vfs_export.c revision 72200
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_export.c 72200 2001-02-09 06:11:45Z bmilekic $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46#include "opt_ffs.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/conf.h>
53#include <sys/dirent.h>
54#include <sys/domain.h>
55#include <sys/eventhandler.h>
56#include <sys/fcntl.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/ktr.h>
60#include <sys/malloc.h>
61#include <sys/mount.h>
62#include <sys/mutex.h>
63#include <sys/namei.h>
64#include <sys/proc.h>
65#include <sys/reboot.h>
66#include <sys/socket.h>
67#include <sys/stat.h>
68#include <sys/sysctl.h>
69#include <sys/vmmeter.h>
70#include <sys/vnode.h>
71
72#include <machine/limits.h>
73
74#include <vm/vm.h>
75#include <vm/vm_object.h>
76#include <vm/vm_extern.h>
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pager.h>
81#include <vm/vnode_pager.h>
82#include <vm/vm_zone.h>
83
84static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
85
86static void	addalias __P((struct vnode *vp, dev_t nvp_rdev));
87static void	insmntque __P((struct vnode *vp, struct mount *mp));
88static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
89
90/*
91 * Number of vnodes in existence.  Increased whenever getnewvnode()
92 * allocates a new vnode, never decreased.
93 */
94static unsigned long	numvnodes;
95SYSCTL_LONG(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
96
97/*
98 * Conversion tables for conversion from vnode types to inode formats
99 * and back.
100 */
101enum vtype iftovt_tab[16] = {
102	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
103	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
104};
105int vttoif_tab[9] = {
106	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
107	S_IFSOCK, S_IFIFO, S_IFMT,
108};
109
110/*
111 * List of vnodes that are ready for recycling.
112 */
113static TAILQ_HEAD(freelst, vnode) vnode_free_list;
114
115/*
116 * Minimum number of free vnodes.  If there are fewer than this free vnodes,
117 * getnewvnode() will return a newly allocated vnode.
118 */
119static u_long wantfreevnodes = 25;
120SYSCTL_LONG(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
121/* Number of vnodes in the free list. */
122static u_long freevnodes = 0;
123SYSCTL_LONG(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
124
125/*
126 * Various variables used for debugging the new implementation of
127 * reassignbuf().
128 * XXX these are probably of (very) limited utility now.
129 */
130static int reassignbufcalls;
131SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
132static int reassignbufloops;
133SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
134static int reassignbufsortgood;
135SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
136static int reassignbufsortbad;
137SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
138/* Set to 0 for old insertion-sort based reassignbuf, 1 for modern method. */
139static int reassignbufmethod = 1;
140SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
141
142#ifdef ENABLE_VFS_IOOPT
143/* See NOTES for a description of this setting. */
144int vfs_ioopt = 0;
145SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
146#endif
147
148/* List of mounted filesystems. */
149struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
150
151/* For any iteration/modification of mountlist */
152struct mtx mountlist_mtx;
153
154/* For any iteration/modification of mnt_vnodelist */
155struct mtx mntvnode_mtx;
156
157/*
158 * Cache for the mount type id assigned to NFS.  This is used for
159 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
160 */
161int	nfs_mount_type = -1;
162
163/* To keep more than one thread at a time from running vfs_getnewfsid */
164static struct mtx mntid_mtx;
165
166/* For any iteration/modification of vnode_free_list */
167static struct mtx vnode_free_list_mtx;
168
169/*
170 * For any iteration/modification of dev->si_hlist (linked through
171 * v_specnext)
172 */
173static struct mtx spechash_mtx;
174
175/* Publicly exported FS */
176struct nfs_public nfs_pub;
177
178/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
179static vm_zone_t vnode_zone;
180
181/* Set to 1 to print out reclaim of active vnodes */
182int	prtactive = 0;
183
184/*
185 * The workitem queue.
186 *
187 * It is useful to delay writes of file data and filesystem metadata
188 * for tens of seconds so that quickly created and deleted files need
189 * not waste disk bandwidth being created and removed. To realize this,
190 * we append vnodes to a "workitem" queue. When running with a soft
191 * updates implementation, most pending metadata dependencies should
192 * not wait for more than a few seconds. Thus, mounted on block devices
193 * are delayed only about a half the time that file data is delayed.
194 * Similarly, directory updates are more critical, so are only delayed
195 * about a third the time that file data is delayed. Thus, there are
196 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
197 * one each second (driven off the filesystem syncer process). The
198 * syncer_delayno variable indicates the next queue that is to be processed.
199 * Items that need to be processed soon are placed in this queue:
200 *
201 *	syncer_workitem_pending[syncer_delayno]
202 *
203 * A delay of fifteen seconds is done by placing the request fifteen
204 * entries later in the queue:
205 *
206 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
207 *
208 */
209static int syncer_delayno = 0;
210static long syncer_mask;
211LIST_HEAD(synclist, vnode);
212static struct synclist *syncer_workitem_pending;
213
214#define SYNCER_MAXDELAY		32
215static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
216time_t syncdelay = 30;		/* max time to delay syncing data */
217time_t filedelay = 30;		/* time to delay syncing files */
218SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
219time_t dirdelay = 29;		/* time to delay syncing directories */
220SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
221time_t metadelay = 28;		/* time to delay syncing metadata */
222SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
223static int rushjob;		/* number of slots to run ASAP */
224static int stat_rush_requests;	/* number of times I/O speeded up */
225SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
226
227/*
228 * Number of vnodes we want to exist at any one time.  This is mostly used
229 * to size hash tables in vnode-related code.  It is normally not used in
230 * getnewvnode(), as wantfreevnodes is normally nonzero.)
231 *
232 * XXX desiredvnodes is historical cruft and should not exist.
233 */
234int desiredvnodes;
235SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
236    &desiredvnodes, 0, "Maximum number of vnodes");
237
238static void	vfs_free_addrlist __P((struct netexport *nep));
239static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
240static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
241				       struct export_args *argp));
242
243/*
244 * Initialize the vnode management data structures.
245 */
246static void
247vntblinit(void *dummy __unused)
248{
249
250	desiredvnodes = maxproc + cnt.v_page_count / 4;
251	mtx_init(&mountlist_mtx, "mountlist", MTX_DEF);
252	mtx_init(&mntvnode_mtx, "mntvnode", MTX_DEF);
253	mtx_init(&mntid_mtx, "mntid", MTX_DEF);
254	mtx_init(&spechash_mtx, "spechash", MTX_DEF);
255	TAILQ_INIT(&vnode_free_list);
256	mtx_init(&vnode_free_list_mtx, "vnode_free_list", MTX_DEF);
257	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
258	/*
259	 * Initialize the filesystem syncer.
260	 */
261	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
262		&syncer_mask);
263	syncer_maxdelay = syncer_mask + 1;
264}
265SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
266
267
268/*
269 * Mark a mount point as busy. Used to synchronize access and to delay
270 * unmounting. Interlock is not released on failure.
271 */
272int
273vfs_busy(mp, flags, interlkp, p)
274	struct mount *mp;
275	int flags;
276	struct mtx *interlkp;
277	struct proc *p;
278{
279	int lkflags;
280
281	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
282		if (flags & LK_NOWAIT)
283			return (ENOENT);
284		mp->mnt_kern_flag |= MNTK_MWAIT;
285		/*
286		 * Since all busy locks are shared except the exclusive
287		 * lock granted when unmounting, the only place that a
288		 * wakeup needs to be done is at the release of the
289		 * exclusive lock at the end of dounmount.
290		 */
291		msleep((caddr_t)mp, interlkp, PVFS, "vfs_busy", 0);
292		return (ENOENT);
293	}
294	lkflags = LK_SHARED | LK_NOPAUSE;
295	if (interlkp)
296		lkflags |= LK_INTERLOCK;
297	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
298		panic("vfs_busy: unexpected lock failure");
299	return (0);
300}
301
302/*
303 * Free a busy filesystem.
304 */
305void
306vfs_unbusy(mp, p)
307	struct mount *mp;
308	struct proc *p;
309{
310
311	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
312}
313
314/*
315 * Lookup a filesystem type, and if found allocate and initialize
316 * a mount structure for it.
317 *
318 * Devname is usually updated by mount(8) after booting.
319 */
320int
321vfs_rootmountalloc(fstypename, devname, mpp)
322	char *fstypename;
323	char *devname;
324	struct mount **mpp;
325{
326	struct proc *p = curproc;	/* XXX */
327	struct vfsconf *vfsp;
328	struct mount *mp;
329
330	if (fstypename == NULL)
331		return (ENODEV);
332	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
333		if (!strcmp(vfsp->vfc_name, fstypename))
334			break;
335	if (vfsp == NULL)
336		return (ENODEV);
337	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
338	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
339	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
340	LIST_INIT(&mp->mnt_vnodelist);
341	mp->mnt_vfc = vfsp;
342	mp->mnt_op = vfsp->vfc_vfsops;
343	mp->mnt_flag = MNT_RDONLY;
344	mp->mnt_vnodecovered = NULLVP;
345	vfsp->vfc_refcount++;
346	mp->mnt_iosize_max = DFLTPHYS;
347	mp->mnt_stat.f_type = vfsp->vfc_typenum;
348	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
349	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
350	mp->mnt_stat.f_mntonname[0] = '/';
351	mp->mnt_stat.f_mntonname[1] = 0;
352	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
353	*mpp = mp;
354	return (0);
355}
356
357/*
358 * Find an appropriate filesystem to use for the root. If a filesystem
359 * has not been preselected, walk through the list of known filesystems
360 * trying those that have mountroot routines, and try them until one
361 * works or we have tried them all.
362 */
363#ifdef notdef	/* XXX JH */
364int
365lite2_vfs_mountroot()
366{
367	struct vfsconf *vfsp;
368	extern int (*lite2_mountroot) __P((void));
369	int error;
370
371	if (lite2_mountroot != NULL)
372		return ((*lite2_mountroot)());
373	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
374		if (vfsp->vfc_mountroot == NULL)
375			continue;
376		if ((error = (*vfsp->vfc_mountroot)()) == 0)
377			return (0);
378		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
379	}
380	return (ENODEV);
381}
382#endif
383
384/*
385 * Lookup a mount point by filesystem identifier.
386 */
387struct mount *
388vfs_getvfs(fsid)
389	fsid_t *fsid;
390{
391	register struct mount *mp;
392
393	mtx_lock(&mountlist_mtx);
394	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
395		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
396		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
397			mtx_unlock(&mountlist_mtx);
398			return (mp);
399	    }
400	}
401	mtx_unlock(&mountlist_mtx);
402	return ((struct mount *) 0);
403}
404
405/*
406 * Get a new unique fsid.  Try to make its val[0] unique, since this value
407 * will be used to create fake device numbers for stat().  Also try (but
408 * not so hard) make its val[0] unique mod 2^16, since some emulators only
409 * support 16-bit device numbers.  We end up with unique val[0]'s for the
410 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
411 *
412 * Keep in mind that several mounts may be running in parallel.  Starting
413 * the search one past where the previous search terminated is both a
414 * micro-optimization and a defense against returning the same fsid to
415 * different mounts.
416 */
417void
418vfs_getnewfsid(mp)
419	struct mount *mp;
420{
421	static u_int16_t mntid_base;
422	fsid_t tfsid;
423	int mtype;
424
425	mtx_lock(&mntid_mtx);
426	mtype = mp->mnt_vfc->vfc_typenum;
427	tfsid.val[1] = mtype;
428	mtype = (mtype & 0xFF) << 24;
429	for (;;) {
430		tfsid.val[0] = makeudev(255,
431		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
432		mntid_base++;
433		if (vfs_getvfs(&tfsid) == NULL)
434			break;
435	}
436	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
437	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
438	mtx_unlock(&mntid_mtx);
439}
440
441/*
442 * Knob to control the precision of file timestamps:
443 *
444 *   0 = seconds only; nanoseconds zeroed.
445 *   1 = seconds and nanoseconds, accurate within 1/HZ.
446 *   2 = seconds and nanoseconds, truncated to microseconds.
447 * >=3 = seconds and nanoseconds, maximum precision.
448 */
449enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
450
451static int timestamp_precision = TSP_SEC;
452SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
453    &timestamp_precision, 0, "");
454
455/*
456 * Get a current timestamp.
457 */
458void
459vfs_timestamp(tsp)
460	struct timespec *tsp;
461{
462	struct timeval tv;
463
464	switch (timestamp_precision) {
465	case TSP_SEC:
466		tsp->tv_sec = time_second;
467		tsp->tv_nsec = 0;
468		break;
469	case TSP_HZ:
470		getnanotime(tsp);
471		break;
472	case TSP_USEC:
473		microtime(&tv);
474		TIMEVAL_TO_TIMESPEC(&tv, tsp);
475		break;
476	case TSP_NSEC:
477	default:
478		nanotime(tsp);
479		break;
480	}
481}
482
483/*
484 * Set vnode attributes to VNOVAL
485 */
486void
487vattr_null(vap)
488	register struct vattr *vap;
489{
490
491	vap->va_type = VNON;
492	vap->va_size = VNOVAL;
493	vap->va_bytes = VNOVAL;
494	vap->va_mode = VNOVAL;
495	vap->va_nlink = VNOVAL;
496	vap->va_uid = VNOVAL;
497	vap->va_gid = VNOVAL;
498	vap->va_fsid = VNOVAL;
499	vap->va_fileid = VNOVAL;
500	vap->va_blocksize = VNOVAL;
501	vap->va_rdev = VNOVAL;
502	vap->va_atime.tv_sec = VNOVAL;
503	vap->va_atime.tv_nsec = VNOVAL;
504	vap->va_mtime.tv_sec = VNOVAL;
505	vap->va_mtime.tv_nsec = VNOVAL;
506	vap->va_ctime.tv_sec = VNOVAL;
507	vap->va_ctime.tv_nsec = VNOVAL;
508	vap->va_flags = VNOVAL;
509	vap->va_gen = VNOVAL;
510	vap->va_vaflags = 0;
511}
512
513/*
514 * Routines having to do with the management of the vnode table.
515 */
516
517/*
518 * Return the next vnode from the free list.
519 */
520int
521getnewvnode(tag, mp, vops, vpp)
522	enum vtagtype tag;
523	struct mount *mp;
524	vop_t **vops;
525	struct vnode **vpp;
526{
527	int s, count;
528	struct proc *p = curproc;	/* XXX */
529	struct vnode *vp = NULL;
530	struct mount *vnmp;
531	vm_object_t object;
532
533	/*
534	 * We take the least recently used vnode from the freelist
535	 * if we can get it and it has no cached pages, and no
536	 * namecache entries are relative to it.
537	 * Otherwise we allocate a new vnode
538	 */
539
540	s = splbio();
541	mtx_lock(&vnode_free_list_mtx);
542
543	if (wantfreevnodes && freevnodes < wantfreevnodes) {
544		vp = NULL;
545	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
546		/*
547		 * XXX: this is only here to be backwards compatible
548		 */
549		vp = NULL;
550	} else for (count = 0; count < freevnodes; count++) {
551		vp = TAILQ_FIRST(&vnode_free_list);
552		if (vp == NULL || vp->v_usecount)
553			panic("getnewvnode: free vnode isn't");
554		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
555		/*
556		 * Don't recycle if active in the namecache or
557		 * if it still has cached pages or we cannot get
558		 * its interlock.
559		 */
560		if (LIST_FIRST(&vp->v_cache_src) != NULL ||
561		    (VOP_GETVOBJECT(vp, &object) == 0 &&
562		     (object->resident_page_count || object->ref_count)) ||
563		    !mtx_trylock(&vp->v_interlock)) {
564			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
565			vp = NULL;
566			continue;
567		}
568		/*
569		 * Skip over it if its filesystem is being suspended.
570		 */
571		if (vn_start_write(vp, &vnmp, V_NOWAIT) == 0)
572			break;
573		mtx_unlock(&vp->v_interlock);
574		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
575		vp = NULL;
576	}
577	if (vp) {
578		vp->v_flag |= VDOOMED;
579		vp->v_flag &= ~VFREE;
580		freevnodes--;
581		mtx_unlock(&vnode_free_list_mtx);
582		cache_purge(vp);
583		vp->v_lease = NULL;
584		if (vp->v_type != VBAD) {
585			vgonel(vp, p);
586		} else {
587			mtx_unlock(&vp->v_interlock);
588		}
589		vn_finished_write(vnmp);
590
591#ifdef INVARIANTS
592		{
593			int s;
594
595			if (vp->v_data)
596				panic("cleaned vnode isn't");
597			s = splbio();
598			if (vp->v_numoutput)
599				panic("Clean vnode has pending I/O's");
600			splx(s);
601			if (vp->v_writecount != 0)
602				panic("Non-zero write count");
603		}
604#endif
605		vp->v_flag = 0;
606		vp->v_lastw = 0;
607		vp->v_lasta = 0;
608		vp->v_cstart = 0;
609		vp->v_clen = 0;
610		vp->v_socket = 0;
611	} else {
612		mtx_unlock(&vnode_free_list_mtx);
613		vp = (struct vnode *) zalloc(vnode_zone);
614		bzero((char *) vp, sizeof *vp);
615		mtx_init(&vp->v_interlock, "vnode interlock", MTX_DEF);
616		vp->v_dd = vp;
617		mtx_init(&vp->v_pollinfo.vpi_lock, "vnode pollinfo", MTX_DEF);
618		cache_purge(vp);
619		LIST_INIT(&vp->v_cache_src);
620		TAILQ_INIT(&vp->v_cache_dst);
621		numvnodes++;
622	}
623
624	TAILQ_INIT(&vp->v_cleanblkhd);
625	TAILQ_INIT(&vp->v_dirtyblkhd);
626	vp->v_type = VNON;
627	vp->v_tag = tag;
628	vp->v_op = vops;
629	lockinit(&vp->v_lock, PVFS, "vnlock", 0, LK_NOPAUSE);
630	insmntque(vp, mp);
631	*vpp = vp;
632	vp->v_usecount = 1;
633	vp->v_data = 0;
634	splx(s);
635
636	vfs_object_create(vp, p, p->p_ucred);
637	return (0);
638}
639
640/*
641 * Move a vnode from one mount queue to another.
642 */
643static void
644insmntque(vp, mp)
645	register struct vnode *vp;
646	register struct mount *mp;
647{
648
649	mtx_lock(&mntvnode_mtx);
650	/*
651	 * Delete from old mount point vnode list, if on one.
652	 */
653	if (vp->v_mount != NULL)
654		LIST_REMOVE(vp, v_mntvnodes);
655	/*
656	 * Insert into list of vnodes for the new mount point, if available.
657	 */
658	if ((vp->v_mount = mp) == NULL) {
659		mtx_unlock(&mntvnode_mtx);
660		return;
661	}
662	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
663	mtx_unlock(&mntvnode_mtx);
664}
665
666/*
667 * Update outstanding I/O count and do wakeup if requested.
668 */
669void
670vwakeup(bp)
671	register struct buf *bp;
672{
673	register struct vnode *vp;
674
675	bp->b_flags &= ~B_WRITEINPROG;
676	if ((vp = bp->b_vp)) {
677		vp->v_numoutput--;
678		if (vp->v_numoutput < 0)
679			panic("vwakeup: neg numoutput");
680		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
681			vp->v_flag &= ~VBWAIT;
682			wakeup((caddr_t) &vp->v_numoutput);
683		}
684	}
685}
686
687/*
688 * Flush out and invalidate all buffers associated with a vnode.
689 * Called with the underlying object locked.
690 */
691int
692vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
693	register struct vnode *vp;
694	int flags;
695	struct ucred *cred;
696	struct proc *p;
697	int slpflag, slptimeo;
698{
699	register struct buf *bp;
700	struct buf *nbp, *blist;
701	int s, error;
702	vm_object_t object;
703
704	if (flags & V_SAVE) {
705		s = splbio();
706		while (vp->v_numoutput) {
707			vp->v_flag |= VBWAIT;
708			error = tsleep((caddr_t)&vp->v_numoutput,
709			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
710			if (error) {
711				splx(s);
712				return (error);
713			}
714		}
715		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
716			splx(s);
717			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
718				return (error);
719			s = splbio();
720			if (vp->v_numoutput > 0 ||
721			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
722				panic("vinvalbuf: dirty bufs");
723		}
724		splx(s);
725  	}
726	s = splbio();
727	for (;;) {
728		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
729		if (!blist)
730			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
731		if (!blist)
732			break;
733
734		for (bp = blist; bp; bp = nbp) {
735			nbp = TAILQ_NEXT(bp, b_vnbufs);
736			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
737				error = BUF_TIMELOCK(bp,
738				    LK_EXCLUSIVE | LK_SLEEPFAIL,
739				    "vinvalbuf", slpflag, slptimeo);
740				if (error == ENOLCK)
741					break;
742				splx(s);
743				return (error);
744			}
745			/*
746			 * XXX Since there are no node locks for NFS, I
747			 * believe there is a slight chance that a delayed
748			 * write will occur while sleeping just above, so
749			 * check for it.  Note that vfs_bio_awrite expects
750			 * buffers to reside on a queue, while VOP_BWRITE and
751			 * brelse do not.
752			 */
753			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
754				(flags & V_SAVE)) {
755
756				if (bp->b_vp == vp) {
757					if (bp->b_flags & B_CLUSTEROK) {
758						BUF_UNLOCK(bp);
759						vfs_bio_awrite(bp);
760					} else {
761						bremfree(bp);
762						bp->b_flags |= B_ASYNC;
763						BUF_WRITE(bp);
764					}
765				} else {
766					bremfree(bp);
767					(void) BUF_WRITE(bp);
768				}
769				break;
770			}
771			bremfree(bp);
772			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
773			bp->b_flags &= ~B_ASYNC;
774			brelse(bp);
775		}
776	}
777
778	while (vp->v_numoutput > 0) {
779		vp->v_flag |= VBWAIT;
780		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
781	}
782
783	splx(s);
784
785	/*
786	 * Destroy the copy in the VM cache, too.
787	 */
788	mtx_lock(&vp->v_interlock);
789	if (VOP_GETVOBJECT(vp, &object) == 0) {
790		vm_object_page_remove(object, 0, 0,
791			(flags & V_SAVE) ? TRUE : FALSE);
792	}
793	mtx_unlock(&vp->v_interlock);
794
795	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
796		panic("vinvalbuf: flush failed");
797	return (0);
798}
799
800/*
801 * Truncate a file's buffer and pages to a specified length.  This
802 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
803 * sync activity.
804 */
805int
806vtruncbuf(vp, cred, p, length, blksize)
807	register struct vnode *vp;
808	struct ucred *cred;
809	struct proc *p;
810	off_t length;
811	int blksize;
812{
813	register struct buf *bp;
814	struct buf *nbp;
815	int s, anyfreed;
816	int trunclbn;
817
818	/*
819	 * Round up to the *next* lbn.
820	 */
821	trunclbn = (length + blksize - 1) / blksize;
822
823	s = splbio();
824restart:
825	anyfreed = 1;
826	for (;anyfreed;) {
827		anyfreed = 0;
828		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
829			nbp = TAILQ_NEXT(bp, b_vnbufs);
830			if (bp->b_lblkno >= trunclbn) {
831				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
832					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
833					goto restart;
834				} else {
835					bremfree(bp);
836					bp->b_flags |= (B_INVAL | B_RELBUF);
837					bp->b_flags &= ~B_ASYNC;
838					brelse(bp);
839					anyfreed = 1;
840				}
841				if (nbp &&
842				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
843				    (nbp->b_vp != vp) ||
844				    (nbp->b_flags & B_DELWRI))) {
845					goto restart;
846				}
847			}
848		}
849
850		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
851			nbp = TAILQ_NEXT(bp, b_vnbufs);
852			if (bp->b_lblkno >= trunclbn) {
853				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
854					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
855					goto restart;
856				} else {
857					bremfree(bp);
858					bp->b_flags |= (B_INVAL | B_RELBUF);
859					bp->b_flags &= ~B_ASYNC;
860					brelse(bp);
861					anyfreed = 1;
862				}
863				if (nbp &&
864				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
865				    (nbp->b_vp != vp) ||
866				    (nbp->b_flags & B_DELWRI) == 0)) {
867					goto restart;
868				}
869			}
870		}
871	}
872
873	if (length > 0) {
874restartsync:
875		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
876			nbp = TAILQ_NEXT(bp, b_vnbufs);
877			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
878				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
879					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
880					goto restart;
881				} else {
882					bremfree(bp);
883					if (bp->b_vp == vp) {
884						bp->b_flags |= B_ASYNC;
885					} else {
886						bp->b_flags &= ~B_ASYNC;
887					}
888					BUF_WRITE(bp);
889				}
890				goto restartsync;
891			}
892
893		}
894	}
895
896	while (vp->v_numoutput > 0) {
897		vp->v_flag |= VBWAIT;
898		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
899	}
900
901	splx(s);
902
903	vnode_pager_setsize(vp, length);
904
905	return (0);
906}
907
908/*
909 * Associate a buffer with a vnode.
910 */
911void
912bgetvp(vp, bp)
913	register struct vnode *vp;
914	register struct buf *bp;
915{
916	int s;
917
918	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
919
920	vhold(vp);
921	bp->b_vp = vp;
922	bp->b_dev = vn_todev(vp);
923	/*
924	 * Insert onto list for new vnode.
925	 */
926	s = splbio();
927	bp->b_xflags |= BX_VNCLEAN;
928	bp->b_xflags &= ~BX_VNDIRTY;
929	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
930	splx(s);
931}
932
933/*
934 * Disassociate a buffer from a vnode.
935 */
936void
937brelvp(bp)
938	register struct buf *bp;
939{
940	struct vnode *vp;
941	struct buflists *listheadp;
942	int s;
943
944	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
945
946	/*
947	 * Delete from old vnode list, if on one.
948	 */
949	vp = bp->b_vp;
950	s = splbio();
951	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
952		if (bp->b_xflags & BX_VNDIRTY)
953			listheadp = &vp->v_dirtyblkhd;
954		else
955			listheadp = &vp->v_cleanblkhd;
956		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
957		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
958	}
959	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
960		vp->v_flag &= ~VONWORKLST;
961		LIST_REMOVE(vp, v_synclist);
962	}
963	splx(s);
964	bp->b_vp = (struct vnode *) 0;
965	vdrop(vp);
966}
967
968/*
969 * Add an item to the syncer work queue.
970 */
971static void
972vn_syncer_add_to_worklist(struct vnode *vp, int delay)
973{
974	int s, slot;
975
976	s = splbio();
977
978	if (vp->v_flag & VONWORKLST) {
979		LIST_REMOVE(vp, v_synclist);
980	}
981
982	if (delay > syncer_maxdelay - 2)
983		delay = syncer_maxdelay - 2;
984	slot = (syncer_delayno + delay) & syncer_mask;
985
986	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
987	vp->v_flag |= VONWORKLST;
988	splx(s);
989}
990
991struct  proc *updateproc;
992static void sched_sync __P((void));
993static struct kproc_desc up_kp = {
994	"syncer",
995	sched_sync,
996	&updateproc
997};
998SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
999
1000/*
1001 * System filesystem synchronizer daemon.
1002 */
1003void
1004sched_sync(void)
1005{
1006	struct synclist *slp;
1007	struct vnode *vp;
1008	struct mount *mp;
1009	long starttime;
1010	int s;
1011	struct proc *p = updateproc;
1012
1013	mtx_lock(&Giant);
1014
1015	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
1016	    SHUTDOWN_PRI_LAST);
1017
1018	for (;;) {
1019		kthread_suspend_check(p);
1020
1021		starttime = time_second;
1022
1023		/*
1024		 * Push files whose dirty time has expired.  Be careful
1025		 * of interrupt race on slp queue.
1026		 */
1027		s = splbio();
1028		slp = &syncer_workitem_pending[syncer_delayno];
1029		syncer_delayno += 1;
1030		if (syncer_delayno == syncer_maxdelay)
1031			syncer_delayno = 0;
1032		splx(s);
1033
1034		while ((vp = LIST_FIRST(slp)) != NULL) {
1035			if (VOP_ISLOCKED(vp, NULL) == 0 &&
1036			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
1037				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1038				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
1039				VOP_UNLOCK(vp, 0, p);
1040				vn_finished_write(mp);
1041			}
1042			s = splbio();
1043			if (LIST_FIRST(slp) == vp) {
1044				/*
1045				 * Note: v_tag VT_VFS vps can remain on the
1046				 * worklist too with no dirty blocks, but
1047				 * since sync_fsync() moves it to a different
1048				 * slot we are safe.
1049				 */
1050				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1051				    !vn_isdisk(vp, NULL))
1052					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1053				/*
1054				 * Put us back on the worklist.  The worklist
1055				 * routine will remove us from our current
1056				 * position and then add us back in at a later
1057				 * position.
1058				 */
1059				vn_syncer_add_to_worklist(vp, syncdelay);
1060			}
1061			splx(s);
1062		}
1063
1064		/*
1065		 * Do soft update processing.
1066		 */
1067#ifdef SOFTUPDATES
1068		softdep_process_worklist(NULL);
1069#endif
1070
1071		/*
1072		 * The variable rushjob allows the kernel to speed up the
1073		 * processing of the filesystem syncer process. A rushjob
1074		 * value of N tells the filesystem syncer to process the next
1075		 * N seconds worth of work on its queue ASAP. Currently rushjob
1076		 * is used by the soft update code to speed up the filesystem
1077		 * syncer process when the incore state is getting so far
1078		 * ahead of the disk that the kernel memory pool is being
1079		 * threatened with exhaustion.
1080		 */
1081		if (rushjob > 0) {
1082			rushjob -= 1;
1083			continue;
1084		}
1085		/*
1086		 * If it has taken us less than a second to process the
1087		 * current work, then wait. Otherwise start right over
1088		 * again. We can still lose time if any single round
1089		 * takes more than two seconds, but it does not really
1090		 * matter as we are just trying to generally pace the
1091		 * filesystem activity.
1092		 */
1093		if (time_second == starttime)
1094			tsleep(&lbolt, PPAUSE, "syncer", 0);
1095	}
1096}
1097
1098/*
1099 * Request the syncer daemon to speed up its work.
1100 * We never push it to speed up more than half of its
1101 * normal turn time, otherwise it could take over the cpu.
1102 */
1103int
1104speedup_syncer()
1105{
1106
1107	mtx_lock_spin(&sched_lock);
1108	if (updateproc->p_wchan == &lbolt)
1109		setrunnable(updateproc);
1110	mtx_unlock_spin(&sched_lock);
1111	if (rushjob < syncdelay / 2) {
1112		rushjob += 1;
1113		stat_rush_requests += 1;
1114		return (1);
1115	}
1116	return(0);
1117}
1118
1119/*
1120 * Associate a p-buffer with a vnode.
1121 *
1122 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1123 * with the buffer.  i.e. the bp has not been linked into the vnode or
1124 * ref-counted.
1125 */
1126void
1127pbgetvp(vp, bp)
1128	register struct vnode *vp;
1129	register struct buf *bp;
1130{
1131
1132	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1133
1134	bp->b_vp = vp;
1135	bp->b_flags |= B_PAGING;
1136	bp->b_dev = vn_todev(vp);
1137}
1138
1139/*
1140 * Disassociate a p-buffer from a vnode.
1141 */
1142void
1143pbrelvp(bp)
1144	register struct buf *bp;
1145{
1146
1147	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1148
1149	/* XXX REMOVE ME */
1150	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1151		panic(
1152		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1153		    bp,
1154		    (int)bp->b_flags
1155		);
1156	}
1157	bp->b_vp = (struct vnode *) 0;
1158	bp->b_flags &= ~B_PAGING;
1159}
1160
1161/*
1162 * Change the vnode a pager buffer is associated with.
1163 */
1164void
1165pbreassignbuf(bp, newvp)
1166	struct buf *bp;
1167	struct vnode *newvp;
1168{
1169
1170	KASSERT(bp->b_flags & B_PAGING,
1171	    ("pbreassignbuf() on non phys bp %p", bp));
1172	bp->b_vp = newvp;
1173}
1174
1175/*
1176 * Reassign a buffer from one vnode to another.
1177 * Used to assign file specific control information
1178 * (indirect blocks) to the vnode to which they belong.
1179 */
1180void
1181reassignbuf(bp, newvp)
1182	register struct buf *bp;
1183	register struct vnode *newvp;
1184{
1185	struct buflists *listheadp;
1186	int delay;
1187	int s;
1188
1189	if (newvp == NULL) {
1190		printf("reassignbuf: NULL");
1191		return;
1192	}
1193	++reassignbufcalls;
1194
1195	/*
1196	 * B_PAGING flagged buffers cannot be reassigned because their vp
1197	 * is not fully linked in.
1198	 */
1199	if (bp->b_flags & B_PAGING)
1200		panic("cannot reassign paging buffer");
1201
1202	s = splbio();
1203	/*
1204	 * Delete from old vnode list, if on one.
1205	 */
1206	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1207		if (bp->b_xflags & BX_VNDIRTY)
1208			listheadp = &bp->b_vp->v_dirtyblkhd;
1209		else
1210			listheadp = &bp->b_vp->v_cleanblkhd;
1211		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1212		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1213		if (bp->b_vp != newvp) {
1214			vdrop(bp->b_vp);
1215			bp->b_vp = NULL;	/* for clarification */
1216		}
1217	}
1218	/*
1219	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1220	 * of clean buffers.
1221	 */
1222	if (bp->b_flags & B_DELWRI) {
1223		struct buf *tbp;
1224
1225		listheadp = &newvp->v_dirtyblkhd;
1226		if ((newvp->v_flag & VONWORKLST) == 0) {
1227			switch (newvp->v_type) {
1228			case VDIR:
1229				delay = dirdelay;
1230				break;
1231			case VCHR:
1232				if (newvp->v_rdev->si_mountpoint != NULL) {
1233					delay = metadelay;
1234					break;
1235				}
1236				/* fall through */
1237			default:
1238				delay = filedelay;
1239			}
1240			vn_syncer_add_to_worklist(newvp, delay);
1241		}
1242		bp->b_xflags |= BX_VNDIRTY;
1243		tbp = TAILQ_FIRST(listheadp);
1244		if (tbp == NULL ||
1245		    bp->b_lblkno == 0 ||
1246		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1247		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1248			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1249			++reassignbufsortgood;
1250		} else if (bp->b_lblkno < 0) {
1251			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1252			++reassignbufsortgood;
1253		} else if (reassignbufmethod == 1) {
1254			/*
1255			 * New sorting algorithm, only handle sequential case,
1256			 * otherwise append to end (but before metadata)
1257			 */
1258			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1259			    (tbp->b_xflags & BX_VNDIRTY)) {
1260				/*
1261				 * Found the best place to insert the buffer
1262				 */
1263				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1264				++reassignbufsortgood;
1265			} else {
1266				/*
1267				 * Missed, append to end, but before meta-data.
1268				 * We know that the head buffer in the list is
1269				 * not meta-data due to prior conditionals.
1270				 *
1271				 * Indirect effects:  NFS second stage write
1272				 * tends to wind up here, giving maximum
1273				 * distance between the unstable write and the
1274				 * commit rpc.
1275				 */
1276				tbp = TAILQ_LAST(listheadp, buflists);
1277				while (tbp && tbp->b_lblkno < 0)
1278					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1279				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1280				++reassignbufsortbad;
1281			}
1282		} else {
1283			/*
1284			 * Old sorting algorithm, scan queue and insert
1285			 */
1286			struct buf *ttbp;
1287			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1288			    (ttbp->b_lblkno < bp->b_lblkno)) {
1289				++reassignbufloops;
1290				tbp = ttbp;
1291			}
1292			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1293		}
1294	} else {
1295		bp->b_xflags |= BX_VNCLEAN;
1296		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1297		if ((newvp->v_flag & VONWORKLST) &&
1298		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1299			newvp->v_flag &= ~VONWORKLST;
1300			LIST_REMOVE(newvp, v_synclist);
1301		}
1302	}
1303	if (bp->b_vp != newvp) {
1304		bp->b_vp = newvp;
1305		vhold(bp->b_vp);
1306	}
1307	splx(s);
1308}
1309
1310/*
1311 * Create a vnode for a device.
1312 * Used for mounting the root file system.
1313 */
1314int
1315bdevvp(dev, vpp)
1316	dev_t dev;
1317	struct vnode **vpp;
1318{
1319	register struct vnode *vp;
1320	struct vnode *nvp;
1321	int error;
1322
1323	if (dev == NODEV) {
1324		*vpp = NULLVP;
1325		return (ENXIO);
1326	}
1327	if (vfinddev(dev, VCHR, vpp))
1328		return (0);
1329	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1330	if (error) {
1331		*vpp = NULLVP;
1332		return (error);
1333	}
1334	vp = nvp;
1335	vp->v_type = VCHR;
1336	addalias(vp, dev);
1337	*vpp = vp;
1338	return (0);
1339}
1340
1341/*
1342 * Add vnode to the alias list hung off the dev_t.
1343 *
1344 * The reason for this gunk is that multiple vnodes can reference
1345 * the same physical device, so checking vp->v_usecount to see
1346 * how many users there are is inadequate; the v_usecount for
1347 * the vnodes need to be accumulated.  vcount() does that.
1348 */
1349struct vnode *
1350addaliasu(nvp, nvp_rdev)
1351	struct vnode *nvp;
1352	udev_t nvp_rdev;
1353{
1354	struct vnode *ovp;
1355	vop_t **ops;
1356	dev_t dev;
1357
1358	if (nvp->v_type == VBLK)
1359		return (nvp);
1360	if (nvp->v_type != VCHR)
1361		panic("addaliasu on non-special vnode");
1362	dev = udev2dev(nvp_rdev, 0);
1363	/*
1364	 * Check to see if we have a bdevvp vnode with no associated
1365	 * filesystem. If so, we want to associate the filesystem of
1366	 * the new newly instigated vnode with the bdevvp vnode and
1367	 * discard the newly created vnode rather than leaving the
1368	 * bdevvp vnode lying around with no associated filesystem.
1369	 */
1370	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
1371		addalias(nvp, dev);
1372		return (nvp);
1373	}
1374	/*
1375	 * Discard unneeded vnode, but save its node specific data.
1376	 * Note that if there is a lock, it is carried over in the
1377	 * node specific data to the replacement vnode.
1378	 */
1379	vref(ovp);
1380	ovp->v_data = nvp->v_data;
1381	ovp->v_tag = nvp->v_tag;
1382	nvp->v_data = NULL;
1383	lockinit(&ovp->v_lock, PVFS, nvp->v_lock.lk_wmesg,
1384	    nvp->v_lock.lk_timo, nvp->v_lock.lk_flags & LK_EXTFLG_MASK);
1385	if (nvp->v_vnlock)
1386		ovp->v_vnlock = &ovp->v_lock;
1387	ops = ovp->v_op;
1388	ovp->v_op = nvp->v_op;
1389	if (VOP_ISLOCKED(nvp, curproc)) {
1390		VOP_UNLOCK(nvp, 0, curproc);
1391		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curproc);
1392	}
1393	nvp->v_op = ops;
1394	insmntque(ovp, nvp->v_mount);
1395	vrele(nvp);
1396	vgone(nvp);
1397	return (ovp);
1398}
1399
1400/* This is a local helper function that do the same as addaliasu, but for a
1401 * dev_t instead of an udev_t. */
1402static void
1403addalias(nvp, dev)
1404	struct vnode *nvp;
1405	dev_t dev;
1406{
1407
1408	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1409	nvp->v_rdev = dev;
1410	mtx_lock(&spechash_mtx);
1411	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1412	mtx_unlock(&spechash_mtx);
1413}
1414
1415/*
1416 * Grab a particular vnode from the free list, increment its
1417 * reference count and lock it. The vnode lock bit is set if the
1418 * vnode is being eliminated in vgone. The process is awakened
1419 * when the transition is completed, and an error returned to
1420 * indicate that the vnode is no longer usable (possibly having
1421 * been changed to a new file system type).
1422 */
1423int
1424vget(vp, flags, p)
1425	register struct vnode *vp;
1426	int flags;
1427	struct proc *p;
1428{
1429	int error;
1430
1431	/*
1432	 * If the vnode is in the process of being cleaned out for
1433	 * another use, we wait for the cleaning to finish and then
1434	 * return failure. Cleaning is determined by checking that
1435	 * the VXLOCK flag is set.
1436	 */
1437	if ((flags & LK_INTERLOCK) == 0)
1438		mtx_lock(&vp->v_interlock);
1439	if (vp->v_flag & VXLOCK) {
1440		if (vp->v_vxproc == curproc) {
1441			printf("VXLOCK interlock avoided\n");
1442		} else {
1443			vp->v_flag |= VXWANT;
1444			msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
1445			    "vget", 0);
1446			return (ENOENT);
1447		}
1448	}
1449
1450	vp->v_usecount++;
1451
1452	if (VSHOULDBUSY(vp))
1453		vbusy(vp);
1454	if (flags & LK_TYPE_MASK) {
1455		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1456			/*
1457			 * must expand vrele here because we do not want
1458			 * to call VOP_INACTIVE if the reference count
1459			 * drops back to zero since it was never really
1460			 * active. We must remove it from the free list
1461			 * before sleeping so that multiple processes do
1462			 * not try to recycle it.
1463			 */
1464			mtx_lock(&vp->v_interlock);
1465			vp->v_usecount--;
1466			if (VSHOULDFREE(vp))
1467				vfree(vp);
1468			mtx_unlock(&vp->v_interlock);
1469		}
1470		return (error);
1471	}
1472	mtx_unlock(&vp->v_interlock);
1473	return (0);
1474}
1475
1476/*
1477 * Increase the reference count of a vnode.
1478 */
1479void
1480vref(struct vnode *vp)
1481{
1482	mtx_lock(&vp->v_interlock);
1483	vp->v_usecount++;
1484	mtx_unlock(&vp->v_interlock);
1485}
1486
1487/*
1488 * Vnode put/release.
1489 * If count drops to zero, call inactive routine and return to freelist.
1490 */
1491void
1492vrele(vp)
1493	struct vnode *vp;
1494{
1495	struct proc *p = curproc;	/* XXX */
1496
1497	KASSERT(vp != NULL, ("vrele: null vp"));
1498
1499	mtx_lock(&vp->v_interlock);
1500
1501	KASSERT(vp->v_writecount < vp->v_usecount, ("vrele: missed vn_close"));
1502
1503	if (vp->v_usecount > 1) {
1504
1505		vp->v_usecount--;
1506		mtx_unlock(&vp->v_interlock);
1507
1508		return;
1509	}
1510
1511	if (vp->v_usecount == 1) {
1512
1513		vp->v_usecount--;
1514		if (VSHOULDFREE(vp))
1515			vfree(vp);
1516	/*
1517	 * If we are doing a vput, the node is already locked, and we must
1518	 * call VOP_INACTIVE with the node locked.  So, in the case of
1519	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1520	 */
1521		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1522			VOP_INACTIVE(vp, p);
1523		}
1524
1525	} else {
1526#ifdef DIAGNOSTIC
1527		vprint("vrele: negative ref count", vp);
1528		mtx_unlock(&vp->v_interlock);
1529#endif
1530		panic("vrele: negative ref cnt");
1531	}
1532}
1533
1534/*
1535 * Release an already locked vnode.  This give the same effects as
1536 * unlock+vrele(), but takes less time and avoids releasing and
1537 * re-aquiring the lock (as vrele() aquires the lock internally.)
1538 */
1539void
1540vput(vp)
1541	struct vnode *vp;
1542{
1543	struct proc *p = curproc;	/* XXX */
1544
1545	KASSERT(vp != NULL, ("vput: null vp"));
1546	mtx_lock(&vp->v_interlock);
1547	KASSERT(vp->v_writecount < vp->v_usecount, ("vput: missed vn_close"));
1548
1549	if (vp->v_usecount > 1) {
1550
1551		vp->v_usecount--;
1552		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1553		return;
1554
1555	}
1556
1557	if (vp->v_usecount == 1) {
1558
1559		vp->v_usecount--;
1560		if (VSHOULDFREE(vp))
1561			vfree(vp);
1562	/*
1563	 * If we are doing a vput, the node is already locked, and we must
1564	 * call VOP_INACTIVE with the node locked.  So, in the case of
1565	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1566	 */
1567		mtx_unlock(&vp->v_interlock);
1568		VOP_INACTIVE(vp, p);
1569
1570	} else {
1571#ifdef DIAGNOSTIC
1572		vprint("vput: negative ref count", vp);
1573#endif
1574		panic("vput: negative ref cnt");
1575	}
1576}
1577
1578/*
1579 * Somebody doesn't want the vnode recycled.
1580 */
1581void
1582vhold(vp)
1583	register struct vnode *vp;
1584{
1585	int s;
1586
1587  	s = splbio();
1588	vp->v_holdcnt++;
1589	if (VSHOULDBUSY(vp))
1590		vbusy(vp);
1591	splx(s);
1592}
1593
1594/*
1595 * Note that there is one less who cares about this vnode.  vdrop() is the
1596 * opposite of vhold().
1597 */
1598void
1599vdrop(vp)
1600	register struct vnode *vp;
1601{
1602	int s;
1603
1604	s = splbio();
1605	if (vp->v_holdcnt <= 0)
1606		panic("vdrop: holdcnt");
1607	vp->v_holdcnt--;
1608	if (VSHOULDFREE(vp))
1609		vfree(vp);
1610	splx(s);
1611}
1612
1613/*
1614 * Remove any vnodes in the vnode table belonging to mount point mp.
1615 *
1616 * If MNT_NOFORCE is specified, there should not be any active ones,
1617 * return error if any are found (nb: this is a user error, not a
1618 * system error). If MNT_FORCE is specified, detach any active vnodes
1619 * that are found.
1620 */
1621#ifdef DIAGNOSTIC
1622static int busyprt = 0;		/* print out busy vnodes */
1623SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1624#endif
1625
1626int
1627vflush(mp, skipvp, flags)
1628	struct mount *mp;
1629	struct vnode *skipvp;
1630	int flags;
1631{
1632	struct proc *p = curproc;	/* XXX */
1633	struct vnode *vp, *nvp;
1634	int busy = 0;
1635
1636	mtx_lock(&mntvnode_mtx);
1637loop:
1638	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1639		/*
1640		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1641		 * Start over if it has (it won't be on the list anymore).
1642		 */
1643		if (vp->v_mount != mp)
1644			goto loop;
1645		nvp = LIST_NEXT(vp, v_mntvnodes);
1646		/*
1647		 * Skip over a selected vnode.
1648		 */
1649		if (vp == skipvp)
1650			continue;
1651
1652		mtx_lock(&vp->v_interlock);
1653		/*
1654		 * Skip over a vnodes marked VSYSTEM.
1655		 */
1656		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1657			mtx_unlock(&vp->v_interlock);
1658			continue;
1659		}
1660		/*
1661		 * If WRITECLOSE is set, only flush out regular file vnodes
1662		 * open for writing.
1663		 */
1664		if ((flags & WRITECLOSE) &&
1665		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1666			mtx_unlock(&vp->v_interlock);
1667			continue;
1668		}
1669
1670		/*
1671		 * With v_usecount == 0, all we need to do is clear out the
1672		 * vnode data structures and we are done.
1673		 */
1674		if (vp->v_usecount == 0) {
1675			mtx_unlock(&mntvnode_mtx);
1676			vgonel(vp, p);
1677			mtx_lock(&mntvnode_mtx);
1678			continue;
1679		}
1680
1681		/*
1682		 * If FORCECLOSE is set, forcibly close the vnode. For block
1683		 * or character devices, revert to an anonymous device. For
1684		 * all other files, just kill them.
1685		 */
1686		if (flags & FORCECLOSE) {
1687			mtx_unlock(&mntvnode_mtx);
1688			if (vp->v_type != VCHR) {
1689				vgonel(vp, p);
1690			} else {
1691				vclean(vp, 0, p);
1692				vp->v_op = spec_vnodeop_p;
1693				insmntque(vp, (struct mount *) 0);
1694			}
1695			mtx_lock(&mntvnode_mtx);
1696			continue;
1697		}
1698#ifdef DIAGNOSTIC
1699		if (busyprt)
1700			vprint("vflush: busy vnode", vp);
1701#endif
1702		mtx_unlock(&vp->v_interlock);
1703		busy++;
1704	}
1705	mtx_unlock(&mntvnode_mtx);
1706	if (busy)
1707		return (EBUSY);
1708	return (0);
1709}
1710
1711/*
1712 * Disassociate the underlying file system from a vnode.
1713 */
1714static void
1715vclean(vp, flags, p)
1716	struct vnode *vp;
1717	int flags;
1718	struct proc *p;
1719{
1720	int active;
1721
1722	/*
1723	 * Check to see if the vnode is in use. If so we have to reference it
1724	 * before we clean it out so that its count cannot fall to zero and
1725	 * generate a race against ourselves to recycle it.
1726	 */
1727	if ((active = vp->v_usecount))
1728		vp->v_usecount++;
1729
1730	/*
1731	 * Prevent the vnode from being recycled or brought into use while we
1732	 * clean it out.
1733	 */
1734	if (vp->v_flag & VXLOCK)
1735		panic("vclean: deadlock");
1736	vp->v_flag |= VXLOCK;
1737	vp->v_vxproc = curproc;
1738	/*
1739	 * Even if the count is zero, the VOP_INACTIVE routine may still
1740	 * have the object locked while it cleans it out. The VOP_LOCK
1741	 * ensures that the VOP_INACTIVE routine is done with its work.
1742	 * For active vnodes, it ensures that no other activity can
1743	 * occur while the underlying object is being cleaned out.
1744	 */
1745	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1746
1747	/*
1748	 * Clean out any buffers associated with the vnode.
1749	 * If the flush fails, just toss the buffers.
1750	 */
1751	if (flags & DOCLOSE) {
1752		if (TAILQ_FIRST(&vp->v_dirtyblkhd) != NULL)
1753			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
1754		if (vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0) != 0)
1755			vinvalbuf(vp, 0, NOCRED, p, 0, 0);
1756	}
1757
1758	VOP_DESTROYVOBJECT(vp);
1759
1760	/*
1761	 * If purging an active vnode, it must be closed and
1762	 * deactivated before being reclaimed. Note that the
1763	 * VOP_INACTIVE will unlock the vnode.
1764	 */
1765	if (active) {
1766		if (flags & DOCLOSE)
1767			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1768		VOP_INACTIVE(vp, p);
1769	} else {
1770		/*
1771		 * Any other processes trying to obtain this lock must first
1772		 * wait for VXLOCK to clear, then call the new lock operation.
1773		 */
1774		VOP_UNLOCK(vp, 0, p);
1775	}
1776	/*
1777	 * Reclaim the vnode.
1778	 */
1779	if (VOP_RECLAIM(vp, p))
1780		panic("vclean: cannot reclaim");
1781
1782	if (active) {
1783		/*
1784		 * Inline copy of vrele() since VOP_INACTIVE
1785		 * has already been called.
1786		 */
1787		mtx_lock(&vp->v_interlock);
1788		if (--vp->v_usecount <= 0) {
1789#ifdef DIAGNOSTIC
1790			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1791				vprint("vclean: bad ref count", vp);
1792				panic("vclean: ref cnt");
1793			}
1794#endif
1795			vfree(vp);
1796		}
1797		mtx_unlock(&vp->v_interlock);
1798	}
1799
1800	cache_purge(vp);
1801	vp->v_vnlock = NULL;
1802	lockdestroy(&vp->v_lock);
1803
1804	if (VSHOULDFREE(vp))
1805		vfree(vp);
1806
1807	/*
1808	 * Done with purge, notify sleepers of the grim news.
1809	 */
1810	vp->v_op = dead_vnodeop_p;
1811	vn_pollgone(vp);
1812	vp->v_tag = VT_NON;
1813	vp->v_flag &= ~VXLOCK;
1814	vp->v_vxproc = NULL;
1815	if (vp->v_flag & VXWANT) {
1816		vp->v_flag &= ~VXWANT;
1817		wakeup((caddr_t) vp);
1818	}
1819}
1820
1821/*
1822 * Eliminate all activity associated with the requested vnode
1823 * and with all vnodes aliased to the requested vnode.
1824 */
1825int
1826vop_revoke(ap)
1827	struct vop_revoke_args /* {
1828		struct vnode *a_vp;
1829		int a_flags;
1830	} */ *ap;
1831{
1832	struct vnode *vp, *vq;
1833	dev_t dev;
1834
1835	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1836
1837	vp = ap->a_vp;
1838	/*
1839	 * If a vgone (or vclean) is already in progress,
1840	 * wait until it is done and return.
1841	 */
1842	if (vp->v_flag & VXLOCK) {
1843		vp->v_flag |= VXWANT;
1844		msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
1845		    "vop_revokeall", 0);
1846		return (0);
1847	}
1848	dev = vp->v_rdev;
1849	for (;;) {
1850		mtx_lock(&spechash_mtx);
1851		vq = SLIST_FIRST(&dev->si_hlist);
1852		mtx_unlock(&spechash_mtx);
1853		if (!vq)
1854			break;
1855		vgone(vq);
1856	}
1857	return (0);
1858}
1859
1860/*
1861 * Recycle an unused vnode to the front of the free list.
1862 * Release the passed interlock if the vnode will be recycled.
1863 */
1864int
1865vrecycle(vp, inter_lkp, p)
1866	struct vnode *vp;
1867	struct mtx *inter_lkp;
1868	struct proc *p;
1869{
1870
1871	mtx_lock(&vp->v_interlock);
1872	if (vp->v_usecount == 0) {
1873		if (inter_lkp) {
1874			mtx_unlock(inter_lkp);
1875		}
1876		vgonel(vp, p);
1877		return (1);
1878	}
1879	mtx_unlock(&vp->v_interlock);
1880	return (0);
1881}
1882
1883/*
1884 * Eliminate all activity associated with a vnode
1885 * in preparation for reuse.
1886 */
1887void
1888vgone(vp)
1889	register struct vnode *vp;
1890{
1891	struct proc *p = curproc;	/* XXX */
1892
1893	mtx_lock(&vp->v_interlock);
1894	vgonel(vp, p);
1895}
1896
1897/*
1898 * vgone, with the vp interlock held.
1899 */
1900void
1901vgonel(vp, p)
1902	struct vnode *vp;
1903	struct proc *p;
1904{
1905	int s;
1906
1907	/*
1908	 * If a vgone (or vclean) is already in progress,
1909	 * wait until it is done and return.
1910	 */
1911	if (vp->v_flag & VXLOCK) {
1912		vp->v_flag |= VXWANT;
1913		msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
1914		    "vgone", 0);
1915		return;
1916	}
1917
1918	/*
1919	 * Clean out the filesystem specific data.
1920	 */
1921	vclean(vp, DOCLOSE, p);
1922	mtx_lock(&vp->v_interlock);
1923
1924	/*
1925	 * Delete from old mount point vnode list, if on one.
1926	 */
1927	if (vp->v_mount != NULL)
1928		insmntque(vp, (struct mount *)0);
1929	/*
1930	 * If special device, remove it from special device alias list
1931	 * if it is on one.
1932	 */
1933	if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) {
1934		mtx_lock(&spechash_mtx);
1935		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
1936		freedev(vp->v_rdev);
1937		mtx_unlock(&spechash_mtx);
1938		vp->v_rdev = NULL;
1939	}
1940
1941	/*
1942	 * If it is on the freelist and not already at the head,
1943	 * move it to the head of the list. The test of the
1944	 * VDOOMED flag and the reference count of zero is because
1945	 * it will be removed from the free list by getnewvnode,
1946	 * but will not have its reference count incremented until
1947	 * after calling vgone. If the reference count were
1948	 * incremented first, vgone would (incorrectly) try to
1949	 * close the previous instance of the underlying object.
1950	 */
1951	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1952		s = splbio();
1953		mtx_lock(&vnode_free_list_mtx);
1954		if (vp->v_flag & VFREE)
1955			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1956		else
1957			freevnodes++;
1958		vp->v_flag |= VFREE;
1959		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1960		mtx_unlock(&vnode_free_list_mtx);
1961		splx(s);
1962	}
1963
1964	vp->v_type = VBAD;
1965	mtx_unlock(&vp->v_interlock);
1966}
1967
1968/*
1969 * Lookup a vnode by device number.
1970 */
1971int
1972vfinddev(dev, type, vpp)
1973	dev_t dev;
1974	enum vtype type;
1975	struct vnode **vpp;
1976{
1977	struct vnode *vp;
1978
1979	mtx_lock(&spechash_mtx);
1980	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1981		if (type == vp->v_type) {
1982			*vpp = vp;
1983			mtx_unlock(&spechash_mtx);
1984			return (1);
1985		}
1986	}
1987	mtx_unlock(&spechash_mtx);
1988	return (0);
1989}
1990
1991/*
1992 * Calculate the total number of references to a special device.
1993 */
1994int
1995vcount(vp)
1996	struct vnode *vp;
1997{
1998	struct vnode *vq;
1999	int count;
2000
2001	count = 0;
2002	mtx_lock(&spechash_mtx);
2003	SLIST_FOREACH(vq, &vp->v_rdev->si_hlist, v_specnext)
2004		count += vq->v_usecount;
2005	mtx_unlock(&spechash_mtx);
2006	return (count);
2007}
2008
2009/*
2010 * Same as above, but using the dev_t as argument
2011 */
2012int
2013count_dev(dev)
2014	dev_t dev;
2015{
2016	struct vnode *vp;
2017
2018	vp = SLIST_FIRST(&dev->si_hlist);
2019	if (vp == NULL)
2020		return (0);
2021	return(vcount(vp));
2022}
2023
2024/*
2025 * Print out a description of a vnode.
2026 */
2027static char *typename[] =
2028{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2029
2030void
2031vprint(label, vp)
2032	char *label;
2033	struct vnode *vp;
2034{
2035	char buf[96];
2036
2037	if (label != NULL)
2038		printf("%s: %p: ", label, (void *)vp);
2039	else
2040		printf("%p: ", (void *)vp);
2041	printf("type %s, usecount %d, writecount %d, refcount %d,",
2042	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2043	    vp->v_holdcnt);
2044	buf[0] = '\0';
2045	if (vp->v_flag & VROOT)
2046		strcat(buf, "|VROOT");
2047	if (vp->v_flag & VTEXT)
2048		strcat(buf, "|VTEXT");
2049	if (vp->v_flag & VSYSTEM)
2050		strcat(buf, "|VSYSTEM");
2051	if (vp->v_flag & VXLOCK)
2052		strcat(buf, "|VXLOCK");
2053	if (vp->v_flag & VXWANT)
2054		strcat(buf, "|VXWANT");
2055	if (vp->v_flag & VBWAIT)
2056		strcat(buf, "|VBWAIT");
2057	if (vp->v_flag & VDOOMED)
2058		strcat(buf, "|VDOOMED");
2059	if (vp->v_flag & VFREE)
2060		strcat(buf, "|VFREE");
2061	if (vp->v_flag & VOBJBUF)
2062		strcat(buf, "|VOBJBUF");
2063	if (buf[0] != '\0')
2064		printf(" flags (%s)", &buf[1]);
2065	if (vp->v_data == NULL) {
2066		printf("\n");
2067	} else {
2068		printf("\n\t");
2069		VOP_PRINT(vp);
2070	}
2071}
2072
2073#ifdef DDB
2074#include <ddb/ddb.h>
2075/*
2076 * List all of the locked vnodes in the system.
2077 * Called when debugging the kernel.
2078 */
2079DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2080{
2081	struct proc *p = curproc;	/* XXX */
2082	struct mount *mp, *nmp;
2083	struct vnode *vp;
2084
2085	printf("Locked vnodes\n");
2086	mtx_lock(&mountlist_mtx);
2087	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2088		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, p)) {
2089			nmp = TAILQ_NEXT(mp, mnt_list);
2090			continue;
2091		}
2092		LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2093			if (VOP_ISLOCKED(vp, NULL))
2094				vprint((char *)0, vp);
2095		}
2096		mtx_lock(&mountlist_mtx);
2097		nmp = TAILQ_NEXT(mp, mnt_list);
2098		vfs_unbusy(mp, p);
2099	}
2100	mtx_unlock(&mountlist_mtx);
2101}
2102#endif
2103
2104/*
2105 * Top level filesystem related information gathering.
2106 */
2107static int	sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS));
2108
2109static int
2110vfs_sysctl(SYSCTL_HANDLER_ARGS)
2111{
2112	int *name = (int *)arg1 - 1;	/* XXX */
2113	u_int namelen = arg2 + 1;	/* XXX */
2114	struct vfsconf *vfsp;
2115
2116#if 1 || defined(COMPAT_PRELITE2)
2117	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2118	if (namelen == 1)
2119		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2120#endif
2121
2122	/* XXX the below code does not compile; vfs_sysctl does not exist. */
2123#ifdef notyet
2124	/* all sysctl names at this level are at least name and field */
2125	if (namelen < 2)
2126		return (ENOTDIR);		/* overloaded */
2127	if (name[0] != VFS_GENERIC) {
2128		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2129			if (vfsp->vfc_typenum == name[0])
2130				break;
2131		if (vfsp == NULL)
2132			return (EOPNOTSUPP);
2133		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2134		    oldp, oldlenp, newp, newlen, p));
2135	}
2136#endif
2137	switch (name[1]) {
2138	case VFS_MAXTYPENUM:
2139		if (namelen != 2)
2140			return (ENOTDIR);
2141		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2142	case VFS_CONF:
2143		if (namelen != 3)
2144			return (ENOTDIR);	/* overloaded */
2145		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2146			if (vfsp->vfc_typenum == name[2])
2147				break;
2148		if (vfsp == NULL)
2149			return (EOPNOTSUPP);
2150		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2151	}
2152	return (EOPNOTSUPP);
2153}
2154
2155SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2156	"Generic filesystem");
2157
2158#if 1 || defined(COMPAT_PRELITE2)
2159
2160static int
2161sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2162{
2163	int error;
2164	struct vfsconf *vfsp;
2165	struct ovfsconf ovfs;
2166
2167	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2168		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2169		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2170		ovfs.vfc_index = vfsp->vfc_typenum;
2171		ovfs.vfc_refcount = vfsp->vfc_refcount;
2172		ovfs.vfc_flags = vfsp->vfc_flags;
2173		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2174		if (error)
2175			return error;
2176	}
2177	return 0;
2178}
2179
2180#endif /* 1 || COMPAT_PRELITE2 */
2181
2182#if COMPILING_LINT
2183#define KINFO_VNODESLOP	10
2184/*
2185 * Dump vnode list (via sysctl).
2186 * Copyout address of vnode followed by vnode.
2187 */
2188/* ARGSUSED */
2189static int
2190sysctl_vnode(SYSCTL_HANDLER_ARGS)
2191{
2192	struct proc *p = curproc;	/* XXX */
2193	struct mount *mp, *nmp;
2194	struct vnode *nvp, *vp;
2195	int error;
2196
2197#define VPTRSZ	sizeof (struct vnode *)
2198#define VNODESZ	sizeof (struct vnode)
2199
2200	req->lock = 0;
2201	if (!req->oldptr) /* Make an estimate */
2202		return (SYSCTL_OUT(req, 0,
2203			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2204
2205	mtx_lock(&mountlist_mtx);
2206	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2207		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, p)) {
2208			nmp = TAILQ_NEXT(mp, mnt_list);
2209			continue;
2210		}
2211again:
2212		mtx_lock(&mntvnode_mtx);
2213		for (vp = LIST_FIRST(&mp->mnt_vnodelist);
2214		     vp != NULL;
2215		     vp = nvp) {
2216			/*
2217			 * Check that the vp is still associated with
2218			 * this filesystem.  RACE: could have been
2219			 * recycled onto the same filesystem.
2220			 */
2221			if (vp->v_mount != mp) {
2222				mtx_unlock(&mntvnode_mtx);
2223				goto again;
2224			}
2225			nvp = LIST_NEXT(vp, v_mntvnodes);
2226			mtx_unlock(&mntvnode_mtx);
2227			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2228			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2229				return (error);
2230			mtx_lock(&mntvnode_mtx);
2231		}
2232		mtx_unlock(&mntvnode_mtx);
2233		mtx_lock(&mountlist_mtx);
2234		nmp = TAILQ_NEXT(mp, mnt_list);
2235		vfs_unbusy(mp, p);
2236	}
2237	mtx_unlock(&mountlist_mtx);
2238
2239	return (0);
2240}
2241
2242/*
2243 * XXX
2244 * Exporting the vnode list on large systems causes them to crash.
2245 * Exporting the vnode list on medium systems causes sysctl to coredump.
2246 */
2247SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2248	0, 0, sysctl_vnode, "S,vnode", "");
2249#endif
2250
2251/*
2252 * Check to see if a filesystem is mounted on a block device.
2253 */
2254int
2255vfs_mountedon(vp)
2256	struct vnode *vp;
2257{
2258
2259	if (vp->v_rdev->si_mountpoint != NULL)
2260		return (EBUSY);
2261	return (0);
2262}
2263
2264/*
2265 * Unmount all filesystems. The list is traversed in reverse order
2266 * of mounting to avoid dependencies.
2267 */
2268void
2269vfs_unmountall()
2270{
2271	struct mount *mp;
2272	struct proc *p;
2273	int error;
2274
2275	if (curproc != NULL)
2276		p = curproc;
2277	else
2278		p = initproc;	/* XXX XXX should this be proc0? */
2279	/*
2280	 * Since this only runs when rebooting, it is not interlocked.
2281	 */
2282	while(!TAILQ_EMPTY(&mountlist)) {
2283		mp = TAILQ_LAST(&mountlist, mntlist);
2284		error = dounmount(mp, MNT_FORCE, p);
2285		if (error) {
2286			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2287			printf("unmount of %s failed (",
2288			    mp->mnt_stat.f_mntonname);
2289			if (error == EBUSY)
2290				printf("BUSY)\n");
2291			else
2292				printf("%d)\n", error);
2293		} else {
2294			/* The unmount has removed mp from the mountlist */
2295		}
2296	}
2297}
2298
2299/*
2300 * Build hash lists of net addresses and hang them off the mount point.
2301 * Called by ufs_mount() to set up the lists of export addresses.
2302 */
2303static int
2304vfs_hang_addrlist(mp, nep, argp)
2305	struct mount *mp;
2306	struct netexport *nep;
2307	struct export_args *argp;
2308{
2309	register struct netcred *np;
2310	register struct radix_node_head *rnh;
2311	register int i;
2312	struct radix_node *rn;
2313	struct sockaddr *saddr, *smask = 0;
2314	struct domain *dom;
2315	int error;
2316
2317	if (argp->ex_addrlen == 0) {
2318		if (mp->mnt_flag & MNT_DEFEXPORTED)
2319			return (EPERM);
2320		np = &nep->ne_defexported;
2321		np->netc_exflags = argp->ex_flags;
2322		np->netc_anon = argp->ex_anon;
2323		np->netc_anon.cr_ref = 1;
2324		mp->mnt_flag |= MNT_DEFEXPORTED;
2325		return (0);
2326	}
2327	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2328	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK | M_ZERO);
2329	saddr = (struct sockaddr *) (np + 1);
2330	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2331		goto out;
2332	if (saddr->sa_len > argp->ex_addrlen)
2333		saddr->sa_len = argp->ex_addrlen;
2334	if (argp->ex_masklen) {
2335		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2336		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2337		if (error)
2338			goto out;
2339		if (smask->sa_len > argp->ex_masklen)
2340			smask->sa_len = argp->ex_masklen;
2341	}
2342	i = saddr->sa_family;
2343	if ((rnh = nep->ne_rtable[i]) == 0) {
2344		/*
2345		 * Seems silly to initialize every AF when most are not used,
2346		 * do so on demand here
2347		 */
2348		for (dom = domains; dom; dom = dom->dom_next)
2349			if (dom->dom_family == i && dom->dom_rtattach) {
2350				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2351				    dom->dom_rtoffset);
2352				break;
2353			}
2354		if ((rnh = nep->ne_rtable[i]) == 0) {
2355			error = ENOBUFS;
2356			goto out;
2357		}
2358	}
2359	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2360	    np->netc_rnodes);
2361	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2362		error = EPERM;
2363		goto out;
2364	}
2365	np->netc_exflags = argp->ex_flags;
2366	np->netc_anon = argp->ex_anon;
2367	np->netc_anon.cr_ref = 1;
2368	return (0);
2369out:
2370	free(np, M_NETADDR);
2371	return (error);
2372}
2373
2374/* Helper for vfs_free_addrlist. */
2375/* ARGSUSED */
2376static int
2377vfs_free_netcred(rn, w)
2378	struct radix_node *rn;
2379	void *w;
2380{
2381	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2382
2383	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2384	free((caddr_t) rn, M_NETADDR);
2385	return (0);
2386}
2387
2388/*
2389 * Free the net address hash lists that are hanging off the mount points.
2390 */
2391static void
2392vfs_free_addrlist(nep)
2393	struct netexport *nep;
2394{
2395	register int i;
2396	register struct radix_node_head *rnh;
2397
2398	for (i = 0; i <= AF_MAX; i++)
2399		if ((rnh = nep->ne_rtable[i])) {
2400			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2401			    (caddr_t) rnh);
2402			free((caddr_t) rnh, M_RTABLE);
2403			nep->ne_rtable[i] = 0;
2404		}
2405}
2406
2407/*
2408 * High level function to manipulate export options on a mount point
2409 * and the passed in netexport.
2410 * Struct export_args *argp is the variable used to twiddle options,
2411 * the structure is described in sys/mount.h
2412 */
2413int
2414vfs_export(mp, nep, argp)
2415	struct mount *mp;
2416	struct netexport *nep;
2417	struct export_args *argp;
2418{
2419	int error;
2420
2421	if (argp->ex_flags & MNT_DELEXPORT) {
2422		if (mp->mnt_flag & MNT_EXPUBLIC) {
2423			vfs_setpublicfs(NULL, NULL, NULL);
2424			mp->mnt_flag &= ~MNT_EXPUBLIC;
2425		}
2426		vfs_free_addrlist(nep);
2427		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2428	}
2429	if (argp->ex_flags & MNT_EXPORTED) {
2430		if (argp->ex_flags & MNT_EXPUBLIC) {
2431			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2432				return (error);
2433			mp->mnt_flag |= MNT_EXPUBLIC;
2434		}
2435		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2436			return (error);
2437		mp->mnt_flag |= MNT_EXPORTED;
2438	}
2439	return (0);
2440}
2441
2442/*
2443 * Set the publicly exported filesystem (WebNFS). Currently, only
2444 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2445 */
2446int
2447vfs_setpublicfs(mp, nep, argp)
2448	struct mount *mp;
2449	struct netexport *nep;
2450	struct export_args *argp;
2451{
2452	int error;
2453	struct vnode *rvp;
2454	char *cp;
2455
2456	/*
2457	 * mp == NULL -> invalidate the current info, the FS is
2458	 * no longer exported. May be called from either vfs_export
2459	 * or unmount, so check if it hasn't already been done.
2460	 */
2461	if (mp == NULL) {
2462		if (nfs_pub.np_valid) {
2463			nfs_pub.np_valid = 0;
2464			if (nfs_pub.np_index != NULL) {
2465				FREE(nfs_pub.np_index, M_TEMP);
2466				nfs_pub.np_index = NULL;
2467			}
2468		}
2469		return (0);
2470	}
2471
2472	/*
2473	 * Only one allowed at a time.
2474	 */
2475	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2476		return (EBUSY);
2477
2478	/*
2479	 * Get real filehandle for root of exported FS.
2480	 */
2481	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2482	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2483
2484	if ((error = VFS_ROOT(mp, &rvp)))
2485		return (error);
2486
2487	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2488		return (error);
2489
2490	vput(rvp);
2491
2492	/*
2493	 * If an indexfile was specified, pull it in.
2494	 */
2495	if (argp->ex_indexfile != NULL) {
2496		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2497		    M_WAITOK);
2498		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2499		    MAXNAMLEN, (size_t *)0);
2500		if (!error) {
2501			/*
2502			 * Check for illegal filenames.
2503			 */
2504			for (cp = nfs_pub.np_index; *cp; cp++) {
2505				if (*cp == '/') {
2506					error = EINVAL;
2507					break;
2508				}
2509			}
2510		}
2511		if (error) {
2512			FREE(nfs_pub.np_index, M_TEMP);
2513			return (error);
2514		}
2515	}
2516
2517	nfs_pub.np_mount = mp;
2518	nfs_pub.np_valid = 1;
2519	return (0);
2520}
2521
2522/*
2523 * Used by the filesystems to determine if a given network address
2524 * (passed in 'nam') is present in thier exports list, returns a pointer
2525 * to struct netcred so that the filesystem can examine it for
2526 * access rights (read/write/etc).
2527 */
2528struct netcred *
2529vfs_export_lookup(mp, nep, nam)
2530	register struct mount *mp;
2531	struct netexport *nep;
2532	struct sockaddr *nam;
2533{
2534	register struct netcred *np;
2535	register struct radix_node_head *rnh;
2536	struct sockaddr *saddr;
2537
2538	np = NULL;
2539	if (mp->mnt_flag & MNT_EXPORTED) {
2540		/*
2541		 * Lookup in the export list first.
2542		 */
2543		if (nam != NULL) {
2544			saddr = nam;
2545			rnh = nep->ne_rtable[saddr->sa_family];
2546			if (rnh != NULL) {
2547				np = (struct netcred *)
2548					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2549							      rnh);
2550				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2551					np = NULL;
2552			}
2553		}
2554		/*
2555		 * If no address match, use the default if it exists.
2556		 */
2557		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2558			np = &nep->ne_defexported;
2559	}
2560	return (np);
2561}
2562
2563/*
2564 * perform msync on all vnodes under a mount point
2565 * the mount point must be locked.
2566 */
2567void
2568vfs_msync(struct mount *mp, int flags) {
2569	struct vnode *vp, *nvp;
2570	struct vm_object *obj;
2571	int anyio, tries;
2572
2573	tries = 5;
2574loop:
2575	anyio = 0;
2576	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) {
2577
2578		nvp = LIST_NEXT(vp, v_mntvnodes);
2579
2580		if (vp->v_mount != mp) {
2581			goto loop;
2582		}
2583
2584		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2585			continue;
2586
2587		if (flags != MNT_WAIT) {
2588			if (VOP_GETVOBJECT(vp, &obj) != 0 ||
2589			    (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2590				continue;
2591			if (VOP_ISLOCKED(vp, NULL))
2592				continue;
2593		}
2594
2595		mtx_lock(&vp->v_interlock);
2596		if (VOP_GETVOBJECT(vp, &obj) == 0 &&
2597		    (obj->flags & OBJ_MIGHTBEDIRTY)) {
2598			if (!vget(vp,
2599				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2600				if (VOP_GETVOBJECT(vp, &obj) == 0) {
2601					vm_object_page_clean(obj, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2602					anyio = 1;
2603				}
2604				vput(vp);
2605			}
2606		} else {
2607			mtx_unlock(&vp->v_interlock);
2608		}
2609	}
2610	if (anyio && (--tries > 0))
2611		goto loop;
2612}
2613
2614/*
2615 * Create the VM object needed for VMIO and mmap support.  This
2616 * is done for all VREG files in the system.  Some filesystems might
2617 * afford the additional metadata buffering capability of the
2618 * VMIO code by making the device node be VMIO mode also.
2619 *
2620 * vp must be locked when vfs_object_create is called.
2621 */
2622int
2623vfs_object_create(vp, p, cred)
2624	struct vnode *vp;
2625	struct proc *p;
2626	struct ucred *cred;
2627{
2628	return (VOP_CREATEVOBJECT(vp, cred, p));
2629}
2630
2631/*
2632 * Mark a vnode as free, putting it up for recycling.
2633 */
2634void
2635vfree(vp)
2636	struct vnode *vp;
2637{
2638	int s;
2639
2640	s = splbio();
2641	mtx_lock(&vnode_free_list_mtx);
2642	KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2643	if (vp->v_flag & VAGE) {
2644		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2645	} else {
2646		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2647	}
2648	freevnodes++;
2649	mtx_unlock(&vnode_free_list_mtx);
2650	vp->v_flag &= ~VAGE;
2651	vp->v_flag |= VFREE;
2652	splx(s);
2653}
2654
2655/*
2656 * Opposite of vfree() - mark a vnode as in use.
2657 */
2658void
2659vbusy(vp)
2660	struct vnode *vp;
2661{
2662	int s;
2663
2664	s = splbio();
2665	mtx_lock(&vnode_free_list_mtx);
2666	KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2667	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2668	freevnodes--;
2669	mtx_unlock(&vnode_free_list_mtx);
2670	vp->v_flag &= ~(VFREE|VAGE);
2671	splx(s);
2672}
2673
2674/*
2675 * Record a process's interest in events which might happen to
2676 * a vnode.  Because poll uses the historic select-style interface
2677 * internally, this routine serves as both the ``check for any
2678 * pending events'' and the ``record my interest in future events''
2679 * functions.  (These are done together, while the lock is held,
2680 * to avoid race conditions.)
2681 */
2682int
2683vn_pollrecord(vp, p, events)
2684	struct vnode *vp;
2685	struct proc *p;
2686	short events;
2687{
2688	mtx_lock(&vp->v_pollinfo.vpi_lock);
2689	if (vp->v_pollinfo.vpi_revents & events) {
2690		/*
2691		 * This leaves events we are not interested
2692		 * in available for the other process which
2693		 * which presumably had requested them
2694		 * (otherwise they would never have been
2695		 * recorded).
2696		 */
2697		events &= vp->v_pollinfo.vpi_revents;
2698		vp->v_pollinfo.vpi_revents &= ~events;
2699
2700		mtx_unlock(&vp->v_pollinfo.vpi_lock);
2701		return events;
2702	}
2703	vp->v_pollinfo.vpi_events |= events;
2704	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2705	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2706	return 0;
2707}
2708
2709/*
2710 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2711 * it is possible for us to miss an event due to race conditions, but
2712 * that condition is expected to be rare, so for the moment it is the
2713 * preferred interface.
2714 */
2715void
2716vn_pollevent(vp, events)
2717	struct vnode *vp;
2718	short events;
2719{
2720	mtx_lock(&vp->v_pollinfo.vpi_lock);
2721	if (vp->v_pollinfo.vpi_events & events) {
2722		/*
2723		 * We clear vpi_events so that we don't
2724		 * call selwakeup() twice if two events are
2725		 * posted before the polling process(es) is
2726		 * awakened.  This also ensures that we take at
2727		 * most one selwakeup() if the polling process
2728		 * is no longer interested.  However, it does
2729		 * mean that only one event can be noticed at
2730		 * a time.  (Perhaps we should only clear those
2731		 * event bits which we note?) XXX
2732		 */
2733		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2734		vp->v_pollinfo.vpi_revents |= events;
2735		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2736	}
2737	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2738}
2739
2740/*
2741 * Wake up anyone polling on vp because it is being revoked.
2742 * This depends on dead_poll() returning POLLHUP for correct
2743 * behavior.
2744 */
2745void
2746vn_pollgone(vp)
2747	struct vnode *vp;
2748{
2749	mtx_lock(&vp->v_pollinfo.vpi_lock);
2750	if (vp->v_pollinfo.vpi_events) {
2751		vp->v_pollinfo.vpi_events = 0;
2752		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2753	}
2754	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2755}
2756
2757
2758
2759/*
2760 * Routine to create and manage a filesystem syncer vnode.
2761 */
2762#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2763static int	sync_fsync __P((struct  vop_fsync_args *));
2764static int	sync_inactive __P((struct  vop_inactive_args *));
2765static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2766#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2767#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2768static int	sync_print __P((struct vop_print_args *));
2769#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2770
2771static vop_t **sync_vnodeop_p;
2772static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2773	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2774	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2775	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2776	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2777	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2778	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2779	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2780	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2781	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2782	{ NULL, NULL }
2783};
2784static struct vnodeopv_desc sync_vnodeop_opv_desc =
2785	{ &sync_vnodeop_p, sync_vnodeop_entries };
2786
2787VNODEOP_SET(sync_vnodeop_opv_desc);
2788
2789/*
2790 * Create a new filesystem syncer vnode for the specified mount point.
2791 */
2792int
2793vfs_allocate_syncvnode(mp)
2794	struct mount *mp;
2795{
2796	struct vnode *vp;
2797	static long start, incr, next;
2798	int error;
2799
2800	/* Allocate a new vnode */
2801	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2802		mp->mnt_syncer = NULL;
2803		return (error);
2804	}
2805	vp->v_type = VNON;
2806	/*
2807	 * Place the vnode onto the syncer worklist. We attempt to
2808	 * scatter them about on the list so that they will go off
2809	 * at evenly distributed times even if all the filesystems
2810	 * are mounted at once.
2811	 */
2812	next += incr;
2813	if (next == 0 || next > syncer_maxdelay) {
2814		start /= 2;
2815		incr /= 2;
2816		if (start == 0) {
2817			start = syncer_maxdelay / 2;
2818			incr = syncer_maxdelay;
2819		}
2820		next = start;
2821	}
2822	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2823	mp->mnt_syncer = vp;
2824	return (0);
2825}
2826
2827/*
2828 * Do a lazy sync of the filesystem.
2829 */
2830static int
2831sync_fsync(ap)
2832	struct vop_fsync_args /* {
2833		struct vnode *a_vp;
2834		struct ucred *a_cred;
2835		int a_waitfor;
2836		struct proc *a_p;
2837	} */ *ap;
2838{
2839	struct vnode *syncvp = ap->a_vp;
2840	struct mount *mp = syncvp->v_mount;
2841	struct proc *p = ap->a_p;
2842	int asyncflag;
2843
2844	/*
2845	 * We only need to do something if this is a lazy evaluation.
2846	 */
2847	if (ap->a_waitfor != MNT_LAZY)
2848		return (0);
2849
2850	/*
2851	 * Move ourselves to the back of the sync list.
2852	 */
2853	vn_syncer_add_to_worklist(syncvp, syncdelay);
2854
2855	/*
2856	 * Walk the list of vnodes pushing all that are dirty and
2857	 * not already on the sync list.
2858	 */
2859	mtx_lock(&mountlist_mtx);
2860	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, p) != 0) {
2861		mtx_unlock(&mountlist_mtx);
2862		return (0);
2863	}
2864	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
2865		vfs_unbusy(mp, p);
2866		return (0);
2867	}
2868	asyncflag = mp->mnt_flag & MNT_ASYNC;
2869	mp->mnt_flag &= ~MNT_ASYNC;
2870	vfs_msync(mp, MNT_NOWAIT);
2871	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2872	if (asyncflag)
2873		mp->mnt_flag |= MNT_ASYNC;
2874	vn_finished_write(mp);
2875	vfs_unbusy(mp, p);
2876	return (0);
2877}
2878
2879/*
2880 * The syncer vnode is no referenced.
2881 */
2882static int
2883sync_inactive(ap)
2884	struct vop_inactive_args /* {
2885		struct vnode *a_vp;
2886		struct proc *a_p;
2887	} */ *ap;
2888{
2889
2890	vgone(ap->a_vp);
2891	return (0);
2892}
2893
2894/*
2895 * The syncer vnode is no longer needed and is being decommissioned.
2896 *
2897 * Modifications to the worklist must be protected at splbio().
2898 */
2899static int
2900sync_reclaim(ap)
2901	struct vop_reclaim_args /* {
2902		struct vnode *a_vp;
2903	} */ *ap;
2904{
2905	struct vnode *vp = ap->a_vp;
2906	int s;
2907
2908	s = splbio();
2909	vp->v_mount->mnt_syncer = NULL;
2910	if (vp->v_flag & VONWORKLST) {
2911		LIST_REMOVE(vp, v_synclist);
2912		vp->v_flag &= ~VONWORKLST;
2913	}
2914	splx(s);
2915
2916	return (0);
2917}
2918
2919/*
2920 * Print out a syncer vnode.
2921 */
2922static int
2923sync_print(ap)
2924	struct vop_print_args /* {
2925		struct vnode *a_vp;
2926	} */ *ap;
2927{
2928	struct vnode *vp = ap->a_vp;
2929
2930	printf("syncer vnode");
2931	if (vp->v_vnlock != NULL)
2932		lockmgr_printinfo(vp->v_vnlock);
2933	printf("\n");
2934	return (0);
2935}
2936
2937/*
2938 * extract the dev_t from a VCHR
2939 */
2940dev_t
2941vn_todev(vp)
2942	struct vnode *vp;
2943{
2944	if (vp->v_type != VCHR)
2945		return (NODEV);
2946	return (vp->v_rdev);
2947}
2948
2949/*
2950 * Check if vnode represents a disk device
2951 */
2952int
2953vn_isdisk(vp, errp)
2954	struct vnode *vp;
2955	int *errp;
2956{
2957	struct cdevsw *cdevsw;
2958
2959	if (vp->v_type != VCHR) {
2960		if (errp != NULL)
2961			*errp = ENOTBLK;
2962		return (0);
2963	}
2964	if (vp->v_rdev == NULL) {
2965		if (errp != NULL)
2966			*errp = ENXIO;
2967		return (0);
2968	}
2969	cdevsw = devsw(vp->v_rdev);
2970	if (cdevsw == NULL) {
2971		if (errp != NULL)
2972			*errp = ENXIO;
2973		return (0);
2974	}
2975	if (!(cdevsw->d_flags & D_DISK)) {
2976		if (errp != NULL)
2977			*errp = ENOTBLK;
2978		return (0);
2979	}
2980	if (errp != NULL)
2981		*errp = 0;
2982	return (1);
2983}
2984
2985/*
2986 * Free data allocated by namei(); see namei(9) for details.
2987 */
2988void
2989NDFREE(ndp, flags)
2990     struct nameidata *ndp;
2991     const uint flags;
2992{
2993	if (!(flags & NDF_NO_FREE_PNBUF) &&
2994	    (ndp->ni_cnd.cn_flags & HASBUF)) {
2995		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2996		ndp->ni_cnd.cn_flags &= ~HASBUF;
2997	}
2998	if (!(flags & NDF_NO_DVP_UNLOCK) &&
2999	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3000	    ndp->ni_dvp != ndp->ni_vp)
3001		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc);
3002	if (!(flags & NDF_NO_DVP_RELE) &&
3003	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3004		vrele(ndp->ni_dvp);
3005		ndp->ni_dvp = NULL;
3006	}
3007	if (!(flags & NDF_NO_VP_UNLOCK) &&
3008	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3009		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc);
3010	if (!(flags & NDF_NO_VP_RELE) &&
3011	    ndp->ni_vp) {
3012		vrele(ndp->ni_vp);
3013		ndp->ni_vp = NULL;
3014	}
3015	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3016	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3017		vrele(ndp->ni_startdir);
3018		ndp->ni_startdir = NULL;
3019	}
3020}
3021
3022/*
3023 * Common file system object access control check routine.  Accepts a
3024 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3025 * and optional call-by-reference privused argument allowing vaccess()
3026 * to indicate to the caller whether privilege was used to satisfy the
3027 * request.  Returns 0 on success, or an errno on failure.
3028 */
3029int
3030vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3031	enum vtype type;
3032	mode_t file_mode;
3033	uid_t file_uid;
3034	gid_t file_gid;
3035	mode_t acc_mode;
3036	struct ucred *cred;
3037	int *privused;
3038{
3039	mode_t dac_granted;
3040#ifdef CAPABILITIES
3041	mode_t cap_granted;
3042#endif
3043
3044	/*
3045	 * Look for a normal, non-privileged way to access the file/directory
3046	 * as requested.  If it exists, go with that.
3047	 */
3048
3049	if (privused != NULL)
3050		*privused = 0;
3051
3052	dac_granted = 0;
3053
3054	/* Check the owner. */
3055	if (cred->cr_uid == file_uid) {
3056		dac_granted |= VADMIN;
3057		if (file_mode & S_IXUSR)
3058			dac_granted |= VEXEC;
3059		if (file_mode & S_IRUSR)
3060			dac_granted |= VREAD;
3061		if (file_mode & S_IWUSR)
3062			dac_granted |= VWRITE;
3063
3064		if ((acc_mode & dac_granted) == acc_mode)
3065			return (0);
3066
3067		goto privcheck;
3068	}
3069
3070	/* Otherwise, check the groups (first match) */
3071	if (groupmember(file_gid, cred)) {
3072		if (file_mode & S_IXGRP)
3073			dac_granted |= VEXEC;
3074		if (file_mode & S_IRGRP)
3075			dac_granted |= VREAD;
3076		if (file_mode & S_IWGRP)
3077			dac_granted |= VWRITE;
3078
3079		if ((acc_mode & dac_granted) == acc_mode)
3080			return (0);
3081
3082		goto privcheck;
3083	}
3084
3085	/* Otherwise, check everyone else. */
3086	if (file_mode & S_IXOTH)
3087		dac_granted |= VEXEC;
3088	if (file_mode & S_IROTH)
3089		dac_granted |= VREAD;
3090	if (file_mode & S_IWOTH)
3091		dac_granted |= VWRITE;
3092	if ((acc_mode & dac_granted) == acc_mode)
3093		return (0);
3094
3095privcheck:
3096	if (!suser_xxx(cred, NULL, PRISON_ROOT)) {
3097		/* XXX audit: privilege used */
3098		if (privused != NULL)
3099			*privused = 1;
3100		return (0);
3101	}
3102
3103#ifdef CAPABILITIES
3104	/*
3105	 * Build a capability mask to determine if the set of capabilities
3106	 * satisfies the requirements when combined with the granted mask
3107	 * from above.
3108	 * For each capability, if the capability is required, bitwise
3109	 * or the request type onto the cap_granted mask.
3110	 */
3111	cap_granted = 0;
3112	if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3113	    !cap_check_xxx(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3114	    cap_granted |= VEXEC;
3115
3116	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3117	    !cap_check_xxx(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3118		cap_granted |= VREAD;
3119
3120	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3121	    !cap_check_xxx(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3122		cap_granted |= VWRITE;
3123
3124	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3125	    !cap_check_xxx(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3126		cap_granted |= VADMIN;
3127
3128	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3129		/* XXX audit: privilege used */
3130		if (privused != NULL)
3131			*privused = 1;
3132		return (0);
3133	}
3134#endif
3135
3136	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3137}
3138