bpf.c revision 205095
1/*-
2 * Copyright (c) 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from the Stanford/CMU enet packet filter,
6 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
7 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
8 * Berkeley Laboratory.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *      @(#)bpf.c	8.4 (Berkeley) 1/9/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/net/bpf.c 205095 2010-03-12 19:42:42Z jkim $");
39
40#include "opt_bpf.h"
41#include "opt_netgraph.h"
42
43#include <sys/types.h>
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/conf.h>
47#include <sys/fcntl.h>
48#include <sys/jail.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/time.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/signalvar.h>
55#include <sys/filio.h>
56#include <sys/sockio.h>
57#include <sys/ttycom.h>
58#include <sys/uio.h>
59
60#include <sys/event.h>
61#include <sys/file.h>
62#include <sys/poll.h>
63#include <sys/proc.h>
64
65#include <sys/socket.h>
66
67#include <net/if.h>
68#include <net/bpf.h>
69#include <net/bpf_buffer.h>
70#ifdef BPF_JITTER
71#include <net/bpf_jitter.h>
72#endif
73#include <net/bpf_zerocopy.h>
74#include <net/bpfdesc.h>
75#include <net/vnet.h>
76
77#include <netinet/in.h>
78#include <netinet/if_ether.h>
79#include <sys/kernel.h>
80#include <sys/sysctl.h>
81
82#include <net80211/ieee80211_freebsd.h>
83
84#include <security/mac/mac_framework.h>
85
86MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
87
88#if defined(DEV_BPF) || defined(NETGRAPH_BPF)
89
90#define PRINET  26			/* interruptible */
91
92/*
93 * bpf_iflist is a list of BPF interface structures, each corresponding to a
94 * specific DLT.  The same network interface might have several BPF interface
95 * structures registered by different layers in the stack (i.e., 802.11
96 * frames, ethernet frames, etc).
97 */
98static LIST_HEAD(, bpf_if)	bpf_iflist;
99static struct mtx	bpf_mtx;		/* bpf global lock */
100static int		bpf_bpfd_cnt;
101
102static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
103static void	bpf_detachd(struct bpf_d *);
104static void	bpf_freed(struct bpf_d *);
105static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
106		    struct sockaddr *, int *, struct bpf_insn *);
107static int	bpf_setif(struct bpf_d *, struct ifreq *);
108static void	bpf_timed_out(void *);
109static __inline void
110		bpf_wakeup(struct bpf_d *);
111static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
112		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
113		    struct timeval *);
114static void	reset_d(struct bpf_d *);
115static int	 bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
116static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
117static int	bpf_setdlt(struct bpf_d *, u_int);
118static void	filt_bpfdetach(struct knote *);
119static int	filt_bpfread(struct knote *, long);
120static void	bpf_drvinit(void *);
121static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
122
123SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW, 0, "bpf sysctl");
124int bpf_maxinsns = BPF_MAXINSNS;
125SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
126    &bpf_maxinsns, 0, "Maximum bpf program instructions");
127static int bpf_zerocopy_enable = 0;
128SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
129    &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
130SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
131    bpf_stats_sysctl, "bpf statistics portal");
132
133static	d_open_t	bpfopen;
134static	d_read_t	bpfread;
135static	d_write_t	bpfwrite;
136static	d_ioctl_t	bpfioctl;
137static	d_poll_t	bpfpoll;
138static	d_kqfilter_t	bpfkqfilter;
139
140static struct cdevsw bpf_cdevsw = {
141	.d_version =	D_VERSION,
142	.d_open =	bpfopen,
143	.d_read =	bpfread,
144	.d_write =	bpfwrite,
145	.d_ioctl =	bpfioctl,
146	.d_poll =	bpfpoll,
147	.d_name =	"bpf",
148	.d_kqfilter =	bpfkqfilter,
149};
150
151static struct filterops bpfread_filtops = {
152	.f_isfd = 1,
153	.f_detach = filt_bpfdetach,
154	.f_event = filt_bpfread,
155};
156
157/*
158 * Wrapper functions for various buffering methods.  If the set of buffer
159 * modes expands, we will probably want to introduce a switch data structure
160 * similar to protosw, et.
161 */
162static void
163bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
164    u_int len)
165{
166
167	BPFD_LOCK_ASSERT(d);
168
169	switch (d->bd_bufmode) {
170	case BPF_BUFMODE_BUFFER:
171		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
172
173	case BPF_BUFMODE_ZBUF:
174		d->bd_zcopy++;
175		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
176
177	default:
178		panic("bpf_buf_append_bytes");
179	}
180}
181
182static void
183bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
184    u_int len)
185{
186
187	BPFD_LOCK_ASSERT(d);
188
189	switch (d->bd_bufmode) {
190	case BPF_BUFMODE_BUFFER:
191		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
192
193	case BPF_BUFMODE_ZBUF:
194		d->bd_zcopy++;
195		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
196
197	default:
198		panic("bpf_buf_append_mbuf");
199	}
200}
201
202/*
203 * This function gets called when the free buffer is re-assigned.
204 */
205static void
206bpf_buf_reclaimed(struct bpf_d *d)
207{
208
209	BPFD_LOCK_ASSERT(d);
210
211	switch (d->bd_bufmode) {
212	case BPF_BUFMODE_BUFFER:
213		return;
214
215	case BPF_BUFMODE_ZBUF:
216		bpf_zerocopy_buf_reclaimed(d);
217		return;
218
219	default:
220		panic("bpf_buf_reclaimed");
221	}
222}
223
224/*
225 * If the buffer mechanism has a way to decide that a held buffer can be made
226 * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
227 * returned if the buffer can be discarded, (0) is returned if it cannot.
228 */
229static int
230bpf_canfreebuf(struct bpf_d *d)
231{
232
233	BPFD_LOCK_ASSERT(d);
234
235	switch (d->bd_bufmode) {
236	case BPF_BUFMODE_ZBUF:
237		return (bpf_zerocopy_canfreebuf(d));
238	}
239	return (0);
240}
241
242/*
243 * Allow the buffer model to indicate that the current store buffer is
244 * immutable, regardless of the appearance of space.  Return (1) if the
245 * buffer is writable, and (0) if not.
246 */
247static int
248bpf_canwritebuf(struct bpf_d *d)
249{
250
251	BPFD_LOCK_ASSERT(d);
252
253	switch (d->bd_bufmode) {
254	case BPF_BUFMODE_ZBUF:
255		return (bpf_zerocopy_canwritebuf(d));
256	}
257	return (1);
258}
259
260/*
261 * Notify buffer model that an attempt to write to the store buffer has
262 * resulted in a dropped packet, in which case the buffer may be considered
263 * full.
264 */
265static void
266bpf_buffull(struct bpf_d *d)
267{
268
269	BPFD_LOCK_ASSERT(d);
270
271	switch (d->bd_bufmode) {
272	case BPF_BUFMODE_ZBUF:
273		bpf_zerocopy_buffull(d);
274		break;
275	}
276}
277
278/*
279 * Notify the buffer model that a buffer has moved into the hold position.
280 */
281void
282bpf_bufheld(struct bpf_d *d)
283{
284
285	BPFD_LOCK_ASSERT(d);
286
287	switch (d->bd_bufmode) {
288	case BPF_BUFMODE_ZBUF:
289		bpf_zerocopy_bufheld(d);
290		break;
291	}
292}
293
294static void
295bpf_free(struct bpf_d *d)
296{
297
298	switch (d->bd_bufmode) {
299	case BPF_BUFMODE_BUFFER:
300		return (bpf_buffer_free(d));
301
302	case BPF_BUFMODE_ZBUF:
303		return (bpf_zerocopy_free(d));
304
305	default:
306		panic("bpf_buf_free");
307	}
308}
309
310static int
311bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
312{
313
314	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
315		return (EOPNOTSUPP);
316	return (bpf_buffer_uiomove(d, buf, len, uio));
317}
318
319static int
320bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
321{
322
323	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
324		return (EOPNOTSUPP);
325	return (bpf_buffer_ioctl_sblen(d, i));
326}
327
328static int
329bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
330{
331
332	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
333		return (EOPNOTSUPP);
334	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
335}
336
337static int
338bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
339{
340
341	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
342		return (EOPNOTSUPP);
343	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
344}
345
346static int
347bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
348{
349
350	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
351		return (EOPNOTSUPP);
352	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
353}
354
355/*
356 * General BPF functions.
357 */
358static int
359bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
360    struct sockaddr *sockp, int *hdrlen, struct bpf_insn *wfilter)
361{
362	const struct ieee80211_bpf_params *p;
363	struct ether_header *eh;
364	struct mbuf *m;
365	int error;
366	int len;
367	int hlen;
368	int slen;
369
370	/*
371	 * Build a sockaddr based on the data link layer type.
372	 * We do this at this level because the ethernet header
373	 * is copied directly into the data field of the sockaddr.
374	 * In the case of SLIP, there is no header and the packet
375	 * is forwarded as is.
376	 * Also, we are careful to leave room at the front of the mbuf
377	 * for the link level header.
378	 */
379	switch (linktype) {
380
381	case DLT_SLIP:
382		sockp->sa_family = AF_INET;
383		hlen = 0;
384		break;
385
386	case DLT_EN10MB:
387		sockp->sa_family = AF_UNSPEC;
388		/* XXX Would MAXLINKHDR be better? */
389		hlen = ETHER_HDR_LEN;
390		break;
391
392	case DLT_FDDI:
393		sockp->sa_family = AF_IMPLINK;
394		hlen = 0;
395		break;
396
397	case DLT_RAW:
398		sockp->sa_family = AF_UNSPEC;
399		hlen = 0;
400		break;
401
402	case DLT_NULL:
403		/*
404		 * null interface types require a 4 byte pseudo header which
405		 * corresponds to the address family of the packet.
406		 */
407		sockp->sa_family = AF_UNSPEC;
408		hlen = 4;
409		break;
410
411	case DLT_ATM_RFC1483:
412		/*
413		 * en atm driver requires 4-byte atm pseudo header.
414		 * though it isn't standard, vpi:vci needs to be
415		 * specified anyway.
416		 */
417		sockp->sa_family = AF_UNSPEC;
418		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
419		break;
420
421	case DLT_PPP:
422		sockp->sa_family = AF_UNSPEC;
423		hlen = 4;	/* This should match PPP_HDRLEN */
424		break;
425
426	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
427		sockp->sa_family = AF_IEEE80211;
428		hlen = 0;
429		break;
430
431	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
432		sockp->sa_family = AF_IEEE80211;
433		sockp->sa_len = 12;	/* XXX != 0 */
434		hlen = sizeof(struct ieee80211_bpf_params);
435		break;
436
437	default:
438		return (EIO);
439	}
440
441	len = uio->uio_resid;
442
443	if (len - hlen > ifp->if_mtu)
444		return (EMSGSIZE);
445
446	if ((unsigned)len > MJUM16BYTES)
447		return (EIO);
448
449	if (len <= MHLEN)
450		MGETHDR(m, M_WAIT, MT_DATA);
451	else if (len <= MCLBYTES)
452		m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
453	else
454		m = m_getjcl(M_WAIT, MT_DATA, M_PKTHDR,
455#if (MJUMPAGESIZE > MCLBYTES)
456		    len <= MJUMPAGESIZE ? MJUMPAGESIZE :
457#endif
458		    (len <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES));
459	m->m_pkthdr.len = m->m_len = len;
460	m->m_pkthdr.rcvif = NULL;
461	*mp = m;
462
463	if (m->m_len < hlen) {
464		error = EPERM;
465		goto bad;
466	}
467
468	error = uiomove(mtod(m, u_char *), len, uio);
469	if (error)
470		goto bad;
471
472	slen = bpf_filter(wfilter, mtod(m, u_char *), len, len);
473	if (slen == 0) {
474		error = EPERM;
475		goto bad;
476	}
477
478	/* Check for multicast destination */
479	switch (linktype) {
480	case DLT_EN10MB:
481		eh = mtod(m, struct ether_header *);
482		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
483			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
484			    ETHER_ADDR_LEN) == 0)
485				m->m_flags |= M_BCAST;
486			else
487				m->m_flags |= M_MCAST;
488		}
489		break;
490	}
491
492	/*
493	 * Make room for link header, and copy it to sockaddr
494	 */
495	if (hlen != 0) {
496		if (sockp->sa_family == AF_IEEE80211) {
497			/*
498			 * Collect true length from the parameter header
499			 * NB: sockp is known to be zero'd so if we do a
500			 *     short copy unspecified parameters will be
501			 *     zero.
502			 * NB: packet may not be aligned after stripping
503			 *     bpf params
504			 * XXX check ibp_vers
505			 */
506			p = mtod(m, const struct ieee80211_bpf_params *);
507			hlen = p->ibp_len;
508			if (hlen > sizeof(sockp->sa_data)) {
509				error = EINVAL;
510				goto bad;
511			}
512		}
513		bcopy(m->m_data, sockp->sa_data, hlen);
514	}
515	*hdrlen = hlen;
516
517	return (0);
518bad:
519	m_freem(m);
520	return (error);
521}
522
523/*
524 * Attach file to the bpf interface, i.e. make d listen on bp.
525 */
526static void
527bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
528{
529	/*
530	 * Point d at bp, and add d to the interface's list of listeners.
531	 * Finally, point the driver's bpf cookie at the interface so
532	 * it will divert packets to bpf.
533	 */
534	BPFIF_LOCK(bp);
535	d->bd_bif = bp;
536	LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
537
538	bpf_bpfd_cnt++;
539	BPFIF_UNLOCK(bp);
540
541	EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
542}
543
544/*
545 * Detach a file from its interface.
546 */
547static void
548bpf_detachd(struct bpf_d *d)
549{
550	int error;
551	struct bpf_if *bp;
552	struct ifnet *ifp;
553
554	bp = d->bd_bif;
555	BPFIF_LOCK(bp);
556	BPFD_LOCK(d);
557	ifp = d->bd_bif->bif_ifp;
558
559	/*
560	 * Remove d from the interface's descriptor list.
561	 */
562	LIST_REMOVE(d, bd_next);
563
564	bpf_bpfd_cnt--;
565	d->bd_bif = NULL;
566	BPFD_UNLOCK(d);
567	BPFIF_UNLOCK(bp);
568
569	EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
570
571	/*
572	 * Check if this descriptor had requested promiscuous mode.
573	 * If so, turn it off.
574	 */
575	if (d->bd_promisc) {
576		d->bd_promisc = 0;
577		CURVNET_SET(ifp->if_vnet);
578		error = ifpromisc(ifp, 0);
579		CURVNET_RESTORE();
580		if (error != 0 && error != ENXIO) {
581			/*
582			 * ENXIO can happen if a pccard is unplugged
583			 * Something is really wrong if we were able to put
584			 * the driver into promiscuous mode, but can't
585			 * take it out.
586			 */
587			if_printf(bp->bif_ifp,
588				"bpf_detach: ifpromisc failed (%d)\n", error);
589		}
590	}
591}
592
593/*
594 * Close the descriptor by detaching it from its interface,
595 * deallocating its buffers, and marking it free.
596 */
597static void
598bpf_dtor(void *data)
599{
600	struct bpf_d *d = data;
601
602	BPFD_LOCK(d);
603	if (d->bd_state == BPF_WAITING)
604		callout_stop(&d->bd_callout);
605	d->bd_state = BPF_IDLE;
606	BPFD_UNLOCK(d);
607	funsetown(&d->bd_sigio);
608	mtx_lock(&bpf_mtx);
609	if (d->bd_bif)
610		bpf_detachd(d);
611	mtx_unlock(&bpf_mtx);
612	selwakeuppri(&d->bd_sel, PRINET);
613#ifdef MAC
614	mac_bpfdesc_destroy(d);
615#endif /* MAC */
616	knlist_destroy(&d->bd_sel.si_note);
617	callout_drain(&d->bd_callout);
618	bpf_freed(d);
619	free(d, M_BPF);
620}
621
622/*
623 * Open ethernet device.  Returns ENXIO for illegal minor device number,
624 * EBUSY if file is open by another process.
625 */
626/* ARGSUSED */
627static	int
628bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
629{
630	struct bpf_d *d;
631	int error;
632
633	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
634	error = devfs_set_cdevpriv(d, bpf_dtor);
635	if (error != 0) {
636		free(d, M_BPF);
637		return (error);
638	}
639
640	/*
641	 * For historical reasons, perform a one-time initialization call to
642	 * the buffer routines, even though we're not yet committed to a
643	 * particular buffer method.
644	 */
645	bpf_buffer_init(d);
646	d->bd_bufmode = BPF_BUFMODE_BUFFER;
647	d->bd_sig = SIGIO;
648	d->bd_direction = BPF_D_INOUT;
649	d->bd_pid = td->td_proc->p_pid;
650#ifdef MAC
651	mac_bpfdesc_init(d);
652	mac_bpfdesc_create(td->td_ucred, d);
653#endif
654	mtx_init(&d->bd_mtx, devtoname(dev), "bpf cdev lock", MTX_DEF);
655	callout_init_mtx(&d->bd_callout, &d->bd_mtx, 0);
656	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_mtx);
657
658	return (0);
659}
660
661/*
662 *  bpfread - read next chunk of packets from buffers
663 */
664static	int
665bpfread(struct cdev *dev, struct uio *uio, int ioflag)
666{
667	struct bpf_d *d;
668	int error;
669	int non_block;
670	int timed_out;
671
672	error = devfs_get_cdevpriv((void **)&d);
673	if (error != 0)
674		return (error);
675
676	/*
677	 * Restrict application to use a buffer the same size as
678	 * as kernel buffers.
679	 */
680	if (uio->uio_resid != d->bd_bufsize)
681		return (EINVAL);
682
683	non_block = ((ioflag & O_NONBLOCK) != 0);
684
685	BPFD_LOCK(d);
686	d->bd_pid = curthread->td_proc->p_pid;
687	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
688		BPFD_UNLOCK(d);
689		return (EOPNOTSUPP);
690	}
691	if (d->bd_state == BPF_WAITING)
692		callout_stop(&d->bd_callout);
693	timed_out = (d->bd_state == BPF_TIMED_OUT);
694	d->bd_state = BPF_IDLE;
695	/*
696	 * If the hold buffer is empty, then do a timed sleep, which
697	 * ends when the timeout expires or when enough packets
698	 * have arrived to fill the store buffer.
699	 */
700	while (d->bd_hbuf == NULL) {
701		if (d->bd_slen != 0) {
702			/*
703			 * A packet(s) either arrived since the previous
704			 * read or arrived while we were asleep.
705			 */
706			if (d->bd_immediate || non_block || timed_out) {
707				/*
708				 * Rotate the buffers and return what's here
709				 * if we are in immediate mode, non-blocking
710				 * flag is set, or this descriptor timed out.
711				 */
712				ROTATE_BUFFERS(d);
713				break;
714			}
715		}
716
717		/*
718		 * No data is available, check to see if the bpf device
719		 * is still pointed at a real interface.  If not, return
720		 * ENXIO so that the userland process knows to rebind
721		 * it before using it again.
722		 */
723		if (d->bd_bif == NULL) {
724			BPFD_UNLOCK(d);
725			return (ENXIO);
726		}
727
728		if (non_block) {
729			BPFD_UNLOCK(d);
730			return (EWOULDBLOCK);
731		}
732		error = msleep(d, &d->bd_mtx, PRINET|PCATCH,
733		     "bpf", d->bd_rtout);
734		if (error == EINTR || error == ERESTART) {
735			BPFD_UNLOCK(d);
736			return (error);
737		}
738		if (error == EWOULDBLOCK) {
739			/*
740			 * On a timeout, return what's in the buffer,
741			 * which may be nothing.  If there is something
742			 * in the store buffer, we can rotate the buffers.
743			 */
744			if (d->bd_hbuf)
745				/*
746				 * We filled up the buffer in between
747				 * getting the timeout and arriving
748				 * here, so we don't need to rotate.
749				 */
750				break;
751
752			if (d->bd_slen == 0) {
753				BPFD_UNLOCK(d);
754				return (0);
755			}
756			ROTATE_BUFFERS(d);
757			break;
758		}
759	}
760	/*
761	 * At this point, we know we have something in the hold slot.
762	 */
763	BPFD_UNLOCK(d);
764
765	/*
766	 * Move data from hold buffer into user space.
767	 * We know the entire buffer is transferred since
768	 * we checked above that the read buffer is bpf_bufsize bytes.
769	 *
770	 * XXXRW: More synchronization needed here: what if a second thread
771	 * issues a read on the same fd at the same time?  Don't want this
772	 * getting invalidated.
773	 */
774	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
775
776	BPFD_LOCK(d);
777	d->bd_fbuf = d->bd_hbuf;
778	d->bd_hbuf = NULL;
779	d->bd_hlen = 0;
780	bpf_buf_reclaimed(d);
781	BPFD_UNLOCK(d);
782
783	return (error);
784}
785
786/*
787 * If there are processes sleeping on this descriptor, wake them up.
788 */
789static __inline void
790bpf_wakeup(struct bpf_d *d)
791{
792
793	BPFD_LOCK_ASSERT(d);
794	if (d->bd_state == BPF_WAITING) {
795		callout_stop(&d->bd_callout);
796		d->bd_state = BPF_IDLE;
797	}
798	wakeup(d);
799	if (d->bd_async && d->bd_sig && d->bd_sigio)
800		pgsigio(&d->bd_sigio, d->bd_sig, 0);
801
802	selwakeuppri(&d->bd_sel, PRINET);
803	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
804}
805
806static void
807bpf_timed_out(void *arg)
808{
809	struct bpf_d *d = (struct bpf_d *)arg;
810
811	BPFD_LOCK_ASSERT(d);
812
813	if (callout_pending(&d->bd_callout) || !callout_active(&d->bd_callout))
814		return;
815	if (d->bd_state == BPF_WAITING) {
816		d->bd_state = BPF_TIMED_OUT;
817		if (d->bd_slen != 0)
818			bpf_wakeup(d);
819	}
820}
821
822static int
823bpf_ready(struct bpf_d *d)
824{
825
826	BPFD_LOCK_ASSERT(d);
827
828	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
829		return (1);
830	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
831	    d->bd_slen != 0)
832		return (1);
833	return (0);
834}
835
836static int
837bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
838{
839	struct bpf_d *d;
840	struct ifnet *ifp;
841	struct mbuf *m, *mc;
842	struct sockaddr dst;
843	int error, hlen;
844
845	error = devfs_get_cdevpriv((void **)&d);
846	if (error != 0)
847		return (error);
848
849	d->bd_pid = curthread->td_proc->p_pid;
850	d->bd_wcount++;
851	if (d->bd_bif == NULL) {
852		d->bd_wdcount++;
853		return (ENXIO);
854	}
855
856	ifp = d->bd_bif->bif_ifp;
857
858	if ((ifp->if_flags & IFF_UP) == 0) {
859		d->bd_wdcount++;
860		return (ENETDOWN);
861	}
862
863	if (uio->uio_resid == 0) {
864		d->bd_wdcount++;
865		return (0);
866	}
867
868	bzero(&dst, sizeof(dst));
869	m = NULL;
870	hlen = 0;
871	error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp,
872	    &m, &dst, &hlen, d->bd_wfilter);
873	if (error) {
874		d->bd_wdcount++;
875		return (error);
876	}
877	d->bd_wfcount++;
878	if (d->bd_hdrcmplt)
879		dst.sa_family = pseudo_AF_HDRCMPLT;
880
881	if (d->bd_feedback) {
882		mc = m_dup(m, M_DONTWAIT);
883		if (mc != NULL)
884			mc->m_pkthdr.rcvif = ifp;
885		/* Set M_PROMISC for outgoing packets to be discarded. */
886		if (d->bd_direction == BPF_D_INOUT)
887			m->m_flags |= M_PROMISC;
888	} else
889		mc = NULL;
890
891	m->m_pkthdr.len -= hlen;
892	m->m_len -= hlen;
893	m->m_data += hlen;	/* XXX */
894
895	CURVNET_SET(ifp->if_vnet);
896#ifdef MAC
897	BPFD_LOCK(d);
898	mac_bpfdesc_create_mbuf(d, m);
899	if (mc != NULL)
900		mac_bpfdesc_create_mbuf(d, mc);
901	BPFD_UNLOCK(d);
902#endif
903
904	error = (*ifp->if_output)(ifp, m, &dst, NULL);
905	if (error)
906		d->bd_wdcount++;
907
908	if (mc != NULL) {
909		if (error == 0)
910			(*ifp->if_input)(ifp, mc);
911		else
912			m_freem(mc);
913	}
914	CURVNET_RESTORE();
915
916	return (error);
917}
918
919/*
920 * Reset a descriptor by flushing its packet buffer and clearing the receive
921 * and drop counts.  This is doable for kernel-only buffers, but with
922 * zero-copy buffers, we can't write to (or rotate) buffers that are
923 * currently owned by userspace.  It would be nice if we could encapsulate
924 * this logic in the buffer code rather than here.
925 */
926static void
927reset_d(struct bpf_d *d)
928{
929
930	mtx_assert(&d->bd_mtx, MA_OWNED);
931
932	if ((d->bd_hbuf != NULL) &&
933	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
934		/* Free the hold buffer. */
935		d->bd_fbuf = d->bd_hbuf;
936		d->bd_hbuf = NULL;
937		d->bd_hlen = 0;
938		bpf_buf_reclaimed(d);
939	}
940	if (bpf_canwritebuf(d))
941		d->bd_slen = 0;
942	d->bd_rcount = 0;
943	d->bd_dcount = 0;
944	d->bd_fcount = 0;
945	d->bd_wcount = 0;
946	d->bd_wfcount = 0;
947	d->bd_wdcount = 0;
948	d->bd_zcopy = 0;
949}
950
951/*
952 *  FIONREAD		Check for read packet available.
953 *  SIOCGIFADDR		Get interface address - convenient hook to driver.
954 *  BIOCGBLEN		Get buffer len [for read()].
955 *  BIOCSETF		Set read filter.
956 *  BIOCSETFNR		Set read filter without resetting descriptor.
957 *  BIOCSETWF		Set write filter.
958 *  BIOCFLUSH		Flush read packet buffer.
959 *  BIOCPROMISC		Put interface into promiscuous mode.
960 *  BIOCGDLT		Get link layer type.
961 *  BIOCGETIF		Get interface name.
962 *  BIOCSETIF		Set interface.
963 *  BIOCSRTIMEOUT	Set read timeout.
964 *  BIOCGRTIMEOUT	Get read timeout.
965 *  BIOCGSTATS		Get packet stats.
966 *  BIOCIMMEDIATE	Set immediate mode.
967 *  BIOCVERSION		Get filter language version.
968 *  BIOCGHDRCMPLT	Get "header already complete" flag
969 *  BIOCSHDRCMPLT	Set "header already complete" flag
970 *  BIOCGDIRECTION	Get packet direction flag
971 *  BIOCSDIRECTION	Set packet direction flag
972 *  BIOCLOCK		Set "locked" flag
973 *  BIOCFEEDBACK	Set packet feedback mode.
974 *  BIOCSETZBUF		Set current zero-copy buffer locations.
975 *  BIOCGETZMAX		Get maximum zero-copy buffer size.
976 *  BIOCROTZBUF		Force rotation of zero-copy buffer
977 *  BIOCSETBUFMODE	Set buffer mode.
978 *  BIOCGETBUFMODE	Get current buffer mode.
979 */
980/* ARGSUSED */
981static	int
982bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
983    struct thread *td)
984{
985	struct bpf_d *d;
986	int error;
987
988	error = devfs_get_cdevpriv((void **)&d);
989	if (error != 0)
990		return (error);
991
992	/*
993	 * Refresh PID associated with this descriptor.
994	 */
995	BPFD_LOCK(d);
996	d->bd_pid = td->td_proc->p_pid;
997	if (d->bd_state == BPF_WAITING)
998		callout_stop(&d->bd_callout);
999	d->bd_state = BPF_IDLE;
1000	BPFD_UNLOCK(d);
1001
1002	if (d->bd_locked == 1) {
1003		switch (cmd) {
1004		case BIOCGBLEN:
1005		case BIOCFLUSH:
1006		case BIOCGDLT:
1007		case BIOCGDLTLIST:
1008		case BIOCGETIF:
1009		case BIOCGRTIMEOUT:
1010		case BIOCGSTATS:
1011		case BIOCVERSION:
1012		case BIOCGRSIG:
1013		case BIOCGHDRCMPLT:
1014		case BIOCFEEDBACK:
1015		case FIONREAD:
1016		case BIOCLOCK:
1017		case BIOCSRTIMEOUT:
1018		case BIOCIMMEDIATE:
1019		case TIOCGPGRP:
1020		case BIOCROTZBUF:
1021			break;
1022		default:
1023			return (EPERM);
1024		}
1025	}
1026	CURVNET_SET(TD_TO_VNET(td));
1027	switch (cmd) {
1028
1029	default:
1030		error = EINVAL;
1031		break;
1032
1033	/*
1034	 * Check for read packet available.
1035	 */
1036	case FIONREAD:
1037		{
1038			int n;
1039
1040			BPFD_LOCK(d);
1041			n = d->bd_slen;
1042			if (d->bd_hbuf)
1043				n += d->bd_hlen;
1044			BPFD_UNLOCK(d);
1045
1046			*(int *)addr = n;
1047			break;
1048		}
1049
1050	case SIOCGIFADDR:
1051		{
1052			struct ifnet *ifp;
1053
1054			if (d->bd_bif == NULL)
1055				error = EINVAL;
1056			else {
1057				ifp = d->bd_bif->bif_ifp;
1058				error = (*ifp->if_ioctl)(ifp, cmd, addr);
1059			}
1060			break;
1061		}
1062
1063	/*
1064	 * Get buffer len [for read()].
1065	 */
1066	case BIOCGBLEN:
1067		*(u_int *)addr = d->bd_bufsize;
1068		break;
1069
1070	/*
1071	 * Set buffer length.
1072	 */
1073	case BIOCSBLEN:
1074		error = bpf_ioctl_sblen(d, (u_int *)addr);
1075		break;
1076
1077	/*
1078	 * Set link layer read filter.
1079	 */
1080	case BIOCSETF:
1081	case BIOCSETFNR:
1082	case BIOCSETWF:
1083		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1084		break;
1085
1086	/*
1087	 * Flush read packet buffer.
1088	 */
1089	case BIOCFLUSH:
1090		BPFD_LOCK(d);
1091		reset_d(d);
1092		BPFD_UNLOCK(d);
1093		break;
1094
1095	/*
1096	 * Put interface into promiscuous mode.
1097	 */
1098	case BIOCPROMISC:
1099		if (d->bd_bif == NULL) {
1100			/*
1101			 * No interface attached yet.
1102			 */
1103			error = EINVAL;
1104			break;
1105		}
1106		if (d->bd_promisc == 0) {
1107			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1108			if (error == 0)
1109				d->bd_promisc = 1;
1110		}
1111		break;
1112
1113	/*
1114	 * Get current data link type.
1115	 */
1116	case BIOCGDLT:
1117		if (d->bd_bif == NULL)
1118			error = EINVAL;
1119		else
1120			*(u_int *)addr = d->bd_bif->bif_dlt;
1121		break;
1122
1123	/*
1124	 * Get a list of supported data link types.
1125	 */
1126	case BIOCGDLTLIST:
1127		if (d->bd_bif == NULL)
1128			error = EINVAL;
1129		else
1130			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1131		break;
1132
1133	/*
1134	 * Set data link type.
1135	 */
1136	case BIOCSDLT:
1137		if (d->bd_bif == NULL)
1138			error = EINVAL;
1139		else
1140			error = bpf_setdlt(d, *(u_int *)addr);
1141		break;
1142
1143	/*
1144	 * Get interface name.
1145	 */
1146	case BIOCGETIF:
1147		if (d->bd_bif == NULL)
1148			error = EINVAL;
1149		else {
1150			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1151			struct ifreq *const ifr = (struct ifreq *)addr;
1152
1153			strlcpy(ifr->ifr_name, ifp->if_xname,
1154			    sizeof(ifr->ifr_name));
1155		}
1156		break;
1157
1158	/*
1159	 * Set interface.
1160	 */
1161	case BIOCSETIF:
1162		error = bpf_setif(d, (struct ifreq *)addr);
1163		break;
1164
1165	/*
1166	 * Set read timeout.
1167	 */
1168	case BIOCSRTIMEOUT:
1169		{
1170			struct timeval *tv = (struct timeval *)addr;
1171
1172			/*
1173			 * Subtract 1 tick from tvtohz() since this isn't
1174			 * a one-shot timer.
1175			 */
1176			if ((error = itimerfix(tv)) == 0)
1177				d->bd_rtout = tvtohz(tv) - 1;
1178			break;
1179		}
1180
1181	/*
1182	 * Get read timeout.
1183	 */
1184	case BIOCGRTIMEOUT:
1185		{
1186			struct timeval *tv = (struct timeval *)addr;
1187
1188			tv->tv_sec = d->bd_rtout / hz;
1189			tv->tv_usec = (d->bd_rtout % hz) * tick;
1190			break;
1191		}
1192
1193	/*
1194	 * Get packet stats.
1195	 */
1196	case BIOCGSTATS:
1197		{
1198			struct bpf_stat *bs = (struct bpf_stat *)addr;
1199
1200			/* XXXCSJP overflow */
1201			bs->bs_recv = d->bd_rcount;
1202			bs->bs_drop = d->bd_dcount;
1203			break;
1204		}
1205
1206	/*
1207	 * Set immediate mode.
1208	 */
1209	case BIOCIMMEDIATE:
1210		d->bd_immediate = *(u_int *)addr;
1211		break;
1212
1213	case BIOCVERSION:
1214		{
1215			struct bpf_version *bv = (struct bpf_version *)addr;
1216
1217			bv->bv_major = BPF_MAJOR_VERSION;
1218			bv->bv_minor = BPF_MINOR_VERSION;
1219			break;
1220		}
1221
1222	/*
1223	 * Get "header already complete" flag
1224	 */
1225	case BIOCGHDRCMPLT:
1226		*(u_int *)addr = d->bd_hdrcmplt;
1227		break;
1228
1229	/*
1230	 * Set "header already complete" flag
1231	 */
1232	case BIOCSHDRCMPLT:
1233		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1234		break;
1235
1236	/*
1237	 * Get packet direction flag
1238	 */
1239	case BIOCGDIRECTION:
1240		*(u_int *)addr = d->bd_direction;
1241		break;
1242
1243	/*
1244	 * Set packet direction flag
1245	 */
1246	case BIOCSDIRECTION:
1247		{
1248			u_int	direction;
1249
1250			direction = *(u_int *)addr;
1251			switch (direction) {
1252			case BPF_D_IN:
1253			case BPF_D_INOUT:
1254			case BPF_D_OUT:
1255				d->bd_direction = direction;
1256				break;
1257			default:
1258				error = EINVAL;
1259			}
1260		}
1261		break;
1262
1263	case BIOCFEEDBACK:
1264		d->bd_feedback = *(u_int *)addr;
1265		break;
1266
1267	case BIOCLOCK:
1268		d->bd_locked = 1;
1269		break;
1270
1271	case FIONBIO:		/* Non-blocking I/O */
1272		break;
1273
1274	case FIOASYNC:		/* Send signal on receive packets */
1275		d->bd_async = *(int *)addr;
1276		break;
1277
1278	case FIOSETOWN:
1279		error = fsetown(*(int *)addr, &d->bd_sigio);
1280		break;
1281
1282	case FIOGETOWN:
1283		*(int *)addr = fgetown(&d->bd_sigio);
1284		break;
1285
1286	/* This is deprecated, FIOSETOWN should be used instead. */
1287	case TIOCSPGRP:
1288		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1289		break;
1290
1291	/* This is deprecated, FIOGETOWN should be used instead. */
1292	case TIOCGPGRP:
1293		*(int *)addr = -fgetown(&d->bd_sigio);
1294		break;
1295
1296	case BIOCSRSIG:		/* Set receive signal */
1297		{
1298			u_int sig;
1299
1300			sig = *(u_int *)addr;
1301
1302			if (sig >= NSIG)
1303				error = EINVAL;
1304			else
1305				d->bd_sig = sig;
1306			break;
1307		}
1308	case BIOCGRSIG:
1309		*(u_int *)addr = d->bd_sig;
1310		break;
1311
1312	case BIOCGETBUFMODE:
1313		*(u_int *)addr = d->bd_bufmode;
1314		break;
1315
1316	case BIOCSETBUFMODE:
1317		/*
1318		 * Allow the buffering mode to be changed as long as we
1319		 * haven't yet committed to a particular mode.  Our
1320		 * definition of commitment, for now, is whether or not a
1321		 * buffer has been allocated or an interface attached, since
1322		 * that's the point where things get tricky.
1323		 */
1324		switch (*(u_int *)addr) {
1325		case BPF_BUFMODE_BUFFER:
1326			break;
1327
1328		case BPF_BUFMODE_ZBUF:
1329			if (bpf_zerocopy_enable)
1330				break;
1331			/* FALLSTHROUGH */
1332
1333		default:
1334			return (EINVAL);
1335		}
1336
1337		BPFD_LOCK(d);
1338		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1339		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1340			BPFD_UNLOCK(d);
1341			return (EBUSY);
1342		}
1343		d->bd_bufmode = *(u_int *)addr;
1344		BPFD_UNLOCK(d);
1345		break;
1346
1347	case BIOCGETZMAX:
1348		return (bpf_ioctl_getzmax(td, d, (size_t *)addr));
1349
1350	case BIOCSETZBUF:
1351		return (bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr));
1352
1353	case BIOCROTZBUF:
1354		return (bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr));
1355	}
1356	CURVNET_RESTORE();
1357	return (error);
1358}
1359
1360/*
1361 * Set d's packet filter program to fp.  If this file already has a filter,
1362 * free it and replace it.  Returns EINVAL for bogus requests.
1363 */
1364static int
1365bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1366{
1367	struct bpf_insn *fcode, *old;
1368	u_int wfilter, flen, size;
1369#ifdef BPF_JITTER
1370	bpf_jit_filter *ofunc;
1371#endif
1372
1373	if (cmd == BIOCSETWF) {
1374		old = d->bd_wfilter;
1375		wfilter = 1;
1376#ifdef BPF_JITTER
1377		ofunc = NULL;
1378#endif
1379	} else {
1380		wfilter = 0;
1381		old = d->bd_rfilter;
1382#ifdef BPF_JITTER
1383		ofunc = d->bd_bfilter;
1384#endif
1385	}
1386	if (fp->bf_insns == NULL) {
1387		if (fp->bf_len != 0)
1388			return (EINVAL);
1389		BPFD_LOCK(d);
1390		if (wfilter)
1391			d->bd_wfilter = NULL;
1392		else {
1393			d->bd_rfilter = NULL;
1394#ifdef BPF_JITTER
1395			d->bd_bfilter = NULL;
1396#endif
1397			if (cmd == BIOCSETF)
1398				reset_d(d);
1399		}
1400		BPFD_UNLOCK(d);
1401		if (old != NULL)
1402			free((caddr_t)old, M_BPF);
1403#ifdef BPF_JITTER
1404		if (ofunc != NULL)
1405			bpf_destroy_jit_filter(ofunc);
1406#endif
1407		return (0);
1408	}
1409	flen = fp->bf_len;
1410	if (flen > bpf_maxinsns)
1411		return (EINVAL);
1412
1413	size = flen * sizeof(*fp->bf_insns);
1414	fcode = (struct bpf_insn *)malloc(size, M_BPF, M_WAITOK);
1415	if (copyin((caddr_t)fp->bf_insns, (caddr_t)fcode, size) == 0 &&
1416	    bpf_validate(fcode, (int)flen)) {
1417		BPFD_LOCK(d);
1418		if (wfilter)
1419			d->bd_wfilter = fcode;
1420		else {
1421			d->bd_rfilter = fcode;
1422#ifdef BPF_JITTER
1423			d->bd_bfilter = bpf_jitter(fcode, flen);
1424#endif
1425			if (cmd == BIOCSETF)
1426				reset_d(d);
1427		}
1428		BPFD_UNLOCK(d);
1429		if (old != NULL)
1430			free((caddr_t)old, M_BPF);
1431#ifdef BPF_JITTER
1432		if (ofunc != NULL)
1433			bpf_destroy_jit_filter(ofunc);
1434#endif
1435
1436		return (0);
1437	}
1438	free((caddr_t)fcode, M_BPF);
1439	return (EINVAL);
1440}
1441
1442/*
1443 * Detach a file from its current interface (if attached at all) and attach
1444 * to the interface indicated by the name stored in ifr.
1445 * Return an errno or 0.
1446 */
1447static int
1448bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1449{
1450	struct bpf_if *bp;
1451	struct ifnet *theywant;
1452
1453	theywant = ifunit(ifr->ifr_name);
1454	if (theywant == NULL || theywant->if_bpf == NULL)
1455		return (ENXIO);
1456
1457	bp = theywant->if_bpf;
1458
1459	/*
1460	 * Behavior here depends on the buffering model.  If we're using
1461	 * kernel memory buffers, then we can allocate them here.  If we're
1462	 * using zero-copy, then the user process must have registered
1463	 * buffers by the time we get here.  If not, return an error.
1464	 *
1465	 * XXXRW: There are locking issues here with multi-threaded use: what
1466	 * if two threads try to set the interface at once?
1467	 */
1468	switch (d->bd_bufmode) {
1469	case BPF_BUFMODE_BUFFER:
1470		if (d->bd_sbuf == NULL)
1471			bpf_buffer_alloc(d);
1472		KASSERT(d->bd_sbuf != NULL, ("bpf_setif: bd_sbuf NULL"));
1473		break;
1474
1475	case BPF_BUFMODE_ZBUF:
1476		if (d->bd_sbuf == NULL)
1477			return (EINVAL);
1478		break;
1479
1480	default:
1481		panic("bpf_setif: bufmode %d", d->bd_bufmode);
1482	}
1483	if (bp != d->bd_bif) {
1484		if (d->bd_bif)
1485			/*
1486			 * Detach if attached to something else.
1487			 */
1488			bpf_detachd(d);
1489
1490		bpf_attachd(d, bp);
1491	}
1492	BPFD_LOCK(d);
1493	reset_d(d);
1494	BPFD_UNLOCK(d);
1495	return (0);
1496}
1497
1498/*
1499 * Support for select() and poll() system calls
1500 *
1501 * Return true iff the specific operation will not block indefinitely.
1502 * Otherwise, return false but make a note that a selwakeup() must be done.
1503 */
1504static int
1505bpfpoll(struct cdev *dev, int events, struct thread *td)
1506{
1507	struct bpf_d *d;
1508	int revents;
1509
1510	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
1511		return (events &
1512		    (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
1513
1514	/*
1515	 * Refresh PID associated with this descriptor.
1516	 */
1517	revents = events & (POLLOUT | POLLWRNORM);
1518	BPFD_LOCK(d);
1519	d->bd_pid = td->td_proc->p_pid;
1520	if (events & (POLLIN | POLLRDNORM)) {
1521		if (bpf_ready(d))
1522			revents |= events & (POLLIN | POLLRDNORM);
1523		else {
1524			selrecord(td, &d->bd_sel);
1525			/* Start the read timeout if necessary. */
1526			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1527				callout_reset(&d->bd_callout, d->bd_rtout,
1528				    bpf_timed_out, d);
1529				d->bd_state = BPF_WAITING;
1530			}
1531		}
1532	}
1533	BPFD_UNLOCK(d);
1534	return (revents);
1535}
1536
1537/*
1538 * Support for kevent() system call.  Register EVFILT_READ filters and
1539 * reject all others.
1540 */
1541int
1542bpfkqfilter(struct cdev *dev, struct knote *kn)
1543{
1544	struct bpf_d *d;
1545
1546	if (devfs_get_cdevpriv((void **)&d) != 0 ||
1547	    kn->kn_filter != EVFILT_READ)
1548		return (1);
1549
1550	/*
1551	 * Refresh PID associated with this descriptor.
1552	 */
1553	BPFD_LOCK(d);
1554	d->bd_pid = curthread->td_proc->p_pid;
1555	kn->kn_fop = &bpfread_filtops;
1556	kn->kn_hook = d;
1557	knlist_add(&d->bd_sel.si_note, kn, 1);
1558	BPFD_UNLOCK(d);
1559
1560	return (0);
1561}
1562
1563static void
1564filt_bpfdetach(struct knote *kn)
1565{
1566	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
1567
1568	knlist_remove(&d->bd_sel.si_note, kn, 0);
1569}
1570
1571static int
1572filt_bpfread(struct knote *kn, long hint)
1573{
1574	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
1575	int ready;
1576
1577	BPFD_LOCK_ASSERT(d);
1578	ready = bpf_ready(d);
1579	if (ready) {
1580		kn->kn_data = d->bd_slen;
1581		if (d->bd_hbuf)
1582			kn->kn_data += d->bd_hlen;
1583	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1584		callout_reset(&d->bd_callout, d->bd_rtout,
1585		    bpf_timed_out, d);
1586		d->bd_state = BPF_WAITING;
1587	}
1588
1589	return (ready);
1590}
1591
1592/*
1593 * Incoming linkage from device drivers.  Process the packet pkt, of length
1594 * pktlen, which is stored in a contiguous buffer.  The packet is parsed
1595 * by each process' filter, and if accepted, stashed into the corresponding
1596 * buffer.
1597 */
1598void
1599bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1600{
1601	struct bpf_d *d;
1602#ifdef BPF_JITTER
1603	bpf_jit_filter *bf;
1604#endif
1605	u_int slen;
1606	int gottime;
1607	struct timeval tv;
1608
1609	gottime = 0;
1610	BPFIF_LOCK(bp);
1611	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1612		BPFD_LOCK(d);
1613		++d->bd_rcount;
1614		/*
1615		 * NB: We dont call BPF_CHECK_DIRECTION() here since there is no
1616		 * way for the caller to indiciate to us whether this packet
1617		 * is inbound or outbound.  In the bpf_mtap() routines, we use
1618		 * the interface pointers on the mbuf to figure it out.
1619		 */
1620#ifdef BPF_JITTER
1621		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
1622		if (bf != NULL)
1623			slen = (*(bf->func))(pkt, pktlen, pktlen);
1624		else
1625#endif
1626		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
1627		if (slen != 0) {
1628			d->bd_fcount++;
1629			if (!gottime) {
1630				microtime(&tv);
1631				gottime = 1;
1632			}
1633#ifdef MAC
1634			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1635#endif
1636				catchpacket(d, pkt, pktlen, slen,
1637				    bpf_append_bytes, &tv);
1638		}
1639		BPFD_UNLOCK(d);
1640	}
1641	BPFIF_UNLOCK(bp);
1642}
1643
1644#define	BPF_CHECK_DIRECTION(d, r, i)				\
1645	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
1646	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
1647
1648/*
1649 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1650 */
1651void
1652bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1653{
1654	struct bpf_d *d;
1655#ifdef BPF_JITTER
1656	bpf_jit_filter *bf;
1657#endif
1658	u_int pktlen, slen;
1659	int gottime;
1660	struct timeval tv;
1661
1662	/* Skip outgoing duplicate packets. */
1663	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
1664		m->m_flags &= ~M_PROMISC;
1665		return;
1666	}
1667
1668	gottime = 0;
1669
1670	pktlen = m_length(m, NULL);
1671
1672	BPFIF_LOCK(bp);
1673	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1674		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
1675			continue;
1676		BPFD_LOCK(d);
1677		++d->bd_rcount;
1678#ifdef BPF_JITTER
1679		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
1680		/* XXX We cannot handle multiple mbufs. */
1681		if (bf != NULL && m->m_next == NULL)
1682			slen = (*(bf->func))(mtod(m, u_char *), pktlen, pktlen);
1683		else
1684#endif
1685		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
1686		if (slen != 0) {
1687			d->bd_fcount++;
1688			if (!gottime) {
1689				microtime(&tv);
1690				gottime = 1;
1691			}
1692#ifdef MAC
1693			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1694#endif
1695				catchpacket(d, (u_char *)m, pktlen, slen,
1696				    bpf_append_mbuf, &tv);
1697		}
1698		BPFD_UNLOCK(d);
1699	}
1700	BPFIF_UNLOCK(bp);
1701}
1702
1703/*
1704 * Incoming linkage from device drivers, when packet is in
1705 * an mbuf chain and to be prepended by a contiguous header.
1706 */
1707void
1708bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1709{
1710	struct mbuf mb;
1711	struct bpf_d *d;
1712	u_int pktlen, slen;
1713	int gottime;
1714	struct timeval tv;
1715
1716	/* Skip outgoing duplicate packets. */
1717	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
1718		m->m_flags &= ~M_PROMISC;
1719		return;
1720	}
1721
1722	gottime = 0;
1723
1724	pktlen = m_length(m, NULL);
1725	/*
1726	 * Craft on-stack mbuf suitable for passing to bpf_filter.
1727	 * Note that we cut corners here; we only setup what's
1728	 * absolutely needed--this mbuf should never go anywhere else.
1729	 */
1730	mb.m_next = m;
1731	mb.m_data = data;
1732	mb.m_len = dlen;
1733	pktlen += dlen;
1734
1735	BPFIF_LOCK(bp);
1736	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1737		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
1738			continue;
1739		BPFD_LOCK(d);
1740		++d->bd_rcount;
1741		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
1742		if (slen != 0) {
1743			d->bd_fcount++;
1744			if (!gottime) {
1745				microtime(&tv);
1746				gottime = 1;
1747			}
1748#ifdef MAC
1749			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1750#endif
1751				catchpacket(d, (u_char *)&mb, pktlen, slen,
1752				    bpf_append_mbuf, &tv);
1753		}
1754		BPFD_UNLOCK(d);
1755	}
1756	BPFIF_UNLOCK(bp);
1757}
1758
1759#undef	BPF_CHECK_DIRECTION
1760
1761/*
1762 * Move the packet data from interface memory (pkt) into the
1763 * store buffer.  "cpfn" is the routine called to do the actual data
1764 * transfer.  bcopy is passed in to copy contiguous chunks, while
1765 * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
1766 * pkt is really an mbuf.
1767 */
1768static void
1769catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1770    void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
1771    struct timeval *tv)
1772{
1773	struct bpf_hdr hdr;
1774	int totlen, curlen;
1775	int hdrlen = d->bd_bif->bif_hdrlen;
1776	int do_wakeup = 0;
1777
1778	BPFD_LOCK_ASSERT(d);
1779
1780	/*
1781	 * Detect whether user space has released a buffer back to us, and if
1782	 * so, move it from being a hold buffer to a free buffer.  This may
1783	 * not be the best place to do it (for example, we might only want to
1784	 * run this check if we need the space), but for now it's a reliable
1785	 * spot to do it.
1786	 */
1787	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
1788		d->bd_fbuf = d->bd_hbuf;
1789		d->bd_hbuf = NULL;
1790		d->bd_hlen = 0;
1791		bpf_buf_reclaimed(d);
1792	}
1793
1794	/*
1795	 * Figure out how many bytes to move.  If the packet is
1796	 * greater or equal to the snapshot length, transfer that
1797	 * much.  Otherwise, transfer the whole packet (unless
1798	 * we hit the buffer size limit).
1799	 */
1800	totlen = hdrlen + min(snaplen, pktlen);
1801	if (totlen > d->bd_bufsize)
1802		totlen = d->bd_bufsize;
1803
1804	/*
1805	 * Round up the end of the previous packet to the next longword.
1806	 *
1807	 * Drop the packet if there's no room and no hope of room
1808	 * If the packet would overflow the storage buffer or the storage
1809	 * buffer is considered immutable by the buffer model, try to rotate
1810	 * the buffer and wakeup pending processes.
1811	 */
1812	curlen = BPF_WORDALIGN(d->bd_slen);
1813	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
1814		if (d->bd_fbuf == NULL) {
1815			/*
1816			 * There's no room in the store buffer, and no
1817			 * prospect of room, so drop the packet.  Notify the
1818			 * buffer model.
1819			 */
1820			bpf_buffull(d);
1821			++d->bd_dcount;
1822			return;
1823		}
1824		ROTATE_BUFFERS(d);
1825		do_wakeup = 1;
1826		curlen = 0;
1827	} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT)
1828		/*
1829		 * Immediate mode is set, or the read timeout has already
1830		 * expired during a select call.  A packet arrived, so the
1831		 * reader should be woken up.
1832		 */
1833		do_wakeup = 1;
1834
1835	/*
1836	 * Append the bpf header.  Note we append the actual header size, but
1837	 * move forward the length of the header plus padding.
1838	 */
1839	bzero(&hdr, sizeof(hdr));
1840	hdr.bh_tstamp = *tv;
1841	hdr.bh_datalen = pktlen;
1842	hdr.bh_hdrlen = hdrlen;
1843	hdr.bh_caplen = totlen - hdrlen;
1844	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
1845
1846	/*
1847	 * Copy the packet data into the store buffer and update its length.
1848	 */
1849	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, hdr.bh_caplen);
1850	d->bd_slen = curlen + totlen;
1851
1852	if (do_wakeup)
1853		bpf_wakeup(d);
1854}
1855
1856/*
1857 * Free buffers currently in use by a descriptor.
1858 * Called on close.
1859 */
1860static void
1861bpf_freed(struct bpf_d *d)
1862{
1863
1864	/*
1865	 * We don't need to lock out interrupts since this descriptor has
1866	 * been detached from its interface and it yet hasn't been marked
1867	 * free.
1868	 */
1869	bpf_free(d);
1870	if (d->bd_rfilter) {
1871		free((caddr_t)d->bd_rfilter, M_BPF);
1872#ifdef BPF_JITTER
1873		bpf_destroy_jit_filter(d->bd_bfilter);
1874#endif
1875	}
1876	if (d->bd_wfilter)
1877		free((caddr_t)d->bd_wfilter, M_BPF);
1878	mtx_destroy(&d->bd_mtx);
1879}
1880
1881/*
1882 * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
1883 * fixed size of the link header (variable length headers not yet supported).
1884 */
1885void
1886bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
1887{
1888
1889	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
1890}
1891
1892/*
1893 * Attach an interface to bpf.  ifp is a pointer to the structure
1894 * defining the interface to be attached, dlt is the link layer type,
1895 * and hdrlen is the fixed size of the link header (variable length
1896 * headers are not yet supporrted).
1897 */
1898void
1899bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
1900{
1901	struct bpf_if *bp;
1902
1903	bp = malloc(sizeof(*bp), M_BPF, M_NOWAIT | M_ZERO);
1904	if (bp == NULL)
1905		panic("bpfattach");
1906
1907	LIST_INIT(&bp->bif_dlist);
1908	bp->bif_ifp = ifp;
1909	bp->bif_dlt = dlt;
1910	mtx_init(&bp->bif_mtx, "bpf interface lock", NULL, MTX_DEF);
1911	KASSERT(*driverp == NULL, ("bpfattach2: driverp already initialized"));
1912	*driverp = bp;
1913
1914	mtx_lock(&bpf_mtx);
1915	LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
1916	mtx_unlock(&bpf_mtx);
1917
1918	/*
1919	 * Compute the length of the bpf header.  This is not necessarily
1920	 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1921	 * that the network layer header begins on a longword boundary (for
1922	 * performance reasons and to alleviate alignment restrictions).
1923	 */
1924	bp->bif_hdrlen = BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen;
1925
1926	if (bootverbose)
1927		if_printf(ifp, "bpf attached\n");
1928}
1929
1930/*
1931 * Detach bpf from an interface.  This involves detaching each descriptor
1932 * associated with the interface, and leaving bd_bif NULL.  Notify each
1933 * descriptor as it's detached so that any sleepers wake up and get
1934 * ENXIO.
1935 */
1936void
1937bpfdetach(struct ifnet *ifp)
1938{
1939	struct bpf_if	*bp;
1940	struct bpf_d	*d;
1941
1942	/* Locate BPF interface information */
1943	mtx_lock(&bpf_mtx);
1944	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
1945		if (ifp == bp->bif_ifp)
1946			break;
1947	}
1948
1949	/* Interface wasn't attached */
1950	if ((bp == NULL) || (bp->bif_ifp == NULL)) {
1951		mtx_unlock(&bpf_mtx);
1952		printf("bpfdetach: %s was not attached\n", ifp->if_xname);
1953		return;
1954	}
1955
1956	LIST_REMOVE(bp, bif_next);
1957	mtx_unlock(&bpf_mtx);
1958
1959	while ((d = LIST_FIRST(&bp->bif_dlist)) != NULL) {
1960		bpf_detachd(d);
1961		BPFD_LOCK(d);
1962		bpf_wakeup(d);
1963		BPFD_UNLOCK(d);
1964	}
1965
1966	mtx_destroy(&bp->bif_mtx);
1967	free(bp, M_BPF);
1968}
1969
1970/*
1971 * Get a list of available data link type of the interface.
1972 */
1973static int
1974bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
1975{
1976	int n, error;
1977	struct ifnet *ifp;
1978	struct bpf_if *bp;
1979
1980	ifp = d->bd_bif->bif_ifp;
1981	n = 0;
1982	error = 0;
1983	mtx_lock(&bpf_mtx);
1984	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
1985		if (bp->bif_ifp != ifp)
1986			continue;
1987		if (bfl->bfl_list != NULL) {
1988			if (n >= bfl->bfl_len) {
1989				mtx_unlock(&bpf_mtx);
1990				return (ENOMEM);
1991			}
1992			error = copyout(&bp->bif_dlt,
1993			    bfl->bfl_list + n, sizeof(u_int));
1994		}
1995		n++;
1996	}
1997	mtx_unlock(&bpf_mtx);
1998	bfl->bfl_len = n;
1999	return (error);
2000}
2001
2002/*
2003 * Set the data link type of a BPF instance.
2004 */
2005static int
2006bpf_setdlt(struct bpf_d *d, u_int dlt)
2007{
2008	int error, opromisc;
2009	struct ifnet *ifp;
2010	struct bpf_if *bp;
2011
2012	if (d->bd_bif->bif_dlt == dlt)
2013		return (0);
2014	ifp = d->bd_bif->bif_ifp;
2015	mtx_lock(&bpf_mtx);
2016	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2017		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2018			break;
2019	}
2020	mtx_unlock(&bpf_mtx);
2021	if (bp != NULL) {
2022		opromisc = d->bd_promisc;
2023		bpf_detachd(d);
2024		bpf_attachd(d, bp);
2025		BPFD_LOCK(d);
2026		reset_d(d);
2027		BPFD_UNLOCK(d);
2028		if (opromisc) {
2029			error = ifpromisc(bp->bif_ifp, 1);
2030			if (error)
2031				if_printf(bp->bif_ifp,
2032					"bpf_setdlt: ifpromisc failed (%d)\n",
2033					error);
2034			else
2035				d->bd_promisc = 1;
2036		}
2037	}
2038	return (bp == NULL ? EINVAL : 0);
2039}
2040
2041static void
2042bpf_drvinit(void *unused)
2043{
2044	struct cdev *dev;
2045
2046	mtx_init(&bpf_mtx, "bpf global lock", NULL, MTX_DEF);
2047	LIST_INIT(&bpf_iflist);
2048
2049	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2050	/* For compatibility */
2051	make_dev_alias(dev, "bpf0");
2052}
2053
2054/*
2055 * Zero out the various packet counters associated with all of the bpf
2056 * descriptors.  At some point, we will probably want to get a bit more
2057 * granular and allow the user to specify descriptors to be zeroed.
2058 */
2059static void
2060bpf_zero_counters(void)
2061{
2062	struct bpf_if *bp;
2063	struct bpf_d *bd;
2064
2065	mtx_lock(&bpf_mtx);
2066	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2067		BPFIF_LOCK(bp);
2068		LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2069			BPFD_LOCK(bd);
2070			bd->bd_rcount = 0;
2071			bd->bd_dcount = 0;
2072			bd->bd_fcount = 0;
2073			bd->bd_wcount = 0;
2074			bd->bd_wfcount = 0;
2075			bd->bd_zcopy = 0;
2076			BPFD_UNLOCK(bd);
2077		}
2078		BPFIF_UNLOCK(bp);
2079	}
2080	mtx_unlock(&bpf_mtx);
2081}
2082
2083static void
2084bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
2085{
2086
2087	bzero(d, sizeof(*d));
2088	BPFD_LOCK_ASSERT(bd);
2089	d->bd_structsize = sizeof(*d);
2090	d->bd_immediate = bd->bd_immediate;
2091	d->bd_promisc = bd->bd_promisc;
2092	d->bd_hdrcmplt = bd->bd_hdrcmplt;
2093	d->bd_direction = bd->bd_direction;
2094	d->bd_feedback = bd->bd_feedback;
2095	d->bd_async = bd->bd_async;
2096	d->bd_rcount = bd->bd_rcount;
2097	d->bd_dcount = bd->bd_dcount;
2098	d->bd_fcount = bd->bd_fcount;
2099	d->bd_sig = bd->bd_sig;
2100	d->bd_slen = bd->bd_slen;
2101	d->bd_hlen = bd->bd_hlen;
2102	d->bd_bufsize = bd->bd_bufsize;
2103	d->bd_pid = bd->bd_pid;
2104	strlcpy(d->bd_ifname,
2105	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
2106	d->bd_locked = bd->bd_locked;
2107	d->bd_wcount = bd->bd_wcount;
2108	d->bd_wdcount = bd->bd_wdcount;
2109	d->bd_wfcount = bd->bd_wfcount;
2110	d->bd_zcopy = bd->bd_zcopy;
2111	d->bd_bufmode = bd->bd_bufmode;
2112}
2113
2114static int
2115bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
2116{
2117	struct xbpf_d *xbdbuf, *xbd, zerostats;
2118	int index, error;
2119	struct bpf_if *bp;
2120	struct bpf_d *bd;
2121
2122	/*
2123	 * XXX This is not technically correct. It is possible for non
2124	 * privileged users to open bpf devices. It would make sense
2125	 * if the users who opened the devices were able to retrieve
2126	 * the statistics for them, too.
2127	 */
2128	error = priv_check(req->td, PRIV_NET_BPF);
2129	if (error)
2130		return (error);
2131	/*
2132	 * Check to see if the user is requesting that the counters be
2133	 * zeroed out.  Explicitly check that the supplied data is zeroed,
2134	 * as we aren't allowing the user to set the counters currently.
2135	 */
2136	if (req->newptr != NULL) {
2137		if (req->newlen != sizeof(zerostats))
2138			return (EINVAL);
2139		bzero(&zerostats, sizeof(zerostats));
2140		xbd = req->newptr;
2141		if (bcmp(xbd, &zerostats, sizeof(*xbd)) != 0)
2142			return (EINVAL);
2143		bpf_zero_counters();
2144		return (0);
2145	}
2146	if (req->oldptr == NULL)
2147		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
2148	if (bpf_bpfd_cnt == 0)
2149		return (SYSCTL_OUT(req, 0, 0));
2150	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
2151	mtx_lock(&bpf_mtx);
2152	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
2153		mtx_unlock(&bpf_mtx);
2154		free(xbdbuf, M_BPF);
2155		return (ENOMEM);
2156	}
2157	index = 0;
2158	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2159		BPFIF_LOCK(bp);
2160		LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2161			xbd = &xbdbuf[index++];
2162			BPFD_LOCK(bd);
2163			bpfstats_fill_xbpf(xbd, bd);
2164			BPFD_UNLOCK(bd);
2165		}
2166		BPFIF_UNLOCK(bp);
2167	}
2168	mtx_unlock(&bpf_mtx);
2169	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
2170	free(xbdbuf, M_BPF);
2171	return (error);
2172}
2173
2174SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
2175
2176#else /* !DEV_BPF && !NETGRAPH_BPF */
2177/*
2178 * NOP stubs to allow bpf-using drivers to load and function.
2179 *
2180 * A 'better' implementation would allow the core bpf functionality
2181 * to be loaded at runtime.
2182 */
2183static struct bpf_if bp_null;
2184
2185void
2186bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2187{
2188}
2189
2190void
2191bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2192{
2193}
2194
2195void
2196bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
2197{
2198}
2199
2200void
2201bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2202{
2203
2204	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2205}
2206
2207void
2208bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2209{
2210
2211	*driverp = &bp_null;
2212}
2213
2214void
2215bpfdetach(struct ifnet *ifp)
2216{
2217}
2218
2219u_int
2220bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
2221{
2222	return -1;	/* "no filter" behaviour */
2223}
2224
2225int
2226bpf_validate(const struct bpf_insn *f, int len)
2227{
2228	return 0;		/* false */
2229}
2230
2231#endif /* !DEV_BPF && !NETGRAPH_BPF */
2232