vfs_export.c revision 67309
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_export.c 67309 2000-10-19 07:53:59Z rwatson $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46#include "opt_ffs.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/conf.h>
53#include <sys/dirent.h>
54#include <sys/domain.h>
55#include <sys/eventhandler.h>
56#include <sys/fcntl.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/ktr.h>
60#include <sys/malloc.h>
61#include <sys/mount.h>
62#include <sys/namei.h>
63#include <sys/proc.h>
64#include <sys/reboot.h>
65#include <sys/socket.h>
66#include <sys/stat.h>
67#include <sys/sysctl.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <machine/limits.h>
72#include <machine/mutex.h>
73
74#include <vm/vm.h>
75#include <vm/vm_object.h>
76#include <vm/vm_extern.h>
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pager.h>
81#include <vm/vnode_pager.h>
82#include <vm/vm_zone.h>
83
84static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
85
86static void	addalias __P((struct vnode *vp, dev_t nvp_rdev));
87static void	insmntque __P((struct vnode *vp, struct mount *mp));
88static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
89
90/*
91 * Number of vnodes in existence.  Increased whenever getnewvnode()
92 * allocates a new vnode, never decreased.
93 */
94static unsigned long	numvnodes;
95SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
96
97/*
98 * Conversion tables for conversion from vnode types to inode formats
99 * and back.
100 */
101enum vtype iftovt_tab[16] = {
102	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
103	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
104};
105int vttoif_tab[9] = {
106	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
107	S_IFSOCK, S_IFIFO, S_IFMT,
108};
109
110/*
111 * List of vnodes that are ready for recycling.
112 */
113static TAILQ_HEAD(freelst, vnode) vnode_free_list;
114
115/*
116 * Minimum number of free vnodes.  If there are fewer than this free vnodes,
117 * getnewvnode() will return a newly allocated vnode.
118 */
119static u_long wantfreevnodes = 25;
120SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
121/* Number of vnodes in the free list. */
122static u_long freevnodes = 0;
123SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
124
125/*
126 * Various variables used for debugging the new implementation of
127 * reassignbuf().
128 * XXX these are probably of (very) limited utility now.
129 */
130static int reassignbufcalls;
131SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
132static int reassignbufloops;
133SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
134static int reassignbufsortgood;
135SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
136static int reassignbufsortbad;
137SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
138/* Set to 0 for old insertion-sort based reassignbuf, 1 for modern method. */
139static int reassignbufmethod = 1;
140SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
141
142#ifdef ENABLE_VFS_IOOPT
143/* See NOTES for a description of this setting. */
144int vfs_ioopt = 0;
145SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
146#endif
147
148/* List of mounted filesystems. */
149struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
150
151/* For any iteration/modification of mountlist */
152struct mtx mountlist_mtx;
153
154/* For any iteration/modification of mnt_vnodelist */
155struct simplelock mntvnode_slock;
156/*
157 * Cache for the mount type id assigned to NFS.  This is used for
158 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
159 */
160int	nfs_mount_type = -1;
161
162#ifndef NULL_SIMPLELOCKS
163/* To keep more than one thread at a time from running vfs_getnewfsid */
164static struct simplelock mntid_slock;
165
166/* For any iteration/modification of vnode_free_list */
167static struct simplelock vnode_free_list_slock;
168
169/*
170 * For any iteration/modification of dev->si_hlist (linked through
171 * v_specnext)
172 */
173static struct simplelock spechash_slock;
174#endif
175
176/* Publicly exported FS */
177struct nfs_public nfs_pub;
178
179/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
180static vm_zone_t vnode_zone;
181
182/* Set to 1 to print out reclaim of active vnodes */
183int	prtactive = 0;
184
185/*
186 * The workitem queue.
187 *
188 * It is useful to delay writes of file data and filesystem metadata
189 * for tens of seconds so that quickly created and deleted files need
190 * not waste disk bandwidth being created and removed. To realize this,
191 * we append vnodes to a "workitem" queue. When running with a soft
192 * updates implementation, most pending metadata dependencies should
193 * not wait for more than a few seconds. Thus, mounted on block devices
194 * are delayed only about a half the time that file data is delayed.
195 * Similarly, directory updates are more critical, so are only delayed
196 * about a third the time that file data is delayed. Thus, there are
197 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
198 * one each second (driven off the filesystem syncer process). The
199 * syncer_delayno variable indicates the next queue that is to be processed.
200 * Items that need to be processed soon are placed in this queue:
201 *
202 *	syncer_workitem_pending[syncer_delayno]
203 *
204 * A delay of fifteen seconds is done by placing the request fifteen
205 * entries later in the queue:
206 *
207 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
208 *
209 */
210static int syncer_delayno = 0;
211static long syncer_mask;
212LIST_HEAD(synclist, vnode);
213static struct synclist *syncer_workitem_pending;
214
215#define SYNCER_MAXDELAY		32
216static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
217time_t syncdelay = 30;		/* max time to delay syncing data */
218time_t filedelay = 30;		/* time to delay syncing files */
219SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
220time_t dirdelay = 29;		/* time to delay syncing directories */
221SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
222time_t metadelay = 28;		/* time to delay syncing metadata */
223SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
224static int rushjob;		/* number of slots to run ASAP */
225static int stat_rush_requests;	/* number of times I/O speeded up */
226SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
227
228/*
229 * Number of vnodes we want to exist at any one time.  This is mostly used
230 * to size hash tables in vnode-related code.  It is normally not used in
231 * getnewvnode(), as wantfreevnodes is normally nonzero.)
232 *
233 * XXX desiredvnodes is historical cruft and should not exist.
234 */
235int desiredvnodes;
236SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
237    &desiredvnodes, 0, "Maximum number of vnodes");
238
239static void	vfs_free_addrlist __P((struct netexport *nep));
240static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
241static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
242				       struct export_args *argp));
243
244/*
245 * Initialize the vnode management data structures.
246 */
247void
248vntblinit()
249{
250
251	desiredvnodes = maxproc + cnt.v_page_count / 4;
252	mtx_init(&mountlist_mtx, "mountlist", MTX_DEF);
253	simple_lock_init(&mntvnode_slock);
254	simple_lock_init(&mntid_slock);
255	simple_lock_init(&spechash_slock);
256	TAILQ_INIT(&vnode_free_list);
257	simple_lock_init(&vnode_free_list_slock);
258	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
259	/*
260	 * Initialize the filesystem syncer.
261	 */
262	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
263		&syncer_mask);
264	syncer_maxdelay = syncer_mask + 1;
265}
266
267/*
268 * Mark a mount point as busy. Used to synchronize access and to delay
269 * unmounting. Interlock is not released on failure.
270 */
271int
272vfs_busy(mp, flags, interlkp, p)
273	struct mount *mp;
274	int flags;
275	struct mtx *interlkp;
276	struct proc *p;
277{
278	int lkflags;
279
280	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
281		if (flags & LK_NOWAIT)
282			return (ENOENT);
283		mp->mnt_kern_flag |= MNTK_MWAIT;
284		if (interlkp) {
285			mtx_exit(interlkp, MTX_DEF);
286		}
287		/*
288		 * Since all busy locks are shared except the exclusive
289		 * lock granted when unmounting, the only place that a
290		 * wakeup needs to be done is at the release of the
291		 * exclusive lock at the end of dounmount.
292		 */
293		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
294		if (interlkp) {
295			mtx_enter(interlkp, MTX_DEF);
296		}
297		return (ENOENT);
298	}
299	lkflags = LK_SHARED | LK_NOPAUSE;
300	if (interlkp)
301		lkflags |= LK_INTERLOCK;
302	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
303		panic("vfs_busy: unexpected lock failure");
304	return (0);
305}
306
307/*
308 * Free a busy filesystem.
309 */
310void
311vfs_unbusy(mp, p)
312	struct mount *mp;
313	struct proc *p;
314{
315
316	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
317}
318
319/*
320 * Lookup a filesystem type, and if found allocate and initialize
321 * a mount structure for it.
322 *
323 * Devname is usually updated by mount(8) after booting.
324 */
325int
326vfs_rootmountalloc(fstypename, devname, mpp)
327	char *fstypename;
328	char *devname;
329	struct mount **mpp;
330{
331	struct proc *p = curproc;	/* XXX */
332	struct vfsconf *vfsp;
333	struct mount *mp;
334
335	if (fstypename == NULL)
336		return (ENODEV);
337	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
338		if (!strcmp(vfsp->vfc_name, fstypename))
339			break;
340	if (vfsp == NULL)
341		return (ENODEV);
342	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
343	bzero((char *)mp, (u_long)sizeof(struct mount));
344	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
345	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
346	LIST_INIT(&mp->mnt_vnodelist);
347	mp->mnt_vfc = vfsp;
348	mp->mnt_op = vfsp->vfc_vfsops;
349	mp->mnt_flag = MNT_RDONLY;
350	mp->mnt_vnodecovered = NULLVP;
351	vfsp->vfc_refcount++;
352	mp->mnt_iosize_max = DFLTPHYS;
353	mp->mnt_stat.f_type = vfsp->vfc_typenum;
354	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
355	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
356	mp->mnt_stat.f_mntonname[0] = '/';
357	mp->mnt_stat.f_mntonname[1] = 0;
358	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
359	*mpp = mp;
360	return (0);
361}
362
363/*
364 * Find an appropriate filesystem to use for the root. If a filesystem
365 * has not been preselected, walk through the list of known filesystems
366 * trying those that have mountroot routines, and try them until one
367 * works or we have tried them all.
368 */
369#ifdef notdef	/* XXX JH */
370int
371lite2_vfs_mountroot()
372{
373	struct vfsconf *vfsp;
374	extern int (*lite2_mountroot) __P((void));
375	int error;
376
377	if (lite2_mountroot != NULL)
378		return ((*lite2_mountroot)());
379	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
380		if (vfsp->vfc_mountroot == NULL)
381			continue;
382		if ((error = (*vfsp->vfc_mountroot)()) == 0)
383			return (0);
384		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
385	}
386	return (ENODEV);
387}
388#endif
389
390/*
391 * Lookup a mount point by filesystem identifier.
392 */
393struct mount *
394vfs_getvfs(fsid)
395	fsid_t *fsid;
396{
397	register struct mount *mp;
398
399	mtx_enter(&mountlist_mtx, MTX_DEF);
400	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
401		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
402		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
403			mtx_exit(&mountlist_mtx, MTX_DEF);
404			return (mp);
405	    }
406	}
407	mtx_exit(&mountlist_mtx, MTX_DEF);
408	return ((struct mount *) 0);
409}
410
411/*
412 * Get a new unique fsid.  Try to make its val[0] unique, since this value
413 * will be used to create fake device numbers for stat().  Also try (but
414 * not so hard) make its val[0] unique mod 2^16, since some emulators only
415 * support 16-bit device numbers.  We end up with unique val[0]'s for the
416 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
417 *
418 * Keep in mind that several mounts may be running in parallel.  Starting
419 * the search one past where the previous search terminated is both a
420 * micro-optimization and a defense against returning the same fsid to
421 * different mounts.
422 */
423void
424vfs_getnewfsid(mp)
425	struct mount *mp;
426{
427	static u_int16_t mntid_base;
428	fsid_t tfsid;
429	int mtype;
430
431	simple_lock(&mntid_slock);
432	mtype = mp->mnt_vfc->vfc_typenum;
433	tfsid.val[1] = mtype;
434	mtype = (mtype & 0xFF) << 24;
435	for (;;) {
436		tfsid.val[0] = makeudev(255,
437		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
438		mntid_base++;
439		if (vfs_getvfs(&tfsid) == NULL)
440			break;
441	}
442	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
443	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
444	simple_unlock(&mntid_slock);
445}
446
447/*
448 * Knob to control the precision of file timestamps:
449 *
450 *   0 = seconds only; nanoseconds zeroed.
451 *   1 = seconds and nanoseconds, accurate within 1/HZ.
452 *   2 = seconds and nanoseconds, truncated to microseconds.
453 * >=3 = seconds and nanoseconds, maximum precision.
454 */
455enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
456
457static int timestamp_precision = TSP_SEC;
458SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
459    &timestamp_precision, 0, "");
460
461/*
462 * Get a current timestamp.
463 */
464void
465vfs_timestamp(tsp)
466	struct timespec *tsp;
467{
468	struct timeval tv;
469
470	switch (timestamp_precision) {
471	case TSP_SEC:
472		tsp->tv_sec = time_second;
473		tsp->tv_nsec = 0;
474		break;
475	case TSP_HZ:
476		getnanotime(tsp);
477		break;
478	case TSP_USEC:
479		microtime(&tv);
480		TIMEVAL_TO_TIMESPEC(&tv, tsp);
481		break;
482	case TSP_NSEC:
483	default:
484		nanotime(tsp);
485		break;
486	}
487}
488
489/*
490 * Set vnode attributes to VNOVAL
491 */
492void
493vattr_null(vap)
494	register struct vattr *vap;
495{
496
497	vap->va_type = VNON;
498	vap->va_size = VNOVAL;
499	vap->va_bytes = VNOVAL;
500	vap->va_mode = VNOVAL;
501	vap->va_nlink = VNOVAL;
502	vap->va_uid = VNOVAL;
503	vap->va_gid = VNOVAL;
504	vap->va_fsid = VNOVAL;
505	vap->va_fileid = VNOVAL;
506	vap->va_blocksize = VNOVAL;
507	vap->va_rdev = VNOVAL;
508	vap->va_atime.tv_sec = VNOVAL;
509	vap->va_atime.tv_nsec = VNOVAL;
510	vap->va_mtime.tv_sec = VNOVAL;
511	vap->va_mtime.tv_nsec = VNOVAL;
512	vap->va_ctime.tv_sec = VNOVAL;
513	vap->va_ctime.tv_nsec = VNOVAL;
514	vap->va_flags = VNOVAL;
515	vap->va_gen = VNOVAL;
516	vap->va_vaflags = 0;
517}
518
519/*
520 * Routines having to do with the management of the vnode table.
521 */
522
523/*
524 * Return the next vnode from the free list.
525 */
526int
527getnewvnode(tag, mp, vops, vpp)
528	enum vtagtype tag;
529	struct mount *mp;
530	vop_t **vops;
531	struct vnode **vpp;
532{
533	int s, count;
534	struct proc *p = curproc;	/* XXX */
535	struct vnode *vp = NULL;
536	struct mount *vnmp;
537	vm_object_t object;
538
539	/*
540	 * We take the least recently used vnode from the freelist
541	 * if we can get it and it has no cached pages, and no
542	 * namecache entries are relative to it.
543	 * Otherwise we allocate a new vnode
544	 */
545
546	s = splbio();
547	simple_lock(&vnode_free_list_slock);
548
549	if (wantfreevnodes && freevnodes < wantfreevnodes) {
550		vp = NULL;
551	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
552		/*
553		 * XXX: this is only here to be backwards compatible
554		 */
555		vp = NULL;
556	} else for (count = 0; count < freevnodes; count++) {
557		vp = TAILQ_FIRST(&vnode_free_list);
558		if (vp == NULL || vp->v_usecount)
559			panic("getnewvnode: free vnode isn't");
560		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
561		/*
562		 * Don't recycle if active in the namecache or
563		 * if it still has cached pages or we cannot get
564		 * its interlock.
565		 */
566		if (LIST_FIRST(&vp->v_cache_src) != NULL ||
567		    (VOP_GETVOBJECT(vp, &object) == 0 &&
568		     (object->resident_page_count || object->ref_count)) ||
569		    !mtx_try_enter(&vp->v_interlock, MTX_DEF)) {
570			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
571			vp = NULL;
572			continue;
573		}
574		/*
575		 * Skip over it if its filesystem is being suspended.
576		 */
577		if (vn_start_write(vp, &vnmp, V_NOWAIT) == 0)
578			break;
579		mtx_exit(&vp->v_interlock, MTX_DEF);
580		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
581		vp = NULL;
582	}
583	if (vp) {
584		vp->v_flag |= VDOOMED;
585		freevnodes--;
586		simple_unlock(&vnode_free_list_slock);
587		cache_purge(vp);
588		vp->v_lease = NULL;
589		if (vp->v_type != VBAD) {
590			vgonel(vp, p);
591		} else {
592			mtx_exit(&vp->v_interlock, MTX_DEF);
593		}
594		vn_finished_write(vnmp);
595
596#ifdef INVARIANTS
597		{
598			int s;
599
600			if (vp->v_data)
601				panic("cleaned vnode isn't");
602			s = splbio();
603			if (vp->v_numoutput)
604				panic("Clean vnode has pending I/O's");
605			splx(s);
606			if (vp->v_writecount != 0)
607				panic("Non-zero write count");
608		}
609#endif
610		vp->v_flag = 0;
611		vp->v_lastw = 0;
612		vp->v_lasta = 0;
613		vp->v_cstart = 0;
614		vp->v_clen = 0;
615		vp->v_socket = 0;
616	} else {
617		simple_unlock(&vnode_free_list_slock);
618		vp = (struct vnode *) zalloc(vnode_zone);
619		bzero((char *) vp, sizeof *vp);
620		mtx_init(&vp->v_interlock, "vnode interlock", MTX_DEF);
621		vp->v_dd = vp;
622		cache_purge(vp);
623		LIST_INIT(&vp->v_cache_src);
624		TAILQ_INIT(&vp->v_cache_dst);
625		numvnodes++;
626	}
627
628	TAILQ_INIT(&vp->v_cleanblkhd);
629	TAILQ_INIT(&vp->v_dirtyblkhd);
630	vp->v_type = VNON;
631	vp->v_tag = tag;
632	vp->v_op = vops;
633	lockinit(&vp->v_lock, PVFS, "vnlock", 0, LK_NOPAUSE);
634	insmntque(vp, mp);
635	*vpp = vp;
636	vp->v_usecount = 1;
637	vp->v_data = 0;
638	splx(s);
639
640	vfs_object_create(vp, p, p->p_ucred);
641	return (0);
642}
643
644/*
645 * Move a vnode from one mount queue to another.
646 */
647static void
648insmntque(vp, mp)
649	register struct vnode *vp;
650	register struct mount *mp;
651{
652
653	simple_lock(&mntvnode_slock);
654	/*
655	 * Delete from old mount point vnode list, if on one.
656	 */
657	if (vp->v_mount != NULL)
658		LIST_REMOVE(vp, v_mntvnodes);
659	/*
660	 * Insert into list of vnodes for the new mount point, if available.
661	 */
662	if ((vp->v_mount = mp) == NULL) {
663		simple_unlock(&mntvnode_slock);
664		return;
665	}
666	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
667	simple_unlock(&mntvnode_slock);
668}
669
670/*
671 * Update outstanding I/O count and do wakeup if requested.
672 */
673void
674vwakeup(bp)
675	register struct buf *bp;
676{
677	register struct vnode *vp;
678
679	bp->b_flags &= ~B_WRITEINPROG;
680	if ((vp = bp->b_vp)) {
681		vp->v_numoutput--;
682		if (vp->v_numoutput < 0)
683			panic("vwakeup: neg numoutput");
684		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
685			vp->v_flag &= ~VBWAIT;
686			wakeup((caddr_t) &vp->v_numoutput);
687		}
688	}
689}
690
691/*
692 * Flush out and invalidate all buffers associated with a vnode.
693 * Called with the underlying object locked.
694 */
695int
696vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
697	register struct vnode *vp;
698	int flags;
699	struct ucred *cred;
700	struct proc *p;
701	int slpflag, slptimeo;
702{
703	register struct buf *bp;
704	struct buf *nbp, *blist;
705	int s, error;
706	vm_object_t object;
707
708	if (flags & V_SAVE) {
709		s = splbio();
710		while (vp->v_numoutput) {
711			vp->v_flag |= VBWAIT;
712			error = tsleep((caddr_t)&vp->v_numoutput,
713			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
714			if (error) {
715				splx(s);
716				return (error);
717			}
718		}
719		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
720			splx(s);
721			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
722				return (error);
723			s = splbio();
724			if (vp->v_numoutput > 0 ||
725			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
726				panic("vinvalbuf: dirty bufs");
727		}
728		splx(s);
729  	}
730	s = splbio();
731	for (;;) {
732		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
733		if (!blist)
734			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
735		if (!blist)
736			break;
737
738		for (bp = blist; bp; bp = nbp) {
739			nbp = TAILQ_NEXT(bp, b_vnbufs);
740			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
741				error = BUF_TIMELOCK(bp,
742				    LK_EXCLUSIVE | LK_SLEEPFAIL,
743				    "vinvalbuf", slpflag, slptimeo);
744				if (error == ENOLCK)
745					break;
746				splx(s);
747				return (error);
748			}
749			/*
750			 * XXX Since there are no node locks for NFS, I
751			 * believe there is a slight chance that a delayed
752			 * write will occur while sleeping just above, so
753			 * check for it.  Note that vfs_bio_awrite expects
754			 * buffers to reside on a queue, while VOP_BWRITE and
755			 * brelse do not.
756			 */
757			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
758				(flags & V_SAVE)) {
759
760				if (bp->b_vp == vp) {
761					if (bp->b_flags & B_CLUSTEROK) {
762						BUF_UNLOCK(bp);
763						vfs_bio_awrite(bp);
764					} else {
765						bremfree(bp);
766						bp->b_flags |= B_ASYNC;
767						BUF_WRITE(bp);
768					}
769				} else {
770					bremfree(bp);
771					(void) BUF_WRITE(bp);
772				}
773				break;
774			}
775			bremfree(bp);
776			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
777			bp->b_flags &= ~B_ASYNC;
778			brelse(bp);
779		}
780	}
781
782	while (vp->v_numoutput > 0) {
783		vp->v_flag |= VBWAIT;
784		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
785	}
786
787	splx(s);
788
789	/*
790	 * Destroy the copy in the VM cache, too.
791	 */
792	mtx_enter(&vp->v_interlock, MTX_DEF);
793	if (VOP_GETVOBJECT(vp, &object) == 0) {
794		vm_object_page_remove(object, 0, 0,
795			(flags & V_SAVE) ? TRUE : FALSE);
796	}
797	mtx_exit(&vp->v_interlock, MTX_DEF);
798
799	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
800		panic("vinvalbuf: flush failed");
801	return (0);
802}
803
804/*
805 * Truncate a file's buffer and pages to a specified length.  This
806 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
807 * sync activity.
808 */
809int
810vtruncbuf(vp, cred, p, length, blksize)
811	register struct vnode *vp;
812	struct ucred *cred;
813	struct proc *p;
814	off_t length;
815	int blksize;
816{
817	register struct buf *bp;
818	struct buf *nbp;
819	int s, anyfreed;
820	int trunclbn;
821
822	/*
823	 * Round up to the *next* lbn.
824	 */
825	trunclbn = (length + blksize - 1) / blksize;
826
827	s = splbio();
828restart:
829	anyfreed = 1;
830	for (;anyfreed;) {
831		anyfreed = 0;
832		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
833			nbp = TAILQ_NEXT(bp, b_vnbufs);
834			if (bp->b_lblkno >= trunclbn) {
835				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
836					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
837					goto restart;
838				} else {
839					bremfree(bp);
840					bp->b_flags |= (B_INVAL | B_RELBUF);
841					bp->b_flags &= ~B_ASYNC;
842					brelse(bp);
843					anyfreed = 1;
844				}
845				if (nbp &&
846				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
847				    (nbp->b_vp != vp) ||
848				    (nbp->b_flags & B_DELWRI))) {
849					goto restart;
850				}
851			}
852		}
853
854		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
855			nbp = TAILQ_NEXT(bp, b_vnbufs);
856			if (bp->b_lblkno >= trunclbn) {
857				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
858					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
859					goto restart;
860				} else {
861					bremfree(bp);
862					bp->b_flags |= (B_INVAL | B_RELBUF);
863					bp->b_flags &= ~B_ASYNC;
864					brelse(bp);
865					anyfreed = 1;
866				}
867				if (nbp &&
868				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
869				    (nbp->b_vp != vp) ||
870				    (nbp->b_flags & B_DELWRI) == 0)) {
871					goto restart;
872				}
873			}
874		}
875	}
876
877	if (length > 0) {
878restartsync:
879		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
880			nbp = TAILQ_NEXT(bp, b_vnbufs);
881			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
882				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
883					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
884					goto restart;
885				} else {
886					bremfree(bp);
887					if (bp->b_vp == vp) {
888						bp->b_flags |= B_ASYNC;
889					} else {
890						bp->b_flags &= ~B_ASYNC;
891					}
892					BUF_WRITE(bp);
893				}
894				goto restartsync;
895			}
896
897		}
898	}
899
900	while (vp->v_numoutput > 0) {
901		vp->v_flag |= VBWAIT;
902		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
903	}
904
905	splx(s);
906
907	vnode_pager_setsize(vp, length);
908
909	return (0);
910}
911
912/*
913 * Associate a buffer with a vnode.
914 */
915void
916bgetvp(vp, bp)
917	register struct vnode *vp;
918	register struct buf *bp;
919{
920	int s;
921
922	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
923
924	vhold(vp);
925	bp->b_vp = vp;
926	bp->b_dev = vn_todev(vp);
927	/*
928	 * Insert onto list for new vnode.
929	 */
930	s = splbio();
931	bp->b_xflags |= BX_VNCLEAN;
932	bp->b_xflags &= ~BX_VNDIRTY;
933	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
934	splx(s);
935}
936
937/*
938 * Disassociate a buffer from a vnode.
939 */
940void
941brelvp(bp)
942	register struct buf *bp;
943{
944	struct vnode *vp;
945	struct buflists *listheadp;
946	int s;
947
948	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
949
950	/*
951	 * Delete from old vnode list, if on one.
952	 */
953	vp = bp->b_vp;
954	s = splbio();
955	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
956		if (bp->b_xflags & BX_VNDIRTY)
957			listheadp = &vp->v_dirtyblkhd;
958		else
959			listheadp = &vp->v_cleanblkhd;
960		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
961		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
962	}
963	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
964		vp->v_flag &= ~VONWORKLST;
965		LIST_REMOVE(vp, v_synclist);
966	}
967	splx(s);
968	bp->b_vp = (struct vnode *) 0;
969	vdrop(vp);
970}
971
972/*
973 * Add an item to the syncer work queue.
974 */
975static void
976vn_syncer_add_to_worklist(struct vnode *vp, int delay)
977{
978	int s, slot;
979
980	s = splbio();
981
982	if (vp->v_flag & VONWORKLST) {
983		LIST_REMOVE(vp, v_synclist);
984	}
985
986	if (delay > syncer_maxdelay - 2)
987		delay = syncer_maxdelay - 2;
988	slot = (syncer_delayno + delay) & syncer_mask;
989
990	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
991	vp->v_flag |= VONWORKLST;
992	splx(s);
993}
994
995struct  proc *updateproc;
996static void sched_sync __P((void));
997static struct kproc_desc up_kp = {
998	"syncer",
999	sched_sync,
1000	&updateproc
1001};
1002SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1003
1004/*
1005 * System filesystem synchronizer daemon.
1006 */
1007void
1008sched_sync(void)
1009{
1010	struct synclist *slp;
1011	struct vnode *vp;
1012	struct mount *mp;
1013	long starttime;
1014	int s;
1015	struct proc *p = updateproc;
1016
1017	mtx_enter(&Giant, MTX_DEF);
1018
1019	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, p,
1020	    SHUTDOWN_PRI_LAST);
1021
1022	for (;;) {
1023		kproc_suspend_loop(p);
1024
1025		starttime = time_second;
1026
1027		/*
1028		 * Push files whose dirty time has expired.  Be careful
1029		 * of interrupt race on slp queue.
1030		 */
1031		s = splbio();
1032		slp = &syncer_workitem_pending[syncer_delayno];
1033		syncer_delayno += 1;
1034		if (syncer_delayno == syncer_maxdelay)
1035			syncer_delayno = 0;
1036		splx(s);
1037
1038		while ((vp = LIST_FIRST(slp)) != NULL) {
1039			if (VOP_ISLOCKED(vp, NULL) == 0 &&
1040			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
1041				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1042				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
1043				VOP_UNLOCK(vp, 0, p);
1044				vn_finished_write(mp);
1045			}
1046			s = splbio();
1047			if (LIST_FIRST(slp) == vp) {
1048				/*
1049				 * Note: v_tag VT_VFS vps can remain on the
1050				 * worklist too with no dirty blocks, but
1051				 * since sync_fsync() moves it to a different
1052				 * slot we are safe.
1053				 */
1054				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1055				    !vn_isdisk(vp, NULL))
1056					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1057				/*
1058				 * Put us back on the worklist.  The worklist
1059				 * routine will remove us from our current
1060				 * position and then add us back in at a later
1061				 * position.
1062				 */
1063				vn_syncer_add_to_worklist(vp, syncdelay);
1064			}
1065			splx(s);
1066		}
1067
1068		/*
1069		 * Do soft update processing.
1070		 */
1071#ifdef SOFTUPDATES
1072		softdep_process_worklist(NULL);
1073#endif
1074
1075		/*
1076		 * The variable rushjob allows the kernel to speed up the
1077		 * processing of the filesystem syncer process. A rushjob
1078		 * value of N tells the filesystem syncer to process the next
1079		 * N seconds worth of work on its queue ASAP. Currently rushjob
1080		 * is used by the soft update code to speed up the filesystem
1081		 * syncer process when the incore state is getting so far
1082		 * ahead of the disk that the kernel memory pool is being
1083		 * threatened with exhaustion.
1084		 */
1085		if (rushjob > 0) {
1086			rushjob -= 1;
1087			continue;
1088		}
1089		/*
1090		 * If it has taken us less than a second to process the
1091		 * current work, then wait. Otherwise start right over
1092		 * again. We can still lose time if any single round
1093		 * takes more than two seconds, but it does not really
1094		 * matter as we are just trying to generally pace the
1095		 * filesystem activity.
1096		 */
1097		if (time_second == starttime)
1098			tsleep(&lbolt, PPAUSE, "syncer", 0);
1099	}
1100}
1101
1102/*
1103 * Request the syncer daemon to speed up its work.
1104 * We never push it to speed up more than half of its
1105 * normal turn time, otherwise it could take over the cpu.
1106 */
1107int
1108speedup_syncer()
1109{
1110	int s;
1111
1112	s = splhigh();
1113	if (updateproc->p_wchan == &lbolt)
1114		setrunnable(updateproc);
1115	splx(s);
1116	if (rushjob < syncdelay / 2) {
1117		rushjob += 1;
1118		stat_rush_requests += 1;
1119		return (1);
1120	}
1121	return(0);
1122}
1123
1124/*
1125 * Associate a p-buffer with a vnode.
1126 *
1127 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1128 * with the buffer.  i.e. the bp has not been linked into the vnode or
1129 * ref-counted.
1130 */
1131void
1132pbgetvp(vp, bp)
1133	register struct vnode *vp;
1134	register struct buf *bp;
1135{
1136
1137	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1138
1139	bp->b_vp = vp;
1140	bp->b_flags |= B_PAGING;
1141	bp->b_dev = vn_todev(vp);
1142}
1143
1144/*
1145 * Disassociate a p-buffer from a vnode.
1146 */
1147void
1148pbrelvp(bp)
1149	register struct buf *bp;
1150{
1151
1152	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1153
1154	/* XXX REMOVE ME */
1155	if (bp->b_vnbufs.tqe_next != NULL) {
1156		panic(
1157		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1158		    bp,
1159		    (int)bp->b_flags
1160		);
1161	}
1162	bp->b_vp = (struct vnode *) 0;
1163	bp->b_flags &= ~B_PAGING;
1164}
1165
1166/*
1167 * Change the vnode a pager buffer is associated with.
1168 */
1169void
1170pbreassignbuf(bp, newvp)
1171	struct buf *bp;
1172	struct vnode *newvp;
1173{
1174
1175	KASSERT(bp->b_flags & B_PAGING,
1176	    ("pbreassignbuf() on non phys bp %p", bp));
1177	bp->b_vp = newvp;
1178}
1179
1180/*
1181 * Reassign a buffer from one vnode to another.
1182 * Used to assign file specific control information
1183 * (indirect blocks) to the vnode to which they belong.
1184 */
1185void
1186reassignbuf(bp, newvp)
1187	register struct buf *bp;
1188	register struct vnode *newvp;
1189{
1190	struct buflists *listheadp;
1191	int delay;
1192	int s;
1193
1194	if (newvp == NULL) {
1195		printf("reassignbuf: NULL");
1196		return;
1197	}
1198	++reassignbufcalls;
1199
1200	/*
1201	 * B_PAGING flagged buffers cannot be reassigned because their vp
1202	 * is not fully linked in.
1203	 */
1204	if (bp->b_flags & B_PAGING)
1205		panic("cannot reassign paging buffer");
1206
1207	s = splbio();
1208	/*
1209	 * Delete from old vnode list, if on one.
1210	 */
1211	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1212		if (bp->b_xflags & BX_VNDIRTY)
1213			listheadp = &bp->b_vp->v_dirtyblkhd;
1214		else
1215			listheadp = &bp->b_vp->v_cleanblkhd;
1216		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1217		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1218		if (bp->b_vp != newvp) {
1219			vdrop(bp->b_vp);
1220			bp->b_vp = NULL;	/* for clarification */
1221		}
1222	}
1223	/*
1224	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1225	 * of clean buffers.
1226	 */
1227	if (bp->b_flags & B_DELWRI) {
1228		struct buf *tbp;
1229
1230		listheadp = &newvp->v_dirtyblkhd;
1231		if ((newvp->v_flag & VONWORKLST) == 0) {
1232			switch (newvp->v_type) {
1233			case VDIR:
1234				delay = dirdelay;
1235				break;
1236			case VCHR:
1237			case VBLK:
1238				if (newvp->v_rdev->si_mountpoint != NULL) {
1239					delay = metadelay;
1240					break;
1241				}
1242				/* fall through */
1243			default:
1244				delay = filedelay;
1245			}
1246			vn_syncer_add_to_worklist(newvp, delay);
1247		}
1248		bp->b_xflags |= BX_VNDIRTY;
1249		tbp = TAILQ_FIRST(listheadp);
1250		if (tbp == NULL ||
1251		    bp->b_lblkno == 0 ||
1252		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1253		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1254			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1255			++reassignbufsortgood;
1256		} else if (bp->b_lblkno < 0) {
1257			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1258			++reassignbufsortgood;
1259		} else if (reassignbufmethod == 1) {
1260			/*
1261			 * New sorting algorithm, only handle sequential case,
1262			 * otherwise append to end (but before metadata)
1263			 */
1264			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1265			    (tbp->b_xflags & BX_VNDIRTY)) {
1266				/*
1267				 * Found the best place to insert the buffer
1268				 */
1269				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1270				++reassignbufsortgood;
1271			} else {
1272				/*
1273				 * Missed, append to end, but before meta-data.
1274				 * We know that the head buffer in the list is
1275				 * not meta-data due to prior conditionals.
1276				 *
1277				 * Indirect effects:  NFS second stage write
1278				 * tends to wind up here, giving maximum
1279				 * distance between the unstable write and the
1280				 * commit rpc.
1281				 */
1282				tbp = TAILQ_LAST(listheadp, buflists);
1283				while (tbp && tbp->b_lblkno < 0)
1284					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1285				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1286				++reassignbufsortbad;
1287			}
1288		} else {
1289			/*
1290			 * Old sorting algorithm, scan queue and insert
1291			 */
1292			struct buf *ttbp;
1293			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1294			    (ttbp->b_lblkno < bp->b_lblkno)) {
1295				++reassignbufloops;
1296				tbp = ttbp;
1297			}
1298			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1299		}
1300	} else {
1301		bp->b_xflags |= BX_VNCLEAN;
1302		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1303		if ((newvp->v_flag & VONWORKLST) &&
1304		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1305			newvp->v_flag &= ~VONWORKLST;
1306			LIST_REMOVE(newvp, v_synclist);
1307		}
1308	}
1309	if (bp->b_vp != newvp) {
1310		bp->b_vp = newvp;
1311		vhold(bp->b_vp);
1312	}
1313	splx(s);
1314}
1315
1316/*
1317 * Create a vnode for a block device.
1318 * Used for mounting the root file system.
1319 * XXX: This now changed to a VCHR due to the block/char merging.
1320 */
1321int
1322bdevvp(dev, vpp)
1323	dev_t dev;
1324	struct vnode **vpp;
1325{
1326	register struct vnode *vp;
1327	struct vnode *nvp;
1328	int error;
1329
1330	if (dev == NODEV) {
1331		*vpp = NULLVP;
1332		return (ENXIO);
1333	}
1334	if (vfinddev(dev, VCHR, vpp))
1335		return (0);
1336	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1337	if (error) {
1338		*vpp = NULLVP;
1339		return (error);
1340	}
1341	vp = nvp;
1342	vp->v_type = VCHR;
1343	addalias(vp, dev);
1344	*vpp = vp;
1345	return (0);
1346}
1347
1348/*
1349 * Add vnode to the alias list hung off the dev_t.
1350 *
1351 * The reason for this gunk is that multiple vnodes can reference
1352 * the same physical device, so checking vp->v_usecount to see
1353 * how many users there are is inadequate; the v_usecount for
1354 * the vnodes need to be accumulated.  vcount() does that.
1355 */
1356struct vnode *
1357addaliasu(nvp, nvp_rdev)
1358	struct vnode *nvp;
1359	udev_t nvp_rdev;
1360{
1361	struct vnode *ovp;
1362	vop_t **ops;
1363	dev_t dev;
1364
1365	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1366		panic("addaliasu on non-special vnode");
1367	dev = udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0);
1368	/*
1369	 * Check to see if we have a bdevvp vnode with no associated
1370	 * filesystem. If so, we want to associate the filesystem of
1371	 * the new newly instigated vnode with the bdevvp vnode and
1372	 * discard the newly created vnode rather than leaving the
1373	 * bdevvp vnode lying around with no associated filesystem.
1374	 */
1375	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
1376		addalias(nvp, dev);
1377		return (nvp);
1378	}
1379	/*
1380	 * Discard unneeded vnode, but save its node specific data.
1381	 * Note that if there is a lock, it is carried over in the
1382	 * node specific data to the replacement vnode.
1383	 */
1384	vref(ovp);
1385	ovp->v_data = nvp->v_data;
1386	ovp->v_tag = nvp->v_tag;
1387	nvp->v_data = NULL;
1388	ops = nvp->v_op;
1389	nvp->v_op = ovp->v_op;
1390	ovp->v_op = ops;
1391	lockinit(&ovp->v_lock, PVFS, "vnlock", 0, LK_NOPAUSE);
1392	if (nvp->v_vnlock)
1393		ovp->v_vnlock = &ovp->v_lock;
1394	insmntque(ovp, nvp->v_mount);
1395	vrele(nvp);
1396	vgone(nvp);
1397	return (ovp);
1398}
1399
1400/* This is a local helper function that do the same as addaliasu, but for a
1401 * dev_t instead of an udev_t. */
1402static void
1403addalias(nvp, dev)
1404	struct vnode *nvp;
1405	dev_t dev;
1406{
1407
1408	KASSERT(nvp->v_type == VBLK || nvp->v_type == VCHR,
1409	    ("addalias on non-special vnode"));
1410	nvp->v_rdev = dev;
1411	simple_lock(&spechash_slock);
1412	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1413	simple_unlock(&spechash_slock);
1414}
1415
1416/*
1417 * Grab a particular vnode from the free list, increment its
1418 * reference count and lock it. The vnode lock bit is set if the
1419 * vnode is being eliminated in vgone. The process is awakened
1420 * when the transition is completed, and an error returned to
1421 * indicate that the vnode is no longer usable (possibly having
1422 * been changed to a new file system type).
1423 */
1424int
1425vget(vp, flags, p)
1426	register struct vnode *vp;
1427	int flags;
1428	struct proc *p;
1429{
1430	int error;
1431
1432	/*
1433	 * If the vnode is in the process of being cleaned out for
1434	 * another use, we wait for the cleaning to finish and then
1435	 * return failure. Cleaning is determined by checking that
1436	 * the VXLOCK flag is set.
1437	 */
1438	if ((flags & LK_INTERLOCK) == 0)
1439		mtx_enter(&vp->v_interlock, MTX_DEF);
1440	if (vp->v_flag & VXLOCK) {
1441		vp->v_flag |= VXWANT;
1442		mtx_exit(&vp->v_interlock, MTX_DEF);
1443		tsleep((caddr_t)vp, PINOD, "vget", 0);
1444		return (ENOENT);
1445	}
1446
1447	vp->v_usecount++;
1448
1449	if (VSHOULDBUSY(vp))
1450		vbusy(vp);
1451	if (flags & LK_TYPE_MASK) {
1452		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1453			/*
1454			 * must expand vrele here because we do not want
1455			 * to call VOP_INACTIVE if the reference count
1456			 * drops back to zero since it was never really
1457			 * active. We must remove it from the free list
1458			 * before sleeping so that multiple processes do
1459			 * not try to recycle it.
1460			 */
1461			mtx_enter(&vp->v_interlock, MTX_DEF);
1462			vp->v_usecount--;
1463			if (VSHOULDFREE(vp))
1464				vfree(vp);
1465			mtx_exit(&vp->v_interlock, MTX_DEF);
1466		}
1467		return (error);
1468	}
1469	mtx_exit(&vp->v_interlock, MTX_DEF);
1470	return (0);
1471}
1472
1473/*
1474 * Increase the reference count of a vnode.
1475 */
1476void
1477vref(struct vnode *vp)
1478{
1479	mtx_enter(&vp->v_interlock, MTX_DEF);
1480	vp->v_usecount++;
1481	mtx_exit(&vp->v_interlock, MTX_DEF);
1482}
1483
1484/*
1485 * Vnode put/release.
1486 * If count drops to zero, call inactive routine and return to freelist.
1487 */
1488void
1489vrele(vp)
1490	struct vnode *vp;
1491{
1492	struct proc *p = curproc;	/* XXX */
1493
1494	KASSERT(vp != NULL, ("vrele: null vp"));
1495
1496	mtx_enter(&vp->v_interlock, MTX_DEF);
1497
1498	KASSERT(vp->v_writecount < vp->v_usecount, ("vrele: missed vn_close"));
1499
1500	if (vp->v_usecount > 1) {
1501
1502		vp->v_usecount--;
1503		mtx_exit(&vp->v_interlock, MTX_DEF);
1504
1505		return;
1506	}
1507
1508	if (vp->v_usecount == 1) {
1509
1510		vp->v_usecount--;
1511		if (VSHOULDFREE(vp))
1512			vfree(vp);
1513	/*
1514	 * If we are doing a vput, the node is already locked, and we must
1515	 * call VOP_INACTIVE with the node locked.  So, in the case of
1516	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1517	 */
1518		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1519			VOP_INACTIVE(vp, p);
1520		}
1521
1522	} else {
1523#ifdef DIAGNOSTIC
1524		vprint("vrele: negative ref count", vp);
1525		mtx_exit(&vp->v_interlock, MTX_DEF);
1526#endif
1527		panic("vrele: negative ref cnt");
1528	}
1529}
1530
1531/*
1532 * Release an already locked vnode.  This give the same effects as
1533 * unlock+vrele(), but takes less time and avoids releasing and
1534 * re-aquiring the lock (as vrele() aquires the lock internally.)
1535 */
1536void
1537vput(vp)
1538	struct vnode *vp;
1539{
1540	struct proc *p = curproc;	/* XXX */
1541
1542	KASSERT(vp != NULL, ("vput: null vp"));
1543	mtx_enter(&vp->v_interlock, MTX_DEF);
1544	KASSERT(vp->v_writecount < vp->v_usecount, ("vput: missed vn_close"));
1545
1546	if (vp->v_usecount > 1) {
1547
1548		vp->v_usecount--;
1549		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1550		return;
1551
1552	}
1553
1554	if (vp->v_usecount == 1) {
1555
1556		vp->v_usecount--;
1557		if (VSHOULDFREE(vp))
1558			vfree(vp);
1559	/*
1560	 * If we are doing a vput, the node is already locked, and we must
1561	 * call VOP_INACTIVE with the node locked.  So, in the case of
1562	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1563	 */
1564		mtx_exit(&vp->v_interlock, MTX_DEF);
1565		VOP_INACTIVE(vp, p);
1566
1567	} else {
1568#ifdef DIAGNOSTIC
1569		vprint("vput: negative ref count", vp);
1570#endif
1571		panic("vput: negative ref cnt");
1572	}
1573}
1574
1575/*
1576 * Somebody doesn't want the vnode recycled.
1577 */
1578void
1579vhold(vp)
1580	register struct vnode *vp;
1581{
1582	int s;
1583
1584  	s = splbio();
1585	vp->v_holdcnt++;
1586	if (VSHOULDBUSY(vp))
1587		vbusy(vp);
1588	splx(s);
1589}
1590
1591/*
1592 * Note that there is one less who cares about this vnode.  vdrop() is the
1593 * opposite of vhold().
1594 */
1595void
1596vdrop(vp)
1597	register struct vnode *vp;
1598{
1599	int s;
1600
1601	s = splbio();
1602	if (vp->v_holdcnt <= 0)
1603		panic("vdrop: holdcnt");
1604	vp->v_holdcnt--;
1605	if (VSHOULDFREE(vp))
1606		vfree(vp);
1607	splx(s);
1608}
1609
1610/*
1611 * Remove any vnodes in the vnode table belonging to mount point mp.
1612 *
1613 * If MNT_NOFORCE is specified, there should not be any active ones,
1614 * return error if any are found (nb: this is a user error, not a
1615 * system error). If MNT_FORCE is specified, detach any active vnodes
1616 * that are found.
1617 */
1618#ifdef DIAGNOSTIC
1619static int busyprt = 0;		/* print out busy vnodes */
1620SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1621#endif
1622
1623int
1624vflush(mp, skipvp, flags)
1625	struct mount *mp;
1626	struct vnode *skipvp;
1627	int flags;
1628{
1629	struct proc *p = curproc;	/* XXX */
1630	struct vnode *vp, *nvp;
1631	int busy = 0;
1632
1633	simple_lock(&mntvnode_slock);
1634loop:
1635	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1636		/*
1637		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1638		 * Start over if it has (it won't be on the list anymore).
1639		 */
1640		if (vp->v_mount != mp)
1641			goto loop;
1642		nvp = LIST_NEXT(vp, v_mntvnodes);
1643		/*
1644		 * Skip over a selected vnode.
1645		 */
1646		if (vp == skipvp)
1647			continue;
1648
1649		mtx_enter(&vp->v_interlock, MTX_DEF);
1650		/*
1651		 * Skip over a vnodes marked VSYSTEM.
1652		 */
1653		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1654			mtx_exit(&vp->v_interlock, MTX_DEF);
1655			continue;
1656		}
1657		/*
1658		 * If WRITECLOSE is set, only flush out regular file vnodes
1659		 * open for writing.
1660		 */
1661		if ((flags & WRITECLOSE) &&
1662		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1663			mtx_exit(&vp->v_interlock, MTX_DEF);
1664			continue;
1665		}
1666
1667		/*
1668		 * With v_usecount == 0, all we need to do is clear out the
1669		 * vnode data structures and we are done.
1670		 */
1671		if (vp->v_usecount == 0) {
1672			simple_unlock(&mntvnode_slock);
1673			vgonel(vp, p);
1674			simple_lock(&mntvnode_slock);
1675			continue;
1676		}
1677
1678		/*
1679		 * If FORCECLOSE is set, forcibly close the vnode. For block
1680		 * or character devices, revert to an anonymous device. For
1681		 * all other files, just kill them.
1682		 */
1683		if (flags & FORCECLOSE) {
1684			simple_unlock(&mntvnode_slock);
1685			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1686				vgonel(vp, p);
1687			} else {
1688				vclean(vp, 0, p);
1689				vp->v_op = spec_vnodeop_p;
1690				insmntque(vp, (struct mount *) 0);
1691			}
1692			simple_lock(&mntvnode_slock);
1693			continue;
1694		}
1695#ifdef DIAGNOSTIC
1696		if (busyprt)
1697			vprint("vflush: busy vnode", vp);
1698#endif
1699		mtx_exit(&vp->v_interlock, MTX_DEF);
1700		busy++;
1701	}
1702	simple_unlock(&mntvnode_slock);
1703	if (busy)
1704		return (EBUSY);
1705	return (0);
1706}
1707
1708/*
1709 * Disassociate the underlying file system from a vnode.
1710 */
1711static void
1712vclean(vp, flags, p)
1713	struct vnode *vp;
1714	int flags;
1715	struct proc *p;
1716{
1717	int active;
1718
1719	/*
1720	 * Check to see if the vnode is in use. If so we have to reference it
1721	 * before we clean it out so that its count cannot fall to zero and
1722	 * generate a race against ourselves to recycle it.
1723	 */
1724	if ((active = vp->v_usecount))
1725		vp->v_usecount++;
1726
1727	/*
1728	 * Prevent the vnode from being recycled or brought into use while we
1729	 * clean it out.
1730	 */
1731	if (vp->v_flag & VXLOCK)
1732		panic("vclean: deadlock");
1733	vp->v_flag |= VXLOCK;
1734	/*
1735	 * Even if the count is zero, the VOP_INACTIVE routine may still
1736	 * have the object locked while it cleans it out. The VOP_LOCK
1737	 * ensures that the VOP_INACTIVE routine is done with its work.
1738	 * For active vnodes, it ensures that no other activity can
1739	 * occur while the underlying object is being cleaned out.
1740	 */
1741	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1742
1743	/*
1744	 * Clean out any buffers associated with the vnode.
1745	 * If the flush fails, just toss the buffers.
1746	 */
1747	if (flags & DOCLOSE) {
1748		if (TAILQ_FIRST(&vp->v_dirtyblkhd) != NULL)
1749			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
1750		if (vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0) != 0)
1751			vinvalbuf(vp, 0, NOCRED, p, 0, 0);
1752	}
1753
1754	VOP_DESTROYVOBJECT(vp);
1755
1756	/*
1757	 * If purging an active vnode, it must be closed and
1758	 * deactivated before being reclaimed. Note that the
1759	 * VOP_INACTIVE will unlock the vnode.
1760	 */
1761	if (active) {
1762		if (flags & DOCLOSE)
1763			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1764		VOP_INACTIVE(vp, p);
1765	} else {
1766		/*
1767		 * Any other processes trying to obtain this lock must first
1768		 * wait for VXLOCK to clear, then call the new lock operation.
1769		 */
1770		VOP_UNLOCK(vp, 0, p);
1771	}
1772	/*
1773	 * Reclaim the vnode.
1774	 */
1775	if (VOP_RECLAIM(vp, p))
1776		panic("vclean: cannot reclaim");
1777
1778	if (active) {
1779		/*
1780		 * Inline copy of vrele() since VOP_INACTIVE
1781		 * has already been called.
1782		 */
1783		mtx_enter(&vp->v_interlock, MTX_DEF);
1784		if (--vp->v_usecount <= 0) {
1785#ifdef DIAGNOSTIC
1786			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1787				vprint("vclean: bad ref count", vp);
1788				panic("vclean: ref cnt");
1789			}
1790#endif
1791			vfree(vp);
1792		}
1793		mtx_exit(&vp->v_interlock, MTX_DEF);
1794	}
1795
1796	cache_purge(vp);
1797	vp->v_vnlock = NULL;
1798	lockdestroy(&vp->v_lock);
1799
1800	if (VSHOULDFREE(vp))
1801		vfree(vp);
1802
1803	/*
1804	 * Done with purge, notify sleepers of the grim news.
1805	 */
1806	vp->v_op = dead_vnodeop_p;
1807	vn_pollgone(vp);
1808	vp->v_tag = VT_NON;
1809	vp->v_flag &= ~VXLOCK;
1810	if (vp->v_flag & VXWANT) {
1811		vp->v_flag &= ~VXWANT;
1812		wakeup((caddr_t) vp);
1813	}
1814}
1815
1816/*
1817 * Eliminate all activity associated with the requested vnode
1818 * and with all vnodes aliased to the requested vnode.
1819 */
1820int
1821vop_revoke(ap)
1822	struct vop_revoke_args /* {
1823		struct vnode *a_vp;
1824		int a_flags;
1825	} */ *ap;
1826{
1827	struct vnode *vp, *vq;
1828	dev_t dev;
1829
1830	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1831
1832	vp = ap->a_vp;
1833	/*
1834	 * If a vgone (or vclean) is already in progress,
1835	 * wait until it is done and return.
1836	 */
1837	if (vp->v_flag & VXLOCK) {
1838		vp->v_flag |= VXWANT;
1839		mtx_exit(&vp->v_interlock, MTX_DEF);
1840		tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1841		return (0);
1842	}
1843	dev = vp->v_rdev;
1844	for (;;) {
1845		simple_lock(&spechash_slock);
1846		vq = SLIST_FIRST(&dev->si_hlist);
1847		simple_unlock(&spechash_slock);
1848		if (!vq)
1849			break;
1850		vgone(vq);
1851	}
1852	return (0);
1853}
1854
1855/*
1856 * Recycle an unused vnode to the front of the free list.
1857 * Release the passed interlock if the vnode will be recycled.
1858 */
1859int
1860vrecycle(vp, inter_lkp, p)
1861	struct vnode *vp;
1862	struct simplelock *inter_lkp;
1863	struct proc *p;
1864{
1865
1866	mtx_enter(&vp->v_interlock, MTX_DEF);
1867	if (vp->v_usecount == 0) {
1868		if (inter_lkp) {
1869			simple_unlock(inter_lkp);
1870		}
1871		vgonel(vp, p);
1872		return (1);
1873	}
1874	mtx_exit(&vp->v_interlock, MTX_DEF);
1875	return (0);
1876}
1877
1878/*
1879 * Eliminate all activity associated with a vnode
1880 * in preparation for reuse.
1881 */
1882void
1883vgone(vp)
1884	register struct vnode *vp;
1885{
1886	struct proc *p = curproc;	/* XXX */
1887
1888	mtx_enter(&vp->v_interlock, MTX_DEF);
1889	vgonel(vp, p);
1890}
1891
1892/*
1893 * vgone, with the vp interlock held.
1894 */
1895void
1896vgonel(vp, p)
1897	struct vnode *vp;
1898	struct proc *p;
1899{
1900	int s;
1901
1902	/*
1903	 * If a vgone (or vclean) is already in progress,
1904	 * wait until it is done and return.
1905	 */
1906	if (vp->v_flag & VXLOCK) {
1907		vp->v_flag |= VXWANT;
1908		mtx_exit(&vp->v_interlock, MTX_DEF);
1909		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1910		return;
1911	}
1912
1913	/*
1914	 * Clean out the filesystem specific data.
1915	 */
1916	vclean(vp, DOCLOSE, p);
1917	mtx_enter(&vp->v_interlock, MTX_DEF);
1918
1919	/*
1920	 * Delete from old mount point vnode list, if on one.
1921	 */
1922	if (vp->v_mount != NULL)
1923		insmntque(vp, (struct mount *)0);
1924	/*
1925	 * If special device, remove it from special device alias list
1926	 * if it is on one.
1927	 */
1928	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1929		simple_lock(&spechash_slock);
1930		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
1931		freedev(vp->v_rdev);
1932		simple_unlock(&spechash_slock);
1933		vp->v_rdev = NULL;
1934	}
1935
1936	/*
1937	 * If it is on the freelist and not already at the head,
1938	 * move it to the head of the list. The test of the
1939	 * VDOOMED flag and the reference count of zero is because
1940	 * it will be removed from the free list by getnewvnode,
1941	 * but will not have its reference count incremented until
1942	 * after calling vgone. If the reference count were
1943	 * incremented first, vgone would (incorrectly) try to
1944	 * close the previous instance of the underlying object.
1945	 */
1946	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1947		s = splbio();
1948		simple_lock(&vnode_free_list_slock);
1949		if (vp->v_flag & VFREE)
1950			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1951		else
1952			freevnodes++;
1953		vp->v_flag |= VFREE;
1954		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1955		simple_unlock(&vnode_free_list_slock);
1956		splx(s);
1957	}
1958
1959	vp->v_type = VBAD;
1960	mtx_exit(&vp->v_interlock, MTX_DEF);
1961}
1962
1963/*
1964 * Lookup a vnode by device number.
1965 */
1966int
1967vfinddev(dev, type, vpp)
1968	dev_t dev;
1969	enum vtype type;
1970	struct vnode **vpp;
1971{
1972	struct vnode *vp;
1973
1974	simple_lock(&spechash_slock);
1975	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1976		if (type == vp->v_type) {
1977			*vpp = vp;
1978			simple_unlock(&spechash_slock);
1979			return (1);
1980		}
1981	}
1982	simple_unlock(&spechash_slock);
1983	return (0);
1984}
1985
1986/*
1987 * Calculate the total number of references to a special device.
1988 */
1989int
1990vcount(vp)
1991	struct vnode *vp;
1992{
1993	struct vnode *vq;
1994	int count;
1995
1996	count = 0;
1997	simple_lock(&spechash_slock);
1998	SLIST_FOREACH(vq, &vp->v_rdev->si_hlist, v_specnext)
1999		count += vq->v_usecount;
2000	simple_unlock(&spechash_slock);
2001	return (count);
2002}
2003
2004/*
2005 * Same as above, but using the dev_t as argument
2006 */
2007int
2008count_dev(dev)
2009	dev_t dev;
2010{
2011	struct vnode *vp;
2012
2013	vp = SLIST_FIRST(&dev->si_hlist);
2014	if (vp == NULL)
2015		return (0);
2016	return(vcount(vp));
2017}
2018
2019/*
2020 * Print out a description of a vnode.
2021 */
2022static char *typename[] =
2023{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2024
2025void
2026vprint(label, vp)
2027	char *label;
2028	struct vnode *vp;
2029{
2030	char buf[96];
2031
2032	if (label != NULL)
2033		printf("%s: %p: ", label, (void *)vp);
2034	else
2035		printf("%p: ", (void *)vp);
2036	printf("type %s, usecount %d, writecount %d, refcount %d,",
2037	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2038	    vp->v_holdcnt);
2039	buf[0] = '\0';
2040	if (vp->v_flag & VROOT)
2041		strcat(buf, "|VROOT");
2042	if (vp->v_flag & VTEXT)
2043		strcat(buf, "|VTEXT");
2044	if (vp->v_flag & VSYSTEM)
2045		strcat(buf, "|VSYSTEM");
2046	if (vp->v_flag & VXLOCK)
2047		strcat(buf, "|VXLOCK");
2048	if (vp->v_flag & VXWANT)
2049		strcat(buf, "|VXWANT");
2050	if (vp->v_flag & VBWAIT)
2051		strcat(buf, "|VBWAIT");
2052	if (vp->v_flag & VDOOMED)
2053		strcat(buf, "|VDOOMED");
2054	if (vp->v_flag & VFREE)
2055		strcat(buf, "|VFREE");
2056	if (vp->v_flag & VOBJBUF)
2057		strcat(buf, "|VOBJBUF");
2058	if (buf[0] != '\0')
2059		printf(" flags (%s)", &buf[1]);
2060	if (vp->v_data == NULL) {
2061		printf("\n");
2062	} else {
2063		printf("\n\t");
2064		VOP_PRINT(vp);
2065	}
2066}
2067
2068#ifdef DDB
2069#include <ddb/ddb.h>
2070/*
2071 * List all of the locked vnodes in the system.
2072 * Called when debugging the kernel.
2073 */
2074DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2075{
2076	struct proc *p = curproc;	/* XXX */
2077	struct mount *mp, *nmp;
2078	struct vnode *vp;
2079
2080	printf("Locked vnodes\n");
2081	mtx_enter(&mountlist_mtx, MTX_DEF);
2082	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2083		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, p)) {
2084			nmp = TAILQ_NEXT(mp, mnt_list);
2085			continue;
2086		}
2087		LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2088			if (VOP_ISLOCKED(vp, NULL))
2089				vprint((char *)0, vp);
2090		}
2091		mtx_enter(&mountlist_mtx, MTX_DEF);
2092		nmp = TAILQ_NEXT(mp, mnt_list);
2093		vfs_unbusy(mp, p);
2094	}
2095	mtx_exit(&mountlist_mtx, MTX_DEF);
2096}
2097#endif
2098
2099/*
2100 * Top level filesystem related information gathering.
2101 */
2102static int	sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS));
2103
2104static int
2105vfs_sysctl(SYSCTL_HANDLER_ARGS)
2106{
2107	int *name = (int *)arg1 - 1;	/* XXX */
2108	u_int namelen = arg2 + 1;	/* XXX */
2109	struct vfsconf *vfsp;
2110
2111#if 1 || defined(COMPAT_PRELITE2)
2112	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2113	if (namelen == 1)
2114		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2115#endif
2116
2117	/* XXX the below code does not compile; vfs_sysctl does not exist. */
2118#ifdef notyet
2119	/* all sysctl names at this level are at least name and field */
2120	if (namelen < 2)
2121		return (ENOTDIR);		/* overloaded */
2122	if (name[0] != VFS_GENERIC) {
2123		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2124			if (vfsp->vfc_typenum == name[0])
2125				break;
2126		if (vfsp == NULL)
2127			return (EOPNOTSUPP);
2128		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2129		    oldp, oldlenp, newp, newlen, p));
2130	}
2131#endif
2132	switch (name[1]) {
2133	case VFS_MAXTYPENUM:
2134		if (namelen != 2)
2135			return (ENOTDIR);
2136		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2137	case VFS_CONF:
2138		if (namelen != 3)
2139			return (ENOTDIR);	/* overloaded */
2140		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2141			if (vfsp->vfc_typenum == name[2])
2142				break;
2143		if (vfsp == NULL)
2144			return (EOPNOTSUPP);
2145		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2146	}
2147	return (EOPNOTSUPP);
2148}
2149
2150SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2151	"Generic filesystem");
2152
2153#if 1 || defined(COMPAT_PRELITE2)
2154
2155static int
2156sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2157{
2158	int error;
2159	struct vfsconf *vfsp;
2160	struct ovfsconf ovfs;
2161
2162	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2163		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2164		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2165		ovfs.vfc_index = vfsp->vfc_typenum;
2166		ovfs.vfc_refcount = vfsp->vfc_refcount;
2167		ovfs.vfc_flags = vfsp->vfc_flags;
2168		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2169		if (error)
2170			return error;
2171	}
2172	return 0;
2173}
2174
2175#endif /* 1 || COMPAT_PRELITE2 */
2176
2177#if COMPILING_LINT
2178#define KINFO_VNODESLOP	10
2179/*
2180 * Dump vnode list (via sysctl).
2181 * Copyout address of vnode followed by vnode.
2182 */
2183/* ARGSUSED */
2184static int
2185sysctl_vnode(SYSCTL_HANDLER_ARGS)
2186{
2187	struct proc *p = curproc;	/* XXX */
2188	struct mount *mp, *nmp;
2189	struct vnode *nvp, *vp;
2190	int error;
2191
2192#define VPTRSZ	sizeof (struct vnode *)
2193#define VNODESZ	sizeof (struct vnode)
2194
2195	req->lock = 0;
2196	if (!req->oldptr) /* Make an estimate */
2197		return (SYSCTL_OUT(req, 0,
2198			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2199
2200	mtx_enter(&mountlist_mtx, MTX_DEF);
2201	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2202		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, p)) {
2203			nmp = TAILQ_NEXT(mp, mnt_list);
2204			continue;
2205		}
2206again:
2207		simple_lock(&mntvnode_slock);
2208		for (vp = LIST_FIRST(&mp->mnt_vnodelist);
2209		     vp != NULL;
2210		     vp = nvp) {
2211			/*
2212			 * Check that the vp is still associated with
2213			 * this filesystem.  RACE: could have been
2214			 * recycled onto the same filesystem.
2215			 */
2216			if (vp->v_mount != mp) {
2217				simple_unlock(&mntvnode_slock);
2218				goto again;
2219			}
2220			nvp = LIST_NEXT(vp, v_mntvnodes);
2221			simple_unlock(&mntvnode_slock);
2222			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2223			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2224				return (error);
2225			simple_lock(&mntvnode_slock);
2226		}
2227		simple_unlock(&mntvnode_slock);
2228		mtx_enter(&mountlist_mtx, MTX_DEF);
2229		nmp = TAILQ_NEXT(mp, mnt_list);
2230		vfs_unbusy(mp, p);
2231	}
2232	mtx_exit(&mountlist_mtx, MTX_DEF);
2233
2234	return (0);
2235}
2236
2237/*
2238 * XXX
2239 * Exporting the vnode list on large systems causes them to crash.
2240 * Exporting the vnode list on medium systems causes sysctl to coredump.
2241 */
2242SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2243	0, 0, sysctl_vnode, "S,vnode", "");
2244#endif
2245
2246/*
2247 * Check to see if a filesystem is mounted on a block device.
2248 */
2249int
2250vfs_mountedon(vp)
2251	struct vnode *vp;
2252{
2253
2254	if (vp->v_rdev->si_mountpoint != NULL)
2255		return (EBUSY);
2256	return (0);
2257}
2258
2259/*
2260 * Unmount all filesystems. The list is traversed in reverse order
2261 * of mounting to avoid dependencies.
2262 */
2263void
2264vfs_unmountall()
2265{
2266	struct mount *mp;
2267	struct proc *p;
2268	int error;
2269
2270	if (curproc != NULL)
2271		p = curproc;
2272	else
2273		p = initproc;	/* XXX XXX should this be proc0? */
2274	/*
2275	 * Since this only runs when rebooting, it is not interlocked.
2276	 */
2277	while(!TAILQ_EMPTY(&mountlist)) {
2278		mp = TAILQ_LAST(&mountlist, mntlist);
2279		error = dounmount(mp, MNT_FORCE, p);
2280		if (error) {
2281			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2282			printf("unmount of %s failed (",
2283			    mp->mnt_stat.f_mntonname);
2284			if (error == EBUSY)
2285				printf("BUSY)\n");
2286			else
2287				printf("%d)\n", error);
2288		} else {
2289			/* The unmount has removed mp from the mountlist */
2290		}
2291	}
2292}
2293
2294/*
2295 * Build hash lists of net addresses and hang them off the mount point.
2296 * Called by ufs_mount() to set up the lists of export addresses.
2297 */
2298static int
2299vfs_hang_addrlist(mp, nep, argp)
2300	struct mount *mp;
2301	struct netexport *nep;
2302	struct export_args *argp;
2303{
2304	register struct netcred *np;
2305	register struct radix_node_head *rnh;
2306	register int i;
2307	struct radix_node *rn;
2308	struct sockaddr *saddr, *smask = 0;
2309	struct domain *dom;
2310	int error;
2311
2312	if (argp->ex_addrlen == 0) {
2313		if (mp->mnt_flag & MNT_DEFEXPORTED)
2314			return (EPERM);
2315		np = &nep->ne_defexported;
2316		np->netc_exflags = argp->ex_flags;
2317		np->netc_anon = argp->ex_anon;
2318		np->netc_anon.cr_ref = 1;
2319		mp->mnt_flag |= MNT_DEFEXPORTED;
2320		return (0);
2321	}
2322	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2323	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2324	bzero((caddr_t) np, i);
2325	saddr = (struct sockaddr *) (np + 1);
2326	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2327		goto out;
2328	if (saddr->sa_len > argp->ex_addrlen)
2329		saddr->sa_len = argp->ex_addrlen;
2330	if (argp->ex_masklen) {
2331		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2332		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2333		if (error)
2334			goto out;
2335		if (smask->sa_len > argp->ex_masklen)
2336			smask->sa_len = argp->ex_masklen;
2337	}
2338	i = saddr->sa_family;
2339	if ((rnh = nep->ne_rtable[i]) == 0) {
2340		/*
2341		 * Seems silly to initialize every AF when most are not used,
2342		 * do so on demand here
2343		 */
2344		for (dom = domains; dom; dom = dom->dom_next)
2345			if (dom->dom_family == i && dom->dom_rtattach) {
2346				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2347				    dom->dom_rtoffset);
2348				break;
2349			}
2350		if ((rnh = nep->ne_rtable[i]) == 0) {
2351			error = ENOBUFS;
2352			goto out;
2353		}
2354	}
2355	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2356	    np->netc_rnodes);
2357	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2358		error = EPERM;
2359		goto out;
2360	}
2361	np->netc_exflags = argp->ex_flags;
2362	np->netc_anon = argp->ex_anon;
2363	np->netc_anon.cr_ref = 1;
2364	return (0);
2365out:
2366	free(np, M_NETADDR);
2367	return (error);
2368}
2369
2370/* Helper for vfs_free_addrlist. */
2371/* ARGSUSED */
2372static int
2373vfs_free_netcred(rn, w)
2374	struct radix_node *rn;
2375	void *w;
2376{
2377	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2378
2379	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2380	free((caddr_t) rn, M_NETADDR);
2381	return (0);
2382}
2383
2384/*
2385 * Free the net address hash lists that are hanging off the mount points.
2386 */
2387static void
2388vfs_free_addrlist(nep)
2389	struct netexport *nep;
2390{
2391	register int i;
2392	register struct radix_node_head *rnh;
2393
2394	for (i = 0; i <= AF_MAX; i++)
2395		if ((rnh = nep->ne_rtable[i])) {
2396			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2397			    (caddr_t) rnh);
2398			free((caddr_t) rnh, M_RTABLE);
2399			nep->ne_rtable[i] = 0;
2400		}
2401}
2402
2403/*
2404 * High level function to manipulate export options on a mount point
2405 * and the passed in netexport.
2406 * Struct export_args *argp is the variable used to twiddle options,
2407 * the structure is described in sys/mount.h
2408 */
2409int
2410vfs_export(mp, nep, argp)
2411	struct mount *mp;
2412	struct netexport *nep;
2413	struct export_args *argp;
2414{
2415	int error;
2416
2417	if (argp->ex_flags & MNT_DELEXPORT) {
2418		if (mp->mnt_flag & MNT_EXPUBLIC) {
2419			vfs_setpublicfs(NULL, NULL, NULL);
2420			mp->mnt_flag &= ~MNT_EXPUBLIC;
2421		}
2422		vfs_free_addrlist(nep);
2423		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2424	}
2425	if (argp->ex_flags & MNT_EXPORTED) {
2426		if (argp->ex_flags & MNT_EXPUBLIC) {
2427			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2428				return (error);
2429			mp->mnt_flag |= MNT_EXPUBLIC;
2430		}
2431		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2432			return (error);
2433		mp->mnt_flag |= MNT_EXPORTED;
2434	}
2435	return (0);
2436}
2437
2438/*
2439 * Set the publicly exported filesystem (WebNFS). Currently, only
2440 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2441 */
2442int
2443vfs_setpublicfs(mp, nep, argp)
2444	struct mount *mp;
2445	struct netexport *nep;
2446	struct export_args *argp;
2447{
2448	int error;
2449	struct vnode *rvp;
2450	char *cp;
2451
2452	/*
2453	 * mp == NULL -> invalidate the current info, the FS is
2454	 * no longer exported. May be called from either vfs_export
2455	 * or unmount, so check if it hasn't already been done.
2456	 */
2457	if (mp == NULL) {
2458		if (nfs_pub.np_valid) {
2459			nfs_pub.np_valid = 0;
2460			if (nfs_pub.np_index != NULL) {
2461				FREE(nfs_pub.np_index, M_TEMP);
2462				nfs_pub.np_index = NULL;
2463			}
2464		}
2465		return (0);
2466	}
2467
2468	/*
2469	 * Only one allowed at a time.
2470	 */
2471	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2472		return (EBUSY);
2473
2474	/*
2475	 * Get real filehandle for root of exported FS.
2476	 */
2477	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2478	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2479
2480	if ((error = VFS_ROOT(mp, &rvp)))
2481		return (error);
2482
2483	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2484		return (error);
2485
2486	vput(rvp);
2487
2488	/*
2489	 * If an indexfile was specified, pull it in.
2490	 */
2491	if (argp->ex_indexfile != NULL) {
2492		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2493		    M_WAITOK);
2494		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2495		    MAXNAMLEN, (size_t *)0);
2496		if (!error) {
2497			/*
2498			 * Check for illegal filenames.
2499			 */
2500			for (cp = nfs_pub.np_index; *cp; cp++) {
2501				if (*cp == '/') {
2502					error = EINVAL;
2503					break;
2504				}
2505			}
2506		}
2507		if (error) {
2508			FREE(nfs_pub.np_index, M_TEMP);
2509			return (error);
2510		}
2511	}
2512
2513	nfs_pub.np_mount = mp;
2514	nfs_pub.np_valid = 1;
2515	return (0);
2516}
2517
2518/*
2519 * Used by the filesystems to determine if a given network address
2520 * (passed in 'nam') is present in thier exports list, returns a pointer
2521 * to struct netcred so that the filesystem can examine it for
2522 * access rights (read/write/etc).
2523 */
2524struct netcred *
2525vfs_export_lookup(mp, nep, nam)
2526	register struct mount *mp;
2527	struct netexport *nep;
2528	struct sockaddr *nam;
2529{
2530	register struct netcred *np;
2531	register struct radix_node_head *rnh;
2532	struct sockaddr *saddr;
2533
2534	np = NULL;
2535	if (mp->mnt_flag & MNT_EXPORTED) {
2536		/*
2537		 * Lookup in the export list first.
2538		 */
2539		if (nam != NULL) {
2540			saddr = nam;
2541			rnh = nep->ne_rtable[saddr->sa_family];
2542			if (rnh != NULL) {
2543				np = (struct netcred *)
2544					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2545							      rnh);
2546				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2547					np = NULL;
2548			}
2549		}
2550		/*
2551		 * If no address match, use the default if it exists.
2552		 */
2553		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2554			np = &nep->ne_defexported;
2555	}
2556	return (np);
2557}
2558
2559/*
2560 * perform msync on all vnodes under a mount point
2561 * the mount point must be locked.
2562 */
2563void
2564vfs_msync(struct mount *mp, int flags) {
2565	struct vnode *vp, *nvp;
2566	struct vm_object *obj;
2567	int anyio, tries;
2568
2569	tries = 5;
2570loop:
2571	anyio = 0;
2572	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) {
2573
2574		nvp = LIST_NEXT(vp, v_mntvnodes);
2575
2576		if (vp->v_mount != mp) {
2577			goto loop;
2578		}
2579
2580		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2581			continue;
2582
2583		if (flags != MNT_WAIT) {
2584			if (VOP_GETVOBJECT(vp, &obj) != 0 ||
2585			    (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2586				continue;
2587			if (VOP_ISLOCKED(vp, NULL))
2588				continue;
2589		}
2590
2591		mtx_enter(&vp->v_interlock, MTX_DEF);
2592		if (VOP_GETVOBJECT(vp, &obj) == 0 &&
2593		    (obj->flags & OBJ_MIGHTBEDIRTY)) {
2594			if (!vget(vp,
2595				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2596				if (VOP_GETVOBJECT(vp, &obj) == 0) {
2597					vm_object_page_clean(obj, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2598					anyio = 1;
2599				}
2600				vput(vp);
2601			}
2602		} else {
2603			mtx_exit(&vp->v_interlock, MTX_DEF);
2604		}
2605	}
2606	if (anyio && (--tries > 0))
2607		goto loop;
2608}
2609
2610/*
2611 * Create the VM object needed for VMIO and mmap support.  This
2612 * is done for all VREG files in the system.  Some filesystems might
2613 * afford the additional metadata buffering capability of the
2614 * VMIO code by making the device node be VMIO mode also.
2615 *
2616 * vp must be locked when vfs_object_create is called.
2617 */
2618int
2619vfs_object_create(vp, p, cred)
2620	struct vnode *vp;
2621	struct proc *p;
2622	struct ucred *cred;
2623{
2624	return (VOP_CREATEVOBJECT(vp, cred, p));
2625}
2626
2627/*
2628 * Mark a vnode as free, putting it up for recycling.
2629 */
2630void
2631vfree(vp)
2632	struct vnode *vp;
2633{
2634	int s;
2635
2636	s = splbio();
2637	simple_lock(&vnode_free_list_slock);
2638	KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2639	if (vp->v_flag & VAGE) {
2640		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2641	} else {
2642		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2643	}
2644	freevnodes++;
2645	simple_unlock(&vnode_free_list_slock);
2646	vp->v_flag &= ~VAGE;
2647	vp->v_flag |= VFREE;
2648	splx(s);
2649}
2650
2651/*
2652 * Opposite of vfree() - mark a vnode as in use.
2653 */
2654void
2655vbusy(vp)
2656	struct vnode *vp;
2657{
2658	int s;
2659
2660	s = splbio();
2661	simple_lock(&vnode_free_list_slock);
2662	KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2663	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2664	freevnodes--;
2665	simple_unlock(&vnode_free_list_slock);
2666	vp->v_flag &= ~(VFREE|VAGE);
2667	splx(s);
2668}
2669
2670/*
2671 * Record a process's interest in events which might happen to
2672 * a vnode.  Because poll uses the historic select-style interface
2673 * internally, this routine serves as both the ``check for any
2674 * pending events'' and the ``record my interest in future events''
2675 * functions.  (These are done together, while the lock is held,
2676 * to avoid race conditions.)
2677 */
2678int
2679vn_pollrecord(vp, p, events)
2680	struct vnode *vp;
2681	struct proc *p;
2682	short events;
2683{
2684	simple_lock(&vp->v_pollinfo.vpi_lock);
2685	if (vp->v_pollinfo.vpi_revents & events) {
2686		/*
2687		 * This leaves events we are not interested
2688		 * in available for the other process which
2689		 * which presumably had requested them
2690		 * (otherwise they would never have been
2691		 * recorded).
2692		 */
2693		events &= vp->v_pollinfo.vpi_revents;
2694		vp->v_pollinfo.vpi_revents &= ~events;
2695
2696		simple_unlock(&vp->v_pollinfo.vpi_lock);
2697		return events;
2698	}
2699	vp->v_pollinfo.vpi_events |= events;
2700	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2701	simple_unlock(&vp->v_pollinfo.vpi_lock);
2702	return 0;
2703}
2704
2705/*
2706 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2707 * it is possible for us to miss an event due to race conditions, but
2708 * that condition is expected to be rare, so for the moment it is the
2709 * preferred interface.
2710 */
2711void
2712vn_pollevent(vp, events)
2713	struct vnode *vp;
2714	short events;
2715{
2716	simple_lock(&vp->v_pollinfo.vpi_lock);
2717	if (vp->v_pollinfo.vpi_events & events) {
2718		/*
2719		 * We clear vpi_events so that we don't
2720		 * call selwakeup() twice if two events are
2721		 * posted before the polling process(es) is
2722		 * awakened.  This also ensures that we take at
2723		 * most one selwakeup() if the polling process
2724		 * is no longer interested.  However, it does
2725		 * mean that only one event can be noticed at
2726		 * a time.  (Perhaps we should only clear those
2727		 * event bits which we note?) XXX
2728		 */
2729		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2730		vp->v_pollinfo.vpi_revents |= events;
2731		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2732	}
2733	simple_unlock(&vp->v_pollinfo.vpi_lock);
2734}
2735
2736/*
2737 * Wake up anyone polling on vp because it is being revoked.
2738 * This depends on dead_poll() returning POLLHUP for correct
2739 * behavior.
2740 */
2741void
2742vn_pollgone(vp)
2743	struct vnode *vp;
2744{
2745	simple_lock(&vp->v_pollinfo.vpi_lock);
2746	if (vp->v_pollinfo.vpi_events) {
2747		vp->v_pollinfo.vpi_events = 0;
2748		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2749	}
2750	simple_unlock(&vp->v_pollinfo.vpi_lock);
2751}
2752
2753
2754
2755/*
2756 * Routine to create and manage a filesystem syncer vnode.
2757 */
2758#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2759static int	sync_fsync __P((struct  vop_fsync_args *));
2760static int	sync_inactive __P((struct  vop_inactive_args *));
2761static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2762#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2763#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2764static int	sync_print __P((struct vop_print_args *));
2765#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2766
2767static vop_t **sync_vnodeop_p;
2768static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2769	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2770	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2771	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2772	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2773	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2774	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2775	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2776	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2777	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2778	{ NULL, NULL }
2779};
2780static struct vnodeopv_desc sync_vnodeop_opv_desc =
2781	{ &sync_vnodeop_p, sync_vnodeop_entries };
2782
2783VNODEOP_SET(sync_vnodeop_opv_desc);
2784
2785/*
2786 * Create a new filesystem syncer vnode for the specified mount point.
2787 */
2788int
2789vfs_allocate_syncvnode(mp)
2790	struct mount *mp;
2791{
2792	struct vnode *vp;
2793	static long start, incr, next;
2794	int error;
2795
2796	/* Allocate a new vnode */
2797	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2798		mp->mnt_syncer = NULL;
2799		return (error);
2800	}
2801	vp->v_type = VNON;
2802	/*
2803	 * Place the vnode onto the syncer worklist. We attempt to
2804	 * scatter them about on the list so that they will go off
2805	 * at evenly distributed times even if all the filesystems
2806	 * are mounted at once.
2807	 */
2808	next += incr;
2809	if (next == 0 || next > syncer_maxdelay) {
2810		start /= 2;
2811		incr /= 2;
2812		if (start == 0) {
2813			start = syncer_maxdelay / 2;
2814			incr = syncer_maxdelay;
2815		}
2816		next = start;
2817	}
2818	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2819	mp->mnt_syncer = vp;
2820	return (0);
2821}
2822
2823/*
2824 * Do a lazy sync of the filesystem.
2825 */
2826static int
2827sync_fsync(ap)
2828	struct vop_fsync_args /* {
2829		struct vnode *a_vp;
2830		struct ucred *a_cred;
2831		int a_waitfor;
2832		struct proc *a_p;
2833	} */ *ap;
2834{
2835	struct vnode *syncvp = ap->a_vp;
2836	struct mount *mp = syncvp->v_mount;
2837	struct proc *p = ap->a_p;
2838	int asyncflag;
2839
2840	/*
2841	 * We only need to do something if this is a lazy evaluation.
2842	 */
2843	if (ap->a_waitfor != MNT_LAZY)
2844		return (0);
2845
2846	/*
2847	 * Move ourselves to the back of the sync list.
2848	 */
2849	vn_syncer_add_to_worklist(syncvp, syncdelay);
2850
2851	/*
2852	 * Walk the list of vnodes pushing all that are dirty and
2853	 * not already on the sync list.
2854	 */
2855	mtx_enter(&mountlist_mtx, MTX_DEF);
2856	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, p) != 0) {
2857		mtx_exit(&mountlist_mtx, MTX_DEF);
2858		return (0);
2859	}
2860	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
2861		vfs_unbusy(mp, p);
2862		mtx_exit(&mountlist_mtx, MTX_DEF);
2863		return (0);
2864	}
2865	asyncflag = mp->mnt_flag & MNT_ASYNC;
2866	mp->mnt_flag &= ~MNT_ASYNC;
2867	vfs_msync(mp, MNT_NOWAIT);
2868	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2869	if (asyncflag)
2870		mp->mnt_flag |= MNT_ASYNC;
2871	vn_finished_write(mp);
2872	vfs_unbusy(mp, p);
2873	return (0);
2874}
2875
2876/*
2877 * The syncer vnode is no referenced.
2878 */
2879static int
2880sync_inactive(ap)
2881	struct vop_inactive_args /* {
2882		struct vnode *a_vp;
2883		struct proc *a_p;
2884	} */ *ap;
2885{
2886
2887	vgone(ap->a_vp);
2888	return (0);
2889}
2890
2891/*
2892 * The syncer vnode is no longer needed and is being decommissioned.
2893 *
2894 * Modifications to the worklist must be protected at splbio().
2895 */
2896static int
2897sync_reclaim(ap)
2898	struct vop_reclaim_args /* {
2899		struct vnode *a_vp;
2900	} */ *ap;
2901{
2902	struct vnode *vp = ap->a_vp;
2903	int s;
2904
2905	s = splbio();
2906	vp->v_mount->mnt_syncer = NULL;
2907	if (vp->v_flag & VONWORKLST) {
2908		LIST_REMOVE(vp, v_synclist);
2909		vp->v_flag &= ~VONWORKLST;
2910	}
2911	splx(s);
2912
2913	return (0);
2914}
2915
2916/*
2917 * Print out a syncer vnode.
2918 */
2919static int
2920sync_print(ap)
2921	struct vop_print_args /* {
2922		struct vnode *a_vp;
2923	} */ *ap;
2924{
2925	struct vnode *vp = ap->a_vp;
2926
2927	printf("syncer vnode");
2928	if (vp->v_vnlock != NULL)
2929		lockmgr_printinfo(vp->v_vnlock);
2930	printf("\n");
2931	return (0);
2932}
2933
2934/*
2935 * extract the dev_t from a VBLK or VCHR
2936 */
2937dev_t
2938vn_todev(vp)
2939	struct vnode *vp;
2940{
2941	if (vp->v_type != VBLK && vp->v_type != VCHR)
2942		return (NODEV);
2943	return (vp->v_rdev);
2944}
2945
2946/*
2947 * Check if vnode represents a disk device
2948 */
2949int
2950vn_isdisk(vp, errp)
2951	struct vnode *vp;
2952	int *errp;
2953{
2954	struct cdevsw *cdevsw;
2955
2956	if (vp->v_type != VBLK && vp->v_type != VCHR) {
2957		if (errp != NULL)
2958			*errp = ENOTBLK;
2959		return (0);
2960	}
2961	if (vp->v_rdev == NULL) {
2962		if (errp != NULL)
2963			*errp = ENXIO;
2964		return (0);
2965	}
2966	cdevsw = devsw(vp->v_rdev);
2967	if (cdevsw == NULL) {
2968		if (errp != NULL)
2969			*errp = ENXIO;
2970		return (0);
2971	}
2972	if (!(cdevsw->d_flags & D_DISK)) {
2973		if (errp != NULL)
2974			*errp = ENOTBLK;
2975		return (0);
2976	}
2977	if (errp != NULL)
2978		*errp = 0;
2979	return (1);
2980}
2981
2982/*
2983 * Free data allocated by namei(); see namei(9) for details.
2984 */
2985void
2986NDFREE(ndp, flags)
2987     struct nameidata *ndp;
2988     const uint flags;
2989{
2990	if (!(flags & NDF_NO_FREE_PNBUF) &&
2991	    (ndp->ni_cnd.cn_flags & HASBUF)) {
2992		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2993		ndp->ni_cnd.cn_flags &= ~HASBUF;
2994	}
2995	if (!(flags & NDF_NO_DVP_UNLOCK) &&
2996	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
2997	    ndp->ni_dvp != ndp->ni_vp)
2998		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc);
2999	if (!(flags & NDF_NO_DVP_RELE) &&
3000	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3001		vrele(ndp->ni_dvp);
3002		ndp->ni_dvp = NULL;
3003	}
3004	if (!(flags & NDF_NO_VP_UNLOCK) &&
3005	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3006		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc);
3007	if (!(flags & NDF_NO_VP_RELE) &&
3008	    ndp->ni_vp) {
3009		vrele(ndp->ni_vp);
3010		ndp->ni_vp = NULL;
3011	}
3012	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3013	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3014		vrele(ndp->ni_startdir);
3015		ndp->ni_startdir = NULL;
3016	}
3017}
3018
3019/*
3020 * Common file system object access control check routine.  Accepts a
3021 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3022 * and optional call-by-reference privused argument allowing vaccess()
3023 * to indicate to the caller whether privilege was used to satisfy the
3024 * request.  Returns 0 on success, or an errno on failure.
3025 */
3026int
3027vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3028	enum vtype type;
3029	mode_t file_mode;
3030	uid_t file_uid;
3031	gid_t file_gid;
3032	mode_t acc_mode;
3033	struct ucred *cred;
3034	int *privused;
3035{
3036	mode_t dac_granted;
3037#ifdef CAPABILITIES
3038	mode_t cap_granted;
3039#endif
3040
3041	/*
3042	 * Look for a normal, non-privileged way to access the file/directory
3043	 * as requested.  If it exists, go with that.
3044	 */
3045
3046	if (privused != NULL)
3047		*privused = 0;
3048
3049	dac_granted = 0;
3050
3051	/* Check the owner. */
3052	if (cred->cr_uid == file_uid) {
3053		dac_granted |= VADMIN;
3054		if (file_mode & S_IXUSR)
3055			dac_granted |= VEXEC;
3056		if (file_mode & S_IRUSR)
3057			dac_granted |= VREAD;
3058		if (file_mode & S_IWUSR)
3059			dac_granted |= VWRITE;
3060
3061		if ((acc_mode & dac_granted) == acc_mode)
3062			return (0);
3063
3064		goto privcheck;
3065	}
3066
3067	/* Otherwise, check the groups (first match) */
3068	if (groupmember(file_gid, cred)) {
3069		if (file_mode & S_IXGRP)
3070			dac_granted |= VEXEC;
3071		if (file_mode & S_IRGRP)
3072			dac_granted |= VREAD;
3073		if (file_mode & S_IWGRP)
3074			dac_granted |= VWRITE;
3075
3076		if ((acc_mode & dac_granted) == acc_mode)
3077			return (0);
3078
3079		goto privcheck;
3080	}
3081
3082	/* Otherwise, check everyone else. */
3083	if (file_mode & S_IXOTH)
3084		dac_granted |= VEXEC;
3085	if (file_mode & S_IROTH)
3086		dac_granted |= VREAD;
3087	if (file_mode & S_IWOTH)
3088		dac_granted |= VWRITE;
3089	if ((acc_mode & dac_granted) == acc_mode)
3090		return (0);
3091
3092privcheck:
3093	if (!suser_xxx(cred, NULL, PRISON_ROOT)) {
3094		/* XXX audit: privilege used */
3095		if (privused != NULL)
3096			*privused = 1;
3097		return (0);
3098	}
3099
3100#ifdef CAPABILITIES
3101	/*
3102	 * Build a capability mask to determine if the set of capabilities
3103	 * satisfies the requirements when combined with the granted mask
3104	 * from above.
3105	 * For each capability, if the capability is required, bitwise
3106	 * or the request type onto the cap_granted mask.
3107	 */
3108	cap_granted = 0;
3109	if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3110	    !cap_check_xxx(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3111	    cap_granted |= VEXEC;
3112
3113	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3114	    !cap_check_xxx(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3115		cap_granted |= VREAD;
3116
3117	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3118	    !cap_check_xxx(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3119		cap_granted |= VWRITE;
3120
3121	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3122	    !cap_check_xxx(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3123		cap_granted |= VADMIN;
3124
3125	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3126		/* XXX audit: privilege used */
3127		if (privused != NULL)
3128			*privused = 1;
3129		return (0);
3130	}
3131#endif
3132
3133	return (EACCES);
3134}
3135