bpf.c revision 177599
1/*-
2 * Copyright (c) 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from the Stanford/CMU enet packet filter,
6 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
7 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
8 * Berkeley Laboratory.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *      @(#)bpf.c	8.4 (Berkeley) 1/9/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/net/bpf.c 177599 2008-03-25 09:39:02Z ru $");
39
40#include "opt_bpf.h"
41#include "opt_mac.h"
42#include "opt_netgraph.h"
43
44#include <sys/types.h>
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/conf.h>
48#include <sys/fcntl.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/time.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/signalvar.h>
55#include <sys/filio.h>
56#include <sys/sockio.h>
57#include <sys/ttycom.h>
58#include <sys/uio.h>
59
60#include <sys/event.h>
61#include <sys/file.h>
62#include <sys/poll.h>
63#include <sys/proc.h>
64
65#include <sys/socket.h>
66
67#include <net/if.h>
68#include <net/bpf.h>
69#include <net/bpf_buffer.h>
70#ifdef BPF_JITTER
71#include <net/bpf_jitter.h>
72#endif
73#include <net/bpf_zerocopy.h>
74#include <net/bpfdesc.h>
75
76#include <netinet/in.h>
77#include <netinet/if_ether.h>
78#include <sys/kernel.h>
79#include <sys/sysctl.h>
80
81#include <net80211/ieee80211_freebsd.h>
82
83#include <security/mac/mac_framework.h>
84
85MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
86
87#if defined(DEV_BPF) || defined(NETGRAPH_BPF)
88
89#define PRINET  26			/* interruptible */
90
91#define	M_SKIP_BPF	M_SKIP_FIREWALL
92
93/*
94 * bpf_iflist is a list of BPF interface structures, each corresponding to a
95 * specific DLT.  The same network interface might have several BPF interface
96 * structures registered by different layers in the stack (i.e., 802.11
97 * frames, ethernet frames, etc).
98 */
99static LIST_HEAD(, bpf_if)	bpf_iflist;
100static struct mtx	bpf_mtx;		/* bpf global lock */
101static int		bpf_bpfd_cnt;
102
103static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
104static void	bpf_detachd(struct bpf_d *);
105static void	bpf_freed(struct bpf_d *);
106static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
107		    struct sockaddr *, int *, struct bpf_insn *);
108static int	bpf_setif(struct bpf_d *, struct ifreq *);
109static void	bpf_timed_out(void *);
110static __inline void
111		bpf_wakeup(struct bpf_d *);
112static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
113		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
114		    struct timeval *);
115static void	reset_d(struct bpf_d *);
116static int	 bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
117static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
118static int	bpf_setdlt(struct bpf_d *, u_int);
119static void	filt_bpfdetach(struct knote *);
120static int	filt_bpfread(struct knote *, long);
121static void	bpf_drvinit(void *);
122static void	bpf_clone(void *, struct ucred *, char *, int, struct cdev **);
123static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
124
125SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW, 0, "bpf sysctl");
126static int bpf_maxinsns = BPF_MAXINSNS;
127SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
128    &bpf_maxinsns, 0, "Maximum bpf program instructions");
129static int bpf_zerocopy_enable = 0;
130SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
131    &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
132SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_RW,
133    bpf_stats_sysctl, "bpf statistics portal");
134
135static	d_open_t	bpfopen;
136static	d_close_t	bpfclose;
137static	d_read_t	bpfread;
138static	d_write_t	bpfwrite;
139static	d_ioctl_t	bpfioctl;
140static	d_poll_t	bpfpoll;
141static	d_kqfilter_t	bpfkqfilter;
142
143static struct cdevsw bpf_cdevsw = {
144	.d_version =	D_VERSION,
145	.d_open =	bpfopen,
146	.d_close =	bpfclose,
147	.d_read =	bpfread,
148	.d_write =	bpfwrite,
149	.d_ioctl =	bpfioctl,
150	.d_poll =	bpfpoll,
151	.d_name =	"bpf",
152	.d_kqfilter =	bpfkqfilter,
153};
154
155static struct filterops bpfread_filtops =
156	{ 1, NULL, filt_bpfdetach, filt_bpfread };
157
158/*
159 * Wrapper functions for various buffering methods.  If the set of buffer
160 * modes expands, we will probably want to introduce a switch data structure
161 * similar to protosw, et.
162 */
163static void
164bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
165    u_int len)
166{
167
168	BPFD_LOCK_ASSERT(d);
169
170	switch (d->bd_bufmode) {
171	case BPF_BUFMODE_BUFFER:
172		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
173
174	case BPF_BUFMODE_ZBUF:
175		d->bd_zcopy++;
176		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
177
178	default:
179		panic("bpf_buf_append_bytes");
180	}
181}
182
183static void
184bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
185    u_int len)
186{
187
188	BPFD_LOCK_ASSERT(d);
189
190	switch (d->bd_bufmode) {
191	case BPF_BUFMODE_BUFFER:
192		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
193
194	case BPF_BUFMODE_ZBUF:
195		d->bd_zcopy++;
196		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
197
198	default:
199		panic("bpf_buf_append_mbuf");
200	}
201}
202
203/*
204 * If the buffer mechanism has a way to decide that a held buffer can be made
205 * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
206 * returned if the buffer can be discarded, (0) is returned if it cannot.
207 */
208static int
209bpf_canfreebuf(struct bpf_d *d)
210{
211
212	BPFD_LOCK_ASSERT(d);
213
214	switch (d->bd_bufmode) {
215	case BPF_BUFMODE_ZBUF:
216		return (bpf_zerocopy_canfreebuf(d));
217	}
218	return (0);
219}
220
221void
222bpf_bufheld(struct bpf_d *d)
223{
224
225	BPFD_LOCK_ASSERT(d);
226
227	switch (d->bd_bufmode) {
228	case BPF_BUFMODE_ZBUF:
229		bpf_zerocopy_bufheld(d);
230		break;
231	}
232}
233
234static void
235bpf_free(struct bpf_d *d)
236{
237
238	switch (d->bd_bufmode) {
239	case BPF_BUFMODE_BUFFER:
240		return (bpf_buffer_free(d));
241
242	case BPF_BUFMODE_ZBUF:
243		return (bpf_zerocopy_free(d));
244
245	default:
246		panic("bpf_buf_free");
247	}
248}
249
250static int
251bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
252{
253
254	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
255		return (EOPNOTSUPP);
256	return (bpf_buffer_uiomove(d, buf, len, uio));
257}
258
259static int
260bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
261{
262
263	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
264		return (EOPNOTSUPP);
265	return (bpf_buffer_ioctl_sblen(d, i));
266}
267
268static int
269bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
270{
271
272	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
273		return (EOPNOTSUPP);
274	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
275}
276
277static int
278bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
279{
280
281	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
282		return (EOPNOTSUPP);
283	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
284}
285
286static int
287bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
288{
289
290	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
291		return (EOPNOTSUPP);
292	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
293}
294
295/*
296 * General BPF functions.
297 */
298static int
299bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
300    struct sockaddr *sockp, int *hdrlen, struct bpf_insn *wfilter)
301{
302	const struct ieee80211_bpf_params *p;
303	struct ether_header *eh;
304	struct mbuf *m;
305	int error;
306	int len;
307	int hlen;
308	int slen;
309
310	/*
311	 * Build a sockaddr based on the data link layer type.
312	 * We do this at this level because the ethernet header
313	 * is copied directly into the data field of the sockaddr.
314	 * In the case of SLIP, there is no header and the packet
315	 * is forwarded as is.
316	 * Also, we are careful to leave room at the front of the mbuf
317	 * for the link level header.
318	 */
319	switch (linktype) {
320
321	case DLT_SLIP:
322		sockp->sa_family = AF_INET;
323		hlen = 0;
324		break;
325
326	case DLT_EN10MB:
327		sockp->sa_family = AF_UNSPEC;
328		/* XXX Would MAXLINKHDR be better? */
329		hlen = ETHER_HDR_LEN;
330		break;
331
332	case DLT_FDDI:
333		sockp->sa_family = AF_IMPLINK;
334		hlen = 0;
335		break;
336
337	case DLT_RAW:
338		sockp->sa_family = AF_UNSPEC;
339		hlen = 0;
340		break;
341
342	case DLT_NULL:
343		/*
344		 * null interface types require a 4 byte pseudo header which
345		 * corresponds to the address family of the packet.
346		 */
347		sockp->sa_family = AF_UNSPEC;
348		hlen = 4;
349		break;
350
351	case DLT_ATM_RFC1483:
352		/*
353		 * en atm driver requires 4-byte atm pseudo header.
354		 * though it isn't standard, vpi:vci needs to be
355		 * specified anyway.
356		 */
357		sockp->sa_family = AF_UNSPEC;
358		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
359		break;
360
361	case DLT_PPP:
362		sockp->sa_family = AF_UNSPEC;
363		hlen = 4;	/* This should match PPP_HDRLEN */
364		break;
365
366	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
367		sockp->sa_family = AF_IEEE80211;
368		hlen = 0;
369		break;
370
371	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
372		sockp->sa_family = AF_IEEE80211;
373		sockp->sa_len = 12;	/* XXX != 0 */
374		hlen = sizeof(struct ieee80211_bpf_params);
375		break;
376
377	default:
378		return (EIO);
379	}
380
381	len = uio->uio_resid;
382
383	if (len - hlen > ifp->if_mtu)
384		return (EMSGSIZE);
385
386	if ((unsigned)len > MCLBYTES)
387		return (EIO);
388
389	if (len > MHLEN)
390		m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
391	else
392		MGETHDR(m, M_WAIT, MT_DATA);
393	m->m_pkthdr.len = m->m_len = len;
394	m->m_pkthdr.rcvif = NULL;
395	*mp = m;
396
397	if (m->m_len < hlen) {
398		error = EPERM;
399		goto bad;
400	}
401
402	error = uiomove(mtod(m, u_char *), len, uio);
403	if (error)
404		goto bad;
405
406	slen = bpf_filter(wfilter, mtod(m, u_char *), len, len);
407	if (slen == 0) {
408		error = EPERM;
409		goto bad;
410	}
411
412	/* Check for multicast destination */
413	switch (linktype) {
414	case DLT_EN10MB:
415		eh = mtod(m, struct ether_header *);
416		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
417			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
418			    ETHER_ADDR_LEN) == 0)
419				m->m_flags |= M_BCAST;
420			else
421				m->m_flags |= M_MCAST;
422		}
423		break;
424	}
425
426	/*
427	 * Make room for link header, and copy it to sockaddr
428	 */
429	if (hlen != 0) {
430		if (sockp->sa_family == AF_IEEE80211) {
431			/*
432			 * Collect true length from the parameter header
433			 * NB: sockp is known to be zero'd so if we do a
434			 *     short copy unspecified parameters will be
435			 *     zero.
436			 * NB: packet may not be aligned after stripping
437			 *     bpf params
438			 * XXX check ibp_vers
439			 */
440			p = mtod(m, const struct ieee80211_bpf_params *);
441			hlen = p->ibp_len;
442			if (hlen > sizeof(sockp->sa_data)) {
443				error = EINVAL;
444				goto bad;
445			}
446		}
447		bcopy(m->m_data, sockp->sa_data, hlen);
448	}
449	*hdrlen = hlen;
450
451	return (0);
452bad:
453	m_freem(m);
454	return (error);
455}
456
457/*
458 * Attach file to the bpf interface, i.e. make d listen on bp.
459 */
460static void
461bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
462{
463	/*
464	 * Point d at bp, and add d to the interface's list of listeners.
465	 * Finally, point the driver's bpf cookie at the interface so
466	 * it will divert packets to bpf.
467	 */
468	BPFIF_LOCK(bp);
469	d->bd_bif = bp;
470	LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
471
472	bpf_bpfd_cnt++;
473	BPFIF_UNLOCK(bp);
474}
475
476/*
477 * Detach a file from its interface.
478 */
479static void
480bpf_detachd(struct bpf_d *d)
481{
482	int error;
483	struct bpf_if *bp;
484	struct ifnet *ifp;
485
486	bp = d->bd_bif;
487	BPFIF_LOCK(bp);
488	BPFD_LOCK(d);
489	ifp = d->bd_bif->bif_ifp;
490
491	/*
492	 * Remove d from the interface's descriptor list.
493	 */
494	LIST_REMOVE(d, bd_next);
495
496	bpf_bpfd_cnt--;
497	d->bd_bif = NULL;
498	BPFD_UNLOCK(d);
499	BPFIF_UNLOCK(bp);
500
501	/*
502	 * Check if this descriptor had requested promiscuous mode.
503	 * If so, turn it off.
504	 */
505	if (d->bd_promisc) {
506		d->bd_promisc = 0;
507		error = ifpromisc(ifp, 0);
508		if (error != 0 && error != ENXIO) {
509			/*
510			 * ENXIO can happen if a pccard is unplugged
511			 * Something is really wrong if we were able to put
512			 * the driver into promiscuous mode, but can't
513			 * take it out.
514			 */
515			if_printf(bp->bif_ifp,
516				"bpf_detach: ifpromisc failed (%d)\n", error);
517		}
518	}
519}
520
521/*
522 * Open ethernet device.  Returns ENXIO for illegal minor device number,
523 * EBUSY if file is open by another process.
524 */
525/* ARGSUSED */
526static	int
527bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
528{
529	struct bpf_d *d;
530
531	mtx_lock(&bpf_mtx);
532	d = dev->si_drv1;
533	/*
534	 * Each minor can be opened by only one process.  If the requested
535	 * minor is in use, return EBUSY.
536	 */
537	if (d != NULL) {
538		mtx_unlock(&bpf_mtx);
539		return (EBUSY);
540	}
541	dev->si_drv1 = (struct bpf_d *)~0;	/* mark device in use */
542	mtx_unlock(&bpf_mtx);
543
544	if ((dev->si_flags & SI_NAMED) == 0)
545		make_dev(&bpf_cdevsw, minor(dev), UID_ROOT, GID_WHEEL, 0600,
546		    "bpf%d", dev2unit(dev));
547	MALLOC(d, struct bpf_d *, sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
548	dev->si_drv1 = d;
549
550	/*
551	 * For historical reasons, perform a one-time initialization call to
552	 * the buffer routines, even though we're not yet committed to a
553	 * particular buffer method.
554	 */
555	bpf_buffer_init(d);
556	d->bd_bufmode = BPF_BUFMODE_BUFFER;
557	d->bd_sig = SIGIO;
558	d->bd_direction = BPF_D_INOUT;
559	d->bd_pid = td->td_proc->p_pid;
560#ifdef MAC
561	mac_bpfdesc_init(d);
562	mac_bpfdesc_create(td->td_ucred, d);
563#endif
564	mtx_init(&d->bd_mtx, devtoname(dev), "bpf cdev lock", MTX_DEF);
565	callout_init(&d->bd_callout, CALLOUT_MPSAFE);
566	knlist_init(&d->bd_sel.si_note, &d->bd_mtx, NULL, NULL, NULL);
567
568	return (0);
569}
570
571/*
572 * Close the descriptor by detaching it from its interface,
573 * deallocating its buffers, and marking it free.
574 */
575/* ARGSUSED */
576static	int
577bpfclose(struct cdev *dev, int flags, int fmt, struct thread *td)
578{
579	struct bpf_d *d = dev->si_drv1;
580
581	BPFD_LOCK(d);
582	if (d->bd_state == BPF_WAITING)
583		callout_stop(&d->bd_callout);
584	d->bd_state = BPF_IDLE;
585	BPFD_UNLOCK(d);
586	funsetown(&d->bd_sigio);
587	mtx_lock(&bpf_mtx);
588	if (d->bd_bif)
589		bpf_detachd(d);
590	mtx_unlock(&bpf_mtx);
591	selwakeuppri(&d->bd_sel, PRINET);
592#ifdef MAC
593	mac_bpfdesc_destroy(d);
594#endif /* MAC */
595	knlist_destroy(&d->bd_sel.si_note);
596	bpf_freed(d);
597	dev->si_drv1 = NULL;
598	free(d, M_BPF);
599
600	return (0);
601}
602
603/*
604 *  bpfread - read next chunk of packets from buffers
605 */
606static	int
607bpfread(struct cdev *dev, struct uio *uio, int ioflag)
608{
609	struct bpf_d *d = dev->si_drv1;
610	int timed_out;
611	int error;
612
613	/*
614	 * Restrict application to use a buffer the same size as
615	 * as kernel buffers.
616	 */
617	if (uio->uio_resid != d->bd_bufsize)
618		return (EINVAL);
619
620	BPFD_LOCK(d);
621	d->bd_pid = curthread->td_proc->p_pid;
622	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
623		BPFD_UNLOCK(d);
624		return (EOPNOTSUPP);
625	}
626	if (d->bd_state == BPF_WAITING)
627		callout_stop(&d->bd_callout);
628	timed_out = (d->bd_state == BPF_TIMED_OUT);
629	d->bd_state = BPF_IDLE;
630	/*
631	 * If the hold buffer is empty, then do a timed sleep, which
632	 * ends when the timeout expires or when enough packets
633	 * have arrived to fill the store buffer.
634	 */
635	while (d->bd_hbuf == NULL) {
636		if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
637			/*
638			 * A packet(s) either arrived since the previous
639			 * read or arrived while we were asleep.
640			 * Rotate the buffers and return what's here.
641			 */
642			ROTATE_BUFFERS(d);
643			break;
644		}
645
646		/*
647		 * No data is available, check to see if the bpf device
648		 * is still pointed at a real interface.  If not, return
649		 * ENXIO so that the userland process knows to rebind
650		 * it before using it again.
651		 */
652		if (d->bd_bif == NULL) {
653			BPFD_UNLOCK(d);
654			return (ENXIO);
655		}
656
657		if (ioflag & O_NONBLOCK) {
658			BPFD_UNLOCK(d);
659			return (EWOULDBLOCK);
660		}
661		error = msleep(d, &d->bd_mtx, PRINET|PCATCH,
662		     "bpf", d->bd_rtout);
663		if (error == EINTR || error == ERESTART) {
664			BPFD_UNLOCK(d);
665			return (error);
666		}
667		if (error == EWOULDBLOCK) {
668			/*
669			 * On a timeout, return what's in the buffer,
670			 * which may be nothing.  If there is something
671			 * in the store buffer, we can rotate the buffers.
672			 */
673			if (d->bd_hbuf)
674				/*
675				 * We filled up the buffer in between
676				 * getting the timeout and arriving
677				 * here, so we don't need to rotate.
678				 */
679				break;
680
681			if (d->bd_slen == 0) {
682				BPFD_UNLOCK(d);
683				return (0);
684			}
685			ROTATE_BUFFERS(d);
686			break;
687		}
688	}
689	/*
690	 * At this point, we know we have something in the hold slot.
691	 */
692	BPFD_UNLOCK(d);
693
694	/*
695	 * Move data from hold buffer into user space.
696	 * We know the entire buffer is transferred since
697	 * we checked above that the read buffer is bpf_bufsize bytes.
698	 *
699	 * XXXRW: More synchronization needed here: what if a second thread
700	 * issues a read on the same fd at the same time?  Don't want this
701	 * getting invalidated.
702	 */
703	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
704
705	BPFD_LOCK(d);
706	d->bd_fbuf = d->bd_hbuf;
707	d->bd_hbuf = NULL;
708	d->bd_hlen = 0;
709	BPFD_UNLOCK(d);
710
711	return (error);
712}
713
714/*
715 * If there are processes sleeping on this descriptor, wake them up.
716 */
717static __inline void
718bpf_wakeup(struct bpf_d *d)
719{
720
721	BPFD_LOCK_ASSERT(d);
722	if (d->bd_state == BPF_WAITING) {
723		callout_stop(&d->bd_callout);
724		d->bd_state = BPF_IDLE;
725	}
726	wakeup(d);
727	if (d->bd_async && d->bd_sig && d->bd_sigio)
728		pgsigio(&d->bd_sigio, d->bd_sig, 0);
729
730	selwakeuppri(&d->bd_sel, PRINET);
731	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
732}
733
734static void
735bpf_timed_out(void *arg)
736{
737	struct bpf_d *d = (struct bpf_d *)arg;
738
739	BPFD_LOCK(d);
740	if (d->bd_state == BPF_WAITING) {
741		d->bd_state = BPF_TIMED_OUT;
742		if (d->bd_slen != 0)
743			bpf_wakeup(d);
744	}
745	BPFD_UNLOCK(d);
746}
747
748static int
749bpf_ready(struct bpf_d *d)
750{
751
752	BPFD_LOCK_ASSERT(d);
753
754	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
755		return (1);
756	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
757	    d->bd_slen != 0)
758		return (1);
759	return (0);
760}
761
762static int
763bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
764{
765	struct bpf_d *d = dev->si_drv1;
766	struct ifnet *ifp;
767	struct mbuf *m, *mc;
768	struct sockaddr dst;
769	int error, hlen;
770
771	d->bd_pid = curthread->td_proc->p_pid;
772	d->bd_wcount++;
773	if (d->bd_bif == NULL) {
774		d->bd_wdcount++;
775		return (ENXIO);
776	}
777
778	ifp = d->bd_bif->bif_ifp;
779
780	if ((ifp->if_flags & IFF_UP) == 0) {
781		d->bd_wdcount++;
782		return (ENETDOWN);
783	}
784
785	if (uio->uio_resid == 0) {
786		d->bd_wdcount++;
787		return (0);
788	}
789
790	bzero(&dst, sizeof(dst));
791	m = NULL;
792	hlen = 0;
793	error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp,
794	    &m, &dst, &hlen, d->bd_wfilter);
795	if (error) {
796		d->bd_wdcount++;
797		return (error);
798	}
799	d->bd_wfcount++;
800	if (d->bd_hdrcmplt)
801		dst.sa_family = pseudo_AF_HDRCMPLT;
802
803	if (d->bd_feedback) {
804		mc = m_dup(m, M_DONTWAIT);
805		if (mc != NULL)
806			mc->m_pkthdr.rcvif = ifp;
807		/* XXX Do not return the same packet twice. */
808		if (d->bd_direction == BPF_D_INOUT)
809			m->m_flags |= M_SKIP_BPF;
810	} else
811		mc = NULL;
812
813	m->m_pkthdr.len -= hlen;
814	m->m_len -= hlen;
815	m->m_data += hlen;	/* XXX */
816
817#ifdef MAC
818	BPFD_LOCK(d);
819	mac_bpfdesc_create_mbuf(d, m);
820	if (mc != NULL)
821		mac_bpfdesc_create_mbuf(d, mc);
822	BPFD_UNLOCK(d);
823#endif
824
825	error = (*ifp->if_output)(ifp, m, &dst, NULL);
826	if (error)
827		d->bd_wdcount++;
828
829	if (mc != NULL) {
830		if (error == 0)
831			(*ifp->if_input)(ifp, mc);
832		else
833			m_freem(mc);
834	}
835
836	return (error);
837}
838
839/*
840 * Reset a descriptor by flushing its packet buffer and clearing the
841 * receive and drop counts.
842 */
843static void
844reset_d(struct bpf_d *d)
845{
846
847	mtx_assert(&d->bd_mtx, MA_OWNED);
848	if (d->bd_hbuf) {
849		/* Free the hold buffer. */
850		d->bd_fbuf = d->bd_hbuf;
851		d->bd_hbuf = NULL;
852	}
853	d->bd_slen = 0;
854	d->bd_hlen = 0;
855	d->bd_rcount = 0;
856	d->bd_dcount = 0;
857	d->bd_fcount = 0;
858	d->bd_wcount = 0;
859	d->bd_wfcount = 0;
860	d->bd_wdcount = 0;
861	d->bd_zcopy = 0;
862}
863
864/*
865 *  FIONREAD		Check for read packet available.
866 *  SIOCGIFADDR		Get interface address - convenient hook to driver.
867 *  BIOCGBLEN		Get buffer len [for read()].
868 *  BIOCSETF		Set ethernet read filter.
869 *  BIOCSETWF		Set ethernet write filter.
870 *  BIOCFLUSH		Flush read packet buffer.
871 *  BIOCPROMISC		Put interface into promiscuous mode.
872 *  BIOCGDLT		Get link layer type.
873 *  BIOCGETIF		Get interface name.
874 *  BIOCSETIF		Set interface.
875 *  BIOCSRTIMEOUT	Set read timeout.
876 *  BIOCGRTIMEOUT	Get read timeout.
877 *  BIOCGSTATS		Get packet stats.
878 *  BIOCIMMEDIATE	Set immediate mode.
879 *  BIOCVERSION		Get filter language version.
880 *  BIOCGHDRCMPLT	Get "header already complete" flag
881 *  BIOCSHDRCMPLT	Set "header already complete" flag
882 *  BIOCGDIRECTION	Get packet direction flag
883 *  BIOCSDIRECTION	Set packet direction flag
884 *  BIOCLOCK		Set "locked" flag
885 *  BIOCFEEDBACK	Set packet feedback mode.
886 *  BIOCSETZBUF		Set current zero-copy buffer locations.
887 *  BIOCGETZMAX		Get maximum zero-copy buffer size.
888 *  BIOCROTZBUF		Force rotation of zero-copy buffer
889 *  BIOCSETBUFMODE	Set buffer mode.
890 *  BIOCGETBUFMODE	Get current buffer mode.
891 */
892/* ARGSUSED */
893static	int
894bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
895    struct thread *td)
896{
897	struct bpf_d *d = dev->si_drv1;
898	int error = 0;
899
900	/*
901	 * Refresh PID associated with this descriptor.
902	 */
903	BPFD_LOCK(d);
904	d->bd_pid = td->td_proc->p_pid;
905	if (d->bd_state == BPF_WAITING)
906		callout_stop(&d->bd_callout);
907	d->bd_state = BPF_IDLE;
908	BPFD_UNLOCK(d);
909
910	if (d->bd_locked == 1) {
911		switch (cmd) {
912		case BIOCGBLEN:
913		case BIOCFLUSH:
914		case BIOCGDLT:
915		case BIOCGDLTLIST:
916		case BIOCGETIF:
917		case BIOCGRTIMEOUT:
918		case BIOCGSTATS:
919		case BIOCVERSION:
920		case BIOCGRSIG:
921		case BIOCGHDRCMPLT:
922		case BIOCFEEDBACK:
923		case FIONREAD:
924		case BIOCLOCK:
925		case BIOCSRTIMEOUT:
926		case BIOCIMMEDIATE:
927		case TIOCGPGRP:
928		case BIOCROTZBUF:
929			break;
930		default:
931			return (EPERM);
932		}
933	}
934	switch (cmd) {
935
936	default:
937		error = EINVAL;
938		break;
939
940	/*
941	 * Check for read packet available.
942	 */
943	case FIONREAD:
944		{
945			int n;
946
947			BPFD_LOCK(d);
948			n = d->bd_slen;
949			if (d->bd_hbuf)
950				n += d->bd_hlen;
951			BPFD_UNLOCK(d);
952
953			*(int *)addr = n;
954			break;
955		}
956
957	case SIOCGIFADDR:
958		{
959			struct ifnet *ifp;
960
961			if (d->bd_bif == NULL)
962				error = EINVAL;
963			else {
964				ifp = d->bd_bif->bif_ifp;
965				error = (*ifp->if_ioctl)(ifp, cmd, addr);
966			}
967			break;
968		}
969
970	/*
971	 * Get buffer len [for read()].
972	 */
973	case BIOCGBLEN:
974		*(u_int *)addr = d->bd_bufsize;
975		break;
976
977	/*
978	 * Set buffer length.
979	 */
980	case BIOCSBLEN:
981		error = bpf_ioctl_sblen(d, (u_int *)addr);
982		break;
983
984	/*
985	 * Set link layer read filter.
986	 */
987	case BIOCSETF:
988	case BIOCSETWF:
989		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
990		break;
991
992	/*
993	 * Flush read packet buffer.
994	 */
995	case BIOCFLUSH:
996		BPFD_LOCK(d);
997		reset_d(d);
998		BPFD_UNLOCK(d);
999		break;
1000
1001	/*
1002	 * Put interface into promiscuous mode.
1003	 */
1004	case BIOCPROMISC:
1005		if (d->bd_bif == NULL) {
1006			/*
1007			 * No interface attached yet.
1008			 */
1009			error = EINVAL;
1010			break;
1011		}
1012		if (d->bd_promisc == 0) {
1013			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1014			if (error == 0)
1015				d->bd_promisc = 1;
1016		}
1017		break;
1018
1019	/*
1020	 * Get current data link type.
1021	 */
1022	case BIOCGDLT:
1023		if (d->bd_bif == NULL)
1024			error = EINVAL;
1025		else
1026			*(u_int *)addr = d->bd_bif->bif_dlt;
1027		break;
1028
1029	/*
1030	 * Get a list of supported data link types.
1031	 */
1032	case BIOCGDLTLIST:
1033		if (d->bd_bif == NULL)
1034			error = EINVAL;
1035		else
1036			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1037		break;
1038
1039	/*
1040	 * Set data link type.
1041	 */
1042	case BIOCSDLT:
1043		if (d->bd_bif == NULL)
1044			error = EINVAL;
1045		else
1046			error = bpf_setdlt(d, *(u_int *)addr);
1047		break;
1048
1049	/*
1050	 * Get interface name.
1051	 */
1052	case BIOCGETIF:
1053		if (d->bd_bif == NULL)
1054			error = EINVAL;
1055		else {
1056			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1057			struct ifreq *const ifr = (struct ifreq *)addr;
1058
1059			strlcpy(ifr->ifr_name, ifp->if_xname,
1060			    sizeof(ifr->ifr_name));
1061		}
1062		break;
1063
1064	/*
1065	 * Set interface.
1066	 */
1067	case BIOCSETIF:
1068		error = bpf_setif(d, (struct ifreq *)addr);
1069		break;
1070
1071	/*
1072	 * Set read timeout.
1073	 */
1074	case BIOCSRTIMEOUT:
1075		{
1076			struct timeval *tv = (struct timeval *)addr;
1077
1078			/*
1079			 * Subtract 1 tick from tvtohz() since this isn't
1080			 * a one-shot timer.
1081			 */
1082			if ((error = itimerfix(tv)) == 0)
1083				d->bd_rtout = tvtohz(tv) - 1;
1084			break;
1085		}
1086
1087	/*
1088	 * Get read timeout.
1089	 */
1090	case BIOCGRTIMEOUT:
1091		{
1092			struct timeval *tv = (struct timeval *)addr;
1093
1094			tv->tv_sec = d->bd_rtout / hz;
1095			tv->tv_usec = (d->bd_rtout % hz) * tick;
1096			break;
1097		}
1098
1099	/*
1100	 * Get packet stats.
1101	 */
1102	case BIOCGSTATS:
1103		{
1104			struct bpf_stat *bs = (struct bpf_stat *)addr;
1105
1106			/* XXXCSJP overflow */
1107			bs->bs_recv = d->bd_rcount;
1108			bs->bs_drop = d->bd_dcount;
1109			break;
1110		}
1111
1112	/*
1113	 * Set immediate mode.
1114	 */
1115	case BIOCIMMEDIATE:
1116		d->bd_immediate = *(u_int *)addr;
1117		break;
1118
1119	case BIOCVERSION:
1120		{
1121			struct bpf_version *bv = (struct bpf_version *)addr;
1122
1123			bv->bv_major = BPF_MAJOR_VERSION;
1124			bv->bv_minor = BPF_MINOR_VERSION;
1125			break;
1126		}
1127
1128	/*
1129	 * Get "header already complete" flag
1130	 */
1131	case BIOCGHDRCMPLT:
1132		*(u_int *)addr = d->bd_hdrcmplt;
1133		break;
1134
1135	/*
1136	 * Set "header already complete" flag
1137	 */
1138	case BIOCSHDRCMPLT:
1139		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1140		break;
1141
1142	/*
1143	 * Get packet direction flag
1144	 */
1145	case BIOCGDIRECTION:
1146		*(u_int *)addr = d->bd_direction;
1147		break;
1148
1149	/*
1150	 * Set packet direction flag
1151	 */
1152	case BIOCSDIRECTION:
1153		{
1154			u_int	direction;
1155
1156			direction = *(u_int *)addr;
1157			switch (direction) {
1158			case BPF_D_IN:
1159			case BPF_D_INOUT:
1160			case BPF_D_OUT:
1161				d->bd_direction = direction;
1162				break;
1163			default:
1164				error = EINVAL;
1165			}
1166		}
1167		break;
1168
1169	case BIOCFEEDBACK:
1170		d->bd_feedback = *(u_int *)addr;
1171		break;
1172
1173	case BIOCLOCK:
1174		d->bd_locked = 1;
1175		break;
1176
1177	case FIONBIO:		/* Non-blocking I/O */
1178		break;
1179
1180	case FIOASYNC:		/* Send signal on receive packets */
1181		d->bd_async = *(int *)addr;
1182		break;
1183
1184	case FIOSETOWN:
1185		error = fsetown(*(int *)addr, &d->bd_sigio);
1186		break;
1187
1188	case FIOGETOWN:
1189		*(int *)addr = fgetown(&d->bd_sigio);
1190		break;
1191
1192	/* This is deprecated, FIOSETOWN should be used instead. */
1193	case TIOCSPGRP:
1194		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1195		break;
1196
1197	/* This is deprecated, FIOGETOWN should be used instead. */
1198	case TIOCGPGRP:
1199		*(int *)addr = -fgetown(&d->bd_sigio);
1200		break;
1201
1202	case BIOCSRSIG:		/* Set receive signal */
1203		{
1204			u_int sig;
1205
1206			sig = *(u_int *)addr;
1207
1208			if (sig >= NSIG)
1209				error = EINVAL;
1210			else
1211				d->bd_sig = sig;
1212			break;
1213		}
1214	case BIOCGRSIG:
1215		*(u_int *)addr = d->bd_sig;
1216		break;
1217
1218	case BIOCGETBUFMODE:
1219		*(u_int *)addr = d->bd_bufmode;
1220		break;
1221
1222	case BIOCSETBUFMODE:
1223		/*
1224		 * Allow the buffering mode to be changed as long as we
1225		 * haven't yet committed to a particular mode.  Our
1226		 * definition of commitment, for now, is whether or not a
1227		 * buffer has been allocated or an interface attached, since
1228		 * that's the point where things get tricky.
1229		 */
1230		switch (*(u_int *)addr) {
1231		case BPF_BUFMODE_BUFFER:
1232			break;
1233
1234		case BPF_BUFMODE_ZBUF:
1235			if (bpf_zerocopy_enable)
1236				break;
1237			/* FALLSTHROUGH */
1238
1239		default:
1240			return (EINVAL);
1241		}
1242
1243		BPFD_LOCK(d);
1244		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1245		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1246			BPFD_UNLOCK(d);
1247			return (EBUSY);
1248		}
1249		d->bd_bufmode = *(u_int *)addr;
1250		BPFD_UNLOCK(d);
1251		break;
1252
1253	case BIOCGETZMAX:
1254		return (bpf_ioctl_getzmax(td, d, (size_t *)addr));
1255
1256	case BIOCSETZBUF:
1257		return (bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr));
1258
1259	case BIOCROTZBUF:
1260		return (bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr));
1261	}
1262	return (error);
1263}
1264
1265/*
1266 * Set d's packet filter program to fp.  If this file already has a filter,
1267 * free it and replace it.  Returns EINVAL for bogus requests.
1268 */
1269static int
1270bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1271{
1272	struct bpf_insn *fcode, *old;
1273	u_int wfilter, flen, size;
1274#ifdef BPF_JITTER
1275	bpf_jit_filter *ofunc;
1276#endif
1277
1278	if (cmd == BIOCSETWF) {
1279		old = d->bd_wfilter;
1280		wfilter = 1;
1281#ifdef BPF_JITTER
1282		ofunc = NULL;
1283#endif
1284	} else {
1285		wfilter = 0;
1286		old = d->bd_rfilter;
1287#ifdef BPF_JITTER
1288		ofunc = d->bd_bfilter;
1289#endif
1290	}
1291	if (fp->bf_insns == NULL) {
1292		if (fp->bf_len != 0)
1293			return (EINVAL);
1294		BPFD_LOCK(d);
1295		if (wfilter)
1296			d->bd_wfilter = NULL;
1297		else {
1298			d->bd_rfilter = NULL;
1299#ifdef BPF_JITTER
1300			d->bd_bfilter = NULL;
1301#endif
1302		}
1303		reset_d(d);
1304		BPFD_UNLOCK(d);
1305		if (old != NULL)
1306			free((caddr_t)old, M_BPF);
1307#ifdef BPF_JITTER
1308		if (ofunc != NULL)
1309			bpf_destroy_jit_filter(ofunc);
1310#endif
1311		return (0);
1312	}
1313	flen = fp->bf_len;
1314	if (flen > bpf_maxinsns)
1315		return (EINVAL);
1316
1317	size = flen * sizeof(*fp->bf_insns);
1318	fcode = (struct bpf_insn *)malloc(size, M_BPF, M_WAITOK);
1319	if (copyin((caddr_t)fp->bf_insns, (caddr_t)fcode, size) == 0 &&
1320	    bpf_validate(fcode, (int)flen)) {
1321		BPFD_LOCK(d);
1322		if (wfilter)
1323			d->bd_wfilter = fcode;
1324		else {
1325			d->bd_rfilter = fcode;
1326#ifdef BPF_JITTER
1327			d->bd_bfilter = bpf_jitter(fcode, flen);
1328#endif
1329		}
1330		reset_d(d);
1331		BPFD_UNLOCK(d);
1332		if (old != NULL)
1333			free((caddr_t)old, M_BPF);
1334#ifdef BPF_JITTER
1335		if (ofunc != NULL)
1336			bpf_destroy_jit_filter(ofunc);
1337#endif
1338
1339		return (0);
1340	}
1341	free((caddr_t)fcode, M_BPF);
1342	return (EINVAL);
1343}
1344
1345/*
1346 * Detach a file from its current interface (if attached at all) and attach
1347 * to the interface indicated by the name stored in ifr.
1348 * Return an errno or 0.
1349 */
1350static int
1351bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1352{
1353	struct bpf_if *bp;
1354	struct ifnet *theywant;
1355
1356	theywant = ifunit(ifr->ifr_name);
1357	if (theywant == NULL || theywant->if_bpf == NULL)
1358		return (ENXIO);
1359
1360	bp = theywant->if_bpf;
1361
1362	/*
1363	 * Behavior here depends on the buffering model.  If we're using
1364	 * kernel memory buffers, then we can allocate them here.  If we're
1365	 * using zero-copy, then the user process must have registered
1366	 * buffers by the time we get here.  If not, return an error.
1367	 *
1368	 * XXXRW: There are locking issues here with multi-threaded use: what
1369	 * if two threads try to set the interface at once?
1370	 */
1371	switch (d->bd_bufmode) {
1372	case BPF_BUFMODE_BUFFER:
1373		if (d->bd_sbuf == NULL)
1374			bpf_buffer_alloc(d);
1375		KASSERT(d->bd_sbuf != NULL, ("bpf_setif: bd_sbuf NULL"));
1376		break;
1377
1378	case BPF_BUFMODE_ZBUF:
1379		if (d->bd_sbuf == NULL)
1380			return (EINVAL);
1381		break;
1382
1383	default:
1384		panic("bpf_setif: bufmode %d", d->bd_bufmode);
1385	}
1386	if (bp != d->bd_bif) {
1387		if (d->bd_bif)
1388			/*
1389			 * Detach if attached to something else.
1390			 */
1391			bpf_detachd(d);
1392
1393		bpf_attachd(d, bp);
1394	}
1395	BPFD_LOCK(d);
1396	reset_d(d);
1397	BPFD_UNLOCK(d);
1398	return (0);
1399}
1400
1401/*
1402 * Support for select() and poll() system calls
1403 *
1404 * Return true iff the specific operation will not block indefinitely.
1405 * Otherwise, return false but make a note that a selwakeup() must be done.
1406 */
1407static int
1408bpfpoll(struct cdev *dev, int events, struct thread *td)
1409{
1410	struct bpf_d *d;
1411	int revents;
1412
1413	d = dev->si_drv1;
1414	if (d->bd_bif == NULL)
1415		return (ENXIO);
1416
1417	/*
1418	 * Refresh PID associated with this descriptor.
1419	 */
1420	revents = events & (POLLOUT | POLLWRNORM);
1421	BPFD_LOCK(d);
1422	d->bd_pid = td->td_proc->p_pid;
1423	if (events & (POLLIN | POLLRDNORM)) {
1424		if (bpf_ready(d))
1425			revents |= events & (POLLIN | POLLRDNORM);
1426		else {
1427			selrecord(td, &d->bd_sel);
1428			/* Start the read timeout if necessary. */
1429			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1430				callout_reset(&d->bd_callout, d->bd_rtout,
1431				    bpf_timed_out, d);
1432				d->bd_state = BPF_WAITING;
1433			}
1434		}
1435	}
1436	BPFD_UNLOCK(d);
1437	return (revents);
1438}
1439
1440/*
1441 * Support for kevent() system call.  Register EVFILT_READ filters and
1442 * reject all others.
1443 */
1444int
1445bpfkqfilter(struct cdev *dev, struct knote *kn)
1446{
1447	struct bpf_d *d = (struct bpf_d *)dev->si_drv1;
1448
1449	if (kn->kn_filter != EVFILT_READ)
1450		return (1);
1451
1452	/*
1453	 * Refresh PID associated with this descriptor.
1454	 */
1455	BPFD_LOCK(d);
1456	d->bd_pid = curthread->td_proc->p_pid;
1457	kn->kn_fop = &bpfread_filtops;
1458	kn->kn_hook = d;
1459	knlist_add(&d->bd_sel.si_note, kn, 1);
1460	BPFD_UNLOCK(d);
1461
1462	return (0);
1463}
1464
1465static void
1466filt_bpfdetach(struct knote *kn)
1467{
1468	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
1469
1470	knlist_remove(&d->bd_sel.si_note, kn, 0);
1471}
1472
1473static int
1474filt_bpfread(struct knote *kn, long hint)
1475{
1476	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
1477	int ready;
1478
1479	BPFD_LOCK_ASSERT(d);
1480	ready = bpf_ready(d);
1481	if (ready) {
1482		kn->kn_data = d->bd_slen;
1483		if (d->bd_hbuf)
1484			kn->kn_data += d->bd_hlen;
1485	}
1486	else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1487		callout_reset(&d->bd_callout, d->bd_rtout,
1488		    bpf_timed_out, d);
1489		d->bd_state = BPF_WAITING;
1490	}
1491
1492	return (ready);
1493}
1494
1495/*
1496 * Incoming linkage from device drivers.  Process the packet pkt, of length
1497 * pktlen, which is stored in a contiguous buffer.  The packet is parsed
1498 * by each process' filter, and if accepted, stashed into the corresponding
1499 * buffer.
1500 */
1501void
1502bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1503{
1504	struct bpf_d *d;
1505	u_int slen;
1506	int gottime;
1507	struct timeval tv;
1508
1509	gottime = 0;
1510	BPFIF_LOCK(bp);
1511	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1512		BPFD_LOCK(d);
1513		++d->bd_rcount;
1514#ifdef BPF_JITTER
1515		if (bpf_jitter_enable != 0 && d->bd_bfilter != NULL)
1516			slen = (*(d->bd_bfilter->func))(pkt, pktlen, pktlen);
1517		else
1518#endif
1519		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
1520		if (slen != 0) {
1521			d->bd_fcount++;
1522			if (!gottime) {
1523				microtime(&tv);
1524				gottime = 1;
1525			}
1526#ifdef MAC
1527			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1528#endif
1529				catchpacket(d, pkt, pktlen, slen,
1530				    bpf_append_bytes, &tv);
1531		}
1532		BPFD_UNLOCK(d);
1533	}
1534	BPFIF_UNLOCK(bp);
1535}
1536
1537#define	BPF_CHECK_DIRECTION(d, m) \
1538	if (((d)->bd_direction == BPF_D_IN && (m)->m_pkthdr.rcvif == NULL) || \
1539	    ((d)->bd_direction == BPF_D_OUT && (m)->m_pkthdr.rcvif != NULL))
1540
1541/*
1542 * Incoming linkage from device drivers, when packet is in an mbuf chain.
1543 */
1544void
1545bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1546{
1547	struct bpf_d *d;
1548	u_int pktlen, slen;
1549	int gottime;
1550	struct timeval tv;
1551
1552	if (m->m_flags & M_SKIP_BPF) {
1553		m->m_flags &= ~M_SKIP_BPF;
1554		return;
1555	}
1556
1557	gottime = 0;
1558
1559	pktlen = m_length(m, NULL);
1560
1561	BPFIF_LOCK(bp);
1562	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1563		BPF_CHECK_DIRECTION(d, m)
1564			continue;
1565		BPFD_LOCK(d);
1566		++d->bd_rcount;
1567#ifdef BPF_JITTER
1568		/* XXX We cannot handle multiple mbufs. */
1569		if (bpf_jitter_enable != 0 && d->bd_bfilter != NULL &&
1570		    m->m_next == NULL)
1571			slen = (*(d->bd_bfilter->func))(mtod(m, u_char *),
1572			    pktlen, pktlen);
1573		else
1574#endif
1575		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
1576		if (slen != 0) {
1577			d->bd_fcount++;
1578			if (!gottime) {
1579				microtime(&tv);
1580				gottime = 1;
1581			}
1582#ifdef MAC
1583			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1584#endif
1585				catchpacket(d, (u_char *)m, pktlen, slen,
1586				    bpf_append_mbuf, &tv);
1587		}
1588		BPFD_UNLOCK(d);
1589	}
1590	BPFIF_UNLOCK(bp);
1591}
1592
1593/*
1594 * Incoming linkage from device drivers, when packet is in
1595 * an mbuf chain and to be prepended by a contiguous header.
1596 */
1597void
1598bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
1599{
1600	struct mbuf mb;
1601	struct bpf_d *d;
1602	u_int pktlen, slen;
1603	int gottime;
1604	struct timeval tv;
1605
1606	if (m->m_flags & M_SKIP_BPF) {
1607		m->m_flags &= ~M_SKIP_BPF;
1608		return;
1609	}
1610
1611	gottime = 0;
1612
1613	pktlen = m_length(m, NULL);
1614	/*
1615	 * Craft on-stack mbuf suitable for passing to bpf_filter.
1616	 * Note that we cut corners here; we only setup what's
1617	 * absolutely needed--this mbuf should never go anywhere else.
1618	 */
1619	mb.m_next = m;
1620	mb.m_data = data;
1621	mb.m_len = dlen;
1622	pktlen += dlen;
1623
1624	BPFIF_LOCK(bp);
1625	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1626		BPF_CHECK_DIRECTION(d, m)
1627			continue;
1628		BPFD_LOCK(d);
1629		++d->bd_rcount;
1630		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
1631		if (slen != 0) {
1632			d->bd_fcount++;
1633			if (!gottime) {
1634				microtime(&tv);
1635				gottime = 1;
1636			}
1637#ifdef MAC
1638			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1639#endif
1640				catchpacket(d, (u_char *)&mb, pktlen, slen,
1641				    bpf_append_mbuf, &tv);
1642		}
1643		BPFD_UNLOCK(d);
1644	}
1645	BPFIF_UNLOCK(bp);
1646}
1647
1648#undef	BPF_CHECK_DIRECTION
1649
1650/*
1651 * Move the packet data from interface memory (pkt) into the
1652 * store buffer.  "cpfn" is the routine called to do the actual data
1653 * transfer.  bcopy is passed in to copy contiguous chunks, while
1654 * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
1655 * pkt is really an mbuf.
1656 */
1657static void
1658catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1659    void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
1660    struct timeval *tv)
1661{
1662	struct bpf_hdr hdr;
1663	int totlen, curlen;
1664	int hdrlen = d->bd_bif->bif_hdrlen;
1665	int do_wakeup = 0;
1666
1667	BPFD_LOCK_ASSERT(d);
1668
1669	/*
1670	 * Detect whether user space has released a buffer back to us, and if
1671	 * so, move it from being a hold buffer to a free buffer.  This may
1672	 * not be the best place to do it (for example, we might only want to
1673	 * run this check if we need the space), but for now it's a reliable
1674	 * spot to do it.
1675	 */
1676	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
1677		d->bd_fbuf = d->bd_hbuf;
1678		d->bd_hbuf = NULL;
1679		d->bd_hlen = 0;
1680	}
1681
1682	/*
1683	 * Figure out how many bytes to move.  If the packet is
1684	 * greater or equal to the snapshot length, transfer that
1685	 * much.  Otherwise, transfer the whole packet (unless
1686	 * we hit the buffer size limit).
1687	 */
1688	totlen = hdrlen + min(snaplen, pktlen);
1689	if (totlen > d->bd_bufsize)
1690		totlen = d->bd_bufsize;
1691
1692	/*
1693	 * Round up the end of the previous packet to the next longword.
1694	 */
1695	curlen = BPF_WORDALIGN(d->bd_slen);
1696	if (curlen + totlen > d->bd_bufsize) {
1697		/*
1698		 * This packet will overflow the storage buffer.
1699		 * Rotate the buffers if we can, then wakeup any
1700		 * pending reads.
1701		 */
1702		if (d->bd_fbuf == NULL) {
1703			/*
1704			 * We haven't completed the previous read yet,
1705			 * so drop the packet.
1706			 */
1707			++d->bd_dcount;
1708			return;
1709		}
1710		ROTATE_BUFFERS(d);
1711		do_wakeup = 1;
1712		curlen = 0;
1713	}
1714	else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT)
1715		/*
1716		 * Immediate mode is set, or the read timeout has already
1717		 * expired during a select call.  A packet arrived, so the
1718		 * reader should be woken up.
1719		 */
1720		do_wakeup = 1;
1721
1722	/*
1723	 * Append the bpf header.  Note we append the actual header size, but
1724	 * move forward the length of the header plus padding.
1725	 */
1726	bzero(&hdr, sizeof(hdr));
1727	hdr.bh_tstamp = *tv;
1728	hdr.bh_datalen = pktlen;
1729	hdr.bh_hdrlen = hdrlen;
1730	hdr.bh_caplen = totlen - hdrlen;
1731	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
1732
1733	/*
1734	 * Copy the packet data into the store buffer and update its length.
1735	 */
1736	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, hdr.bh_caplen);
1737	d->bd_slen = curlen + totlen;
1738
1739	if (do_wakeup)
1740		bpf_wakeup(d);
1741}
1742
1743/*
1744 * Free buffers currently in use by a descriptor.
1745 * Called on close.
1746 */
1747static void
1748bpf_freed(struct bpf_d *d)
1749{
1750
1751	/*
1752	 * We don't need to lock out interrupts since this descriptor has
1753	 * been detached from its interface and it yet hasn't been marked
1754	 * free.
1755	 */
1756	bpf_free(d);
1757	if (d->bd_rfilter) {
1758		free((caddr_t)d->bd_rfilter, M_BPF);
1759#ifdef BPF_JITTER
1760		bpf_destroy_jit_filter(d->bd_bfilter);
1761#endif
1762	}
1763	if (d->bd_wfilter)
1764		free((caddr_t)d->bd_wfilter, M_BPF);
1765	mtx_destroy(&d->bd_mtx);
1766}
1767
1768/*
1769 * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
1770 * fixed size of the link header (variable length headers not yet supported).
1771 */
1772void
1773bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
1774{
1775
1776	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
1777}
1778
1779/*
1780 * Attach an interface to bpf.  ifp is a pointer to the structure
1781 * defining the interface to be attached, dlt is the link layer type,
1782 * and hdrlen is the fixed size of the link header (variable length
1783 * headers are not yet supporrted).
1784 */
1785void
1786bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
1787{
1788	struct bpf_if *bp;
1789
1790	bp = malloc(sizeof(*bp), M_BPF, M_NOWAIT | M_ZERO);
1791	if (bp == NULL)
1792		panic("bpfattach");
1793
1794	LIST_INIT(&bp->bif_dlist);
1795	bp->bif_ifp = ifp;
1796	bp->bif_dlt = dlt;
1797	mtx_init(&bp->bif_mtx, "bpf interface lock", NULL, MTX_DEF);
1798	KASSERT(*driverp == NULL, ("bpfattach2: driverp already initialized"));
1799	*driverp = bp;
1800
1801	mtx_lock(&bpf_mtx);
1802	LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
1803	mtx_unlock(&bpf_mtx);
1804
1805	/*
1806	 * Compute the length of the bpf header.  This is not necessarily
1807	 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1808	 * that the network layer header begins on a longword boundary (for
1809	 * performance reasons and to alleviate alignment restrictions).
1810	 */
1811	bp->bif_hdrlen = BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen;
1812
1813	if (bootverbose)
1814		if_printf(ifp, "bpf attached\n");
1815}
1816
1817/*
1818 * Detach bpf from an interface.  This involves detaching each descriptor
1819 * associated with the interface, and leaving bd_bif NULL.  Notify each
1820 * descriptor as it's detached so that any sleepers wake up and get
1821 * ENXIO.
1822 */
1823void
1824bpfdetach(struct ifnet *ifp)
1825{
1826	struct bpf_if	*bp;
1827	struct bpf_d	*d;
1828
1829	/* Locate BPF interface information */
1830	mtx_lock(&bpf_mtx);
1831	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
1832		if (ifp == bp->bif_ifp)
1833			break;
1834	}
1835
1836	/* Interface wasn't attached */
1837	if ((bp == NULL) || (bp->bif_ifp == NULL)) {
1838		mtx_unlock(&bpf_mtx);
1839		printf("bpfdetach: %s was not attached\n", ifp->if_xname);
1840		return;
1841	}
1842
1843	LIST_REMOVE(bp, bif_next);
1844	mtx_unlock(&bpf_mtx);
1845
1846	while ((d = LIST_FIRST(&bp->bif_dlist)) != NULL) {
1847		bpf_detachd(d);
1848		BPFD_LOCK(d);
1849		bpf_wakeup(d);
1850		BPFD_UNLOCK(d);
1851	}
1852
1853	mtx_destroy(&bp->bif_mtx);
1854	free(bp, M_BPF);
1855}
1856
1857/*
1858 * Get a list of available data link type of the interface.
1859 */
1860static int
1861bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
1862{
1863	int n, error;
1864	struct ifnet *ifp;
1865	struct bpf_if *bp;
1866
1867	ifp = d->bd_bif->bif_ifp;
1868	n = 0;
1869	error = 0;
1870	mtx_lock(&bpf_mtx);
1871	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
1872		if (bp->bif_ifp != ifp)
1873			continue;
1874		if (bfl->bfl_list != NULL) {
1875			if (n >= bfl->bfl_len) {
1876				mtx_unlock(&bpf_mtx);
1877				return (ENOMEM);
1878			}
1879			error = copyout(&bp->bif_dlt,
1880			    bfl->bfl_list + n, sizeof(u_int));
1881		}
1882		n++;
1883	}
1884	mtx_unlock(&bpf_mtx);
1885	bfl->bfl_len = n;
1886	return (error);
1887}
1888
1889/*
1890 * Set the data link type of a BPF instance.
1891 */
1892static int
1893bpf_setdlt(struct bpf_d *d, u_int dlt)
1894{
1895	int error, opromisc;
1896	struct ifnet *ifp;
1897	struct bpf_if *bp;
1898
1899	if (d->bd_bif->bif_dlt == dlt)
1900		return (0);
1901	ifp = d->bd_bif->bif_ifp;
1902	mtx_lock(&bpf_mtx);
1903	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
1904		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
1905			break;
1906	}
1907	mtx_unlock(&bpf_mtx);
1908	if (bp != NULL) {
1909		opromisc = d->bd_promisc;
1910		bpf_detachd(d);
1911		bpf_attachd(d, bp);
1912		BPFD_LOCK(d);
1913		reset_d(d);
1914		BPFD_UNLOCK(d);
1915		if (opromisc) {
1916			error = ifpromisc(bp->bif_ifp, 1);
1917			if (error)
1918				if_printf(bp->bif_ifp,
1919					"bpf_setdlt: ifpromisc failed (%d)\n",
1920					error);
1921			else
1922				d->bd_promisc = 1;
1923		}
1924	}
1925	return (bp == NULL ? EINVAL : 0);
1926}
1927
1928static void
1929bpf_clone(void *arg, struct ucred *cred, char *name, int namelen,
1930    struct cdev **dev)
1931{
1932	int u;
1933
1934	if (*dev != NULL)
1935		return;
1936	if (dev_stdclone(name, NULL, "bpf", &u) != 1)
1937		return;
1938	*dev = make_dev(&bpf_cdevsw, unit2minor(u), UID_ROOT, GID_WHEEL, 0600,
1939	    "bpf%d", u);
1940	dev_ref(*dev);
1941	(*dev)->si_flags |= SI_CHEAPCLONE;
1942	return;
1943}
1944
1945static void
1946bpf_drvinit(void *unused)
1947{
1948
1949	mtx_init(&bpf_mtx, "bpf global lock", NULL, MTX_DEF);
1950	LIST_INIT(&bpf_iflist);
1951	EVENTHANDLER_REGISTER(dev_clone, bpf_clone, 0, 1000);
1952}
1953
1954static void
1955bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
1956{
1957
1958	bzero(d, sizeof(*d));
1959	BPFD_LOCK_ASSERT(bd);
1960	d->bd_structsize = sizeof(*d);
1961	d->bd_immediate = bd->bd_immediate;
1962	d->bd_promisc = bd->bd_promisc;
1963	d->bd_hdrcmplt = bd->bd_hdrcmplt;
1964	d->bd_direction = bd->bd_direction;
1965	d->bd_feedback = bd->bd_feedback;
1966	d->bd_async = bd->bd_async;
1967	d->bd_rcount = bd->bd_rcount;
1968	d->bd_dcount = bd->bd_dcount;
1969	d->bd_fcount = bd->bd_fcount;
1970	d->bd_sig = bd->bd_sig;
1971	d->bd_slen = bd->bd_slen;
1972	d->bd_hlen = bd->bd_hlen;
1973	d->bd_bufsize = bd->bd_bufsize;
1974	d->bd_pid = bd->bd_pid;
1975	strlcpy(d->bd_ifname,
1976	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
1977	d->bd_locked = bd->bd_locked;
1978	d->bd_wcount = bd->bd_wcount;
1979	d->bd_wdcount = bd->bd_wdcount;
1980	d->bd_wfcount = bd->bd_wfcount;
1981	d->bd_zcopy = bd->bd_zcopy;
1982	d->bd_bufmode = bd->bd_bufmode;
1983}
1984
1985static int
1986bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
1987{
1988	struct xbpf_d *xbdbuf, *xbd;
1989	int index, error;
1990	struct bpf_if *bp;
1991	struct bpf_d *bd;
1992
1993	/*
1994	 * XXX This is not technically correct. It is possible for non
1995	 * privileged users to open bpf devices. It would make sense
1996	 * if the users who opened the devices were able to retrieve
1997	 * the statistics for them, too.
1998	 */
1999	error = priv_check(req->td, PRIV_NET_BPF);
2000	if (error)
2001		return (error);
2002	if (req->oldptr == NULL)
2003		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
2004	if (bpf_bpfd_cnt == 0)
2005		return (SYSCTL_OUT(req, 0, 0));
2006	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
2007	mtx_lock(&bpf_mtx);
2008	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
2009		mtx_unlock(&bpf_mtx);
2010		free(xbdbuf, M_BPF);
2011		return (ENOMEM);
2012	}
2013	index = 0;
2014	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2015		BPFIF_LOCK(bp);
2016		LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2017			xbd = &xbdbuf[index++];
2018			BPFD_LOCK(bd);
2019			bpfstats_fill_xbpf(xbd, bd);
2020			BPFD_UNLOCK(bd);
2021		}
2022		BPFIF_UNLOCK(bp);
2023	}
2024	mtx_unlock(&bpf_mtx);
2025	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
2026	free(xbdbuf, M_BPF);
2027	return (error);
2028}
2029
2030SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
2031
2032#else /* !DEV_BPF && !NETGRAPH_BPF */
2033/*
2034 * NOP stubs to allow bpf-using drivers to load and function.
2035 *
2036 * A 'better' implementation would allow the core bpf functionality
2037 * to be loaded at runtime.
2038 */
2039static struct bpf_if bp_null;
2040
2041void
2042bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2043{
2044}
2045
2046void
2047bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2048{
2049}
2050
2051void
2052bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
2053{
2054}
2055
2056void
2057bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2058{
2059
2060	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2061}
2062
2063void
2064bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2065{
2066
2067	*driverp = &bp_null;
2068}
2069
2070void
2071bpfdetach(struct ifnet *ifp)
2072{
2073}
2074
2075u_int
2076bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
2077{
2078	return -1;	/* "no filter" behaviour */
2079}
2080
2081int
2082bpf_validate(const struct bpf_insn *f, int len)
2083{
2084	return 0;		/* false */
2085}
2086
2087#endif /* !DEV_BPF && !NETGRAPH_BPF */
2088