bpf.c revision 204105
1/*-
2 * Copyright (c) 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from the Stanford/CMU enet packet filter,
6 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
7 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
8 * Berkeley Laboratory.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *      @(#)bpf.c	8.4 (Berkeley) 1/9/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/net/bpf.c 204105 2010-02-20 00:19:21Z jkim $");
39
40#include "opt_bpf.h"
41#include "opt_netgraph.h"
42
43#include <sys/types.h>
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/conf.h>
47#include <sys/fcntl.h>
48#include <sys/jail.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/time.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/signalvar.h>
55#include <sys/filio.h>
56#include <sys/sockio.h>
57#include <sys/ttycom.h>
58#include <sys/uio.h>
59
60#include <sys/event.h>
61#include <sys/file.h>
62#include <sys/poll.h>
63#include <sys/proc.h>
64
65#include <sys/socket.h>
66
67#include <net/if.h>
68#include <net/bpf.h>
69#include <net/bpf_buffer.h>
70#ifdef BPF_JITTER
71#include <net/bpf_jitter.h>
72#endif
73#include <net/bpf_zerocopy.h>
74#include <net/bpfdesc.h>
75#include <net/vnet.h>
76
77#include <netinet/in.h>
78#include <netinet/if_ether.h>
79#include <sys/kernel.h>
80#include <sys/sysctl.h>
81
82#include <net80211/ieee80211_freebsd.h>
83
84#include <security/mac/mac_framework.h>
85
86MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
87
88#if defined(DEV_BPF) || defined(NETGRAPH_BPF)
89
90#define PRINET  26			/* interruptible */
91
92/*
93 * bpf_iflist is a list of BPF interface structures, each corresponding to a
94 * specific DLT.  The same network interface might have several BPF interface
95 * structures registered by different layers in the stack (i.e., 802.11
96 * frames, ethernet frames, etc).
97 */
98static LIST_HEAD(, bpf_if)	bpf_iflist;
99static struct mtx	bpf_mtx;		/* bpf global lock */
100static int		bpf_bpfd_cnt;
101
102static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
103static void	bpf_detachd(struct bpf_d *);
104static void	bpf_freed(struct bpf_d *);
105static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
106		    struct sockaddr *, int *, struct bpf_insn *);
107static int	bpf_setif(struct bpf_d *, struct ifreq *);
108static void	bpf_timed_out(void *);
109static __inline void
110		bpf_wakeup(struct bpf_d *);
111static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
112		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
113		    struct timeval *);
114static void	reset_d(struct bpf_d *);
115static int	 bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
116static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
117static int	bpf_setdlt(struct bpf_d *, u_int);
118static void	filt_bpfdetach(struct knote *);
119static int	filt_bpfread(struct knote *, long);
120static void	bpf_drvinit(void *);
121static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
122
123SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW, 0, "bpf sysctl");
124int bpf_maxinsns = BPF_MAXINSNS;
125SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
126    &bpf_maxinsns, 0, "Maximum bpf program instructions");
127static int bpf_zerocopy_enable = 0;
128SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
129    &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
130SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
131    bpf_stats_sysctl, "bpf statistics portal");
132
133static	d_open_t	bpfopen;
134static	d_read_t	bpfread;
135static	d_write_t	bpfwrite;
136static	d_ioctl_t	bpfioctl;
137static	d_poll_t	bpfpoll;
138static	d_kqfilter_t	bpfkqfilter;
139
140static struct cdevsw bpf_cdevsw = {
141	.d_version =	D_VERSION,
142	.d_open =	bpfopen,
143	.d_read =	bpfread,
144	.d_write =	bpfwrite,
145	.d_ioctl =	bpfioctl,
146	.d_poll =	bpfpoll,
147	.d_name =	"bpf",
148	.d_kqfilter =	bpfkqfilter,
149};
150
151static struct filterops bpfread_filtops = {
152	.f_isfd = 1,
153	.f_detach = filt_bpfdetach,
154	.f_event = filt_bpfread,
155};
156
157/*
158 * Wrapper functions for various buffering methods.  If the set of buffer
159 * modes expands, we will probably want to introduce a switch data structure
160 * similar to protosw, et.
161 */
162static void
163bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
164    u_int len)
165{
166
167	BPFD_LOCK_ASSERT(d);
168
169	switch (d->bd_bufmode) {
170	case BPF_BUFMODE_BUFFER:
171		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
172
173	case BPF_BUFMODE_ZBUF:
174		d->bd_zcopy++;
175		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
176
177	default:
178		panic("bpf_buf_append_bytes");
179	}
180}
181
182static void
183bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
184    u_int len)
185{
186
187	BPFD_LOCK_ASSERT(d);
188
189	switch (d->bd_bufmode) {
190	case BPF_BUFMODE_BUFFER:
191		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
192
193	case BPF_BUFMODE_ZBUF:
194		d->bd_zcopy++;
195		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
196
197	default:
198		panic("bpf_buf_append_mbuf");
199	}
200}
201
202/*
203 * This function gets called when the free buffer is re-assigned.
204 */
205static void
206bpf_buf_reclaimed(struct bpf_d *d)
207{
208
209	BPFD_LOCK_ASSERT(d);
210
211	switch (d->bd_bufmode) {
212	case BPF_BUFMODE_BUFFER:
213		return;
214
215	case BPF_BUFMODE_ZBUF:
216		bpf_zerocopy_buf_reclaimed(d);
217		return;
218
219	default:
220		panic("bpf_buf_reclaimed");
221	}
222}
223
224/*
225 * If the buffer mechanism has a way to decide that a held buffer can be made
226 * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
227 * returned if the buffer can be discarded, (0) is returned if it cannot.
228 */
229static int
230bpf_canfreebuf(struct bpf_d *d)
231{
232
233	BPFD_LOCK_ASSERT(d);
234
235	switch (d->bd_bufmode) {
236	case BPF_BUFMODE_ZBUF:
237		return (bpf_zerocopy_canfreebuf(d));
238	}
239	return (0);
240}
241
242/*
243 * Allow the buffer model to indicate that the current store buffer is
244 * immutable, regardless of the appearance of space.  Return (1) if the
245 * buffer is writable, and (0) if not.
246 */
247static int
248bpf_canwritebuf(struct bpf_d *d)
249{
250
251	BPFD_LOCK_ASSERT(d);
252
253	switch (d->bd_bufmode) {
254	case BPF_BUFMODE_ZBUF:
255		return (bpf_zerocopy_canwritebuf(d));
256	}
257	return (1);
258}
259
260/*
261 * Notify buffer model that an attempt to write to the store buffer has
262 * resulted in a dropped packet, in which case the buffer may be considered
263 * full.
264 */
265static void
266bpf_buffull(struct bpf_d *d)
267{
268
269	BPFD_LOCK_ASSERT(d);
270
271	switch (d->bd_bufmode) {
272	case BPF_BUFMODE_ZBUF:
273		bpf_zerocopy_buffull(d);
274		break;
275	}
276}
277
278/*
279 * Notify the buffer model that a buffer has moved into the hold position.
280 */
281void
282bpf_bufheld(struct bpf_d *d)
283{
284
285	BPFD_LOCK_ASSERT(d);
286
287	switch (d->bd_bufmode) {
288	case BPF_BUFMODE_ZBUF:
289		bpf_zerocopy_bufheld(d);
290		break;
291	}
292}
293
294static void
295bpf_free(struct bpf_d *d)
296{
297
298	switch (d->bd_bufmode) {
299	case BPF_BUFMODE_BUFFER:
300		return (bpf_buffer_free(d));
301
302	case BPF_BUFMODE_ZBUF:
303		return (bpf_zerocopy_free(d));
304
305	default:
306		panic("bpf_buf_free");
307	}
308}
309
310static int
311bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
312{
313
314	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
315		return (EOPNOTSUPP);
316	return (bpf_buffer_uiomove(d, buf, len, uio));
317}
318
319static int
320bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
321{
322
323	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
324		return (EOPNOTSUPP);
325	return (bpf_buffer_ioctl_sblen(d, i));
326}
327
328static int
329bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
330{
331
332	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
333		return (EOPNOTSUPP);
334	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
335}
336
337static int
338bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
339{
340
341	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
342		return (EOPNOTSUPP);
343	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
344}
345
346static int
347bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
348{
349
350	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
351		return (EOPNOTSUPP);
352	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
353}
354
355/*
356 * General BPF functions.
357 */
358static int
359bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
360    struct sockaddr *sockp, int *hdrlen, struct bpf_insn *wfilter)
361{
362	const struct ieee80211_bpf_params *p;
363	struct ether_header *eh;
364	struct mbuf *m;
365	int error;
366	int len;
367	int hlen;
368	int slen;
369
370	/*
371	 * Build a sockaddr based on the data link layer type.
372	 * We do this at this level because the ethernet header
373	 * is copied directly into the data field of the sockaddr.
374	 * In the case of SLIP, there is no header and the packet
375	 * is forwarded as is.
376	 * Also, we are careful to leave room at the front of the mbuf
377	 * for the link level header.
378	 */
379	switch (linktype) {
380
381	case DLT_SLIP:
382		sockp->sa_family = AF_INET;
383		hlen = 0;
384		break;
385
386	case DLT_EN10MB:
387		sockp->sa_family = AF_UNSPEC;
388		/* XXX Would MAXLINKHDR be better? */
389		hlen = ETHER_HDR_LEN;
390		break;
391
392	case DLT_FDDI:
393		sockp->sa_family = AF_IMPLINK;
394		hlen = 0;
395		break;
396
397	case DLT_RAW:
398		sockp->sa_family = AF_UNSPEC;
399		hlen = 0;
400		break;
401
402	case DLT_NULL:
403		/*
404		 * null interface types require a 4 byte pseudo header which
405		 * corresponds to the address family of the packet.
406		 */
407		sockp->sa_family = AF_UNSPEC;
408		hlen = 4;
409		break;
410
411	case DLT_ATM_RFC1483:
412		/*
413		 * en atm driver requires 4-byte atm pseudo header.
414		 * though it isn't standard, vpi:vci needs to be
415		 * specified anyway.
416		 */
417		sockp->sa_family = AF_UNSPEC;
418		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
419		break;
420
421	case DLT_PPP:
422		sockp->sa_family = AF_UNSPEC;
423		hlen = 4;	/* This should match PPP_HDRLEN */
424		break;
425
426	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
427		sockp->sa_family = AF_IEEE80211;
428		hlen = 0;
429		break;
430
431	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
432		sockp->sa_family = AF_IEEE80211;
433		sockp->sa_len = 12;	/* XXX != 0 */
434		hlen = sizeof(struct ieee80211_bpf_params);
435		break;
436
437	default:
438		return (EIO);
439	}
440
441	len = uio->uio_resid;
442
443	if (len - hlen > ifp->if_mtu)
444		return (EMSGSIZE);
445
446	if ((unsigned)len > MJUM16BYTES)
447		return (EIO);
448
449	if (len <= MHLEN)
450		MGETHDR(m, M_WAIT, MT_DATA);
451	else if (len <= MCLBYTES)
452		m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
453	else
454		m = m_getjcl(M_WAIT, MT_DATA, M_PKTHDR,
455#if (MJUMPAGESIZE > MCLBYTES)
456		    len <= MJUMPAGESIZE ? MJUMPAGESIZE :
457#endif
458		    (len <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES));
459	m->m_pkthdr.len = m->m_len = len;
460	m->m_pkthdr.rcvif = NULL;
461	*mp = m;
462
463	if (m->m_len < hlen) {
464		error = EPERM;
465		goto bad;
466	}
467
468	error = uiomove(mtod(m, u_char *), len, uio);
469	if (error)
470		goto bad;
471
472	slen = bpf_filter(wfilter, mtod(m, u_char *), len, len);
473	if (slen == 0) {
474		error = EPERM;
475		goto bad;
476	}
477
478	/* Check for multicast destination */
479	switch (linktype) {
480	case DLT_EN10MB:
481		eh = mtod(m, struct ether_header *);
482		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
483			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
484			    ETHER_ADDR_LEN) == 0)
485				m->m_flags |= M_BCAST;
486			else
487				m->m_flags |= M_MCAST;
488		}
489		break;
490	}
491
492	/*
493	 * Make room for link header, and copy it to sockaddr
494	 */
495	if (hlen != 0) {
496		if (sockp->sa_family == AF_IEEE80211) {
497			/*
498			 * Collect true length from the parameter header
499			 * NB: sockp is known to be zero'd so if we do a
500			 *     short copy unspecified parameters will be
501			 *     zero.
502			 * NB: packet may not be aligned after stripping
503			 *     bpf params
504			 * XXX check ibp_vers
505			 */
506			p = mtod(m, const struct ieee80211_bpf_params *);
507			hlen = p->ibp_len;
508			if (hlen > sizeof(sockp->sa_data)) {
509				error = EINVAL;
510				goto bad;
511			}
512		}
513		bcopy(m->m_data, sockp->sa_data, hlen);
514	}
515	*hdrlen = hlen;
516
517	return (0);
518bad:
519	m_freem(m);
520	return (error);
521}
522
523/*
524 * Attach file to the bpf interface, i.e. make d listen on bp.
525 */
526static void
527bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
528{
529	/*
530	 * Point d at bp, and add d to the interface's list of listeners.
531	 * Finally, point the driver's bpf cookie at the interface so
532	 * it will divert packets to bpf.
533	 */
534	BPFIF_LOCK(bp);
535	d->bd_bif = bp;
536	LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
537
538	bpf_bpfd_cnt++;
539	BPFIF_UNLOCK(bp);
540
541	EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
542}
543
544/*
545 * Detach a file from its interface.
546 */
547static void
548bpf_detachd(struct bpf_d *d)
549{
550	int error;
551	struct bpf_if *bp;
552	struct ifnet *ifp;
553
554	bp = d->bd_bif;
555	BPFIF_LOCK(bp);
556	BPFD_LOCK(d);
557	ifp = d->bd_bif->bif_ifp;
558
559	/*
560	 * Remove d from the interface's descriptor list.
561	 */
562	LIST_REMOVE(d, bd_next);
563
564	bpf_bpfd_cnt--;
565	d->bd_bif = NULL;
566	BPFD_UNLOCK(d);
567	BPFIF_UNLOCK(bp);
568
569	EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
570
571	/*
572	 * Check if this descriptor had requested promiscuous mode.
573	 * If so, turn it off.
574	 */
575	if (d->bd_promisc) {
576		d->bd_promisc = 0;
577		CURVNET_SET(ifp->if_vnet);
578		error = ifpromisc(ifp, 0);
579		CURVNET_RESTORE();
580		if (error != 0 && error != ENXIO) {
581			/*
582			 * ENXIO can happen if a pccard is unplugged
583			 * Something is really wrong if we were able to put
584			 * the driver into promiscuous mode, but can't
585			 * take it out.
586			 */
587			if_printf(bp->bif_ifp,
588				"bpf_detach: ifpromisc failed (%d)\n", error);
589		}
590	}
591}
592
593/*
594 * Close the descriptor by detaching it from its interface,
595 * deallocating its buffers, and marking it free.
596 */
597static void
598bpf_dtor(void *data)
599{
600	struct bpf_d *d = data;
601
602	BPFD_LOCK(d);
603	if (d->bd_state == BPF_WAITING)
604		callout_stop(&d->bd_callout);
605	d->bd_state = BPF_IDLE;
606	BPFD_UNLOCK(d);
607	funsetown(&d->bd_sigio);
608	mtx_lock(&bpf_mtx);
609	if (d->bd_bif)
610		bpf_detachd(d);
611	mtx_unlock(&bpf_mtx);
612	selwakeuppri(&d->bd_sel, PRINET);
613#ifdef MAC
614	mac_bpfdesc_destroy(d);
615#endif /* MAC */
616	knlist_destroy(&d->bd_sel.si_note);
617	bpf_freed(d);
618	free(d, M_BPF);
619}
620
621/*
622 * Open ethernet device.  Returns ENXIO for illegal minor device number,
623 * EBUSY if file is open by another process.
624 */
625/* ARGSUSED */
626static	int
627bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
628{
629	struct bpf_d *d;
630	int error;
631
632	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
633	error = devfs_set_cdevpriv(d, bpf_dtor);
634	if (error != 0) {
635		free(d, M_BPF);
636		return (error);
637	}
638
639	/*
640	 * For historical reasons, perform a one-time initialization call to
641	 * the buffer routines, even though we're not yet committed to a
642	 * particular buffer method.
643	 */
644	bpf_buffer_init(d);
645	d->bd_bufmode = BPF_BUFMODE_BUFFER;
646	d->bd_sig = SIGIO;
647	d->bd_direction = BPF_D_INOUT;
648	d->bd_pid = td->td_proc->p_pid;
649#ifdef MAC
650	mac_bpfdesc_init(d);
651	mac_bpfdesc_create(td->td_ucred, d);
652#endif
653	mtx_init(&d->bd_mtx, devtoname(dev), "bpf cdev lock", MTX_DEF);
654	callout_init(&d->bd_callout, CALLOUT_MPSAFE);
655	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_mtx);
656
657	return (0);
658}
659
660/*
661 *  bpfread - read next chunk of packets from buffers
662 */
663static	int
664bpfread(struct cdev *dev, struct uio *uio, int ioflag)
665{
666	struct bpf_d *d;
667	int error;
668	int non_block;
669	int timed_out;
670
671	error = devfs_get_cdevpriv((void **)&d);
672	if (error != 0)
673		return (error);
674
675	/*
676	 * Restrict application to use a buffer the same size as
677	 * as kernel buffers.
678	 */
679	if (uio->uio_resid != d->bd_bufsize)
680		return (EINVAL);
681
682	non_block = ((ioflag & O_NONBLOCK) != 0);
683
684	BPFD_LOCK(d);
685	d->bd_pid = curthread->td_proc->p_pid;
686	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
687		BPFD_UNLOCK(d);
688		return (EOPNOTSUPP);
689	}
690	if (d->bd_state == BPF_WAITING)
691		callout_stop(&d->bd_callout);
692	timed_out = (d->bd_state == BPF_TIMED_OUT);
693	d->bd_state = BPF_IDLE;
694	/*
695	 * If the hold buffer is empty, then do a timed sleep, which
696	 * ends when the timeout expires or when enough packets
697	 * have arrived to fill the store buffer.
698	 */
699	while (d->bd_hbuf == NULL) {
700		if (d->bd_slen != 0) {
701			/*
702			 * A packet(s) either arrived since the previous
703			 * read or arrived while we were asleep.
704			 */
705			if (d->bd_immediate || non_block || timed_out) {
706				/*
707				 * Rotate the buffers and return what's here
708				 * if we are in immediate mode, non-blocking
709				 * flag is set, or this descriptor timed out.
710				 */
711				ROTATE_BUFFERS(d);
712				break;
713			}
714		}
715
716		/*
717		 * No data is available, check to see if the bpf device
718		 * is still pointed at a real interface.  If not, return
719		 * ENXIO so that the userland process knows to rebind
720		 * it before using it again.
721		 */
722		if (d->bd_bif == NULL) {
723			BPFD_UNLOCK(d);
724			return (ENXIO);
725		}
726
727		if (non_block) {
728			BPFD_UNLOCK(d);
729			return (EWOULDBLOCK);
730		}
731		error = msleep(d, &d->bd_mtx, PRINET|PCATCH,
732		     "bpf", d->bd_rtout);
733		if (error == EINTR || error == ERESTART) {
734			BPFD_UNLOCK(d);
735			return (error);
736		}
737		if (error == EWOULDBLOCK) {
738			/*
739			 * On a timeout, return what's in the buffer,
740			 * which may be nothing.  If there is something
741			 * in the store buffer, we can rotate the buffers.
742			 */
743			if (d->bd_hbuf)
744				/*
745				 * We filled up the buffer in between
746				 * getting the timeout and arriving
747				 * here, so we don't need to rotate.
748				 */
749				break;
750
751			if (d->bd_slen == 0) {
752				BPFD_UNLOCK(d);
753				return (0);
754			}
755			ROTATE_BUFFERS(d);
756			break;
757		}
758	}
759	/*
760	 * At this point, we know we have something in the hold slot.
761	 */
762	BPFD_UNLOCK(d);
763
764	/*
765	 * Move data from hold buffer into user space.
766	 * We know the entire buffer is transferred since
767	 * we checked above that the read buffer is bpf_bufsize bytes.
768	 *
769	 * XXXRW: More synchronization needed here: what if a second thread
770	 * issues a read on the same fd at the same time?  Don't want this
771	 * getting invalidated.
772	 */
773	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
774
775	BPFD_LOCK(d);
776	d->bd_fbuf = d->bd_hbuf;
777	d->bd_hbuf = NULL;
778	d->bd_hlen = 0;
779	bpf_buf_reclaimed(d);
780	BPFD_UNLOCK(d);
781
782	return (error);
783}
784
785/*
786 * If there are processes sleeping on this descriptor, wake them up.
787 */
788static __inline void
789bpf_wakeup(struct bpf_d *d)
790{
791
792	BPFD_LOCK_ASSERT(d);
793	if (d->bd_state == BPF_WAITING) {
794		callout_stop(&d->bd_callout);
795		d->bd_state = BPF_IDLE;
796	}
797	wakeup(d);
798	if (d->bd_async && d->bd_sig && d->bd_sigio)
799		pgsigio(&d->bd_sigio, d->bd_sig, 0);
800
801	selwakeuppri(&d->bd_sel, PRINET);
802	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
803}
804
805static void
806bpf_timed_out(void *arg)
807{
808	struct bpf_d *d = (struct bpf_d *)arg;
809
810	BPFD_LOCK(d);
811	if (d->bd_state == BPF_WAITING) {
812		d->bd_state = BPF_TIMED_OUT;
813		if (d->bd_slen != 0)
814			bpf_wakeup(d);
815	}
816	BPFD_UNLOCK(d);
817}
818
819static int
820bpf_ready(struct bpf_d *d)
821{
822
823	BPFD_LOCK_ASSERT(d);
824
825	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
826		return (1);
827	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
828	    d->bd_slen != 0)
829		return (1);
830	return (0);
831}
832
833static int
834bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
835{
836	struct bpf_d *d;
837	struct ifnet *ifp;
838	struct mbuf *m, *mc;
839	struct sockaddr dst;
840	int error, hlen;
841
842	error = devfs_get_cdevpriv((void **)&d);
843	if (error != 0)
844		return (error);
845
846	d->bd_pid = curthread->td_proc->p_pid;
847	d->bd_wcount++;
848	if (d->bd_bif == NULL) {
849		d->bd_wdcount++;
850		return (ENXIO);
851	}
852
853	ifp = d->bd_bif->bif_ifp;
854
855	if ((ifp->if_flags & IFF_UP) == 0) {
856		d->bd_wdcount++;
857		return (ENETDOWN);
858	}
859
860	if (uio->uio_resid == 0) {
861		d->bd_wdcount++;
862		return (0);
863	}
864
865	bzero(&dst, sizeof(dst));
866	m = NULL;
867	hlen = 0;
868	error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp,
869	    &m, &dst, &hlen, d->bd_wfilter);
870	if (error) {
871		d->bd_wdcount++;
872		return (error);
873	}
874	d->bd_wfcount++;
875	if (d->bd_hdrcmplt)
876		dst.sa_family = pseudo_AF_HDRCMPLT;
877
878	if (d->bd_feedback) {
879		mc = m_dup(m, M_DONTWAIT);
880		if (mc != NULL)
881			mc->m_pkthdr.rcvif = ifp;
882		/* Set M_PROMISC for outgoing packets to be discarded. */
883		if (d->bd_direction == BPF_D_INOUT)
884			m->m_flags |= M_PROMISC;
885	} else
886		mc = NULL;
887
888	m->m_pkthdr.len -= hlen;
889	m->m_len -= hlen;
890	m->m_data += hlen;	/* XXX */
891
892	CURVNET_SET(ifp->if_vnet);
893#ifdef MAC
894	BPFD_LOCK(d);
895	mac_bpfdesc_create_mbuf(d, m);
896	if (mc != NULL)
897		mac_bpfdesc_create_mbuf(d, mc);
898	BPFD_UNLOCK(d);
899#endif
900
901	error = (*ifp->if_output)(ifp, m, &dst, NULL);
902	if (error)
903		d->bd_wdcount++;
904
905	if (mc != NULL) {
906		if (error == 0)
907			(*ifp->if_input)(ifp, mc);
908		else
909			m_freem(mc);
910	}
911	CURVNET_RESTORE();
912
913	return (error);
914}
915
916/*
917 * Reset a descriptor by flushing its packet buffer and clearing the receive
918 * and drop counts.  This is doable for kernel-only buffers, but with
919 * zero-copy buffers, we can't write to (or rotate) buffers that are
920 * currently owned by userspace.  It would be nice if we could encapsulate
921 * this logic in the buffer code rather than here.
922 */
923static void
924reset_d(struct bpf_d *d)
925{
926
927	mtx_assert(&d->bd_mtx, MA_OWNED);
928
929	if ((d->bd_hbuf != NULL) &&
930	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
931		/* Free the hold buffer. */
932		d->bd_fbuf = d->bd_hbuf;
933		d->bd_hbuf = NULL;
934		d->bd_hlen = 0;
935		bpf_buf_reclaimed(d);
936	}
937	if (bpf_canwritebuf(d))
938		d->bd_slen = 0;
939	d->bd_rcount = 0;
940	d->bd_dcount = 0;
941	d->bd_fcount = 0;
942	d->bd_wcount = 0;
943	d->bd_wfcount = 0;
944	d->bd_wdcount = 0;
945	d->bd_zcopy = 0;
946}
947
948/*
949 *  FIONREAD		Check for read packet available.
950 *  SIOCGIFADDR		Get interface address - convenient hook to driver.
951 *  BIOCGBLEN		Get buffer len [for read()].
952 *  BIOCSETF		Set read filter.
953 *  BIOCSETFNR		Set read filter without resetting descriptor.
954 *  BIOCSETWF		Set write filter.
955 *  BIOCFLUSH		Flush read packet buffer.
956 *  BIOCPROMISC		Put interface into promiscuous mode.
957 *  BIOCGDLT		Get link layer type.
958 *  BIOCGETIF		Get interface name.
959 *  BIOCSETIF		Set interface.
960 *  BIOCSRTIMEOUT	Set read timeout.
961 *  BIOCGRTIMEOUT	Get read timeout.
962 *  BIOCGSTATS		Get packet stats.
963 *  BIOCIMMEDIATE	Set immediate mode.
964 *  BIOCVERSION		Get filter language version.
965 *  BIOCGHDRCMPLT	Get "header already complete" flag
966 *  BIOCSHDRCMPLT	Set "header already complete" flag
967 *  BIOCGDIRECTION	Get packet direction flag
968 *  BIOCSDIRECTION	Set packet direction flag
969 *  BIOCLOCK		Set "locked" flag
970 *  BIOCFEEDBACK	Set packet feedback mode.
971 *  BIOCSETZBUF		Set current zero-copy buffer locations.
972 *  BIOCGETZMAX		Get maximum zero-copy buffer size.
973 *  BIOCROTZBUF		Force rotation of zero-copy buffer
974 *  BIOCSETBUFMODE	Set buffer mode.
975 *  BIOCGETBUFMODE	Get current buffer mode.
976 */
977/* ARGSUSED */
978static	int
979bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
980    struct thread *td)
981{
982	struct bpf_d *d;
983	int error;
984
985	error = devfs_get_cdevpriv((void **)&d);
986	if (error != 0)
987		return (error);
988
989	/*
990	 * Refresh PID associated with this descriptor.
991	 */
992	BPFD_LOCK(d);
993	d->bd_pid = td->td_proc->p_pid;
994	if (d->bd_state == BPF_WAITING)
995		callout_stop(&d->bd_callout);
996	d->bd_state = BPF_IDLE;
997	BPFD_UNLOCK(d);
998
999	if (d->bd_locked == 1) {
1000		switch (cmd) {
1001		case BIOCGBLEN:
1002		case BIOCFLUSH:
1003		case BIOCGDLT:
1004		case BIOCGDLTLIST:
1005		case BIOCGETIF:
1006		case BIOCGRTIMEOUT:
1007		case BIOCGSTATS:
1008		case BIOCVERSION:
1009		case BIOCGRSIG:
1010		case BIOCGHDRCMPLT:
1011		case BIOCFEEDBACK:
1012		case FIONREAD:
1013		case BIOCLOCK:
1014		case BIOCSRTIMEOUT:
1015		case BIOCIMMEDIATE:
1016		case TIOCGPGRP:
1017		case BIOCROTZBUF:
1018			break;
1019		default:
1020			return (EPERM);
1021		}
1022	}
1023	CURVNET_SET(TD_TO_VNET(td));
1024	switch (cmd) {
1025
1026	default:
1027		error = EINVAL;
1028		break;
1029
1030	/*
1031	 * Check for read packet available.
1032	 */
1033	case FIONREAD:
1034		{
1035			int n;
1036
1037			BPFD_LOCK(d);
1038			n = d->bd_slen;
1039			if (d->bd_hbuf)
1040				n += d->bd_hlen;
1041			BPFD_UNLOCK(d);
1042
1043			*(int *)addr = n;
1044			break;
1045		}
1046
1047	case SIOCGIFADDR:
1048		{
1049			struct ifnet *ifp;
1050
1051			if (d->bd_bif == NULL)
1052				error = EINVAL;
1053			else {
1054				ifp = d->bd_bif->bif_ifp;
1055				error = (*ifp->if_ioctl)(ifp, cmd, addr);
1056			}
1057			break;
1058		}
1059
1060	/*
1061	 * Get buffer len [for read()].
1062	 */
1063	case BIOCGBLEN:
1064		*(u_int *)addr = d->bd_bufsize;
1065		break;
1066
1067	/*
1068	 * Set buffer length.
1069	 */
1070	case BIOCSBLEN:
1071		error = bpf_ioctl_sblen(d, (u_int *)addr);
1072		break;
1073
1074	/*
1075	 * Set link layer read filter.
1076	 */
1077	case BIOCSETF:
1078	case BIOCSETFNR:
1079	case BIOCSETWF:
1080		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1081		break;
1082
1083	/*
1084	 * Flush read packet buffer.
1085	 */
1086	case BIOCFLUSH:
1087		BPFD_LOCK(d);
1088		reset_d(d);
1089		BPFD_UNLOCK(d);
1090		break;
1091
1092	/*
1093	 * Put interface into promiscuous mode.
1094	 */
1095	case BIOCPROMISC:
1096		if (d->bd_bif == NULL) {
1097			/*
1098			 * No interface attached yet.
1099			 */
1100			error = EINVAL;
1101			break;
1102		}
1103		if (d->bd_promisc == 0) {
1104			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1105			if (error == 0)
1106				d->bd_promisc = 1;
1107		}
1108		break;
1109
1110	/*
1111	 * Get current data link type.
1112	 */
1113	case BIOCGDLT:
1114		if (d->bd_bif == NULL)
1115			error = EINVAL;
1116		else
1117			*(u_int *)addr = d->bd_bif->bif_dlt;
1118		break;
1119
1120	/*
1121	 * Get a list of supported data link types.
1122	 */
1123	case BIOCGDLTLIST:
1124		if (d->bd_bif == NULL)
1125			error = EINVAL;
1126		else
1127			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1128		break;
1129
1130	/*
1131	 * Set data link type.
1132	 */
1133	case BIOCSDLT:
1134		if (d->bd_bif == NULL)
1135			error = EINVAL;
1136		else
1137			error = bpf_setdlt(d, *(u_int *)addr);
1138		break;
1139
1140	/*
1141	 * Get interface name.
1142	 */
1143	case BIOCGETIF:
1144		if (d->bd_bif == NULL)
1145			error = EINVAL;
1146		else {
1147			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1148			struct ifreq *const ifr = (struct ifreq *)addr;
1149
1150			strlcpy(ifr->ifr_name, ifp->if_xname,
1151			    sizeof(ifr->ifr_name));
1152		}
1153		break;
1154
1155	/*
1156	 * Set interface.
1157	 */
1158	case BIOCSETIF:
1159		error = bpf_setif(d, (struct ifreq *)addr);
1160		break;
1161
1162	/*
1163	 * Set read timeout.
1164	 */
1165	case BIOCSRTIMEOUT:
1166		{
1167			struct timeval *tv = (struct timeval *)addr;
1168
1169			/*
1170			 * Subtract 1 tick from tvtohz() since this isn't
1171			 * a one-shot timer.
1172			 */
1173			if ((error = itimerfix(tv)) == 0)
1174				d->bd_rtout = tvtohz(tv) - 1;
1175			break;
1176		}
1177
1178	/*
1179	 * Get read timeout.
1180	 */
1181	case BIOCGRTIMEOUT:
1182		{
1183			struct timeval *tv = (struct timeval *)addr;
1184
1185			tv->tv_sec = d->bd_rtout / hz;
1186			tv->tv_usec = (d->bd_rtout % hz) * tick;
1187			break;
1188		}
1189
1190	/*
1191	 * Get packet stats.
1192	 */
1193	case BIOCGSTATS:
1194		{
1195			struct bpf_stat *bs = (struct bpf_stat *)addr;
1196
1197			/* XXXCSJP overflow */
1198			bs->bs_recv = d->bd_rcount;
1199			bs->bs_drop = d->bd_dcount;
1200			break;
1201		}
1202
1203	/*
1204	 * Set immediate mode.
1205	 */
1206	case BIOCIMMEDIATE:
1207		d->bd_immediate = *(u_int *)addr;
1208		break;
1209
1210	case BIOCVERSION:
1211		{
1212			struct bpf_version *bv = (struct bpf_version *)addr;
1213
1214			bv->bv_major = BPF_MAJOR_VERSION;
1215			bv->bv_minor = BPF_MINOR_VERSION;
1216			break;
1217		}
1218
1219	/*
1220	 * Get "header already complete" flag
1221	 */
1222	case BIOCGHDRCMPLT:
1223		*(u_int *)addr = d->bd_hdrcmplt;
1224		break;
1225
1226	/*
1227	 * Set "header already complete" flag
1228	 */
1229	case BIOCSHDRCMPLT:
1230		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1231		break;
1232
1233	/*
1234	 * Get packet direction flag
1235	 */
1236	case BIOCGDIRECTION:
1237		*(u_int *)addr = d->bd_direction;
1238		break;
1239
1240	/*
1241	 * Set packet direction flag
1242	 */
1243	case BIOCSDIRECTION:
1244		{
1245			u_int	direction;
1246
1247			direction = *(u_int *)addr;
1248			switch (direction) {
1249			case BPF_D_IN:
1250			case BPF_D_INOUT:
1251			case BPF_D_OUT:
1252				d->bd_direction = direction;
1253				break;
1254			default:
1255				error = EINVAL;
1256			}
1257		}
1258		break;
1259
1260	case BIOCFEEDBACK:
1261		d->bd_feedback = *(u_int *)addr;
1262		break;
1263
1264	case BIOCLOCK:
1265		d->bd_locked = 1;
1266		break;
1267
1268	case FIONBIO:		/* Non-blocking I/O */
1269		break;
1270
1271	case FIOASYNC:		/* Send signal on receive packets */
1272		d->bd_async = *(int *)addr;
1273		break;
1274
1275	case FIOSETOWN:
1276		error = fsetown(*(int *)addr, &d->bd_sigio);
1277		break;
1278
1279	case FIOGETOWN:
1280		*(int *)addr = fgetown(&d->bd_sigio);
1281		break;
1282
1283	/* This is deprecated, FIOSETOWN should be used instead. */
1284	case TIOCSPGRP:
1285		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1286		break;
1287
1288	/* This is deprecated, FIOGETOWN should be used instead. */
1289	case TIOCGPGRP:
1290		*(int *)addr = -fgetown(&d->bd_sigio);
1291		break;
1292
1293	case BIOCSRSIG:		/* Set receive signal */
1294		{
1295			u_int sig;
1296
1297			sig = *(u_int *)addr;
1298
1299			if (sig >= NSIG)
1300				error = EINVAL;
1301			else
1302				d->bd_sig = sig;
1303			break;
1304		}
1305	case BIOCGRSIG:
1306		*(u_int *)addr = d->bd_sig;
1307		break;
1308
1309	case BIOCGETBUFMODE:
1310		*(u_int *)addr = d->bd_bufmode;
1311		break;
1312
1313	case BIOCSETBUFMODE:
1314		/*
1315		 * Allow the buffering mode to be changed as long as we
1316		 * haven't yet committed to a particular mode.  Our
1317		 * definition of commitment, for now, is whether or not a
1318		 * buffer has been allocated or an interface attached, since
1319		 * that's the point where things get tricky.
1320		 */
1321		switch (*(u_int *)addr) {
1322		case BPF_BUFMODE_BUFFER:
1323			break;
1324
1325		case BPF_BUFMODE_ZBUF:
1326			if (bpf_zerocopy_enable)
1327				break;
1328			/* FALLSTHROUGH */
1329
1330		default:
1331			return (EINVAL);
1332		}
1333
1334		BPFD_LOCK(d);
1335		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1336		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1337			BPFD_UNLOCK(d);
1338			return (EBUSY);
1339		}
1340		d->bd_bufmode = *(u_int *)addr;
1341		BPFD_UNLOCK(d);
1342		break;
1343
1344	case BIOCGETZMAX:
1345		return (bpf_ioctl_getzmax(td, d, (size_t *)addr));
1346
1347	case BIOCSETZBUF:
1348		return (bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr));
1349
1350	case BIOCROTZBUF:
1351		return (bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr));
1352	}
1353	CURVNET_RESTORE();
1354	return (error);
1355}
1356
1357/*
1358 * Set d's packet filter program to fp.  If this file already has a filter,
1359 * free it and replace it.  Returns EINVAL for bogus requests.
1360 */
1361static int
1362bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1363{
1364	struct bpf_insn *fcode, *old;
1365	u_int wfilter, flen, size;
1366#ifdef BPF_JITTER
1367	bpf_jit_filter *ofunc;
1368#endif
1369
1370	if (cmd == BIOCSETWF) {
1371		old = d->bd_wfilter;
1372		wfilter = 1;
1373#ifdef BPF_JITTER
1374		ofunc = NULL;
1375#endif
1376	} else {
1377		wfilter = 0;
1378		old = d->bd_rfilter;
1379#ifdef BPF_JITTER
1380		ofunc = d->bd_bfilter;
1381#endif
1382	}
1383	if (fp->bf_insns == NULL) {
1384		if (fp->bf_len != 0)
1385			return (EINVAL);
1386		BPFD_LOCK(d);
1387		if (wfilter)
1388			d->bd_wfilter = NULL;
1389		else {
1390			d->bd_rfilter = NULL;
1391#ifdef BPF_JITTER
1392			d->bd_bfilter = NULL;
1393#endif
1394			if (cmd == BIOCSETF)
1395				reset_d(d);
1396		}
1397		BPFD_UNLOCK(d);
1398		if (old != NULL)
1399			free((caddr_t)old, M_BPF);
1400#ifdef BPF_JITTER
1401		if (ofunc != NULL)
1402			bpf_destroy_jit_filter(ofunc);
1403#endif
1404		return (0);
1405	}
1406	flen = fp->bf_len;
1407	if (flen > bpf_maxinsns)
1408		return (EINVAL);
1409
1410	size = flen * sizeof(*fp->bf_insns);
1411	fcode = (struct bpf_insn *)malloc(size, M_BPF, M_WAITOK);
1412	if (copyin((caddr_t)fp->bf_insns, (caddr_t)fcode, size) == 0 &&
1413	    bpf_validate(fcode, (int)flen)) {
1414		BPFD_LOCK(d);
1415		if (wfilter)
1416			d->bd_wfilter = fcode;
1417		else {
1418			d->bd_rfilter = fcode;
1419#ifdef BPF_JITTER
1420			d->bd_bfilter = bpf_jitter(fcode, flen);
1421#endif
1422			if (cmd == BIOCSETF)
1423				reset_d(d);
1424		}
1425		BPFD_UNLOCK(d);
1426		if (old != NULL)
1427			free((caddr_t)old, M_BPF);
1428#ifdef BPF_JITTER
1429		if (ofunc != NULL)
1430			bpf_destroy_jit_filter(ofunc);
1431#endif
1432
1433		return (0);
1434	}
1435	free((caddr_t)fcode, M_BPF);
1436	return (EINVAL);
1437}
1438
1439/*
1440 * Detach a file from its current interface (if attached at all) and attach
1441 * to the interface indicated by the name stored in ifr.
1442 * Return an errno or 0.
1443 */
1444static int
1445bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1446{
1447	struct bpf_if *bp;
1448	struct ifnet *theywant;
1449
1450	theywant = ifunit(ifr->ifr_name);
1451	if (theywant == NULL || theywant->if_bpf == NULL)
1452		return (ENXIO);
1453
1454	bp = theywant->if_bpf;
1455
1456	/*
1457	 * Behavior here depends on the buffering model.  If we're using
1458	 * kernel memory buffers, then we can allocate them here.  If we're
1459	 * using zero-copy, then the user process must have registered
1460	 * buffers by the time we get here.  If not, return an error.
1461	 *
1462	 * XXXRW: There are locking issues here with multi-threaded use: what
1463	 * if two threads try to set the interface at once?
1464	 */
1465	switch (d->bd_bufmode) {
1466	case BPF_BUFMODE_BUFFER:
1467		if (d->bd_sbuf == NULL)
1468			bpf_buffer_alloc(d);
1469		KASSERT(d->bd_sbuf != NULL, ("bpf_setif: bd_sbuf NULL"));
1470		break;
1471
1472	case BPF_BUFMODE_ZBUF:
1473		if (d->bd_sbuf == NULL)
1474			return (EINVAL);
1475		break;
1476
1477	default:
1478		panic("bpf_setif: bufmode %d", d->bd_bufmode);
1479	}
1480	if (bp != d->bd_bif) {
1481		if (d->bd_bif)
1482			/*
1483			 * Detach if attached to something else.
1484			 */
1485			bpf_detachd(d);
1486
1487		bpf_attachd(d, bp);
1488	}
1489	BPFD_LOCK(d);
1490	reset_d(d);
1491	BPFD_UNLOCK(d);
1492	return (0);
1493}
1494
1495/*
1496 * Support for select() and poll() system calls
1497 *
1498 * Return true iff the specific operation will not block indefinitely.
1499 * Otherwise, return false but make a note that a selwakeup() must be done.
1500 */
1501static int
1502bpfpoll(struct cdev *dev, int events, struct thread *td)
1503{
1504	struct bpf_d *d;
1505	int revents;
1506
1507	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
1508		return (events &
1509		    (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
1510
1511	/*
1512	 * Refresh PID associated with this descriptor.
1513	 */
1514	revents = events & (POLLOUT | POLLWRNORM);
1515	BPFD_LOCK(d);
1516	d->bd_pid = td->td_proc->p_pid;
1517	if (events & (POLLIN | POLLRDNORM)) {
1518		if (bpf_ready(d))
1519			revents |= events & (POLLIN | POLLRDNORM);
1520		else {
1521			selrecord(td, &d->bd_sel);
1522			/* Start the read timeout if necessary. */
1523			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1524				callout_reset(&d->bd_callout, d->bd_rtout,
1525				    bpf_timed_out, d);
1526				d->bd_state = BPF_WAITING;
1527			}
1528		}
1529	}
1530	BPFD_UNLOCK(d);
1531	return (revents);
1532}
1533
1534/*
1535 * Support for kevent() system call.  Register EVFILT_READ filters and
1536 * reject all others.
1537 */
1538int
1539bpfkqfilter(struct cdev *dev, struct knote *kn)
1540{
1541	struct bpf_d *d;
1542
1543	if (devfs_get_cdevpriv((void **)&d) != 0 ||
1544	    kn->kn_filter != EVFILT_READ)
1545		return (1);
1546
1547	/*
1548	 * Refresh PID associated with this descriptor.
1549	 */
1550	BPFD_LOCK(d);
1551	d->bd_pid = curthread->td_proc->p_pid;
1552	kn->kn_fop = &bpfread_filtops;
1553	kn->kn_hook = d;
1554	knlist_add(&d->bd_sel.si_note, kn, 1);
1555	BPFD_UNLOCK(d);
1556
1557	return (0);
1558}
1559
1560static void
1561filt_bpfdetach(struct knote *kn)
1562{
1563	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
1564
1565	knlist_remove(&d->bd_sel.si_note, kn, 0);
1566}
1567
1568static int
1569filt_bpfread(struct knote *kn, long hint)
1570{
1571	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
1572	int ready;
1573
1574	BPFD_LOCK_ASSERT(d);
1575	ready = bpf_ready(d);
1576	if (ready) {
1577		kn->kn_data = d->bd_slen;
1578		if (d->bd_hbuf)
1579			kn->kn_data += d->bd_hlen;
1580	}
1581	else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1582		callout_reset(&d->bd_callout, d->bd_rtout,
1583		    bpf_timed_out, d);
1584		d->bd_state = BPF_WAITING;
1585	}
1586
1587	return (ready);
1588}
1589
1590/*
1591 * Incoming linkage from device drivers.  Process the packet pkt, of length
1592 * pktlen, which is stored in a contiguous buffer.  The packet is parsed
1593 * by each process' filter, and if accepted, stashed into the corresponding
1594 * buffer.
1595 */
1596void
1597bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1598{
1599	struct bpf_d *d;
1600#ifdef BPF_JITTER
1601	bpf_jit_filter *bf;
1602#endif
1603	u_int slen;
1604	int gottime;
1605	struct timeval tv;
1606
1607	gottime = 0;
1608	BPFIF_LOCK(bp);
1609	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1610		BPFD_LOCK(d);
1611		++d->bd_rcount;
1612		/*
1613		 * NB: We dont call BPF_CHECK_DIRECTION() here since there is no
1614		 * way for the caller to indiciate to us whether this packet
1615		 * is inbound or outbound.  In the bpf_mtap() routines, we use
1616		 * the interface pointers on the mbuf to figure it out.
1617		 */
1618#ifdef BPF_JITTER
1619		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
1620		if (bf != NULL)
1621			slen = (*(bf->func))(pkt, pktlen, pktlen);
1622		else
1623#endif
1624		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
1625		if (slen != 0) {
1626			d->bd_fcount++;
1627			if (!gottime) {
1628				microtime(&tv);
1629				gottime = 1;
1630			}
1631#ifdef MAC
1632			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1633#endif
1634				catchpacket(d, pkt, pktlen, slen,
1635				    bpf_append_bytes, &tv);
1636		}
1637		BPFD_UNLOCK(d);
1638	}
1639	BPFIF_UNLOCK(bp);
1640}
1641
1642#define	BPF_CHECK_DIRECTION(d, r, i)				\
1643	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
1644	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
1645
1646/*
1647 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1648 */
1649void
1650bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1651{
1652	struct bpf_d *d;
1653#ifdef BPF_JITTER
1654	bpf_jit_filter *bf;
1655#endif
1656	u_int pktlen, slen;
1657	int gottime;
1658	struct timeval tv;
1659
1660	/* Skip outgoing duplicate packets. */
1661	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
1662		m->m_flags &= ~M_PROMISC;
1663		return;
1664	}
1665
1666	gottime = 0;
1667
1668	pktlen = m_length(m, NULL);
1669
1670	BPFIF_LOCK(bp);
1671	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1672		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
1673			continue;
1674		BPFD_LOCK(d);
1675		++d->bd_rcount;
1676#ifdef BPF_JITTER
1677		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
1678		/* XXX We cannot handle multiple mbufs. */
1679		if (bf != NULL && m->m_next == NULL)
1680			slen = (*(bf->func))(mtod(m, u_char *), pktlen, pktlen);
1681		else
1682#endif
1683		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
1684		if (slen != 0) {
1685			d->bd_fcount++;
1686			if (!gottime) {
1687				microtime(&tv);
1688				gottime = 1;
1689			}
1690#ifdef MAC
1691			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1692#endif
1693				catchpacket(d, (u_char *)m, pktlen, slen,
1694				    bpf_append_mbuf, &tv);
1695		}
1696		BPFD_UNLOCK(d);
1697	}
1698	BPFIF_UNLOCK(bp);
1699}
1700
1701/*
1702 * Incoming linkage from device drivers, when packet is in
1703 * an mbuf chain and to be prepended by a contiguous header.
1704 */
1705void
1706bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1707{
1708	struct mbuf mb;
1709	struct bpf_d *d;
1710	u_int pktlen, slen;
1711	int gottime;
1712	struct timeval tv;
1713
1714	/* Skip outgoing duplicate packets. */
1715	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
1716		m->m_flags &= ~M_PROMISC;
1717		return;
1718	}
1719
1720	gottime = 0;
1721
1722	pktlen = m_length(m, NULL);
1723	/*
1724	 * Craft on-stack mbuf suitable for passing to bpf_filter.
1725	 * Note that we cut corners here; we only setup what's
1726	 * absolutely needed--this mbuf should never go anywhere else.
1727	 */
1728	mb.m_next = m;
1729	mb.m_data = data;
1730	mb.m_len = dlen;
1731	pktlen += dlen;
1732
1733	BPFIF_LOCK(bp);
1734	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1735		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
1736			continue;
1737		BPFD_LOCK(d);
1738		++d->bd_rcount;
1739		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
1740		if (slen != 0) {
1741			d->bd_fcount++;
1742			if (!gottime) {
1743				microtime(&tv);
1744				gottime = 1;
1745			}
1746#ifdef MAC
1747			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1748#endif
1749				catchpacket(d, (u_char *)&mb, pktlen, slen,
1750				    bpf_append_mbuf, &tv);
1751		}
1752		BPFD_UNLOCK(d);
1753	}
1754	BPFIF_UNLOCK(bp);
1755}
1756
1757#undef	BPF_CHECK_DIRECTION
1758
1759/*
1760 * Move the packet data from interface memory (pkt) into the
1761 * store buffer.  "cpfn" is the routine called to do the actual data
1762 * transfer.  bcopy is passed in to copy contiguous chunks, while
1763 * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
1764 * pkt is really an mbuf.
1765 */
1766static void
1767catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1768    void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
1769    struct timeval *tv)
1770{
1771	struct bpf_hdr hdr;
1772	int totlen, curlen;
1773	int hdrlen = d->bd_bif->bif_hdrlen;
1774	int do_wakeup = 0;
1775
1776	BPFD_LOCK_ASSERT(d);
1777
1778	/*
1779	 * Detect whether user space has released a buffer back to us, and if
1780	 * so, move it from being a hold buffer to a free buffer.  This may
1781	 * not be the best place to do it (for example, we might only want to
1782	 * run this check if we need the space), but for now it's a reliable
1783	 * spot to do it.
1784	 */
1785	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
1786		d->bd_fbuf = d->bd_hbuf;
1787		d->bd_hbuf = NULL;
1788		d->bd_hlen = 0;
1789		bpf_buf_reclaimed(d);
1790	}
1791
1792	/*
1793	 * Figure out how many bytes to move.  If the packet is
1794	 * greater or equal to the snapshot length, transfer that
1795	 * much.  Otherwise, transfer the whole packet (unless
1796	 * we hit the buffer size limit).
1797	 */
1798	totlen = hdrlen + min(snaplen, pktlen);
1799	if (totlen > d->bd_bufsize)
1800		totlen = d->bd_bufsize;
1801
1802	/*
1803	 * Round up the end of the previous packet to the next longword.
1804	 *
1805	 * Drop the packet if there's no room and no hope of room
1806	 * If the packet would overflow the storage buffer or the storage
1807	 * buffer is considered immutable by the buffer model, try to rotate
1808	 * the buffer and wakeup pending processes.
1809	 */
1810	curlen = BPF_WORDALIGN(d->bd_slen);
1811	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
1812		if (d->bd_fbuf == NULL) {
1813			/*
1814			 * There's no room in the store buffer, and no
1815			 * prospect of room, so drop the packet.  Notify the
1816			 * buffer model.
1817			 */
1818			bpf_buffull(d);
1819			++d->bd_dcount;
1820			return;
1821		}
1822		ROTATE_BUFFERS(d);
1823		do_wakeup = 1;
1824		curlen = 0;
1825	} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT)
1826		/*
1827		 * Immediate mode is set, or the read timeout has already
1828		 * expired during a select call.  A packet arrived, so the
1829		 * reader should be woken up.
1830		 */
1831		do_wakeup = 1;
1832
1833	/*
1834	 * Append the bpf header.  Note we append the actual header size, but
1835	 * move forward the length of the header plus padding.
1836	 */
1837	bzero(&hdr, sizeof(hdr));
1838	hdr.bh_tstamp = *tv;
1839	hdr.bh_datalen = pktlen;
1840	hdr.bh_hdrlen = hdrlen;
1841	hdr.bh_caplen = totlen - hdrlen;
1842	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
1843
1844	/*
1845	 * Copy the packet data into the store buffer and update its length.
1846	 */
1847	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, hdr.bh_caplen);
1848	d->bd_slen = curlen + totlen;
1849
1850	if (do_wakeup)
1851		bpf_wakeup(d);
1852}
1853
1854/*
1855 * Free buffers currently in use by a descriptor.
1856 * Called on close.
1857 */
1858static void
1859bpf_freed(struct bpf_d *d)
1860{
1861
1862	/*
1863	 * We don't need to lock out interrupts since this descriptor has
1864	 * been detached from its interface and it yet hasn't been marked
1865	 * free.
1866	 */
1867	bpf_free(d);
1868	if (d->bd_rfilter) {
1869		free((caddr_t)d->bd_rfilter, M_BPF);
1870#ifdef BPF_JITTER
1871		bpf_destroy_jit_filter(d->bd_bfilter);
1872#endif
1873	}
1874	if (d->bd_wfilter)
1875		free((caddr_t)d->bd_wfilter, M_BPF);
1876	mtx_destroy(&d->bd_mtx);
1877}
1878
1879/*
1880 * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
1881 * fixed size of the link header (variable length headers not yet supported).
1882 */
1883void
1884bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
1885{
1886
1887	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
1888}
1889
1890/*
1891 * Attach an interface to bpf.  ifp is a pointer to the structure
1892 * defining the interface to be attached, dlt is the link layer type,
1893 * and hdrlen is the fixed size of the link header (variable length
1894 * headers are not yet supporrted).
1895 */
1896void
1897bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
1898{
1899	struct bpf_if *bp;
1900
1901	bp = malloc(sizeof(*bp), M_BPF, M_NOWAIT | M_ZERO);
1902	if (bp == NULL)
1903		panic("bpfattach");
1904
1905	LIST_INIT(&bp->bif_dlist);
1906	bp->bif_ifp = ifp;
1907	bp->bif_dlt = dlt;
1908	mtx_init(&bp->bif_mtx, "bpf interface lock", NULL, MTX_DEF);
1909	KASSERT(*driverp == NULL, ("bpfattach2: driverp already initialized"));
1910	*driverp = bp;
1911
1912	mtx_lock(&bpf_mtx);
1913	LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
1914	mtx_unlock(&bpf_mtx);
1915
1916	/*
1917	 * Compute the length of the bpf header.  This is not necessarily
1918	 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1919	 * that the network layer header begins on a longword boundary (for
1920	 * performance reasons and to alleviate alignment restrictions).
1921	 */
1922	bp->bif_hdrlen = BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen;
1923
1924	if (bootverbose)
1925		if_printf(ifp, "bpf attached\n");
1926}
1927
1928/*
1929 * Detach bpf from an interface.  This involves detaching each descriptor
1930 * associated with the interface, and leaving bd_bif NULL.  Notify each
1931 * descriptor as it's detached so that any sleepers wake up and get
1932 * ENXIO.
1933 */
1934void
1935bpfdetach(struct ifnet *ifp)
1936{
1937	struct bpf_if	*bp;
1938	struct bpf_d	*d;
1939
1940	/* Locate BPF interface information */
1941	mtx_lock(&bpf_mtx);
1942	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
1943		if (ifp == bp->bif_ifp)
1944			break;
1945	}
1946
1947	/* Interface wasn't attached */
1948	if ((bp == NULL) || (bp->bif_ifp == NULL)) {
1949		mtx_unlock(&bpf_mtx);
1950		printf("bpfdetach: %s was not attached\n", ifp->if_xname);
1951		return;
1952	}
1953
1954	LIST_REMOVE(bp, bif_next);
1955	mtx_unlock(&bpf_mtx);
1956
1957	while ((d = LIST_FIRST(&bp->bif_dlist)) != NULL) {
1958		bpf_detachd(d);
1959		BPFD_LOCK(d);
1960		bpf_wakeup(d);
1961		BPFD_UNLOCK(d);
1962	}
1963
1964	mtx_destroy(&bp->bif_mtx);
1965	free(bp, M_BPF);
1966}
1967
1968/*
1969 * Get a list of available data link type of the interface.
1970 */
1971static int
1972bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
1973{
1974	int n, error;
1975	struct ifnet *ifp;
1976	struct bpf_if *bp;
1977
1978	ifp = d->bd_bif->bif_ifp;
1979	n = 0;
1980	error = 0;
1981	mtx_lock(&bpf_mtx);
1982	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
1983		if (bp->bif_ifp != ifp)
1984			continue;
1985		if (bfl->bfl_list != NULL) {
1986			if (n >= bfl->bfl_len) {
1987				mtx_unlock(&bpf_mtx);
1988				return (ENOMEM);
1989			}
1990			error = copyout(&bp->bif_dlt,
1991			    bfl->bfl_list + n, sizeof(u_int));
1992		}
1993		n++;
1994	}
1995	mtx_unlock(&bpf_mtx);
1996	bfl->bfl_len = n;
1997	return (error);
1998}
1999
2000/*
2001 * Set the data link type of a BPF instance.
2002 */
2003static int
2004bpf_setdlt(struct bpf_d *d, u_int dlt)
2005{
2006	int error, opromisc;
2007	struct ifnet *ifp;
2008	struct bpf_if *bp;
2009
2010	if (d->bd_bif->bif_dlt == dlt)
2011		return (0);
2012	ifp = d->bd_bif->bif_ifp;
2013	mtx_lock(&bpf_mtx);
2014	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2015		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2016			break;
2017	}
2018	mtx_unlock(&bpf_mtx);
2019	if (bp != NULL) {
2020		opromisc = d->bd_promisc;
2021		bpf_detachd(d);
2022		bpf_attachd(d, bp);
2023		BPFD_LOCK(d);
2024		reset_d(d);
2025		BPFD_UNLOCK(d);
2026		if (opromisc) {
2027			error = ifpromisc(bp->bif_ifp, 1);
2028			if (error)
2029				if_printf(bp->bif_ifp,
2030					"bpf_setdlt: ifpromisc failed (%d)\n",
2031					error);
2032			else
2033				d->bd_promisc = 1;
2034		}
2035	}
2036	return (bp == NULL ? EINVAL : 0);
2037}
2038
2039static void
2040bpf_drvinit(void *unused)
2041{
2042	struct cdev *dev;
2043
2044	mtx_init(&bpf_mtx, "bpf global lock", NULL, MTX_DEF);
2045	LIST_INIT(&bpf_iflist);
2046
2047	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2048	/* For compatibility */
2049	make_dev_alias(dev, "bpf0");
2050}
2051
2052/*
2053 * Zero out the various packet counters associated with all of the bpf
2054 * descriptors.  At some point, we will probably want to get a bit more
2055 * granular and allow the user to specify descriptors to be zeroed.
2056 */
2057static void
2058bpf_zero_counters(void)
2059{
2060	struct bpf_if *bp;
2061	struct bpf_d *bd;
2062
2063	mtx_lock(&bpf_mtx);
2064	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2065		BPFIF_LOCK(bp);
2066		LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2067			BPFD_LOCK(bd);
2068			bd->bd_rcount = 0;
2069			bd->bd_dcount = 0;
2070			bd->bd_fcount = 0;
2071			bd->bd_wcount = 0;
2072			bd->bd_wfcount = 0;
2073			bd->bd_zcopy = 0;
2074			BPFD_UNLOCK(bd);
2075		}
2076		BPFIF_UNLOCK(bp);
2077	}
2078	mtx_unlock(&bpf_mtx);
2079}
2080
2081static void
2082bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
2083{
2084
2085	bzero(d, sizeof(*d));
2086	BPFD_LOCK_ASSERT(bd);
2087	d->bd_structsize = sizeof(*d);
2088	d->bd_immediate = bd->bd_immediate;
2089	d->bd_promisc = bd->bd_promisc;
2090	d->bd_hdrcmplt = bd->bd_hdrcmplt;
2091	d->bd_direction = bd->bd_direction;
2092	d->bd_feedback = bd->bd_feedback;
2093	d->bd_async = bd->bd_async;
2094	d->bd_rcount = bd->bd_rcount;
2095	d->bd_dcount = bd->bd_dcount;
2096	d->bd_fcount = bd->bd_fcount;
2097	d->bd_sig = bd->bd_sig;
2098	d->bd_slen = bd->bd_slen;
2099	d->bd_hlen = bd->bd_hlen;
2100	d->bd_bufsize = bd->bd_bufsize;
2101	d->bd_pid = bd->bd_pid;
2102	strlcpy(d->bd_ifname,
2103	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
2104	d->bd_locked = bd->bd_locked;
2105	d->bd_wcount = bd->bd_wcount;
2106	d->bd_wdcount = bd->bd_wdcount;
2107	d->bd_wfcount = bd->bd_wfcount;
2108	d->bd_zcopy = bd->bd_zcopy;
2109	d->bd_bufmode = bd->bd_bufmode;
2110}
2111
2112static int
2113bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
2114{
2115	struct xbpf_d *xbdbuf, *xbd, zerostats;
2116	int index, error;
2117	struct bpf_if *bp;
2118	struct bpf_d *bd;
2119
2120	/*
2121	 * XXX This is not technically correct. It is possible for non
2122	 * privileged users to open bpf devices. It would make sense
2123	 * if the users who opened the devices were able to retrieve
2124	 * the statistics for them, too.
2125	 */
2126	error = priv_check(req->td, PRIV_NET_BPF);
2127	if (error)
2128		return (error);
2129	/*
2130	 * Check to see if the user is requesting that the counters be
2131	 * zeroed out.  Explicitly check that the supplied data is zeroed,
2132	 * as we aren't allowing the user to set the counters currently.
2133	 */
2134	if (req->newptr != NULL) {
2135		if (req->newlen != sizeof(zerostats))
2136			return (EINVAL);
2137		bzero(&zerostats, sizeof(zerostats));
2138		xbd = req->newptr;
2139		if (bcmp(xbd, &zerostats, sizeof(*xbd)) != 0)
2140			return (EINVAL);
2141		bpf_zero_counters();
2142		return (0);
2143	}
2144	if (req->oldptr == NULL)
2145		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
2146	if (bpf_bpfd_cnt == 0)
2147		return (SYSCTL_OUT(req, 0, 0));
2148	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
2149	mtx_lock(&bpf_mtx);
2150	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
2151		mtx_unlock(&bpf_mtx);
2152		free(xbdbuf, M_BPF);
2153		return (ENOMEM);
2154	}
2155	index = 0;
2156	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2157		BPFIF_LOCK(bp);
2158		LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2159			xbd = &xbdbuf[index++];
2160			BPFD_LOCK(bd);
2161			bpfstats_fill_xbpf(xbd, bd);
2162			BPFD_UNLOCK(bd);
2163		}
2164		BPFIF_UNLOCK(bp);
2165	}
2166	mtx_unlock(&bpf_mtx);
2167	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
2168	free(xbdbuf, M_BPF);
2169	return (error);
2170}
2171
2172SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
2173
2174#else /* !DEV_BPF && !NETGRAPH_BPF */
2175/*
2176 * NOP stubs to allow bpf-using drivers to load and function.
2177 *
2178 * A 'better' implementation would allow the core bpf functionality
2179 * to be loaded at runtime.
2180 */
2181static struct bpf_if bp_null;
2182
2183void
2184bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2185{
2186}
2187
2188void
2189bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2190{
2191}
2192
2193void
2194bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
2195{
2196}
2197
2198void
2199bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2200{
2201
2202	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2203}
2204
2205void
2206bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2207{
2208
2209	*driverp = &bp_null;
2210}
2211
2212void
2213bpfdetach(struct ifnet *ifp)
2214{
2215}
2216
2217u_int
2218bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
2219{
2220	return -1;	/* "no filter" behaviour */
2221}
2222
2223int
2224bpf_validate(const struct bpf_insn *f, int len)
2225{
2226	return 0;		/* false */
2227}
2228
2229#endif /* !DEV_BPF && !NETGRAPH_BPF */
2230