397        } else {
2398            tree[n].Len = 0;
2399        }
2400    }
2401
2402    /* The pkzip format requires that at least one distance code exists,
2403     * and that at least one bit should be sent even if there is only one
2404     * possible code. So to avoid special checks later on we force at least
2405     * two codes of non zero frequency.
2406     */
2407    while (s->heap_len < 2) {
2408        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2409        tree[node].Freq = 1;
2410        s->depth[node] = 0;
2411        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2412        /* node is 0 or 1 so it does not have extra bits */
2413    }
2414    desc->max_code = max_code;
2415
2416    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2417     * establish sub-heaps of increasing lengths:
2418     */
2419    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2420
2421    /* Construct the Huffman tree by repeatedly combining the least two
2422     * frequent nodes.
2423     */
2424    node = elems;              /* next internal node of the tree */
2425    do {
2426        pqremove(s, tree, n);  /* n = node of least frequency */
2427        m = s->heap[SMALLEST]; /* m = node of next least frequency */
2428
2429        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2430        s->heap[--(s->heap_max)] = m;
2431
2432        /* Create a new node father of n and m */
2433        tree[node].Freq = tree[n].Freq + tree[m].Freq;
2434        s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2435        tree[n].Dad = tree[m].Dad = (ush)node;
2436#ifdef DUMP_BL_TREE
2437        if (tree == s->bl_tree) {
2438            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2439                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2440        }
2441#endif
2442        /* and insert the new node in the heap */
2443        s->heap[SMALLEST] = node++;
2444        pqdownheap(s, tree, SMALLEST);
2445
2446    } while (s->heap_len >= 2);
2447
2448    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2449
2450    /* At this point, the fields freq and dad are set. We can now
2451     * generate the bit lengths.
2452     */
2453    gen_bitlen(s, (tree_desc *)desc);
2454
2455    /* The field len is now set, we can generate the bit codes */
2456    gen_codes ((ct_data *)tree, max_code, s->bl_count);
2457}
2458
2459/* ===========================================================================
2460 * Scan a literal or distance tree to determine the frequencies of the codes
2461 * in the bit length tree.
2462 */
2463local void scan_tree (s, tree, max_code)
2464    deflate_state *s;
2465    ct_data *tree;   /* the tree to be scanned */
2466    int max_code;    /* and its largest code of non zero frequency */
2467{
2468    int n;                     /* iterates over all tree elements */
2469    int prevlen = -1;          /* last emitted length */
2470    int curlen;                /* length of current code */
2471    int nextlen = tree[0].Len; /* length of next code */
2472    int count = 0;             /* repeat count of the current code */
2473    int max_count = 7;         /* max repeat count */
2474    int min_count = 4;         /* min repeat count */
2475
2476    if (nextlen == 0) max_count = 138, min_count = 3;
2477    tree[max_code+1].Len = (ush)0xffff; /* guard */
2478
2479    for (n = 0; n <= max_code; n++) {
2480        curlen = nextlen; nextlen = tree[n+1].Len;
2481        if (++count < max_count && curlen == nextlen) {
2482            continue;
2483        } else if (count < min_count) {
2484            s->bl_tree[curlen].Freq += count;
2485        } else if (curlen != 0) {
2486            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2487            s->bl_tree[REP_3_6].Freq++;
2488        } else if (count <= 10) {
2489            s->bl_tree[REPZ_3_10].Freq++;
2490        } else {
2491            s->bl_tree[REPZ_11_138].Freq++;
2492        }
2493        count = 0; prevlen = curlen;
2494        if (nextlen == 0) {
2495            max_count = 138, min_count = 3;
2496        } else if (curlen == nextlen) {
2497            max_count = 6, min_count = 3;
2498        } else {
2499            max_count = 7, min_count = 4;
2500        }
2501    }
2502}
2503
2504/* ===========================================================================
2505 * Send a literal or distance tree in compressed form, using the codes in
2506 * bl_tree.
2507 */
2508local void send_tree (s, tree, max_code)
2509    deflate_state *s;
2510    ct_data *tree; /* the tree to be scanned */
2511    int max_code;       /* and its largest code of non zero frequency */
2512{
2513    int n;                     /* iterates over all tree elements */
2514    int prevlen = -1;          /* last emitted length */
2515    int curlen;                /* length of current code */
2516    int nextlen = tree[0].Len; /* length of next code */
2517    int count = 0;             /* repeat count of the current code */
2518    int max_count = 7;         /* max repeat count */
2519    int min_count = 4;         /* min repeat count */
2520
2521    /* tree[max_code+1].Len = -1; */  /* guard already set */
2522    if (nextlen == 0) max_count = 138, min_count = 3;
2523
2524    for (n = 0; n <= max_code; n++) {
2525        curlen = nextlen; nextlen = tree[n+1].Len;
2526        if (++count < max_count && curlen == nextlen) {
2527            continue;
2528        } else if (count < min_count) {
2529            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2530
2531        } else if (curlen != 0) {
2532            if (curlen != prevlen) {
2533                send_code(s, curlen, s->bl_tree); count--;
2534            }
2535            Assert(count >= 3 && count <= 6, " 3_6?");
2536            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2537
2538        } else if (count <= 10) {
2539            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2540
2541        } else {
2542            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2543        }
2544        count = 0; prevlen = curlen;
2545        if (nextlen == 0) {
2546            max_count = 138, min_count = 3;
2547        } else if (curlen == nextlen) {
2548            max_count = 6, min_count = 3;
2549        } else {
2550            max_count = 7, min_count = 4;
2551        }
2552    }
2553}
2554
2555/* ===========================================================================
2556 * Construct the Huffman tree for the bit lengths and return the index in
2557 * bl_order of the last bit length code to send.
2558 */
2559local int build_bl_tree(s)
2560    deflate_state *s;
2561{
2562    int max_blindex;  /* index of last bit length code of non zero freq */
2563
2564    /* Determine the bit length frequencies for literal and distance trees */
2565    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2566    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2567
2568    /* Build the bit length tree: */
2569    build_tree(s, (tree_desc *)(&(s->bl_desc)));
2570    /* opt_len now includes the length of the tree representations, except
2571     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2572     */
2573
2574    /* Determine the number of bit length codes to send. The pkzip format
2575     * requires that at least 4 bit length codes be sent. (appnote.txt says
2576     * 3 but the actual value used is 4.)
2577     */
2578    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2579        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2580    }
2581    /* Update opt_len to include the bit length tree and counts */
2582    s->opt_len += 3*(max_blindex+1) + 5+5+4;
2583    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2584            s->opt_len, s->static_len));
2585
2586    return max_blindex;
2587}
2588
2589/* ===========================================================================
2590 * Send the header for a block using dynamic Huffman trees: the counts, the
2591 * lengths of the bit length codes, the literal tree and the distance tree.
2592 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2593 */
2594local void send_all_trees(s, lcodes, dcodes, blcodes)
2595    deflate_state *s;
2596    int lcodes, dcodes, blcodes; /* number of codes for each tree */
2597{
2598    int rank;                    /* index in bl_order */
2599
2600    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2601    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2602            "too many codes");
2603    Tracev((stderr, "\nbl counts: "));
2604    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2605    send_bits(s, dcodes-1,   5);
2606    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2607    for (rank = 0; rank < blcodes; rank++) {
2608        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2609        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2610    }
2611    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2612
2613    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2614    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2615
2616    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2617    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2618}
2619
2620/* ===========================================================================
2621 * Send a stored block
2622 */
2623void _tr_stored_block(s, buf, stored_len, eof)
2624    deflate_state *s;
2625    charf *buf;       /* input block */
2626    ulg stored_len;   /* length of input block */
2627    int eof;          /* true if this is the last block for a file */
2628{
2629    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2630    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2631    s->compressed_len += (stored_len + 4) << 3;
2632
2633    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2634}
2635
2636/* Send just the `stored block' type code without any length bytes or data.
2637 */
2638void _tr_stored_type_only(s)
2639    deflate_state *s;
2640{
2641    send_bits(s, (STORED_BLOCK << 1), 3);
2642    bi_windup(s);
2643    s->compressed_len = (s->compressed_len + 3) & ~7L;
2644}
2645
2646
2647/* ===========================================================================
2648 * Send one empty static block to give enough lookahead for inflate.
2649 * This takes 10 bits, of which 7 may remain in the bit buffer.
2650 * The current inflate code requires 9 bits of lookahead. If the
2651 * last two codes for the previous block (real code plus EOB) were coded
2652 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2653 * the last real code. In this case we send two empty static blocks instead
2654 * of one. (There are no problems if the previous block is stored or fixed.)
2655 * To simplify the code, we assume the worst case of last real code encoded
2656 * on one bit only.
2657 */
2658void _tr_align(s)
2659    deflate_state *s;
2660{
2661    send_bits(s, STATIC_TREES<<1, 3);
2662    send_code(s, END_BLOCK, static_ltree);
2663    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2664    bi_flush(s);
2665    /* Of the 10 bits for the empty block, we have already sent
2666     * (10 - bi_valid) bits. The lookahead for the last real code (before
2667     * the EOB of the previous block) was thus at least one plus the length
2668     * of the EOB plus what we have just sent of the empty static block.
2669     */
2670    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2671        send_bits(s, STATIC_TREES<<1, 3);
2672        send_code(s, END_BLOCK, static_ltree);
2673        s->compressed_len += 10L;
2674        bi_flush(s);
2675    }
2676    s->last_eob_len = 7;
2677}
2678
2679/* ===========================================================================
2680 * Determine the best encoding for the current block: dynamic trees, static
2681 * trees or store, and output the encoded block to the zip file. This function
2682 * returns the total compressed length for the file so far.
2683 */
2684ulg _tr_flush_block(s, buf, stored_len, eof)
2685    deflate_state *s;
2686    charf *buf;       /* input block, or NULL if too old */
2687    ulg stored_len;   /* length of input block */
2688    int eof;          /* true if this is the last block for a file */
2689{
2690    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2691    int max_blindex = 0;  /* index of last bit length code of non zero freq */
2692
2693    /* Build the Huffman trees unless a stored block is forced */
2694    if (s->level > 0) {
2695
2696	 /* Check if the file is ascii or binary */
2697	if (s->data_type == Z_UNKNOWN) set_data_type(s);
2698
2699	/* Construct the literal and distance trees */
2700	build_tree(s, (tree_desc *)(&(s->l_desc)));
2701	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2702		s->static_len));
2703
2704	build_tree(s, (tree_desc *)(&(s->d_desc)));
2705	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2706		s->static_len));
2707	/* At this point, opt_len and static_len are the total bit lengths of
2708	 * the compressed block data, excluding the tree representations.
2709	 */
2710
2711	/* Build the bit length tree for the above two trees, and get the index
2712	 * in bl_order of the last bit length code to send.
2713	 */
2714	max_blindex = build_bl_tree(s);
2715
2716	/* Determine the best encoding. Compute first the block length in bytes*/
2717	opt_lenb = (s->opt_len+3+7)>>3;
2718	static_lenb = (s->static_len+3+7)>>3;
2719
2720	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2721		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2722		s->last_lit));
2723
2724	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2725
2726    } else {
2727        Assert(buf != (char*)0, "lost buf");
2728	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2729    }
2730
2731    /* If compression failed and this is the first and last block,
2732     * and if the .zip file can be seeked (to rewrite the local header),
2733     * the whole file is transformed into a stored file:
2734     */
2735#ifdef STORED_FILE_OK
2736#  ifdef FORCE_STORED_FILE
2737    if (eof && s->compressed_len == 0L) { /* force stored file */
2738#  else
2739    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2740#  endif
2741        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2742        if (buf == (charf*)0) error ("block vanished");
2743
2744        copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2745        s->compressed_len = stored_len << 3;
2746        s->method = STORED;
2747    } else
2748#endif /* STORED_FILE_OK */
2749
2750#ifdef FORCE_STORED
2751    if (buf != (char*)0) { /* force stored block */
2752#else
2753    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2754                       /* 4: two words for the lengths */
2755#endif
2756        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2757         * Otherwise we can't have processed more than WSIZE input bytes since
2758         * the last block flush, because compression would have been
2759         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2760         * transform a block into a stored block.
2761         */
2762        _tr_stored_block(s, buf, stored_len, eof);
2763
2764#ifdef FORCE_STATIC
2765    } else if (static_lenb >= 0) { /* force static trees */
2766#else
2767    } else if (static_lenb == opt_lenb) {
2768#endif
2769        send_bits(s, (STATIC_TREES<<1)+eof, 3);
2770        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2771        s->compressed_len += 3 + s->static_len;
2772    } else {
2773        send_bits(s, (DYN_TREES<<1)+eof, 3);
2774        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2775                       max_blindex+1);
2776        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2777        s->compressed_len += 3 + s->opt_len;
2778    }
2779    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2780    init_block(s);
2781
2782    if (eof) {
2783        bi_windup(s);
2784        s->compressed_len += 7;  /* align on byte boundary */
2785    }
2786    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2787           s->compressed_len-7*eof));
2788
2789    return s->compressed_len >> 3;
2790}
2791
2792/* ===========================================================================
2793 * Save the match info and tally the frequency counts. Return true if
2794 * the current block must be flushed.
2795 */
2796int _tr_tally (s, dist, lc)
2797    deflate_state *s;
2798    unsigned dist;  /* distance of matched string */
2799    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2800{
2801    s->d_buf[s->last_lit] = (ush)dist;
2802    s->l_buf[s->last_lit++] = (uch)lc;
2803    if (dist == 0) {
2804        /* lc is the unmatched char */
2805        s->dyn_ltree[lc].Freq++;
2806    } else {
2807        s->matches++;
2808        /* Here, lc is the match length - MIN_MATCH */
2809        dist--;             /* dist = match distance - 1 */
2810        Assert((ush)dist < (ush)MAX_DIST(s) &&
2811               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2812               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
2813
2814        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2815        s->dyn_dtree[d_code(dist)].Freq++;
2816    }
2817
2818    /* Try to guess if it is profitable to stop the current block here */
2819    if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2820        /* Compute an upper bound for the compressed length */
2821        ulg out_length = (ulg)s->last_lit*8L;
2822        ulg in_length = (ulg)((long)s->strstart - s->block_start);
2823        int dcode;
2824        for (dcode = 0; dcode < D_CODES; dcode++) {
2825            out_length += (ulg)s->dyn_dtree[dcode].Freq *
2826                (5L+extra_dbits[dcode]);
2827        }
2828        out_length >>= 3;
2829        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2830               s->last_lit, in_length, out_length,
2831               100L - out_length*100L/in_length));
2832        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2833    }
2834    return (s->last_lit == s->lit_bufsize-1);
2835    /* We avoid equality with lit_bufsize because of wraparound at 64K
2836     * on 16 bit machines and because stored blocks are restricted to
2837     * 64K-1 bytes.
2838     */
2839}
2840
2841/* ===========================================================================
2842 * Send the block data compressed using the given Huffman trees
2843 */
2844local void compress_block(s, ltree, dtree)
2845    deflate_state *s;
2846    ct_data *ltree; /* literal tree */
2847    ct_data *dtree; /* distance tree */
2848{
2849    unsigned dist;      /* distance of matched string */
2850    int lc;             /* match length or unmatched char (if dist == 0) */
2851    unsigned lx = 0;    /* running index in l_buf */
2852    unsigned code;      /* the code to send */
2853    int extra;          /* number of extra bits to send */
2854
2855    if (s->last_lit != 0) do {
2856        dist = s->d_buf[lx];
2857        lc = s->l_buf[lx++];
2858        if (dist == 0) {
2859            send_code(s, lc, ltree); /* send a literal byte */
2860            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2861        } else {
2862            /* Here, lc is the match length - MIN_MATCH */
2863            code = length_code[lc];
2864            send_code(s, code+LITERALS+1, ltree); /* send the length code */
2865            extra = extra_lbits[code];
2866            if (extra != 0) {
2867                lc -= base_length[code];
2868                send_bits(s, lc, extra);       /* send the extra length bits */
2869            }
2870            dist--; /* dist is now the match distance - 1 */
2871            code = d_code(dist);
2872            Assert (code < D_CODES, "bad d_code");
2873
2874            send_code(s, code, dtree);       /* send the distance code */
2875            extra = extra_dbits[code];
2876            if (extra != 0) {
2877                dist -= base_dist[code];
2878                send_bits(s, dist, extra);   /* send the extra distance bits */
2879            }
2880        } /* literal or match pair ? */
2881
2882        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2883        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2884
2885    } while (lx < s->last_lit);
2886
2887    send_code(s, END_BLOCK, ltree);
2888    s->last_eob_len = ltree[END_BLOCK].Len;
2889}
2890
2891/* ===========================================================================
2892 * Set the data type to ASCII or BINARY, using a crude approximation:
2893 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2894 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2895 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2896 */
2897local void set_data_type(s)
2898    deflate_state *s;
2899{
2900    int n = 0;
2901    unsigned ascii_freq = 0;
2902    unsigned bin_freq = 0;
2903    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2904    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2905    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2906    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2907}
2908
2909/* ===========================================================================
2910 * Reverse the first len bits of a code, using straightforward code (a faster
2911 * method would use a table)
2912 * IN assertion: 1 <= len <= 15
2913 */
2914local unsigned bi_reverse(code, len)
2915    unsigned code; /* the value to invert */
2916    int len;       /* its bit length */
2917{
2918    register unsigned res = 0;
2919    do {
2920        res |= code & 1;
2921        code >>= 1, res <<= 1;
2922    } while (--len > 0);
2923    return res >> 1;
2924}
2925
2926/* ===========================================================================
2927 * Flush the bit buffer, keeping at most 7 bits in it.
2928 */
2929local void bi_flush(s)
2930    deflate_state *s;
2931{
2932    if (s->bi_valid == 16) {
2933        put_short(s, s->bi_buf);
2934        s->bi_buf = 0;
2935        s->bi_valid = 0;
2936    } else if (s->bi_valid >= 8) {
2937        put_byte(s, (Byte)s->bi_buf);
2938        s->bi_buf >>= 8;
2939        s->bi_valid -= 8;
2940    }
2941}
2942
2943/* ===========================================================================
2944 * Flush the bit buffer and align the output on a byte boundary
2945 */
2946local void bi_windup(s)
2947    deflate_state *s;
2948{
2949    if (s->bi_valid > 8) {
2950        put_short(s, s->bi_buf);
2951    } else if (s->bi_valid > 0) {
2952        put_byte(s, (Byte)s->bi_buf);
2953    }
2954    s->bi_buf = 0;
2955    s->bi_valid = 0;
2956#ifdef DEBUG_ZLIB
2957    s->bits_sent = (s->bits_sent+7) & ~7;
2958#endif
2959}
2960
2961/* ===========================================================================
2962 * Copy a stored block, storing first the length and its
2963 * one's complement if requested.
2964 */
2965local void copy_block(s, buf, len, header)
2966    deflate_state *s;
2967    charf    *buf;    /* the input data */
2968    unsigned len;     /* its length */
2969    int      header;  /* true if block header must be written */
2970{
2971    bi_windup(s);        /* align on byte boundary */
2972    s->last_eob_len = 8; /* enough lookahead for inflate */
2973
2974    if (header) {
2975        put_short(s, (ush)len);
2976        put_short(s, (ush)~len);
2977#ifdef DEBUG_ZLIB
2978        s->bits_sent += 2*16;
2979#endif
2980    }
2981#ifdef DEBUG_ZLIB
2982    s->bits_sent += (ulg)len<<3;
2983#endif
2984    /* bundle up the put_byte(s, *buf++) calls */
2985    zmemcpy(&s->pending_buf[s->pending], buf, len);
2986    s->pending += len;
2987}
2988/* --- trees.c */
2989
2990/* +++ inflate.c */
2991/* inflate.c -- zlib interface to inflate modules
2992 * Copyright (C) 1995-1996 Mark Adler
2993 * For conditions of distribution and use, see copyright notice in zlib.h
2994 */
2995
2996/* #include "zutil.h" */
2997
2998/* +++ infblock.h */
2999/* infblock.h -- header to use infblock.c
3000 * Copyright (C) 1995-1996 Mark Adler
3001 * For conditions of distribution and use, see copyright notice in zlib.h
3002 */
3003
3004/* WARNING: this file should *not* be used by applications. It is
3005   part of the implementation of the compression library and is
3006   subject to change. Applications should only use zlib.h.
3007 */
3008
3009struct inflate_blocks_state;
3010typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3011
3012extern inflate_blocks_statef * inflate_blocks_new OF((
3013    z_streamp z,
3014    check_func c,               /* check function */
3015    uInt w));                   /* window size */
3016
3017extern int inflate_blocks OF((
3018    inflate_blocks_statef *,
3019    z_streamp ,
3020    int));                      /* initial return code */
3021
3022extern void inflate_blocks_reset OF((
3023    inflate_blocks_statef *,
3024    z_streamp ,
3025    uLongf *));                  /* check value on output */
3026
3027extern int inflate_blocks_free OF((
3028    inflate_blocks_statef *,
3029    z_streamp ,
3030    uLongf *));                  /* check value on output */
3031
3032extern void inflate_set_dictionary OF((
3033    inflate_blocks_statef *s,
3034    const Bytef *d,  /* dictionary */
3035    uInt  n));       /* dictionary length */
3036
3037extern int inflate_addhistory OF((
3038    inflate_blocks_statef *,
3039    z_streamp));
3040
3041extern int inflate_packet_flush OF((
3042    inflate_blocks_statef *));
3043/* --- infblock.h */
3044
3045#ifndef NO_DUMMY_DECL
3046struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3047#endif
3048
3049/* inflate private state */
3050struct internal_state {
3051
3052  /* mode */
3053  enum {
3054      METHOD,   /* waiting for method byte */
3055      FLAG,     /* waiting for flag byte */
3056      DICT4,    /* four dictionary check bytes to go */
3057      DICT3,    /* three dictionary check bytes to go */
3058      DICT2,    /* two dictionary check bytes to go */
3059      DICT1,    /* one dictionary check byte to go */
3060      DICT0,    /* waiting for inflateSetDictionary */
3061      BLOCKS,   /* decompressing blocks */
3062      CHECK4,   /* four check bytes to go */
3063      CHECK3,   /* three check bytes to go */
3064      CHECK2,   /* two check bytes to go */
3065      CHECK1,   /* one check byte to go */
3066      DONE,     /* finished check, done */
3067      BAD}      /* got an error--stay here */
3068    mode;               /* current inflate mode */
3069
3070  /* mode dependent information */
3071  union {
3072    uInt method;        /* if FLAGS, method byte */
3073    struct {
3074      uLong was;                /* computed check value */
3075      uLong need;               /* stream check value */
3076    } check;            /* if CHECK, check values to compare */
3077    uInt marker;        /* if BAD, inflateSync's marker bytes count */
3078  } sub;        /* submode */
3079
3080  /* mode independent information */
3081  int  nowrap;          /* flag for no wrapper */
3082  uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3083  inflate_blocks_statef
3084    *blocks;            /* current inflate_blocks state */
3085
3086};
3087
3088
3089int inflateReset(z)
3090z_streamp z;
3091{
3092  uLong c;
3093
3094  if (z == Z_NULL || z->state == Z_NULL)
3095    return Z_STREAM_ERROR;
3096  z->total_in = z->total_out = 0;
3097  z->msg = Z_NULL;
3098  z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3099  inflate_blocks_reset(z->state->blocks, z, &c);
3100  Trace((stderr, "inflate: reset\n"));
3101  return Z_OK;
3102}
3103
3104
3105int inflateEnd(z)
3106z_streamp z;
3107{
3108  uLong c;
3109
3110  if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3111    return Z_STREAM_ERROR;
3112  if (z->state->blocks != Z_NULL)
3113    inflate_blocks_free(z->state->blocks, z, &c);
3114  ZFREE(z, z->state);
3115  z->state = Z_NULL;
3116  Trace((stderr, "inflate: end\n"));
3117  return Z_OK;
3118}
3119
3120
3121int inflateInit2_(z, w, version, stream_size)
3122z_streamp z;
3123int w;
3124const char *version;
3125int stream_size;
3126{
3127  if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3128      stream_size != sizeof(z_stream))
3129      return Z_VERSION_ERROR;
3130
3131  /* initialize state */
3132  if (z == Z_NULL)
3133    return Z_STREAM_ERROR;
3134  z->msg = Z_NULL;
3135#ifndef NO_ZCFUNCS
3136  if (z->zalloc == Z_NULL)
3137  {
3138    z->zalloc = zcalloc;
3139    z->opaque = (voidpf)0;
3140  }
3141  if (z->zfree == Z_NULL) z->zfree = zcfree;
3142#endif
3143  if ((z->state = (struct internal_state FAR *)
3144       ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3145    return Z_MEM_ERROR;
3146  z->state->blocks = Z_NULL;
3147
3148  /* handle undocumented nowrap option (no zlib header or check) */
3149  z->state->nowrap = 0;
3150  if (w < 0)
3151  {
3152    w = - w;
3153    z->state->nowrap = 1;
3154  }
3155
3156  /* set window size */
3157  if (w < 8 || w > 15)
3158  {
3159    inflateEnd(z);
3160    return Z_STREAM_ERROR;
3161  }
3162  z->state->wbits = (uInt)w;
3163
3164  /* create inflate_blocks state */
3165  if ((z->state->blocks =
3166      inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3167      == Z_NULL)
3168  {
3169    inflateEnd(z);
3170    return Z_MEM_ERROR;
3171  }
3172  Trace((stderr, "inflate: allocated\n"));
3173
3174  /* reset state */
3175  inflateReset(z);
3176  return Z_OK;
3177}
3178
3179
3180int inflateInit_(z, version, stream_size)
3181z_streamp z;
3182const char *version;
3183int stream_size;
3184{
3185  return inflateInit2_(z, DEF_WBITS, version, stream_size);
3186}
3187
3188
3189#define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3190#define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3191
3192int inflate(z, f)
3193z_streamp z;
3194int f;
3195{
3196  int r;
3197  uInt b;
3198
3199  if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3200    return Z_STREAM_ERROR;
3201  r = Z_BUF_ERROR;
3202  while (1) switch (z->state->mode)
3203  {
3204    case METHOD:
3205      NEEDBYTE
3206      if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3207      {
3208        z->state->mode = BAD;
3209        z->msg = (char*)"unknown compression method";
3210        z->state->sub.marker = 5;       /* can't try inflateSync */
3211        break;
3212      }
3213      if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3214      {
3215        z->state->mode = BAD;
3216        z->msg = (char*)"invalid window size";
3217        z->state->sub.marker = 5;       /* can't try inflateSync */
3218        break;
3219      }
3220      z->state->mode = FLAG;
3221    case FLAG:
3222      NEEDBYTE
3223      b = NEXTBYTE;
3224      if (((z->state->sub.method << 8) + b) % 31)
3225      {
3226        z->state->mode = BAD;
3227        z->msg = (char*)"incorrect header check";
3228        z->state->sub.marker = 5;       /* can't try inflateSync */
3229        break;
3230      }
3231      Trace((stderr, "inflate: zlib header ok\n"));
3232      if (!(b & PRESET_DICT))
3233      {
3234        z->state->mode = BLOCKS;
3235	break;
3236      }
3237      z->state->mode = DICT4;
3238    case DICT4:
3239      NEEDBYTE
3240      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3241      z->state->mode = DICT3;
3242    case DICT3:
3243      NEEDBYTE
3244      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3245      z->state->mode = DICT2;
3246    case DICT2:
3247      NEEDBYTE
3248      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3249      z->state->mode = DICT1;
3250    case DICT1:
3251      NEEDBYTE
3252      z->state->sub.check.need += (uLong)NEXTBYTE;
3253      z->adler = z->state->sub.check.need;
3254      z->state->mode = DICT0;
3255      return Z_NEED_DICT;
3256    case DICT0:
3257      z->state->mode = BAD;
3258      z->msg = (char*)"need dictionary";
3259      z->state->sub.marker = 0;       /* can try inflateSync */
3260      return Z_STREAM_ERROR;
3261    case BLOCKS:
3262      r = inflate_blocks(z->state->blocks, z, r);
3263      if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3264	  r = inflate_packet_flush(z->state->blocks);
3265      if (r == Z_DATA_ERROR)
3266      {
3267        z->state->mode = BAD;
3268        z->state->sub.marker = 0;       /* can try inflateSync */
3269        break;
3270      }
3271      if (r != Z_STREAM_END)
3272        return r;
3273      r = Z_OK;
3274      inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3275      if (z->state->nowrap)
3276      {
3277        z->state->mode = DONE;
3278        break;
3279      }
3280      z->state->mode = CHECK4;
3281    case CHECK4:
3282      NEEDBYTE
3283      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3284      z->state->mode = CHECK3;
3285    case CHECK3:
3286      NEEDBYTE
3287      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3288      z->state->mode = CHECK2;
3289    case CHECK2:
3290      NEEDBYTE
3291      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3292      z->state->mode = CHECK1;
3293    case CHECK1:
3294      NEEDBYTE
3295      z->state->sub.check.need += (uLong)NEXTBYTE;
3296
3297      if (z->state->sub.check.was != z->state->sub.check.need)
3298      {
3299        z->state->mode = BAD;
3300        z->msg = (char*)"incorrect data check";
3301        z->state->sub.marker = 5;       /* can't try inflateSync */
3302        break;
3303      }
3304      Trace((stderr, "inflate: zlib check ok\n"));
3305      z->state->mode = DONE;
3306    case DONE:
3307      return Z_STREAM_END;
3308    case BAD:
3309      return Z_DATA_ERROR;
3310    default:
3311      return Z_STREAM_ERROR;
3312  }
3313
3314 empty:
3315  if (f != Z_PACKET_FLUSH)
3316    return r;
3317  z->state->mode = BAD;
3318  z->msg = (char *)"need more for packet flush";
3319  z->state->sub.marker = 0;       /* can try inflateSync */
3320  return Z_DATA_ERROR;
3321}
3322
3323
3324int inflateSetDictionary(z, dictionary, dictLength)
3325z_streamp z;
3326const Bytef *dictionary;
3327uInt  dictLength;
3328{
3329  uInt length = dictLength;
3330
3331  if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3332    return Z_STREAM_ERROR;
3333
3334  if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3335  z->adler = 1L;
3336
3337  if (length >= ((uInt)1<<z->state->wbits))
3338  {
3339    length = (1<<z->state->wbits)-1;
3340    dictionary += dictLength - length;
3341  }
3342  inflate_set_dictionary(z->state->blocks, dictionary, length);
3343  z->state->mode = BLOCKS;
3344  return Z_OK;
3345}
3346
3347/*
3348 * This subroutine adds the data at next_in/avail_in to the output history
3349 * without performing any output.  The output buffer must be "caught up";
3350 * i.e. no pending output (hence s->read equals s->write), and the state must
3351 * be BLOCKS (i.e. we should be willing to see the start of a series of
3352 * BLOCKS).  On exit, the output will also be caught up, and the checksum
3353 * will have been updated if need be.
3354 */
3355
3356int inflateIncomp(z)
3357z_stream *z;
3358{
3359    if (z->state->mode != BLOCKS)
3360	return Z_DATA_ERROR;
3361    return inflate_addhistory(z->state->blocks, z);
3362}
3363
3364
3365int inflateSync(z)
3366z_streamp z;
3367{
3368  uInt n;       /* number of bytes to look at */
3369  Bytef *p;     /* pointer to bytes */
3370  uInt m;       /* number of marker bytes found in a row */
3371  uLong r, w;   /* temporaries to save total_in and total_out */
3372
3373  /* set up */
3374  if (z == Z_NULL || z->state == Z_NULL)
3375    return Z_STREAM_ERROR;
3376  if (z->state->mode != BAD)
3377  {
3378    z->state->mode = BAD;
3379    z->state->sub.marker = 0;
3380  }
3381  if ((n = z->avail_in) == 0)
3382    return Z_BUF_ERROR;
3383  p = z->next_in;
3384  m = z->state->sub.marker;
3385
3386  /* search */
3387  while (n && m < 4)
3388  {
3389    if (*p == (Byte)(m < 2 ? 0 : 0xff))
3390      m++;
3391    else if (*p)
3392      m = 0;
3393    else
3394      m = 4 - m;
3395    p++, n--;
3396  }
3397
3398  /* restore */
3399  z->total_in += p - z->next_in;
3400  z->next_in = p;
3401  z->avail_in = n;
3402  z->state->sub.marker = m;
3403
3404  /* return no joy or set up to restart on a new block */
3405  if (m != 4)
3406    return Z_DATA_ERROR;
3407  r = z->total_in;  w = z->total_out;
3408  inflateReset(z);
3409  z->total_in = r;  z->total_out = w;
3410  z->state->mode = BLOCKS;
3411  return Z_OK;
3412}
3413
3414#undef NEEDBYTE
3415#undef NEXTBYTE
3416/* --- inflate.c */
3417
3418/* +++ infblock.c */
3419/* infblock.c -- interpret and process block types to last block
3420 * Copyright (C) 1995-1996 Mark Adler
3421 * For conditions of distribution and use, see copyright notice in zlib.h
3422 */
3423
3424/* #include "zutil.h" */
3425/* #include "infblock.h" */
3426
3427/* +++ inftrees.h */
3428/* inftrees.h -- header to use inftrees.c
3429 * Copyright (C) 1995-1996 Mark Adler
3430 * For conditions of distribution and use, see copyright notice in zlib.h
3431 */
3432
3433/* WARNING: this file should *not* be used by applications. It is
3434   part of the implementation of the compression library and is
3435   subject to change. Applications should only use zlib.h.
3436 */
3437
3438/* Huffman code lookup table entry--this entry is four bytes for machines
3439   that have 16-bit pointers (e.g. PC's in the small or medium model). */
3440
3441typedef struct inflate_huft_s FAR inflate_huft;
3442
3443struct inflate_huft_s {
3444  union {
3445    struct {
3446      Byte Exop;        /* number of extra bits or operation */
3447      Byte Bits;        /* number of bits in this code or subcode */
3448    } what;
3449    Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
3450  } word;               /*  16-bit, 8 bytes for 32-bit machines) */
3451  union {
3452    uInt Base;          /* literal, length base, or distance base */
3453    inflate_huft *Next; /* pointer to next level of table */
3454  } more;
3455};
3456
3457#ifdef DEBUG_ZLIB
3458  extern uInt inflate_hufts;
3459#endif
3460
3461extern int inflate_trees_bits OF((
3462    uIntf *,                    /* 19 code lengths */
3463    uIntf *,                    /* bits tree desired/actual depth */
3464    inflate_huft * FAR *,       /* bits tree result */
3465    z_streamp ));               /* for zalloc, zfree functions */
3466
3467extern int inflate_trees_dynamic OF((
3468    uInt,                       /* number of literal/length codes */
3469    uInt,                       /* number of distance codes */
3470    uIntf *,                    /* that many (total) code lengths */
3471    uIntf *,                    /* literal desired/actual bit depth */
3472    uIntf *,                    /* distance desired/actual bit depth */
3473    inflate_huft * FAR *,       /* literal/length tree result */
3474    inflate_huft * FAR *,       /* distance tree result */
3475    z_streamp ));               /* for zalloc, zfree functions */
3476
3477extern int inflate_trees_fixed OF((
3478    uIntf *,                    /* literal desired/actual bit depth */
3479    uIntf *,                    /* distance desired/actual bit depth */
3480    inflate_huft * FAR *,       /* literal/length tree result */
3481    inflate_huft * FAR *));     /* distance tree result */
3482
3483extern int inflate_trees_free OF((
3484    inflate_huft *,             /* tables to free */
3485    z_streamp ));               /* for zfree function */
3486
3487/* --- inftrees.h */
3488
3489/* +++ infcodes.h */
3490/* infcodes.h -- header to use infcodes.c
3491 * Copyright (C) 1995-1996 Mark Adler
3492 * For conditions of distribution and use, see copyright notice in zlib.h
3493 */
3494
3495/* WARNING: this file should *not* be used by applications. It is
3496   part of the implementation of the compression library and is
3497   subject to change. Applications should only use zlib.h.
3498 */
3499
3500struct inflate_codes_state;
3501typedef struct inflate_codes_state FAR inflate_codes_statef;
3502
3503extern inflate_codes_statef *inflate_codes_new OF((
3504    uInt, uInt,
3505    inflate_huft *, inflate_huft *,
3506    z_streamp ));
3507
3508extern int inflate_codes OF((
3509    inflate_blocks_statef *,
3510    z_streamp ,
3511    int));
3512
3513extern void inflate_codes_free OF((
3514    inflate_codes_statef *,
3515    z_streamp ));
3516
3517/* --- infcodes.h */
3518
3519/* +++ infutil.h */
3520/* infutil.h -- types and macros common to blocks and codes
3521 * Copyright (C) 1995-1996 Mark Adler
3522 * For conditions of distribution and use, see copyright notice in zlib.h
3523 */
3524
3525/* WARNING: this file should *not* be used by applications. It is
3526   part of the implementation of the compression library and is
3527   subject to change. Applications should only use zlib.h.
3528 */
3529
3530#ifndef _INFUTIL_H
3531#define _INFUTIL_H
3532
3533typedef enum {
3534      TYPE,     /* get type bits (3, including end bit) */
3535      LENS,     /* get lengths for stored */
3536      STORED,   /* processing stored block */
3537      TABLE,    /* get table lengths */
3538      BTREE,    /* get bit lengths tree for a dynamic block */
3539      DTREE,    /* get length, distance trees for a dynamic block */
3540      CODES,    /* processing fixed or dynamic block */
3541      DRY,      /* output remaining window bytes */
3542      DONEB,    /* finished last block, done */
3543      BADB}     /* got a data error--stuck here */
3544inflate_block_mode;
3545
3546/* inflate blocks semi-private state */
3547struct inflate_blocks_state {
3548
3549  /* mode */
3550  inflate_block_mode  mode;     /* current inflate_block mode */
3551
3552  /* mode dependent information */
3553  union {
3554    uInt left;          /* if STORED, bytes left to copy */
3555    struct {
3556      uInt table;               /* table lengths (14 bits) */
3557      uInt index;               /* index into blens (or border) */
3558      uIntf *blens;             /* bit lengths of codes */
3559      uInt bb;                  /* bit length tree depth */
3560      inflate_huft *tb;         /* bit length decoding tree */
3561    } trees;            /* if DTREE, decoding info for trees */
3562    struct {
3563      inflate_huft *tl;
3564      inflate_huft *td;         /* trees to free */
3565      inflate_codes_statef
3566         *codes;
3567    } decode;           /* if CODES, current state */
3568  } sub;                /* submode */
3569  uInt last;            /* true if this block is the last block */
3570
3571  /* mode independent information */
3572  uInt bitk;            /* bits in bit buffer */
3573  uLong bitb;           /* bit buffer */
3574  Bytef *window;        /* sliding window */
3575  Bytef *end;           /* one byte after sliding window */
3576  Bytef *read;          /* window read pointer */
3577  Bytef *write;         /* window write pointer */
3578  check_func checkfn;   /* check function */
3579  uLong check;          /* check on output */
3580
3581};
3582
3583
3584/* defines for inflate input/output */
3585/*   update pointers and return */
3586#define UPDBITS {s->bitb=b;s->bitk=k;}
3587#define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3588#define UPDOUT {s->write=q;}
3589#define UPDATE {UPDBITS UPDIN UPDOUT}
3590#define LEAVE {UPDATE return inflate_flush(s,z,r);}
3591/*   get bytes and bits */
3592#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3593#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3594#define NEXTBYTE (n--,*p++)
3595#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3596#define DUMPBITS(j) {b>>=(j);k-=(j);}
3597/*   output bytes */
3598#define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3599#define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3600#define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3601#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3602#define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3603#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3604/*   load local pointers */
3605#define LOAD {LOADIN LOADOUT}
3606
3607/* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3608extern uInt inflate_mask[17];
3609
3610/* copy as much as possible from the sliding window to the output area */
3611extern int inflate_flush OF((
3612    inflate_blocks_statef *,
3613    z_streamp ,
3614    int));
3615
3616#ifndef NO_DUMMY_DECL
3617struct internal_state      {int dummy;}; /* for buggy compilers */
3618#endif
3619
3620#endif
3621/* --- infutil.h */
3622
3623#ifndef NO_DUMMY_DECL
3624struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3625#endif
3626
3627/* Table for deflate from PKZIP's appnote.txt. */
3628local const uInt border[] = { /* Order of the bit length code lengths */
3629        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3630
3631/*
3632   Notes beyond the 1.93a appnote.txt:
3633
3634   1. Distance pointers never point before the beginning of the output
3635      stream.
3636   2. Distance pointers can point back across blocks, up to 32k away.
3637   3. There is an implied maximum of 7 bits for the bit length table and
3638      15 bits for the actual data.
3639   4. If only one code exists, then it is encoded using one bit.  (Zero
3640      would be more efficient, but perhaps a little confusing.)  If two
3641      codes exist, they are coded using one bit each (0 and 1).
3642   5. There is no way of sending zero distance codes--a dummy must be
3643      sent if there are none.  (History: a pre 2.0 version of PKZIP would
3644      store blocks with no distance codes, but this was discovered to be
3645      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3646      zero distance codes, which is sent as one code of zero bits in
3647      length.
3648   6. There are up to 286 literal/length codes.  Code 256 represents the
3649      end-of-block.  Note however that the static length tree defines
3650      288 codes just to fill out the Huffman codes.  Codes 286 and 287
3651      cannot be used though, since there is no length base or extra bits
3652      defined for them.  Similarily, there are up to 30 distance codes.
3653      However, static trees define 32 codes (all 5 bits) to fill out the
3654      Huffman codes, but the last two had better not show up in the data.
3655   7. Unzip can check dynamic Huffman blocks for complete code sets.
3656      The exception is that a single code would not be complete (see #4).
3657   8. The five bits following the block type is really the number of
3658      literal codes sent minus 257.
3659   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3660      (1+6+6).  Therefore, to output three times the length, you output
3661      three codes (1+1+1), whereas to output four times the same length,
3662      you only need two codes (1+3).  Hmm.
3663  10. In the tree reconstruction algorithm, Code = Code + Increment
3664      only if BitLength(i) is not zero.  (Pretty obvious.)
3665  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3666  12. Note: length code 284 can represent 227-258, but length code 285
3667      really is 258.  The last length deserves its own, short code
3668      since it gets used a lot in very redundant files.  The length
3669      258 is special since 258 - 3 (the min match length) is 255.
3670  13. The literal/length and distance code bit lengths are read as a
3671      single stream of lengths.  It is possible (and advantageous) for
3672      a repeat code (16, 17, or 18) to go across the boundary between
3673      the two sets of lengths.
3674 */
3675
3676
3677void inflate_blocks_reset(s, z, c)
3678inflate_blocks_statef *s;
3679z_streamp z;
3680uLongf *c;
3681{
3682  if (s->checkfn != Z_NULL)
3683    *c = s->check;
3684  if (s->mode == BTREE || s->mode == DTREE)
3685    ZFREE(z, s->sub.trees.blens);
3686  if (s->mode == CODES)
3687  {
3688    inflate_codes_free(s->sub.decode.codes, z);
3689    inflate_trees_free(s->sub.decode.td, z);
3690    inflate_trees_free(s->sub.decode.tl, z);
3691  }
3692  s->mode = TYPE;
3693  s->bitk = 0;
3694  s->bitb = 0;
3695  s->read = s->write = s->window;
3696  if (s->checkfn != Z_NULL)
3697    z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3698  Trace((stderr, "inflate:   blocks reset\n"));
3699}
3700
3701
3702inflate_blocks_statef *inflate_blocks_new(z, c, w)
3703z_streamp z;
3704check_func c;
3705uInt w;
3706{
3707  inflate_blocks_statef *s;
3708
3709  if ((s = (inflate_blocks_statef *)ZALLOC
3710       (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3711    return s;
3712  if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3713  {
3714    ZFREE(z, s);
3715    return Z_NULL;
3716  }
3717  s->end = s->window + w;
3718  s->checkfn = c;
3719  s->mode = TYPE;
3720  Trace((stderr, "inflate:   blocks allocated\n"));
3721  inflate_blocks_reset(s, z, &s->check);
3722  return s;
3723}
3724
3725
3726#ifdef DEBUG_ZLIB
3727  extern uInt inflate_hufts;
3728#endif
3729int inflate_blocks(s, z, r)
3730inflate_blocks_statef *s;
3731z_streamp z;
3732int r;
3733{
3734  uInt t;               /* temporary storage */
3735  uLong b;              /* bit buffer */
3736  uInt k;               /* bits in bit buffer */
3737  Bytef *p;             /* input data pointer */
3738  uInt n;               /* bytes available there */
3739  Bytef *q;             /* output window write pointer */
3740  uInt m;               /* bytes to end of window or read pointer */
3741
3742  /* copy input/output information to locals (UPDATE macro restores) */
3743  LOAD
3744
3745  /* process input based on current state */
3746  while (1) switch (s->mode)
3747  {
3748    case TYPE:
3749      NEEDBITS(3)
3750      t = (uInt)b & 7;
3751      s->last = t & 1;
3752      switch (t >> 1)
3753      {
3754        case 0:                         /* stored */
3755          Trace((stderr, "inflate:     stored block%s\n",
3756                 s->last ? " (last)" : ""));
3757          DUMPBITS(3)
3758          t = k & 7;                    /* go to byte boundary */
3759          DUMPBITS(t)
3760          s->mode = LENS;               /* get length of stored block */
3761          break;
3762        case 1:                         /* fixed */
3763          Trace((stderr, "inflate:     fixed codes block%s\n",
3764                 s->last ? " (last)" : ""));
3765          {
3766            uInt bl, bd;
3767            inflate_huft *tl, *td;
3768
3769            inflate_trees_fixed(&bl, &bd, &tl, &td);
3770            s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3771            if (s->sub.decode.codes == Z_NULL)
3772            {
3773              r = Z_MEM_ERROR;
3774              LEAVE
3775            }
3776            s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3777            s->sub.decode.td = Z_NULL;
3778          }
3779          DUMPBITS(3)
3780          s->mode = CODES;
3781          break;
3782        case 2:                         /* dynamic */
3783          Trace((stderr, "inflate:     dynamic codes block%s\n",
3784                 s->last ? " (last)" : ""));
3785          DUMPBITS(3)
3786          s->mode = TABLE;
3787          break;
3788        case 3:                         /* illegal */
3789          DUMPBITS(3)
3790          s->mode = BADB;
3791          z->msg = (char*)"invalid block type";
3792          r = Z_DATA_ERROR;
3793          LEAVE
3794      }
3795      break;
3796    case LENS:
3797      NEEDBITS(32)
3798      if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3799      {
3800        s->mode = BADB;
3801        z->msg = (char*)"invalid stored block lengths";
3802        r = Z_DATA_ERROR;
3803        LEAVE
3804      }
3805      s->sub.left = (uInt)b & 0xffff;
3806      b = k = 0;                      /* dump bits */
3807      Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3808      s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3809      break;
3810    case STORED:
3811      if (n == 0)
3812        LEAVE
3813      NEEDOUT
3814      t = s->sub.left;
3815      if (t > n) t = n;
3816      if (t > m) t = m;
3817      zmemcpy(q, p, t);
3818      p += t;  n -= t;
3819      q += t;  m -= t;
3820      if ((s->sub.left -= t) != 0)
3821        break;
3822      Tracev((stderr, "inflate:       stored end, %lu total out\n",
3823              z->total_out + (q >= s->read ? q - s->read :
3824              (s->end - s->read) + (q - s->window))));
3825      s->mode = s->last ? DRY : TYPE;
3826      break;
3827    case TABLE:
3828      NEEDBITS(14)
3829      s->sub.trees.table = t = (uInt)b & 0x3fff;
3830#ifndef PKZIP_BUG_WORKAROUND
3831      if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3832      {
3833        s->mode = BADB;
3834        z->msg = (char*)"too many length or distance symbols";
3835        r = Z_DATA_ERROR;
3836        LEAVE
3837      }
3838#endif
3839      t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3840      if (t < 19)
3841        t = 19;
3842      if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3843      {
3844        r = Z_MEM_ERROR;
3845        LEAVE
3846      }
3847      DUMPBITS(14)
3848      s->sub.trees.index = 0;
3849      Tracev((stderr, "inflate:       table sizes ok\n"));
3850      s->mode = BTREE;
3851    case BTREE:
3852      while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3853      {
3854        NEEDBITS(3)
3855        s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3856        DUMPBITS(3)
3857      }
3858      while (s->sub.trees.index < 19)
3859        s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3860      s->sub.trees.bb = 7;
3861      t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3862                             &s->sub.trees.tb, z);
3863      if (t != Z_OK)
3864      {
3865        r = t;
3866        if (r == Z_DATA_ERROR) {
3867          ZFREE(z, s->sub.trees.blens);
3868          s->mode = BADB;
3869        }
3870        LEAVE
3871      }
3872      s->sub.trees.index = 0;
3873      Tracev((stderr, "inflate:       bits tree ok\n"));
3874      s->mode = DTREE;
3875    case DTREE:
3876      while (t = s->sub.trees.table,
3877             s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3878      {
3879        inflate_huft *h;
3880        uInt i, j, c;
3881
3882        t = s->sub.trees.bb;
3883        NEEDBITS(t)
3884        h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3885        t = h->word.what.Bits;
3886        c = h->more.Base;
3887        if (c < 16)
3888        {
3889          DUMPBITS(t)
3890          s->sub.trees.blens[s->sub.trees.index++] = c;
3891        }
3892        else /* c == 16..18 */
3893        {
3894          i = c == 18 ? 7 : c - 14;
3895          j = c == 18 ? 11 : 3;
3896          NEEDBITS(t + i)
3897          DUMPBITS(t)
3898          j += (uInt)b & inflate_mask[i];
3899          DUMPBITS(i)
3900          i = s->sub.trees.index;
3901          t = s->sub.trees.table;
3902          if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3903              (c == 16 && i < 1))
3904          {
3905            inflate_trees_free(s->sub.trees.tb, z);
3906            ZFREE(z, s->sub.trees.blens);
3907            s->mode = BADB;
3908            z->msg = (char*)"invalid bit length repeat";
3909            r = Z_DATA_ERROR;
3910            LEAVE
3911          }
3912          c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3913          do {
3914            s->sub.trees.blens[i++] = c;
3915          } while (--j);
3916          s->sub.trees.index = i;
3917        }
3918      }
3919      inflate_trees_free(s->sub.trees.tb, z);
3920      s->sub.trees.tb = Z_NULL;
3921      {
3922        uInt bl, bd;
3923        inflate_huft *tl, *td;
3924        inflate_codes_statef *c;
3925
3926        bl = 9;         /* must be <= 9 for lookahead assumptions */
3927        bd = 6;         /* must be <= 9 for lookahead assumptions */
3928        t = s->sub.trees.table;
3929#ifdef DEBUG_ZLIB
3930      inflate_hufts = 0;
3931#endif
3932        t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3933                                  s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3934        if (t != Z_OK)
3935        {
3936          if (t == (uInt)Z_DATA_ERROR) {
3937            ZFREE(z, s->sub.trees.blens);
3938            s->mode = BADB;
3939          }
3940          r = t;
3941          LEAVE
3942        }
3943        Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
3944              inflate_hufts, sizeof(inflate_huft)));
3945        if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3946        {
3947          inflate_trees_free(td, z);
3948          inflate_trees_free(tl, z);
3949          r = Z_MEM_ERROR;
3950          LEAVE
3951        }
3952	/*
3953	 * this ZFREE must occur *BEFORE* we mess with sub.decode, because
3954	 * sub.trees is union'd with sub.decode.
3955	 */
3956        ZFREE(z, s->sub.trees.blens);
3957        s->sub.decode.codes = c;
3958        s->sub.decode.tl = tl;
3959        s->sub.decode.td = td;
3960      }
3961      s->mode = CODES;
3962    case CODES:
3963      UPDATE
3964      if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3965        return inflate_flush(s, z, r);
3966      r = Z_OK;
3967      inflate_codes_free(s->sub.decode.codes, z);
3968      inflate_trees_free(s->sub.decode.td, z);
3969      inflate_trees_free(s->sub.decode.tl, z);
3970      LOAD
3971      Tracev((stderr, "inflate:       codes end, %lu total out\n",
3972              z->total_out + (q >= s->read ? q - s->read :
3973              (s->end - s->read) + (q - s->window))));
3974      if (!s->last)
3975      {
3976        s->mode = TYPE;
3977        break;
3978      }
3979      if (k > 7)              /* return unused byte, if any */
3980      {
3981        Assert(k < 16, "inflate_codes grabbed too many bytes")
3982        k -= 8;
3983        n++;
3984        p--;                    /* can always return one */
3985      }
3986      s->mode = DRY;
3987    case DRY:
3988      FLUSH
3989      if (s->read != s->write)
3990        LEAVE
3991      s->mode = DONEB;
3992    case DONEB:
3993      r = Z_STREAM_END;
3994      LEAVE
3995    case BADB:
3996      r = Z_DATA_ERROR;
3997      LEAVE
3998    default:
3999      r = Z_STREAM_ERROR;
4000      LEAVE
4001  }
4002}
4003
4004
4005int inflate_blocks_free(s, z, c)
4006inflate_blocks_statef *s;
4007z_streamp z;
4008uLongf *c;
4009{
4010  inflate_blocks_reset(s, z, c);
4011  ZFREE(z, s->window);
4012  ZFREE(z, s);
4013  Trace((stderr, "inflate:   blocks freed\n"));
4014  return Z_OK;
4015}
4016
4017
4018void inflate_set_dictionary(s, d, n)
4019inflate_blocks_statef *s;
4020const Bytef *d;
4021uInt  n;
4022{
4023  zmemcpy((charf *)s->window, d, n);
4024  s->read = s->write = s->window + n;
4025}
4026
4027/*
4028 * This subroutine adds the data at next_in/avail_in to the output history
4029 * without performing any output.  The output buffer must be "caught up";
4030 * i.e. no pending output (hence s->read equals s->write), and the state must
4031 * be BLOCKS (i.e. we should be willing to see the start of a series of
4032 * BLOCKS).  On exit, the output will also be caught up, and the checksum
4033 * will have been updated if need be.
4034 */
4035int inflate_addhistory(s, z)
4036inflate_blocks_statef *s;
4037z_stream *z;
4038{
4039    uLong b;              /* bit buffer */  /* NOT USED HERE */
4040    uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4041    uInt t;               /* temporary storage */
4042    Bytef *p;             /* input data pointer */
4043    uInt n;               /* bytes available there */
4044    Bytef *q;             /* output window write pointer */
4045    uInt m;               /* bytes to end of window or read pointer */
4046
4047    if (s->read != s->write)
4048	return Z_STREAM_ERROR;
4049    if (s->mode != TYPE)
4050	return Z_DATA_ERROR;
4051
4052    /* we're ready to rock */
4053    LOAD
4054    /* while there is input ready, copy to output buffer, moving
4055     * pointers as needed.
4056     */
4057    while (n) {
4058	t = n;  /* how many to do */
4059	/* is there room until end of buffer? */
4060	if (t > m) t = m;
4061	/* update check information */
4062	if (s->checkfn != Z_NULL)
4063	    s->check = (*s->checkfn)(s->check, q, t);
4064	zmemcpy(q, p, t);
4065	q += t;
4066	p += t;
4067	n -= t;
4068	z->total_out += t;
4069	s->read = q;    /* drag read pointer forward */
4070/*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
4071	if (q == s->end) {
4072	    s->read = q = s->window;
4073	    m = WAVAIL;
4074	}
4075    }
4076    UPDATE
4077    return Z_OK;
4078}
4079
4080
4081/*
4082 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4083 * a `stored' block type value but not the (zero) length bytes.
4084 */
4085int inflate_packet_flush(s)
4086    inflate_blocks_statef *s;
4087{
4088    if (s->mode != LENS)
4089	return Z_DATA_ERROR;
4090    s->mode = TYPE;
4091    return Z_OK;
4092}
4093/* --- infblock.c */
4094
4095/* +++ inftrees.c */
4096/* inftrees.c -- generate Huffman trees for efficient decoding
4097 * Copyright (C) 1995-1996 Mark Adler
4098 * For conditions of distribution and use, see copyright notice in zlib.h
4099 */
4100
4101/* #include "zutil.h" */
4102/* #include "inftrees.h" */
4103
4104char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4105/*
4106  If you use the zlib library in a product, an acknowledgment is welcome
4107  in the documentation of your product. If for some reason you cannot
4108  include such an acknowledgment, I would appreciate that you keep this
4109  copyright string in the executable of your product.
4110 */
4111
4112#ifndef NO_DUMMY_DECL
4113struct internal_state  {int dummy;}; /* for buggy compilers */
4114#endif
4115
4116/* simplify the use of the inflate_huft type with some defines */
4117#define base more.Base
4118#define next more.Next
4119#define exop word.what.Exop
4120#define bits word.what.Bits
4121
4122
4123local int huft_build OF((
4124    uIntf *,            /* code lengths in bits */
4125    uInt,               /* number of codes */
4126    uInt,               /* number of "simple" codes */
4127    const uIntf *,      /* list of base values for non-simple codes */
4128    const uIntf *,      /* list of extra bits for non-simple codes */
4129    inflate_huft * FAR*,/* result: starting table */
4130    uIntf *,            /* maximum lookup bits (returns actual) */
4131    z_streamp ));       /* for zalloc function */
4132
4133local voidpf falloc OF((
4134    voidpf,             /* opaque pointer (not used) */
4135    uInt,               /* number of items */
4136    uInt));             /* size of item */
4137
4138/* Tables for deflate from PKZIP's appnote.txt. */
4139local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4140        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4141        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4142        /* see note #13 above about 258 */
4143local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4144        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4145        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4146local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4147        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4148        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4149        8193, 12289, 16385, 24577};
4150local const uInt cpdext[30] = { /* Extra bits for distance codes */
4151        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4152        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4153        12, 12, 13, 13};
4154
4155/*
4156   Huffman code decoding is performed using a multi-level table lookup.
4157   The fastest way to decode is to simply build a lookup table whose
4158   size is determined by the longest code.  However, the time it takes
4159   to build this table can also be a factor if the data being decoded
4160   is not very long.  The most common codes are necessarily the
4161   shortest codes, so those codes dominate the decoding time, and hence
4162   the speed.  The idea is you can have a shorter table that decodes the
4163   shorter, more probable codes, and then point to subsidiary tables for
4164   the longer codes.  The time it costs to decode the longer codes is
4165   then traded against the time it takes to make longer tables.
4166
4167   This results of this trade are in the variables lbits and dbits
4168   below.  lbits is the number of bits the first level table for literal/
4169   length codes can decode in one step, and dbits is the same thing for
4170   the distance codes.  Subsequent tables are also less than or equal to
4171   those sizes.  These values may be adjusted either when all of the
4172   codes are shorter than that, in which case the longest code length in
4173   bits is used, or when the shortest code is *longer* than the requested
4174   table size, in which case the length of the shortest code in bits is
4175   used.
4176
4177   There are two different values for the two tables, since they code a
4178   different number of possibilities each.  The literal/length table
4179   codes 286 possible values, or in a flat code, a little over eight
4180   bits.  The distance table codes 30 possible values, or a little less
4181   than five bits, flat.  The optimum values for speed end up being
4182   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4183   The optimum values may differ though from machine to machine, and
4184   possibly even between compilers.  Your mileage may vary.
4185 */
4186
4187
4188/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4189#define BMAX 15         /* maximum bit length of any code */
4190#define N_MAX 288       /* maximum number of codes in any set */
4191
4192#ifdef DEBUG_ZLIB
4193  uInt inflate_hufts;
4194#endif
4195
4196local int huft_build(b, n, s, d, e, t, m, zs)
4197uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
4198uInt n;                 /* number of codes (assumed <= N_MAX) */
4199uInt s;                 /* number of simple-valued codes (0..s-1) */
4200const uIntf *d;         /* list of base values for non-simple codes */
4201const uIntf *e;         /* list of extra bits for non-simple codes */
4202inflate_huft * FAR *t;  /* result: starting table */
4203uIntf *m;               /* maximum lookup bits, returns actual */
4204z_streamp zs;           /* for zalloc function */
4205/* Given a list of code lengths and a maximum table size, make a set of
4206   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4207   if the given code set is incomplete (the tables are still built in this
4208   case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4209   lengths), or Z_MEM_ERROR if not enough memory. */
4210{
4211
4212  uInt a;                       /* counter for codes of length k */
4213  uInt c[BMAX+1];               /* bit length count table */
4214  uInt f;                       /* i repeats in table every f entries */
4215  int g;                        /* maximum code length */
4216  int h;                        /* table level */
4217  register uInt i;              /* counter, current code */
4218  register uInt j;              /* counter */
4219  register int k;               /* number of bits in current code */
4220  int l;                        /* bits per table (returned in m) */
4221  register uIntf *p;            /* pointer into c[], b[], or v[] */
4222  inflate_huft *q;              /* points to current table */
4223  struct inflate_huft_s r;      /* table entry for structure assignment */
4224  inflate_huft *u[BMAX];        /* table stack */
4225  uInt v[N_MAX];                /* values in order of bit length */
4226  register int w;               /* bits before this table == (l * h) */
4227  uInt x[BMAX+1];               /* bit offsets, then code stack */
4228  uIntf *xp;                    /* pointer into x */
4229  int y;                        /* number of dummy codes added */
4230  uInt z;                       /* number of entries in current table */
4231
4232
4233  /* Generate counts for each bit length */
4234  p = c;
4235#define C0 *p++ = 0;
4236#define C2 C0 C0 C0 C0
4237#define C4 C2 C2 C2 C2
4238  C4                            /* clear c[]--assume BMAX+1 is 16 */
4239  p = b;  i = n;
4240  do {
4241    c[*p++]++;                  /* assume all entries <= BMAX */
4242  } while (--i);
4243  if (c[0] == n)                /* null input--all zero length codes */
4244  {
4245    *t = (inflate_huft *)Z_NULL;
4246    *m = 0;
4247    return Z_OK;
4248  }
4249
4250
4251  /* Find minimum and maximum length, bound *m by those */
4252  l = *m;
4253  for (j = 1; j <= BMAX; j++)
4254    if (c[j])
4255      break;
4256  k = j;                        /* minimum code length */
4257  if ((uInt)l < j)
4258    l = j;
4259  for (i = BMAX; i; i--)
4260    if (c[i])
4261      break;
4262  g = i;                        /* maximum code length */
4263  if ((uInt)l > i)
4264    l = i;
4265  *m = l;
4266
4267
4268  /* Adjust last length count to fill out codes, if needed */
4269  for (y = 1 << j; j < i; j++, y <<= 1)
4270    if ((y -= c[j]) < 0)
4271      return Z_DATA_ERROR;
4272  if ((y -= c[i]) < 0)
4273    return Z_DATA_ERROR;
4274  c[i] += y;
4275
4276
4277  /* Generate starting offsets into the value table for each length */
4278  x[1] = j = 0;
4279  p = c + 1;  xp = x + 2;
4280  while (--i) {                 /* note that i == g from above */
4281    *xp++ = (j += *p++);
4282  }
4283
4284
4285  /* Make a table of values in order of bit lengths */
4286  p = b;  i = 0;
4287  do {
4288    if ((j = *p++) != 0)
4289      v[x[j]++] = i;
4290  } while (++i < n);
4291  n = x[g];                   /* set n to length of v */
4292
4293
4294  /* Generate the Huffman codes and for each, make the table entries */
4295  x[0] = i = 0;                 /* first Huffman code is zero */
4296  p = v;                        /* grab values in bit order */
4297  h = -1;                       /* no tables yet--level -1 */
4298  w = -l;                       /* bits decoded == (l * h) */
4299  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4300  q = (inflate_huft *)Z_NULL;   /* ditto */
4301  z = 0;                        /* ditto */
4302
4303  /* go through the bit lengths (k already is bits in shortest code) */
4304  for (; k <= g; k++)
4305  {
4306    a = c[k];
4307    while (a--)
4308    {
4309      /* here i is the Huffman code of length k bits for value *p */
4310      /* make tables up to required level */
4311      while (k > w + l)
4312      {
4313        h++;
4314        w += l;                 /* previous table always l bits */
4315
4316        /* compute minimum size table less than or equal to l bits */
4317        z = g - w;
4318        z = z > (uInt)l ? l : z;        /* table size upper limit */
4319        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4320        {                       /* too few codes for k-w bit table */
4321          f -= a + 1;           /* deduct codes from patterns left */
4322          xp = c + k;
4323          if (j < z)
4324            while (++j < z)     /* try smaller tables up to z bits */
4325            {
4326              if ((f <<= 1) <= *++xp)
4327                break;          /* enough codes to use up j bits */
4328              f -= *xp;         /* else deduct codes from patterns */
4329            }
4330        }
4331        z = 1 << j;             /* table entries for j-bit table */
4332
4333        /* allocate and link in new table */
4334        if ((q = (inflate_huft *)ZALLOC
4335             (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4336        {
4337          if (h)
4338            inflate_trees_free(u[0], zs);
4339          return Z_MEM_ERROR;   /* not enough memory */
4340        }
4341#ifdef DEBUG_ZLIB
4342        inflate_hufts += z + 1;
4343#endif
4344        *t = q + 1;             /* link to list for huft_free() */
4345        *(t = &(q->next)) = Z_NULL;
4346        u[h] = ++q;             /* table starts after link */
4347
4348        /* connect to last table, if there is one */
4349        if (h)
4350        {
4351          x[h] = i;             /* save pattern for backing up */
4352          r.bits = (Byte)l;     /* bits to dump before this table */
4353          r.exop = (Byte)j;     /* bits in this table */
4354          r.next = q;           /* pointer to this table */
4355          j = i >> (w - l);     /* (get around Turbo C bug) */
4356          u[h-1][j] = r;        /* connect to last table */
4357        }
4358      }
4359
4360      /* set up table entry in r */
4361      r.bits = (Byte)(k - w);
4362      if (p >= v + n)
4363        r.exop = 128 + 64;      /* out of values--invalid code */
4364      else if (*p < s)
4365      {
4366        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4367        r.base = *p++;          /* simple code is just the value */
4368      }
4369      else
4370      {
4371        r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4372        r.base = d[*p++ - s];
4373      }
4374
4375      /* fill code-like entries with r */
4376      f = 1 << (k - w);
4377      for (j = i >> w; j < z; j += f)
4378        q[j] = r;
4379
4380      /* backwards increment the k-bit code i */
4381      for (j = 1 << (k - 1); i & j; j >>= 1)
4382        i ^= j;
4383      i ^= j;
4384
4385      /* backup over finished tables */
4386      while ((i & ((1 << w) - 1)) != x[h])
4387      {
4388        h--;                    /* don't need to update q */
4389        w -= l;
4390      }
4391    }
4392  }
4393
4394
4395  /* Return Z_BUF_ERROR if we were given an incomplete table */
4396  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4397}
4398
4399
4400int inflate_trees_bits(c, bb, tb, z)
4401uIntf *c;               /* 19 code lengths */
4402uIntf *bb;              /* bits tree desired/actual depth */
4403inflate_huft * FAR *tb; /* bits tree result */
4404z_streamp z;            /* for zfree function */
4405{
4406  int r;
4407
4408  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4409  if (r == Z_DATA_ERROR)
4410    z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4411  else if (r == Z_BUF_ERROR || *bb == 0)
4412  {
4413    inflate_trees_free(*tb, z);
4414    z->msg = (char*)"incomplete dynamic bit lengths tree";
4415    r = Z_DATA_ERROR;
4416  }
4417  return r;
4418}
4419
4420
4421int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4422uInt nl;                /* number of literal/length codes */
4423uInt nd;                /* number of distance codes */
4424uIntf *c;               /* that many (total) code lengths */
4425uIntf *bl;              /* literal desired/actual bit depth */
4426uIntf *bd;              /* distance desired/actual bit depth */
4427inflate_huft * FAR *tl; /* literal/length tree result */
4428inflate_huft * FAR *td; /* distance tree result */
4429z_streamp z;            /* for zfree function */
4430{
4431  int r;
4432
4433  /* build literal/length tree */
4434  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4435  if (r != Z_OK || *bl == 0)
4436  {
4437    if (r == Z_DATA_ERROR)
4438      z->msg = (char*)"oversubscribed literal/length tree";
4439    else if (r != Z_MEM_ERROR)
4440    {
4441      inflate_trees_free(*tl, z);
4442      z->msg = (char*)"incomplete literal/length tree";
4443      r = Z_DATA_ERROR;
4444    }
4445    return r;
4446  }
4447
4448  /* build distance tree */
4449  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4450  if (r != Z_OK || (*bd == 0 && nl > 257))
4451  {
4452    if (r == Z_DATA_ERROR)
4453      z->msg = (char*)"oversubscribed distance tree";
4454    else if (r == Z_BUF_ERROR) {
4455#ifdef PKZIP_BUG_WORKAROUND
4456      r = Z_OK;
4457    }
4458#else
4459      inflate_trees_free(*td, z);
4460      z->msg = (char*)"incomplete distance tree";
4461      r = Z_DATA_ERROR;
4462    }
4463    else if (r != Z_MEM_ERROR)
4464    {
4465      z->msg = (char*)"empty distance tree with lengths";
4466      r = Z_DATA_ERROR;
4467    }
4468    inflate_trees_free(*tl, z);
4469    return r;
4470#endif
4471  }
4472
4473  /* done */
4474  return Z_OK;
4475}
4476
4477
4478/* build fixed tables only once--keep them here */
4479local int fixed_built = 0;
4480#define FIXEDH 530      /* number of hufts used by fixed tables */
4481local inflate_huft fixed_mem[FIXEDH];
4482local uInt fixed_bl;
4483local uInt fixed_bd;
4484local inflate_huft *fixed_tl;
4485local inflate_huft *fixed_td;
4486
4487
4488local voidpf falloc(q, n, s)
4489voidpf q;       /* opaque pointer */
4490uInt n;         /* number of items */
4491uInt s;         /* size of item */
4492{
4493  Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4494         "inflate_trees falloc overflow");
4495  *(intf *)q -= n+s-s; /* s-s to avoid warning */
4496  return (voidpf)(fixed_mem + *(intf *)q);
4497}
4498
4499
4500int inflate_trees_fixed(bl, bd, tl, td)
4501uIntf *bl;               /* literal desired/actual bit depth */
4502uIntf *bd;               /* distance desired/actual bit depth */
4503inflate_huft * FAR *tl;  /* literal/length tree result */
4504inflate_huft * FAR *td;  /* distance tree result */
4505{
4506  /* build fixed tables if not already (multiple overlapped executions ok) */
4507  if (!fixed_built)
4508  {
4509    int k;              /* temporary variable */
4510    unsigned c[288];    /* length list for huft_build */
4511    z_stream z;         /* for falloc function */
4512    int f = FIXEDH;     /* number of hufts left in fixed_mem */
4513
4514    /* set up fake z_stream for memory routines */
4515    z.zalloc = falloc;
4516    z.zfree = Z_NULL;
4517    z.opaque = (voidpf)&f;
4518
4519    /* literal table */
4520    for (k = 0; k < 144; k++)
4521      c[k] = 8;
4522    for (; k < 256; k++)
4523      c[k] = 9;
4524    for (; k < 280; k++)
4525      c[k] = 7;
4526    for (; k < 288; k++)
4527      c[k] = 8;
4528    fixed_bl = 7;
4529    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4530
4531    /* distance table */
4532    for (k = 0; k < 30; k++)
4533      c[k] = 5;
4534    fixed_bd = 5;
4535    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4536
4537    /* done */
4538    Assert(f == 0, "invalid build of fixed tables");
4539    fixed_built = 1;
4540  }
4541  *bl = fixed_bl;
4542  *bd = fixed_bd;
4543  *tl = fixed_tl;
4544  *td = fixed_td;
4545  return Z_OK;
4546}
4547
4548
4549int inflate_trees_free(t, z)
4550inflate_huft *t;        /* table to free */
4551z_streamp z;            /* for zfree function */
4552/* Free the malloc'ed tables built by huft_build(), which makes a linked
4553   list of the tables it made, with the links in a dummy first entry of
4554   each table. */
4555{
4556  register inflate_huft *p, *q, *r;
4557
4558  /* Reverse linked list */
4559  p = Z_NULL;
4560  q = t;
4561  while (q != Z_NULL)
4562  {
4563    r = (q - 1)->next;
4564    (q - 1)->next = p;
4565    p = q;
4566    q = r;
4567  }
4568  /* Go through linked list, freeing from the malloced (t[-1]) address. */
4569  while (p != Z_NULL)
4570  {
4571    q = (--p)->next;
4572    ZFREE(z,p);
4573    p = q;
4574  }
4575  return Z_OK;
4576}
4577/* --- inftrees.c */
4578
4579/* +++ infcodes.c */
4580/* infcodes.c -- process literals and length/distance pairs
4581 * Copyright (C) 1995-1996 Mark Adler
4582 * For conditions of distribution and use, see copyright notice in zlib.h
4583 */
4584
4585/* #include "zutil.h" */
4586/* #include "inftrees.h" */
4587/* #include "infblock.h" */
4588/* #include "infcodes.h" */
4589/* #include "infutil.h" */
4590
4591/* +++ inffast.h */
4592/* inffast.h -- header to use inffast.c
4593 * Copyright (C) 1995-1996 Mark Adler
4594 * For conditions of distribution and use, see copyright notice in zlib.h
4595 */
4596
4597/* WARNING: this file should *not* be used by applications. It is
4598   part of the implementation of the compression library and is
4599   subject to change. Applications should only use zlib.h.
4600 */
4601
4602extern int inflate_fast OF((
4603    uInt,
4604    uInt,
4605    inflate_huft *,
4606    inflate_huft *,
4607    inflate_blocks_statef *,
4608    z_streamp ));
4609/* --- inffast.h */
4610
4611/* simplify the use of the inflate_huft type with some defines */
4612#define base more.Base
4613#define next more.Next
4614#define exop word.what.Exop
4615#define bits word.what.Bits
4616
4617/* inflate codes private state */
4618struct inflate_codes_state {
4619
4620  /* mode */
4621  enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4622      START,    /* x: set up for LEN */
4623      LEN,      /* i: get length/literal/eob next */
4624      LENEXT,   /* i: getting length extra (have base) */
4625      DIST,     /* i: get distance next */
4626      DISTEXT,  /* i: getting distance extra */
4627      COPY,     /* o: copying bytes in window, waiting for space */
4628      LIT,      /* o: got literal, waiting for output space */
4629      WASH,     /* o: got eob, possibly still output waiting */
4630      END,      /* x: got eob and all data flushed */
4631      BADCODE}  /* x: got error */
4632    mode;               /* current inflate_codes mode */
4633
4634  /* mode dependent information */
4635  uInt len;
4636  union {
4637    struct {
4638      inflate_huft *tree;       /* pointer into tree */
4639      uInt need;                /* bits needed */
4640    } code;             /* if LEN or DIST, where in tree */
4641    uInt lit;           /* if LIT, literal */
4642    struct {
4643      uInt get;                 /* bits to get for extra */
4644      uInt dist;                /* distance back to copy from */
4645    } copy;             /* if EXT or COPY, where and how much */
4646  } sub;                /* submode */
4647
4648  /* mode independent information */
4649  Byte lbits;           /* ltree bits decoded per branch */
4650  Byte dbits;           /* dtree bits decoder per branch */
4651  inflate_huft *ltree;          /* literal/length/eob tree */
4652  inflate_huft *dtree;          /* distance tree */
4653
4654};
4655
4656
4657inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4658uInt bl, bd;
4659inflate_huft *tl;
4660inflate_huft *td; /* need separate declaration for Borland C++ */
4661z_streamp z;
4662{
4663  inflate_codes_statef *c;
4664
4665  if ((c = (inflate_codes_statef *)
4666       ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4667  {
4668    c->mode = START;
4669    c->lbits = (Byte)bl;
4670    c->dbits = (Byte)bd;
4671    c->ltree = tl;
4672    c->dtree = td;
4673    Tracev((stderr, "inflate:       codes new\n"));
4674  }
4675  return c;
4676}
4677
4678
4679int inflate_codes(s, z, r)
4680inflate_blocks_statef *s;
4681z_streamp z;
4682int r;
4683{
4684  uInt j;               /* temporary storage */
4685  inflate_huft *t;      /* temporary pointer */
4686  uInt e;               /* extra bits or operation */
4687  uLong b;              /* bit buffer */
4688  uInt k;               /* bits in bit buffer */
4689  Bytef *p;             /* input data pointer */
4690  uInt n;               /* bytes available there */
4691  Bytef *q;             /* output window write pointer */
4692  uInt m;               /* bytes to end of window or read pointer */
4693  Bytef *f;             /* pointer to copy strings from */
4694  inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4695
4696  /* copy input/output information to locals (UPDATE macro restores) */
4697  LOAD
4698
4699  /* process input and output based on current state */
4700  while (1) switch (c->mode)
4701  {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4702    case START:         /* x: set up for LEN */
4703#ifndef SLOW
4704      if (m >= 258 && n >= 10)
4705      {
4706        UPDATE
4707        r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4708        LOAD
4709        if (r != Z_OK)
4710        {
4711          c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4712          break;
4713        }
4714      }
4715#endif /* !SLOW */
4716      c->sub.code.need = c->lbits;
4717      c->sub.code.tree = c->ltree;
4718      c->mode = LEN;
4719    case LEN:           /* i: get length/literal/eob next */
4720      j = c->sub.code.need;
4721      NEEDBITS(j)
4722      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4723      DUMPBITS(t->bits)
4724      e = (uInt)(t->exop);
4725      if (e == 0)               /* literal */
4726      {
4727        c->sub.lit = t->base;
4728        Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4729                 "inflate:         literal '%c'\n" :
4730                 "inflate:         literal 0x%02x\n", t->base));
4731        c->mode = LIT;
4732        break;
4733      }
4734      if (e & 16)               /* length */
4735      {
4736        c->sub.copy.get = e & 15;
4737        c->len = t->base;
4738        c->mode = LENEXT;
4739        break;
4740      }
4741      if ((e & 64) == 0)        /* next table */
4742      {
4743        c->sub.code.need = e;
4744        c->sub.code.tree = t->next;
4745        break;
4746      }
4747      if (e & 32)               /* end of block */
4748      {
4749        Tracevv((stderr, "inflate:         end of block\n"));
4750        c->mode = WASH;
4751        break;
4752      }
4753      c->mode = BADCODE;        /* invalid code */
4754      z->msg = (char*)"invalid literal/length code";
4755      r = Z_DATA_ERROR;
4756      LEAVE
4757    case LENEXT:        /* i: getting length extra (have base) */
4758      j = c->sub.copy.get;
4759      NEEDBITS(j)
4760      c->len += (uInt)b & inflate_mask[j];
4761      DUMPBITS(j)
4762      c->sub.code.need = c->dbits;
4763      c->sub.code.tree = c->dtree;
4764      Tracevv((stderr, "inflate:         length %u\n", c->len));
4765      c->mode = DIST;
4766    case DIST:          /* i: get distance next */
4767      j = c->sub.code.need;
4768      NEEDBITS(j)
4769      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4770      DUMPBITS(t->bits)
4771      e = (uInt)(t->exop);
4772      if (e & 16)               /* distance */
4773      {
4774        c->sub.copy.get = e & 15;
4775        c->sub.copy.dist = t->base;
4776        c->mode = DISTEXT;
4777        break;
4778      }
4779      if ((e & 64) == 0)        /* next table */
4780      {
4781        c->sub.code.need = e;
4782        c->sub.code.tree = t->next;
4783        break;
4784      }
4785      c->mode = BADCODE;        /* invalid code */
4786      z->msg = (char*)"invalid distance code";
4787      r = Z_DATA_ERROR;
4788      LEAVE
4789    case DISTEXT:       /* i: getting distance extra */
4790      j = c->sub.copy.get;
4791      NEEDBITS(j)
4792      c->sub.copy.dist += (uInt)b & inflate_mask[j];
4793      DUMPBITS(j)
4794      Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4795      c->mode = COPY;
4796    case COPY:          /* o: copying bytes in window, waiting for space */
4797#ifndef __TURBOC__ /* Turbo C bug for following expression */
4798      f = (uInt)(q - s->window) < c->sub.copy.dist ?
4799          s->end - (c->sub.copy.dist - (q - s->window)) :
4800          q - c->sub.copy.dist;
4801#else
4802      f = q - c->sub.copy.dist;
4803      if ((uInt)(q - s->window) < c->sub.copy.dist)
4804        f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4805#endif
4806      while (c->len)
4807      {
4808        NEEDOUT
4809        OUTBYTE(*f++)
4810        if (f == s->end)
4811          f = s->window;
4812        c->len--;
4813      }
4814      c->mode = START;
4815      break;
4816    case LIT:           /* o: got literal, waiting for output space */
4817      NEEDOUT
4818      OUTBYTE(c->sub.lit)
4819      c->mode = START;
4820      break;
4821    case WASH:          /* o: got eob, possibly more output */
4822      FLUSH
4823      if (s->read != s->write)
4824        LEAVE
4825      c->mode = END;
4826    case END:
4827      r = Z_STREAM_END;
4828      LEAVE
4829    case BADCODE:       /* x: got error */
4830      r = Z_DATA_ERROR;
4831      LEAVE
4832    default:
4833      r = Z_STREAM_ERROR;
4834      LEAVE
4835  }
4836}
4837
4838
4839void inflate_codes_free(c, z)
4840inflate_codes_statef *c;
4841z_streamp z;
4842{
4843  ZFREE(z, c);
4844  Tracev((stderr, "inflate:       codes free\n"));
4845}
4846/* --- infcodes.c */
4847
4848/* +++ infutil.c */
4849/* inflate_util.c -- data and routines common to blocks and codes
4850 * Copyright (C) 1995-1996 Mark Adler
4851 * For conditions of distribution and use, see copyright notice in zlib.h
4852 */
4853
4854/* #include "zutil.h" */
4855/* #include "infblock.h" */
4856/* #include "inftrees.h" */
4857/* #include "infcodes.h" */
4858/* #include "infutil.h" */
4859
4860#ifndef NO_DUMMY_DECL
4861struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4862#endif
4863
4864/* And'ing with mask[n] masks the lower n bits */
4865uInt inflate_mask[17] = {
4866    0x0000,
4867    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4868    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4869};
4870
4871
4872/* copy as much as possible from the sliding window to the output area */
4873int inflate_flush(s, z, r)
4874inflate_blocks_statef *s;
4875z_streamp z;
4876int r;
4877{
4878  uInt n;
4879  Bytef *p;
4880  Bytef *q;
4881
4882  /* local copies of source and destination pointers */
4883  p = z->next_out;
4884  q = s->read;
4885
4886  /* compute number of bytes to copy as far as end of window */
4887  n = (uInt)((q <= s->write ? s->write : s->end) - q);
4888  if (n > z->avail_out) n = z->avail_out;
4889  if (n && r == Z_BUF_ERROR) r = Z_OK;
4890
4891  /* update counters */
4892  z->avail_out -= n;
4893  z->total_out += n;
4894
4895  /* update check information */
4896  if (s->checkfn != Z_NULL)
4897    z->adler = s->check = (*s->checkfn)(s->check, q, n);
4898
4899  /* copy as far as end of window */
4900  if (p != Z_NULL) {
4901    zmemcpy(p, q, n);
4902    p += n;
4903  }
4904  q += n;
4905
4906  /* see if more to copy at beginning of window */
4907  if (q == s->end)
4908  {
4909    /* wrap pointers */
4910    q = s->window;
4911    if (s->write == s->end)
4912      s->write = s->window;
4913
4914    /* compute bytes to copy */
4915    n = (uInt)(s->write - q);
4916    if (n > z->avail_out) n = z->avail_out;
4917    if (n && r == Z_BUF_ERROR) r = Z_OK;
4918
4919    /* update counters */
4920    z->avail_out -= n;
4921    z->total_out += n;
4922
4923    /* update check information */
4924    if (s->checkfn != Z_NULL)
4925      z->adler = s->check = (*s->checkfn)(s->check, q, n);
4926
4927    /* copy */
4928    if (p != Z_NULL) {
4929      zmemcpy(p, q, n);
4930      p += n;
4931    }
4932    q += n;
4933  }
4934
4935  /* update pointers */
4936  z->next_out = p;
4937  s->read = q;
4938
4939  /* done */
4940  return r;
4941}
4942/* --- infutil.c */
4943
4944/* +++ inffast.c */
4945/* inffast.c -- process literals and length/distance pairs fast
4946 * Copyright (C) 1995-1996 Mark Adler
4947 * For conditions of distribution and use, see copyright notice in zlib.h
4948 */
4949
4950/* #include "zutil.h" */
4951/* #include "inftrees.h" */
4952/* #include "infblock.h" */
4953/* #include "infcodes.h" */
4954/* #include "infutil.h" */
4955/* #include "inffast.h" */
4956
4957#ifndef NO_DUMMY_DECL
4958struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4959#endif
4960
4961/* simplify the use of the inflate_huft type with some defines */
4962#define base more.Base
4963#define next more.Next
4964#define exop word.what.Exop
4965#define bits word.what.Bits
4966
4967/* macros for bit input with no checking and for returning unused bytes */
4968#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4969#define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4970
4971/* Called with number of bytes left to write in window at least 258
4972   (the maximum string length) and number of input bytes available
4973   at least ten.  The ten bytes are six bytes for the longest length/
4974   distance pair plus four bytes for overloading the bit buffer. */
4975
4976int inflate_fast(bl, bd, tl, td, s, z)
4977uInt bl, bd;
4978inflate_huft *tl;
4979inflate_huft *td; /* need separate declaration for Borland C++ */
4980inflate_blocks_statef *s;
4981z_streamp z;
4982{
4983  inflate_huft *t;      /* temporary pointer */
4984  uInt e;               /* extra bits or operation */
4985  uLong b;              /* bit buffer */
4986  uInt k;               /* bits in bit buffer */
4987  Bytef *p;             /* input data pointer */
4988  uInt n;               /* bytes available there */
4989  Bytef *q;             /* output window write pointer */
4990  uInt m;               /* bytes to end of window or read pointer */
4991  uInt ml;              /* mask for literal/length tree */
4992  uInt md;              /* mask for distance tree */
4993  uInt c;               /* bytes to copy */
4994  uInt d;               /* distance back to copy from */
4995  Bytef *r;             /* copy source pointer */
4996
4997  /* load input, output, bit values */
4998  LOAD
4999
5000  /* initialize masks */
5001  ml = inflate_mask[bl];
5002  md = inflate_mask[bd];
5003
5004  /* do until not enough input or output space for fast loop */
5005  do {                          /* assume called with m >= 258 && n >= 10 */
5006    /* get literal/length code */
5007    GRABBITS(20)                /* max bits for literal/length code */
5008    if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5009    {
5010      DUMPBITS(t->bits)
5011      Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5012                "inflate:         * literal '%c'\n" :
5013                "inflate:         * literal 0x%02x\n", t->base));
5014      *q++ = (Byte)t->base;
5015      m--;
5016      continue;
5017    }
5018    do {
5019      DUMPBITS(t->bits)
5020      if (e & 16)
5021      {
5022        /* get extra bits for length */
5023        e &= 15;
5024        c = t->base + ((uInt)b & inflate_mask[e]);
5025        DUMPBITS(e)
5026        Tracevv((stderr, "inflate:         * length %u\n", c));
5027
5028        /* decode distance base of block to copy */
5029        GRABBITS(15);           /* max bits for distance code */
5030        e = (t = td + ((uInt)b & md))->exop;
5031        do {
5032          DUMPBITS(t->bits)
5033          if (e & 16)
5034          {
5035            /* get extra bits to add to distance base */
5036            e &= 15;
5037            GRABBITS(e)         /* get extra bits (up to 13) */
5038            d = t->base + ((uInt)b & inflate_mask[e]);
5039            DUMPBITS(e)
5040            Tracevv((stderr, "inflate:         * distance %u\n", d));
5041
5042            /* do the copy */
5043            m -= c;
5044            if ((uInt)(q - s->window) >= d)     /* offset before dest */
5045            {                                   /*  just copy */
5046              r = q - d;
5047              *q++ = *r++;  c--;        /* minimum count is three, */
5048              *q++ = *r++;  c--;        /*  so unroll loop a little */
5049            }
5050            else                        /* else offset after destination */
5051            {
5052              e = d - (uInt)(q - s->window); /* bytes from offset to end */
5053              r = s->end - e;           /* pointer to offset */
5054              if (c > e)                /* if source crosses, */
5055              {
5056                c -= e;                 /* copy to end of window */
5057                do {
5058                  *q++ = *r++;
5059                } while (--e);
5060                r = s->window;          /* copy rest from start of window */
5061              }
5062            }
5063            do {                        /* copy all or what's left */
5064              *q++ = *r++;
5065            } while (--c);
5066            break;
5067          }
5068          else if ((e & 64) == 0)
5069            e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5070          else
5071          {
5072            z->msg = (char*)"invalid distance code";
5073            UNGRAB
5074            UPDATE
5075            return Z_DATA_ERROR;
5076          }
5077        } while (1);
5078        break;
5079      }
5080      if ((e & 64) == 0)
5081      {
5082        if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5083        {
5084          DUMPBITS(t->bits)
5085          Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5086                    "inflate:         * literal '%c'\n" :
5087                    "inflate:         * literal 0x%02x\n", t->base));
5088          *q++ = (Byte)t->base;
5089          m--;
5090          break;
5091        }
5092      }
5093      else if (e & 32)
5094      {
5095        Tracevv((stderr, "inflate:         * end of block\n"));
5096        UNGRAB
5097        UPDATE
5098        return Z_STREAM_END;
5099      }
5100      else
5101      {
5102        z->msg = (char*)"invalid literal/length code";
5103        UNGRAB
5104        UPDATE
5105        return Z_DATA_ERROR;
5106      }
5107    } while (1);
5108  } while (m >= 258 && n >= 10);
5109
5110  /* not enough input or output--restore pointers and return */
5111  UNGRAB
5112  UPDATE
5113  return Z_OK;
5114}
5115/* --- inffast.c */
5116
5117/* +++ zutil.c */
5118/* zutil.c -- target dependent utility functions for the compression library
5119 * Copyright (C) 1995-1996 Jean-loup Gailly.
5120 * For conditions of distribution and use, see copyright notice in zlib.h
5121 */
5122
5123/* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5124
5125#ifdef DEBUG_ZLIB
5126#include <stdio.h>
5127#endif
5128
5129/* #include "zutil.h" */
5130
5131#ifndef NO_DUMMY_DECL
5132struct internal_state      {int dummy;}; /* for buggy compilers */
5133#endif
5134
5135#ifndef STDC
5136extern void exit OF((int));
5137#endif
5138
5139static const char *z_errmsg[10] = {
5140"need dictionary",     /* Z_NEED_DICT       2  */
5141"stream end",          /* Z_STREAM_END      1  */
5142"",                    /* Z_OK              0  */
5143"file error",          /* Z_ERRNO         (-1) */
5144"stream error",        /* Z_STREAM_ERROR  (-2) */
5145"data error",          /* Z_DATA_ERROR    (-3) */
5146"insufficient memory", /* Z_MEM_ERROR     (-4) */
5147"buffer error",        /* Z_BUF_ERROR     (-5) */
5148"incompatible version",/* Z_VERSION_ERROR (-6) */
5149""};
5150
5151
5152const char *zlibVersion()
5153{
5154    return ZLIB_VERSION;
5155}
5156
5157#ifdef DEBUG_ZLIB
5158void z_error (m)
5159    char *m;
5160{
5161    fprintf(stderr, "%s\n", m);
5162    exit(1);
5163}
5164#endif
5165
5166#ifndef HAVE_MEMCPY
5167
5168void zmemcpy(dest, source, len)
5169    Bytef* dest;
5170    Bytef* source;
5171    uInt  len;
5172{
5173    if (len == 0) return;
5174    do {
5175        *dest++ = *source++; /* ??? to be unrolled */
5176    } while (--len != 0);
5177}
5178
5179int zmemcmp(s1, s2, len)
5180    Bytef* s1;
5181    Bytef* s2;
5182    uInt  len;
5183{
5184    uInt j;
5185
5186    for (j = 0; j < len; j++) {
5187        if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5188    }
5189    return 0;
5190}
5191
5192void zmemzero(dest, len)
5193    Bytef* dest;
5194    uInt  len;
5195{
5196    if (len == 0) return;
5197    do {
5198        *dest++ = 0;  /* ??? to be unrolled */
5199    } while (--len != 0);
5200}
5201#endif
5202
5203#ifdef __TURBOC__
5204#if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5205/* Small and medium model in Turbo C are for now limited to near allocation
5206 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5207 */
5208#  define MY_ZCALLOC
5209
5210/* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5211 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5212 * must fix the pointer. Warning: the pointer must be put back to its
5213 * original form in order to free it, use zcfree().
5214 */
5215
5216#define MAX_PTR 10
5217/* 10*64K = 640K */
5218
5219local int next_ptr = 0;
5220
5221typedef struct ptr_table_s {
5222    voidpf org_ptr;
5223    voidpf new_ptr;
5224} ptr_table;
5225
5226local ptr_table table[MAX_PTR];
5227/* This table is used to remember the original form of pointers
5228 * to large buffers (64K). Such pointers are normalized with a zero offset.
5229 * Since MSDOS is not a preemptive multitasking OS, this table is not
5230 * protected from concurrent access. This hack doesn't work anyway on
5231 * a protected system like OS/2. Use Microsoft C instead.
5232 */
5233
5234voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5235{
5236    voidpf buf = opaque; /* just to make some compilers happy */
5237    ulg bsize = (ulg)items*size;
5238
5239    /* If we allocate less than 65520 bytes, we assume that farmalloc
5240     * will return a usable pointer which doesn't have to be normalized.
5241     */
5242    if (bsize < 65520L) {
5243        buf = farmalloc(bsize);
5244        if (*(ush*)&buf != 0) return buf;
5245    } else {
5246        buf = farmalloc(bsize + 16L);
5247    }
5248    if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5249    table[next_ptr].org_ptr = buf;
5250
5251    /* Normalize the pointer to seg:0 */
5252    *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5253    *(ush*)&buf = 0;
5254    table[next_ptr++].new_ptr = buf;
5255    return buf;
5256}
5257
5258void  zcfree (voidpf opaque, voidpf ptr)
5259{
5260    int n;
5261    if (*(ush*)&ptr != 0) { /* object < 64K */
5262        farfree(ptr);
5263        return;
5264    }
5265    /* Find the original pointer */
5266    for (n = 0; n < next_ptr; n++) {
5267        if (ptr != table[n].new_ptr) continue;
5268
5269        farfree(table[n].org_ptr);
5270        while (++n < next_ptr) {
5271            table[n-1] = table[n];
5272        }
5273        next_ptr--;
5274        return;
5275    }
5276    ptr = opaque; /* just to make some compilers happy */
5277    Assert(0, "zcfree: ptr not found");
5278}
5279#endif
5280#endif /* __TURBOC__ */
5281
5282
5283#if defined(M_I86) && !defined(__32BIT__)
5284/* Microsoft C in 16-bit mode */
5285
5286#  define MY_ZCALLOC
5287
5288#if (!defined(_MSC_VER) || (_MSC_VER < 600))
5289#  define _halloc  halloc
5290#  define _hfree   hfree
5291#endif
5292
5293voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5294{
5295    if (opaque) opaque = 0; /* to make compiler happy */
5296    return _halloc((long)items, size);
5297}
5298
5299void  zcfree (voidpf opaque, voidpf ptr)
5300{
5301    if (opaque) opaque = 0; /* to make compiler happy */
5302    _hfree(ptr);
5303}
5304
5305#endif /* MSC */
5306
5307
5308#ifndef MY_ZCALLOC /* Any system without a special alloc function */
5309
5310#ifndef STDC
5311extern voidp  calloc OF((uInt items, uInt size));
5312extern void   free   OF((voidpf ptr));
5313#endif
5314
5315voidpf zcalloc (opaque, items, size)
5316    voidpf opaque;
5317    unsigned items;
5318    unsigned size;
5319{
5320    if (opaque) items += size - size; /* make compiler happy */
5321    return (voidpf)calloc(items, size);
5322}
5323
5324void  zcfree (opaque, ptr)
5325    voidpf opaque;
5326    voidpf ptr;
5327{
5328    free(ptr);
5329    if (opaque) return; /* make compiler happy */
5330}
5331
5332#endif /* MY_ZCALLOC */
5333/* --- zutil.c */
5334
5335/* +++ adler32.c */
5336/* adler32.c -- compute the Adler-32 checksum of a data stream
5337 * Copyright (C) 1995-1996 Mark Adler
5338 * For conditions of distribution and use, see copyright notice in zlib.h
5339 */
5340
5341/* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5342
5343/* #include "zlib.h" */
5344
5345#define BASE 65521L /* largest prime smaller than 65536 */
5346#define NMAX 5552
5347/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5348
5349#define DO1(buf,i)  {s1 += buf[(i)]; s2 += s1;}
5350#define DO2(buf,i)  DO1(buf,i); DO1(buf,(i)+1);
5351#define DO4(buf,i)  DO2(buf,i); DO2(buf,(i)+2);
5352#define DO8(buf,i)  DO4(buf,i); DO4(buf,(i)+4);
5353#define DO16(buf)   DO8(buf,0); DO8(buf,8);
5354
5355/* ========================================================================= */
5356uLong adler32(adler, buf, len)
5357    uLong adler;
5358    const Bytef *buf;
5359    uInt len;
5360{
5361    unsigned long s1 = adler & 0xffff;
5362    unsigned long s2 = (adler >> 16) & 0xffff;
5363    int k;
5364
5365    if (buf == Z_NULL) return 1L;
5366
5367    while (len > 0) {
5368        k = len < NMAX ? len : NMAX;
5369        len -= k;
5370        while (k >= 16) {
5371            DO16(buf);
5372	    buf += 16;
5373            k -= 16;
5374        }
5375        if (k != 0) do {
5376            s1 += *buf++;
5377	    s2 += s1;
5378        } while (--k);
5379        s1 %= BASE;
5380        s2 %= BASE;
5381    }
5382    return (s2 << 16) | s1;
5383}
5384/* --- adler32.c */
5385
5386#ifdef _KERNEL
5387static int
5388zlib_modevent(module_t mod, int type, void *unused)
5389{
5390	switch (type) {
5391	case MOD_LOAD:
5392		return 0;
5393	case MOD_UNLOAD:
5394		return 0;
5395	}
5396	return EINVAL;
5397}
5398
5399static moduledata_t zlib_mod = {
5400	"zlib",
5401	zlib_modevent,
5402	0
5403};
5404DECLARE_MODULE(zlib, zlib_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5405MODULE_VERSION(zlib, 1);
5406#endif /* _KERNEL */
5407