vfs_export.c revision 62573
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_export.c 62573 2000-07-04 11:25:35Z phk $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46#include "opt_ffs.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/conf.h>
53#include <sys/dirent.h>
54#include <sys/domain.h>
55#include <sys/eventhandler.h>
56#include <sys/fcntl.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/malloc.h>
60#include <sys/mount.h>
61#include <sys/namei.h>
62#include <sys/proc.h>
63#include <sys/reboot.h>
64#include <sys/socket.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/vmmeter.h>
68#include <sys/vnode.h>
69
70#include <machine/limits.h>
71
72#include <vm/vm.h>
73#include <vm/vm_object.h>
74#include <vm/vm_extern.h>
75#include <vm/pmap.h>
76#include <vm/vm_map.h>
77#include <vm/vm_page.h>
78#include <vm/vm_pager.h>
79#include <vm/vnode_pager.h>
80#include <vm/vm_zone.h>
81
82static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
83
84static void	insmntque __P((struct vnode *vp, struct mount *mp));
85static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
86static unsigned long	numvnodes;
87SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
88
89enum vtype iftovt_tab[16] = {
90	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
91	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
92};
93int vttoif_tab[9] = {
94	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
95	S_IFSOCK, S_IFIFO, S_IFMT,
96};
97
98static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
99
100static u_long wantfreevnodes = 25;
101SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
102static u_long freevnodes = 0;
103SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
104
105static int reassignbufcalls;
106SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
107static int reassignbufloops;
108SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
109static int reassignbufsortgood;
110SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
111static int reassignbufsortbad;
112SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
113static int reassignbufmethod = 1;
114SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
115
116#ifdef ENABLE_VFS_IOOPT
117int vfs_ioopt = 0;
118SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
119#endif
120
121struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
122struct simplelock mountlist_slock;
123struct simplelock mntvnode_slock;
124int	nfs_mount_type = -1;
125#ifndef NULL_SIMPLELOCKS
126static struct simplelock mntid_slock;
127static struct simplelock vnode_free_list_slock;
128static struct simplelock spechash_slock;
129#endif
130struct nfs_public nfs_pub;	/* publicly exported FS */
131static vm_zone_t vnode_zone;
132int	prtactive = 0;		/* 1 => print out reclaim of active vnodes */
133
134/*
135 * The workitem queue.
136 */
137#define SYNCER_MAXDELAY		32
138static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
139time_t syncdelay = 30;		/* max time to delay syncing data */
140time_t filedelay = 30;		/* time to delay syncing files */
141SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
142time_t dirdelay = 29;		/* time to delay syncing directories */
143SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
144time_t metadelay = 28;		/* time to delay syncing metadata */
145SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
146static int rushjob;			/* number of slots to run ASAP */
147static int stat_rush_requests;	/* number of times I/O speeded up */
148SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
149
150static int syncer_delayno = 0;
151static long syncer_mask;
152LIST_HEAD(synclist, vnode);
153static struct synclist *syncer_workitem_pending;
154
155int desiredvnodes;
156SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
157    &desiredvnodes, 0, "Maximum number of vnodes");
158
159static void	vfs_free_addrlist __P((struct netexport *nep));
160static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
161static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
162				       struct export_args *argp));
163
164/*
165 * Initialize the vnode management data structures.
166 */
167void
168vntblinit()
169{
170
171	desiredvnodes = maxproc + cnt.v_page_count / 4;
172	simple_lock_init(&mntvnode_slock);
173	simple_lock_init(&mntid_slock);
174	simple_lock_init(&spechash_slock);
175	TAILQ_INIT(&vnode_free_list);
176	simple_lock_init(&vnode_free_list_slock);
177	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
178	/*
179	 * Initialize the filesystem syncer.
180	 */
181	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
182		&syncer_mask);
183	syncer_maxdelay = syncer_mask + 1;
184}
185
186/*
187 * Mark a mount point as busy. Used to synchronize access and to delay
188 * unmounting. Interlock is not released on failure.
189 */
190int
191vfs_busy(mp, flags, interlkp, p)
192	struct mount *mp;
193	int flags;
194	struct simplelock *interlkp;
195	struct proc *p;
196{
197	int lkflags;
198
199	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
200		if (flags & LK_NOWAIT)
201			return (ENOENT);
202		mp->mnt_kern_flag |= MNTK_MWAIT;
203		if (interlkp) {
204			simple_unlock(interlkp);
205		}
206		/*
207		 * Since all busy locks are shared except the exclusive
208		 * lock granted when unmounting, the only place that a
209		 * wakeup needs to be done is at the release of the
210		 * exclusive lock at the end of dounmount.
211		 */
212		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
213		if (interlkp) {
214			simple_lock(interlkp);
215		}
216		return (ENOENT);
217	}
218	lkflags = LK_SHARED | LK_NOPAUSE;
219	if (interlkp)
220		lkflags |= LK_INTERLOCK;
221	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
222		panic("vfs_busy: unexpected lock failure");
223	return (0);
224}
225
226/*
227 * Free a busy filesystem.
228 */
229void
230vfs_unbusy(mp, p)
231	struct mount *mp;
232	struct proc *p;
233{
234
235	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
236}
237
238/*
239 * Lookup a filesystem type, and if found allocate and initialize
240 * a mount structure for it.
241 *
242 * Devname is usually updated by mount(8) after booting.
243 */
244int
245vfs_rootmountalloc(fstypename, devname, mpp)
246	char *fstypename;
247	char *devname;
248	struct mount **mpp;
249{
250	struct proc *p = curproc;	/* XXX */
251	struct vfsconf *vfsp;
252	struct mount *mp;
253
254	if (fstypename == NULL)
255		return (ENODEV);
256	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
257		if (!strcmp(vfsp->vfc_name, fstypename))
258			break;
259	if (vfsp == NULL)
260		return (ENODEV);
261	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
262	bzero((char *)mp, (u_long)sizeof(struct mount));
263	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
264	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
265	LIST_INIT(&mp->mnt_vnodelist);
266	mp->mnt_vfc = vfsp;
267	mp->mnt_op = vfsp->vfc_vfsops;
268	mp->mnt_flag = MNT_RDONLY;
269	mp->mnt_vnodecovered = NULLVP;
270	vfsp->vfc_refcount++;
271	mp->mnt_iosize_max = DFLTPHYS;
272	mp->mnt_stat.f_type = vfsp->vfc_typenum;
273	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
274	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
275	mp->mnt_stat.f_mntonname[0] = '/';
276	mp->mnt_stat.f_mntonname[1] = 0;
277	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
278	*mpp = mp;
279	return (0);
280}
281
282/*
283 * Find an appropriate filesystem to use for the root. If a filesystem
284 * has not been preselected, walk through the list of known filesystems
285 * trying those that have mountroot routines, and try them until one
286 * works or we have tried them all.
287 */
288#ifdef notdef	/* XXX JH */
289int
290lite2_vfs_mountroot()
291{
292	struct vfsconf *vfsp;
293	extern int (*lite2_mountroot) __P((void));
294	int error;
295
296	if (lite2_mountroot != NULL)
297		return ((*lite2_mountroot)());
298	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
299		if (vfsp->vfc_mountroot == NULL)
300			continue;
301		if ((error = (*vfsp->vfc_mountroot)()) == 0)
302			return (0);
303		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
304	}
305	return (ENODEV);
306}
307#endif
308
309/*
310 * Lookup a mount point by filesystem identifier.
311 */
312struct mount *
313vfs_getvfs(fsid)
314	fsid_t *fsid;
315{
316	register struct mount *mp;
317
318	simple_lock(&mountlist_slock);
319	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
320		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
321		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
322			simple_unlock(&mountlist_slock);
323			return (mp);
324	    }
325	}
326	simple_unlock(&mountlist_slock);
327	return ((struct mount *) 0);
328}
329
330/*
331 * Get a new unique fsid.  Try to make its val[0] unique, since this value
332 * will be used to create fake device numbers for stat().  Also try (but
333 * not so hard) make its val[0] unique mod 2^16, since some emulators only
334 * support 16-bit device numbers.  We end up with unique val[0]'s for the
335 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
336 *
337 * Keep in mind that several mounts may be running in parallel.  Starting
338 * the search one past where the previous search terminated is both a
339 * micro-optimization and a defense against returning the same fsid to
340 * different mounts.
341 */
342void
343vfs_getnewfsid(mp)
344	struct mount *mp;
345{
346	static u_int16_t mntid_base;
347	fsid_t tfsid;
348	int mtype;
349
350	simple_lock(&mntid_slock);
351	mtype = mp->mnt_vfc->vfc_typenum;
352	tfsid.val[1] = mtype;
353	mtype = (mtype & 0xFF) << 16;
354	for (;;) {
355		tfsid.val[0] = makeudev(255, mtype | mntid_base++);
356		if (vfs_getvfs(&tfsid) == NULL)
357			break;
358	}
359	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
360	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
361	simple_unlock(&mntid_slock);
362}
363
364/*
365 * Knob to control the precision of file timestamps:
366 *
367 *   0 = seconds only; nanoseconds zeroed.
368 *   1 = seconds and nanoseconds, accurate within 1/HZ.
369 *   2 = seconds and nanoseconds, truncated to microseconds.
370 * >=3 = seconds and nanoseconds, maximum precision.
371 */
372enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
373
374static int timestamp_precision = TSP_SEC;
375SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
376    &timestamp_precision, 0, "");
377
378/*
379 * Get a current timestamp.
380 */
381void
382vfs_timestamp(tsp)
383	struct timespec *tsp;
384{
385	struct timeval tv;
386
387	switch (timestamp_precision) {
388	case TSP_SEC:
389		tsp->tv_sec = time_second;
390		tsp->tv_nsec = 0;
391		break;
392	case TSP_HZ:
393		getnanotime(tsp);
394		break;
395	case TSP_USEC:
396		microtime(&tv);
397		TIMEVAL_TO_TIMESPEC(&tv, tsp);
398		break;
399	case TSP_NSEC:
400	default:
401		nanotime(tsp);
402		break;
403	}
404}
405
406/*
407 * Set vnode attributes to VNOVAL
408 */
409void
410vattr_null(vap)
411	register struct vattr *vap;
412{
413
414	vap->va_type = VNON;
415	vap->va_size = VNOVAL;
416	vap->va_bytes = VNOVAL;
417	vap->va_mode = VNOVAL;
418	vap->va_nlink = VNOVAL;
419	vap->va_uid = VNOVAL;
420	vap->va_gid = VNOVAL;
421	vap->va_fsid = VNOVAL;
422	vap->va_fileid = VNOVAL;
423	vap->va_blocksize = VNOVAL;
424	vap->va_rdev = VNOVAL;
425	vap->va_atime.tv_sec = VNOVAL;
426	vap->va_atime.tv_nsec = VNOVAL;
427	vap->va_mtime.tv_sec = VNOVAL;
428	vap->va_mtime.tv_nsec = VNOVAL;
429	vap->va_ctime.tv_sec = VNOVAL;
430	vap->va_ctime.tv_nsec = VNOVAL;
431	vap->va_flags = VNOVAL;
432	vap->va_gen = VNOVAL;
433	vap->va_vaflags = 0;
434}
435
436/*
437 * Routines having to do with the management of the vnode table.
438 */
439extern vop_t **dead_vnodeop_p;
440
441/*
442 * Return the next vnode from the free list.
443 */
444int
445getnewvnode(tag, mp, vops, vpp)
446	enum vtagtype tag;
447	struct mount *mp;
448	vop_t **vops;
449	struct vnode **vpp;
450{
451	int s, count;
452	struct proc *p = curproc;	/* XXX */
453	struct vnode *vp = NULL;
454	vm_object_t object;
455
456	/*
457	 * We take the least recently used vnode from the freelist
458	 * if we can get it and it has no cached pages, and no
459	 * namecache entries are relative to it.
460	 * Otherwise we allocate a new vnode
461	 */
462
463	s = splbio();
464	simple_lock(&vnode_free_list_slock);
465
466	if (wantfreevnodes && freevnodes < wantfreevnodes) {
467		vp = NULL;
468	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
469		/*
470		 * XXX: this is only here to be backwards compatible
471		 */
472		vp = NULL;
473	} else for (count = 0; count < freevnodes; count++) {
474		vp = TAILQ_FIRST(&vnode_free_list);
475		if (vp == NULL || vp->v_usecount)
476			panic("getnewvnode: free vnode isn't");
477		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
478		/*
479		 * Don't recycle if active in the namecache or
480		 * if it still has cached pages or we cannot get
481		 * its interlock.
482		 */
483		object = vp->v_object;
484		if (LIST_FIRST(&vp->v_cache_src) != NULL ||
485		    (object && (object->resident_page_count ||
486		     object->ref_count)) ||
487		    !simple_lock_try(&vp->v_interlock)) {
488			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
489			vp = NULL;
490			continue;
491		}
492		break;
493	}
494	if (vp) {
495		vp->v_flag |= VDOOMED;
496		freevnodes--;
497		simple_unlock(&vnode_free_list_slock);
498		cache_purge(vp);
499		vp->v_lease = NULL;
500		if (vp->v_type != VBAD) {
501			vgonel(vp, p);
502		} else {
503			simple_unlock(&vp->v_interlock);
504		}
505
506#ifdef INVARIANTS
507		{
508			int s;
509
510			if (vp->v_data)
511				panic("cleaned vnode isn't");
512			s = splbio();
513			if (vp->v_numoutput)
514				panic("Clean vnode has pending I/O's");
515			splx(s);
516		}
517#endif
518		vp->v_flag = 0;
519		vp->v_lastw = 0;
520		vp->v_lasta = 0;
521		vp->v_cstart = 0;
522		vp->v_clen = 0;
523		vp->v_socket = 0;
524		vp->v_writecount = 0;	/* XXX */
525	} else {
526		simple_unlock(&vnode_free_list_slock);
527		vp = (struct vnode *) zalloc(vnode_zone);
528		bzero((char *) vp, sizeof *vp);
529		simple_lock_init(&vp->v_interlock);
530		vp->v_dd = vp;
531		cache_purge(vp);
532		LIST_INIT(&vp->v_cache_src);
533		TAILQ_INIT(&vp->v_cache_dst);
534		numvnodes++;
535	}
536
537	TAILQ_INIT(&vp->v_cleanblkhd);
538	TAILQ_INIT(&vp->v_dirtyblkhd);
539	vp->v_type = VNON;
540	vp->v_tag = tag;
541	vp->v_op = vops;
542	insmntque(vp, mp);
543	*vpp = vp;
544	vp->v_usecount = 1;
545	vp->v_data = 0;
546	splx(s);
547
548	vfs_object_create(vp, p, p->p_ucred);
549	return (0);
550}
551
552/*
553 * Move a vnode from one mount queue to another.
554 */
555static void
556insmntque(vp, mp)
557	register struct vnode *vp;
558	register struct mount *mp;
559{
560
561	simple_lock(&mntvnode_slock);
562	/*
563	 * Delete from old mount point vnode list, if on one.
564	 */
565	if (vp->v_mount != NULL)
566		LIST_REMOVE(vp, v_mntvnodes);
567	/*
568	 * Insert into list of vnodes for the new mount point, if available.
569	 */
570	if ((vp->v_mount = mp) == NULL) {
571		simple_unlock(&mntvnode_slock);
572		return;
573	}
574	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
575	simple_unlock(&mntvnode_slock);
576}
577
578/*
579 * Update outstanding I/O count and do wakeup if requested.
580 */
581void
582vwakeup(bp)
583	register struct buf *bp;
584{
585	register struct vnode *vp;
586
587	bp->b_flags &= ~B_WRITEINPROG;
588	if ((vp = bp->b_vp)) {
589		vp->v_numoutput--;
590		if (vp->v_numoutput < 0)
591			panic("vwakeup: neg numoutput");
592		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
593			vp->v_flag &= ~VBWAIT;
594			wakeup((caddr_t) &vp->v_numoutput);
595		}
596	}
597}
598
599/*
600 * Flush out and invalidate all buffers associated with a vnode.
601 * Called with the underlying object locked.
602 */
603int
604vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
605	register struct vnode *vp;
606	int flags;
607	struct ucred *cred;
608	struct proc *p;
609	int slpflag, slptimeo;
610{
611	register struct buf *bp;
612	struct buf *nbp, *blist;
613	int s, error;
614	vm_object_t object;
615
616	if (flags & V_SAVE) {
617		s = splbio();
618		while (vp->v_numoutput) {
619			vp->v_flag |= VBWAIT;
620			error = tsleep((caddr_t)&vp->v_numoutput,
621			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
622			if (error) {
623				splx(s);
624				return (error);
625			}
626		}
627		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
628			splx(s);
629			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
630				return (error);
631			s = splbio();
632			if (vp->v_numoutput > 0 ||
633			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
634				panic("vinvalbuf: dirty bufs");
635		}
636		splx(s);
637  	}
638	s = splbio();
639	for (;;) {
640		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
641		if (!blist)
642			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
643		if (!blist)
644			break;
645
646		for (bp = blist; bp; bp = nbp) {
647			nbp = TAILQ_NEXT(bp, b_vnbufs);
648			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
649				error = BUF_TIMELOCK(bp,
650				    LK_EXCLUSIVE | LK_SLEEPFAIL,
651				    "vinvalbuf", slpflag, slptimeo);
652				if (error == ENOLCK)
653					break;
654				splx(s);
655				return (error);
656			}
657			/*
658			 * XXX Since there are no node locks for NFS, I
659			 * believe there is a slight chance that a delayed
660			 * write will occur while sleeping just above, so
661			 * check for it.  Note that vfs_bio_awrite expects
662			 * buffers to reside on a queue, while VOP_BWRITE and
663			 * brelse do not.
664			 */
665			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
666				(flags & V_SAVE)) {
667
668				if (bp->b_vp == vp) {
669					if (bp->b_flags & B_CLUSTEROK) {
670						BUF_UNLOCK(bp);
671						vfs_bio_awrite(bp);
672					} else {
673						bremfree(bp);
674						bp->b_flags |= B_ASYNC;
675						BUF_WRITE(bp);
676					}
677				} else {
678					bremfree(bp);
679					(void) BUF_WRITE(bp);
680				}
681				break;
682			}
683			bremfree(bp);
684			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
685			bp->b_flags &= ~B_ASYNC;
686			brelse(bp);
687		}
688	}
689
690	while (vp->v_numoutput > 0) {
691		vp->v_flag |= VBWAIT;
692		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
693	}
694
695	splx(s);
696
697	/*
698	 * Destroy the copy in the VM cache, too.
699	 */
700	simple_lock(&vp->v_interlock);
701	object = vp->v_object;
702	if (object != NULL) {
703		vm_object_page_remove(object, 0, 0,
704			(flags & V_SAVE) ? TRUE : FALSE);
705	}
706	simple_unlock(&vp->v_interlock);
707
708	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
709		panic("vinvalbuf: flush failed");
710	return (0);
711}
712
713/*
714 * Truncate a file's buffer and pages to a specified length.  This
715 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
716 * sync activity.
717 */
718int
719vtruncbuf(vp, cred, p, length, blksize)
720	register struct vnode *vp;
721	struct ucred *cred;
722	struct proc *p;
723	off_t length;
724	int blksize;
725{
726	register struct buf *bp;
727	struct buf *nbp;
728	int s, anyfreed;
729	int trunclbn;
730
731	/*
732	 * Round up to the *next* lbn.
733	 */
734	trunclbn = (length + blksize - 1) / blksize;
735
736	s = splbio();
737restart:
738	anyfreed = 1;
739	for (;anyfreed;) {
740		anyfreed = 0;
741		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
742			nbp = TAILQ_NEXT(bp, b_vnbufs);
743			if (bp->b_lblkno >= trunclbn) {
744				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
745					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
746					goto restart;
747				} else {
748					bremfree(bp);
749					bp->b_flags |= (B_INVAL | B_RELBUF);
750					bp->b_flags &= ~B_ASYNC;
751					brelse(bp);
752					anyfreed = 1;
753				}
754				if (nbp &&
755				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
756				    (nbp->b_vp != vp) ||
757				    (nbp->b_flags & B_DELWRI))) {
758					goto restart;
759				}
760			}
761		}
762
763		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
764			nbp = TAILQ_NEXT(bp, b_vnbufs);
765			if (bp->b_lblkno >= trunclbn) {
766				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
767					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
768					goto restart;
769				} else {
770					bremfree(bp);
771					bp->b_flags |= (B_INVAL | B_RELBUF);
772					bp->b_flags &= ~B_ASYNC;
773					brelse(bp);
774					anyfreed = 1;
775				}
776				if (nbp &&
777				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
778				    (nbp->b_vp != vp) ||
779				    (nbp->b_flags & B_DELWRI) == 0)) {
780					goto restart;
781				}
782			}
783		}
784	}
785
786	if (length > 0) {
787restartsync:
788		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
789			nbp = TAILQ_NEXT(bp, b_vnbufs);
790			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
791				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
792					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
793					goto restart;
794				} else {
795					bremfree(bp);
796					if (bp->b_vp == vp) {
797						bp->b_flags |= B_ASYNC;
798					} else {
799						bp->b_flags &= ~B_ASYNC;
800					}
801					BUF_WRITE(bp);
802				}
803				goto restartsync;
804			}
805
806		}
807	}
808
809	while (vp->v_numoutput > 0) {
810		vp->v_flag |= VBWAIT;
811		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
812	}
813
814	splx(s);
815
816	vnode_pager_setsize(vp, length);
817
818	return (0);
819}
820
821/*
822 * Associate a buffer with a vnode.
823 */
824void
825bgetvp(vp, bp)
826	register struct vnode *vp;
827	register struct buf *bp;
828{
829	int s;
830
831	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
832
833	vhold(vp);
834	bp->b_vp = vp;
835	bp->b_dev = vn_todev(vp);
836	/*
837	 * Insert onto list for new vnode.
838	 */
839	s = splbio();
840	bp->b_xflags |= BX_VNCLEAN;
841	bp->b_xflags &= ~BX_VNDIRTY;
842	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
843	splx(s);
844}
845
846/*
847 * Disassociate a buffer from a vnode.
848 */
849void
850brelvp(bp)
851	register struct buf *bp;
852{
853	struct vnode *vp;
854	struct buflists *listheadp;
855	int s;
856
857	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
858
859	/*
860	 * Delete from old vnode list, if on one.
861	 */
862	vp = bp->b_vp;
863	s = splbio();
864	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
865		if (bp->b_xflags & BX_VNDIRTY)
866			listheadp = &vp->v_dirtyblkhd;
867		else
868			listheadp = &vp->v_cleanblkhd;
869		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
870		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
871	}
872	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
873		vp->v_flag &= ~VONWORKLST;
874		LIST_REMOVE(vp, v_synclist);
875	}
876	splx(s);
877	bp->b_vp = (struct vnode *) 0;
878	vdrop(vp);
879}
880
881/*
882 * The workitem queue.
883 *
884 * It is useful to delay writes of file data and filesystem metadata
885 * for tens of seconds so that quickly created and deleted files need
886 * not waste disk bandwidth being created and removed. To realize this,
887 * we append vnodes to a "workitem" queue. When running with a soft
888 * updates implementation, most pending metadata dependencies should
889 * not wait for more than a few seconds. Thus, mounted on block devices
890 * are delayed only about a half the time that file data is delayed.
891 * Similarly, directory updates are more critical, so are only delayed
892 * about a third the time that file data is delayed. Thus, there are
893 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
894 * one each second (driven off the filesystem syncer process). The
895 * syncer_delayno variable indicates the next queue that is to be processed.
896 * Items that need to be processed soon are placed in this queue:
897 *
898 *	syncer_workitem_pending[syncer_delayno]
899 *
900 * A delay of fifteen seconds is done by placing the request fifteen
901 * entries later in the queue:
902 *
903 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
904 *
905 */
906
907/*
908 * Add an item to the syncer work queue.
909 */
910static void
911vn_syncer_add_to_worklist(struct vnode *vp, int delay)
912{
913	int s, slot;
914
915	s = splbio();
916
917	if (vp->v_flag & VONWORKLST) {
918		LIST_REMOVE(vp, v_synclist);
919	}
920
921	if (delay > syncer_maxdelay - 2)
922		delay = syncer_maxdelay - 2;
923	slot = (syncer_delayno + delay) & syncer_mask;
924
925	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
926	vp->v_flag |= VONWORKLST;
927	splx(s);
928}
929
930struct  proc *updateproc;
931static void sched_sync __P((void));
932static struct kproc_desc up_kp = {
933	"syncer",
934	sched_sync,
935	&updateproc
936};
937SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
938
939/*
940 * System filesystem synchronizer daemon.
941 */
942void
943sched_sync(void)
944{
945	struct synclist *slp;
946	struct vnode *vp;
947	long starttime;
948	int s;
949	struct proc *p = updateproc;
950
951	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, p,
952	    SHUTDOWN_PRI_LAST);
953
954	for (;;) {
955		kproc_suspend_loop(p);
956
957		starttime = time_second;
958
959		/*
960		 * Push files whose dirty time has expired.  Be careful
961		 * of interrupt race on slp queue.
962		 */
963		s = splbio();
964		slp = &syncer_workitem_pending[syncer_delayno];
965		syncer_delayno += 1;
966		if (syncer_delayno == syncer_maxdelay)
967			syncer_delayno = 0;
968		splx(s);
969
970		while ((vp = LIST_FIRST(slp)) != NULL) {
971			if (VOP_ISLOCKED(vp, NULL) == 0) {
972				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
973				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
974				VOP_UNLOCK(vp, 0, p);
975			}
976			s = splbio();
977			if (LIST_FIRST(slp) == vp) {
978				/*
979				 * Note: v_tag VT_VFS vps can remain on the
980				 * worklist too with no dirty blocks, but
981				 * since sync_fsync() moves it to a different
982				 * slot we are safe.
983				 */
984				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
985				    !vn_isdisk(vp, NULL))
986					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
987				/*
988				 * Put us back on the worklist.  The worklist
989				 * routine will remove us from our current
990				 * position and then add us back in at a later
991				 * position.
992				 */
993				vn_syncer_add_to_worklist(vp, syncdelay);
994			}
995			splx(s);
996		}
997
998		/*
999		 * Do soft update processing.
1000		 */
1001#ifdef SOFTUPDATES
1002		softdep_process_worklist(NULL);
1003#endif
1004
1005		/*
1006		 * The variable rushjob allows the kernel to speed up the
1007		 * processing of the filesystem syncer process. A rushjob
1008		 * value of N tells the filesystem syncer to process the next
1009		 * N seconds worth of work on its queue ASAP. Currently rushjob
1010		 * is used by the soft update code to speed up the filesystem
1011		 * syncer process when the incore state is getting so far
1012		 * ahead of the disk that the kernel memory pool is being
1013		 * threatened with exhaustion.
1014		 */
1015		if (rushjob > 0) {
1016			rushjob -= 1;
1017			continue;
1018		}
1019		/*
1020		 * If it has taken us less than a second to process the
1021		 * current work, then wait. Otherwise start right over
1022		 * again. We can still lose time if any single round
1023		 * takes more than two seconds, but it does not really
1024		 * matter as we are just trying to generally pace the
1025		 * filesystem activity.
1026		 */
1027		if (time_second == starttime)
1028			tsleep(&lbolt, PPAUSE, "syncer", 0);
1029	}
1030}
1031
1032/*
1033 * Request the syncer daemon to speed up its work.
1034 * We never push it to speed up more than half of its
1035 * normal turn time, otherwise it could take over the cpu.
1036 */
1037int
1038speedup_syncer()
1039{
1040	int s;
1041
1042	s = splhigh();
1043	if (updateproc->p_wchan == &lbolt)
1044		setrunnable(updateproc);
1045	splx(s);
1046	if (rushjob < syncdelay / 2) {
1047		rushjob += 1;
1048		stat_rush_requests += 1;
1049		return (1);
1050	}
1051	return(0);
1052}
1053
1054/*
1055 * Associate a p-buffer with a vnode.
1056 *
1057 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1058 * with the buffer.  i.e. the bp has not been linked into the vnode or
1059 * ref-counted.
1060 */
1061void
1062pbgetvp(vp, bp)
1063	register struct vnode *vp;
1064	register struct buf *bp;
1065{
1066
1067	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1068
1069	bp->b_vp = vp;
1070	bp->b_flags |= B_PAGING;
1071	bp->b_dev = vn_todev(vp);
1072}
1073
1074/*
1075 * Disassociate a p-buffer from a vnode.
1076 */
1077void
1078pbrelvp(bp)
1079	register struct buf *bp;
1080{
1081
1082	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1083
1084	/* XXX REMOVE ME */
1085	if (bp->b_vnbufs.tqe_next != NULL) {
1086		panic(
1087		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1088		    bp,
1089		    (int)bp->b_flags
1090		);
1091	}
1092	bp->b_vp = (struct vnode *) 0;
1093	bp->b_flags &= ~B_PAGING;
1094}
1095
1096void
1097pbreassignbuf(bp, newvp)
1098	struct buf *bp;
1099	struct vnode *newvp;
1100{
1101	if ((bp->b_flags & B_PAGING) == 0) {
1102		panic(
1103		    "pbreassignbuf() on non phys bp %p",
1104		    bp
1105		);
1106	}
1107	bp->b_vp = newvp;
1108}
1109
1110/*
1111 * Reassign a buffer from one vnode to another.
1112 * Used to assign file specific control information
1113 * (indirect blocks) to the vnode to which they belong.
1114 */
1115void
1116reassignbuf(bp, newvp)
1117	register struct buf *bp;
1118	register struct vnode *newvp;
1119{
1120	struct buflists *listheadp;
1121	int delay;
1122	int s;
1123
1124	if (newvp == NULL) {
1125		printf("reassignbuf: NULL");
1126		return;
1127	}
1128	++reassignbufcalls;
1129
1130	/*
1131	 * B_PAGING flagged buffers cannot be reassigned because their vp
1132	 * is not fully linked in.
1133	 */
1134	if (bp->b_flags & B_PAGING)
1135		panic("cannot reassign paging buffer");
1136
1137	s = splbio();
1138	/*
1139	 * Delete from old vnode list, if on one.
1140	 */
1141	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1142		if (bp->b_xflags & BX_VNDIRTY)
1143			listheadp = &bp->b_vp->v_dirtyblkhd;
1144		else
1145			listheadp = &bp->b_vp->v_cleanblkhd;
1146		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1147		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1148		if (bp->b_vp != newvp) {
1149			vdrop(bp->b_vp);
1150			bp->b_vp = NULL;	/* for clarification */
1151		}
1152	}
1153	/*
1154	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1155	 * of clean buffers.
1156	 */
1157	if (bp->b_flags & B_DELWRI) {
1158		struct buf *tbp;
1159
1160		listheadp = &newvp->v_dirtyblkhd;
1161		if ((newvp->v_flag & VONWORKLST) == 0) {
1162			switch (newvp->v_type) {
1163			case VDIR:
1164				delay = dirdelay;
1165				break;
1166			case VCHR:
1167			case VBLK:
1168				if (newvp->v_specmountpoint != NULL) {
1169					delay = metadelay;
1170					break;
1171				}
1172				/* fall through */
1173			default:
1174				delay = filedelay;
1175			}
1176			vn_syncer_add_to_worklist(newvp, delay);
1177		}
1178		bp->b_xflags |= BX_VNDIRTY;
1179		tbp = TAILQ_FIRST(listheadp);
1180		if (tbp == NULL ||
1181		    bp->b_lblkno == 0 ||
1182		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1183		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1184			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1185			++reassignbufsortgood;
1186		} else if (bp->b_lblkno < 0) {
1187			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1188			++reassignbufsortgood;
1189		} else if (reassignbufmethod == 1) {
1190			/*
1191			 * New sorting algorithm, only handle sequential case,
1192			 * otherwise append to end (but before metadata)
1193			 */
1194			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1195			    (tbp->b_xflags & BX_VNDIRTY)) {
1196				/*
1197				 * Found the best place to insert the buffer
1198				 */
1199				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1200				++reassignbufsortgood;
1201			} else {
1202				/*
1203				 * Missed, append to end, but before meta-data.
1204				 * We know that the head buffer in the list is
1205				 * not meta-data due to prior conditionals.
1206				 *
1207				 * Indirect effects:  NFS second stage write
1208				 * tends to wind up here, giving maximum
1209				 * distance between the unstable write and the
1210				 * commit rpc.
1211				 */
1212				tbp = TAILQ_LAST(listheadp, buflists);
1213				while (tbp && tbp->b_lblkno < 0)
1214					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1215				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1216				++reassignbufsortbad;
1217			}
1218		} else {
1219			/*
1220			 * Old sorting algorithm, scan queue and insert
1221			 */
1222			struct buf *ttbp;
1223			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1224			    (ttbp->b_lblkno < bp->b_lblkno)) {
1225				++reassignbufloops;
1226				tbp = ttbp;
1227			}
1228			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1229		}
1230	} else {
1231		bp->b_xflags |= BX_VNCLEAN;
1232		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1233		if ((newvp->v_flag & VONWORKLST) &&
1234		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1235			newvp->v_flag &= ~VONWORKLST;
1236			LIST_REMOVE(newvp, v_synclist);
1237		}
1238	}
1239	if (bp->b_vp != newvp) {
1240		bp->b_vp = newvp;
1241		vhold(bp->b_vp);
1242	}
1243	splx(s);
1244}
1245
1246/*
1247 * Create a vnode for a block device.
1248 * Used for mounting the root file system.
1249 * XXX: This now changed to a VCHR due to the block/char merging.
1250 */
1251int
1252bdevvp(dev, vpp)
1253	dev_t dev;
1254	struct vnode **vpp;
1255{
1256	register struct vnode *vp;
1257	struct vnode *nvp;
1258	int error;
1259
1260	if (dev == NODEV) {
1261		*vpp = NULLVP;
1262		return (ENXIO);
1263	}
1264	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1265	if (error) {
1266		*vpp = NULLVP;
1267		return (error);
1268	}
1269	vp = nvp;
1270	vp->v_type = VCHR;
1271	addalias(vp, dev);
1272	*vpp = vp;
1273	return (0);
1274}
1275
1276/*
1277 * Add vnode to the alias list hung off the dev_t.
1278 *
1279 * The reason for this gunk is that multiple vnodes can reference
1280 * the same physical device, so checking vp->v_usecount to see
1281 * how many users there are is inadequate; the v_usecount for
1282 * the vnodes need to be accumulated.  vcount() does that.
1283 */
1284void
1285addaliasu(nvp, nvp_rdev)
1286	struct vnode *nvp;
1287	udev_t nvp_rdev;
1288{
1289
1290	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1291		panic("addaliasu on non-special vnode");
1292	addalias(nvp, udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0));
1293}
1294
1295void
1296addalias(nvp, dev)
1297	struct vnode *nvp;
1298	dev_t dev;
1299{
1300
1301	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1302		panic("addalias on non-special vnode");
1303
1304	nvp->v_rdev = dev;
1305	simple_lock(&spechash_slock);
1306	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1307	simple_unlock(&spechash_slock);
1308}
1309
1310/*
1311 * Grab a particular vnode from the free list, increment its
1312 * reference count and lock it. The vnode lock bit is set if the
1313 * vnode is being eliminated in vgone. The process is awakened
1314 * when the transition is completed, and an error returned to
1315 * indicate that the vnode is no longer usable (possibly having
1316 * been changed to a new file system type).
1317 */
1318int
1319vget(vp, flags, p)
1320	register struct vnode *vp;
1321	int flags;
1322	struct proc *p;
1323{
1324	int error;
1325
1326	/*
1327	 * If the vnode is in the process of being cleaned out for
1328	 * another use, we wait for the cleaning to finish and then
1329	 * return failure. Cleaning is determined by checking that
1330	 * the VXLOCK flag is set.
1331	 */
1332	if ((flags & LK_INTERLOCK) == 0) {
1333		simple_lock(&vp->v_interlock);
1334	}
1335	if (vp->v_flag & VXLOCK) {
1336		vp->v_flag |= VXWANT;
1337		simple_unlock(&vp->v_interlock);
1338		tsleep((caddr_t)vp, PINOD, "vget", 0);
1339		return (ENOENT);
1340	}
1341
1342	vp->v_usecount++;
1343
1344	if (VSHOULDBUSY(vp))
1345		vbusy(vp);
1346	if (flags & LK_TYPE_MASK) {
1347		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1348			/*
1349			 * must expand vrele here because we do not want
1350			 * to call VOP_INACTIVE if the reference count
1351			 * drops back to zero since it was never really
1352			 * active. We must remove it from the free list
1353			 * before sleeping so that multiple processes do
1354			 * not try to recycle it.
1355			 */
1356			simple_lock(&vp->v_interlock);
1357			vp->v_usecount--;
1358			if (VSHOULDFREE(vp))
1359				vfree(vp);
1360			simple_unlock(&vp->v_interlock);
1361		}
1362		return (error);
1363	}
1364	simple_unlock(&vp->v_interlock);
1365	return (0);
1366}
1367
1368void
1369vref(struct vnode *vp)
1370{
1371	simple_lock(&vp->v_interlock);
1372	vp->v_usecount++;
1373	simple_unlock(&vp->v_interlock);
1374}
1375
1376/*
1377 * Vnode put/release.
1378 * If count drops to zero, call inactive routine and return to freelist.
1379 */
1380void
1381vrele(vp)
1382	struct vnode *vp;
1383{
1384	struct proc *p = curproc;	/* XXX */
1385
1386	KASSERT(vp != NULL, ("vrele: null vp"));
1387
1388	simple_lock(&vp->v_interlock);
1389
1390	if (vp->v_usecount > 1) {
1391
1392		vp->v_usecount--;
1393		simple_unlock(&vp->v_interlock);
1394
1395		return;
1396	}
1397
1398	if (vp->v_usecount == 1) {
1399
1400		vp->v_usecount--;
1401		if (VSHOULDFREE(vp))
1402			vfree(vp);
1403	/*
1404	 * If we are doing a vput, the node is already locked, and we must
1405	 * call VOP_INACTIVE with the node locked.  So, in the case of
1406	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1407	 */
1408		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1409			VOP_INACTIVE(vp, p);
1410		}
1411
1412	} else {
1413#ifdef DIAGNOSTIC
1414		vprint("vrele: negative ref count", vp);
1415		simple_unlock(&vp->v_interlock);
1416#endif
1417		panic("vrele: negative ref cnt");
1418	}
1419}
1420
1421void
1422vput(vp)
1423	struct vnode *vp;
1424{
1425	struct proc *p = curproc;	/* XXX */
1426
1427	KASSERT(vp != NULL, ("vput: null vp"));
1428
1429	simple_lock(&vp->v_interlock);
1430
1431	if (vp->v_usecount > 1) {
1432
1433		vp->v_usecount--;
1434		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1435		return;
1436
1437	}
1438
1439	if (vp->v_usecount == 1) {
1440
1441		vp->v_usecount--;
1442		if (VSHOULDFREE(vp))
1443			vfree(vp);
1444	/*
1445	 * If we are doing a vput, the node is already locked, and we must
1446	 * call VOP_INACTIVE with the node locked.  So, in the case of
1447	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1448	 */
1449		simple_unlock(&vp->v_interlock);
1450		VOP_INACTIVE(vp, p);
1451
1452	} else {
1453#ifdef DIAGNOSTIC
1454		vprint("vput: negative ref count", vp);
1455#endif
1456		panic("vput: negative ref cnt");
1457	}
1458}
1459
1460/*
1461 * Somebody doesn't want the vnode recycled.
1462 */
1463void
1464vhold(vp)
1465	register struct vnode *vp;
1466{
1467	int s;
1468
1469  	s = splbio();
1470	vp->v_holdcnt++;
1471	if (VSHOULDBUSY(vp))
1472		vbusy(vp);
1473	splx(s);
1474}
1475
1476/*
1477 * One less who cares about this vnode.
1478 */
1479void
1480vdrop(vp)
1481	register struct vnode *vp;
1482{
1483	int s;
1484
1485	s = splbio();
1486	if (vp->v_holdcnt <= 0)
1487		panic("vdrop: holdcnt");
1488	vp->v_holdcnt--;
1489	if (VSHOULDFREE(vp))
1490		vfree(vp);
1491	splx(s);
1492}
1493
1494/*
1495 * Remove any vnodes in the vnode table belonging to mount point mp.
1496 *
1497 * If MNT_NOFORCE is specified, there should not be any active ones,
1498 * return error if any are found (nb: this is a user error, not a
1499 * system error). If MNT_FORCE is specified, detach any active vnodes
1500 * that are found.
1501 */
1502#ifdef DIAGNOSTIC
1503static int busyprt = 0;		/* print out busy vnodes */
1504SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1505#endif
1506
1507int
1508vflush(mp, skipvp, flags)
1509	struct mount *mp;
1510	struct vnode *skipvp;
1511	int flags;
1512{
1513	struct proc *p = curproc;	/* XXX */
1514	struct vnode *vp, *nvp;
1515	int busy = 0;
1516
1517	simple_lock(&mntvnode_slock);
1518loop:
1519	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1520		/*
1521		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1522		 * Start over if it has (it won't be on the list anymore).
1523		 */
1524		if (vp->v_mount != mp)
1525			goto loop;
1526		nvp = LIST_NEXT(vp, v_mntvnodes);
1527		/*
1528		 * Skip over a selected vnode.
1529		 */
1530		if (vp == skipvp)
1531			continue;
1532
1533		simple_lock(&vp->v_interlock);
1534		/*
1535		 * Skip over a vnodes marked VSYSTEM.
1536		 */
1537		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1538			simple_unlock(&vp->v_interlock);
1539			continue;
1540		}
1541		/*
1542		 * If WRITECLOSE is set, only flush out regular file vnodes
1543		 * open for writing.
1544		 */
1545		if ((flags & WRITECLOSE) &&
1546		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1547			simple_unlock(&vp->v_interlock);
1548			continue;
1549		}
1550
1551		/*
1552		 * With v_usecount == 0, all we need to do is clear out the
1553		 * vnode data structures and we are done.
1554		 */
1555		if (vp->v_usecount == 0) {
1556			simple_unlock(&mntvnode_slock);
1557			vgonel(vp, p);
1558			simple_lock(&mntvnode_slock);
1559			continue;
1560		}
1561
1562		/*
1563		 * If FORCECLOSE is set, forcibly close the vnode. For block
1564		 * or character devices, revert to an anonymous device. For
1565		 * all other files, just kill them.
1566		 */
1567		if (flags & FORCECLOSE) {
1568			simple_unlock(&mntvnode_slock);
1569			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1570				vgonel(vp, p);
1571			} else {
1572				vclean(vp, 0, p);
1573				vp->v_op = spec_vnodeop_p;
1574				insmntque(vp, (struct mount *) 0);
1575			}
1576			simple_lock(&mntvnode_slock);
1577			continue;
1578		}
1579#ifdef DIAGNOSTIC
1580		if (busyprt)
1581			vprint("vflush: busy vnode", vp);
1582#endif
1583		simple_unlock(&vp->v_interlock);
1584		busy++;
1585	}
1586	simple_unlock(&mntvnode_slock);
1587	if (busy)
1588		return (EBUSY);
1589	return (0);
1590}
1591
1592/*
1593 * Disassociate the underlying file system from a vnode.
1594 */
1595static void
1596vclean(vp, flags, p)
1597	struct vnode *vp;
1598	int flags;
1599	struct proc *p;
1600{
1601	int active;
1602	vm_object_t obj;
1603
1604	/*
1605	 * Check to see if the vnode is in use. If so we have to reference it
1606	 * before we clean it out so that its count cannot fall to zero and
1607	 * generate a race against ourselves to recycle it.
1608	 */
1609	if ((active = vp->v_usecount))
1610		vp->v_usecount++;
1611
1612	/*
1613	 * Prevent the vnode from being recycled or brought into use while we
1614	 * clean it out.
1615	 */
1616	if (vp->v_flag & VXLOCK)
1617		panic("vclean: deadlock");
1618	vp->v_flag |= VXLOCK;
1619	/*
1620	 * Even if the count is zero, the VOP_INACTIVE routine may still
1621	 * have the object locked while it cleans it out. The VOP_LOCK
1622	 * ensures that the VOP_INACTIVE routine is done with its work.
1623	 * For active vnodes, it ensures that no other activity can
1624	 * occur while the underlying object is being cleaned out.
1625	 */
1626	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1627
1628	/*
1629	 * Clean out any buffers associated with the vnode.
1630	 * If the flush fails, just toss the buffers.
1631	 */
1632	if (flags & DOCLOSE) {
1633		if (vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0) != 0)
1634			vinvalbuf(vp, 0, NOCRED, p, 0, 0);
1635	}
1636
1637	if ((obj = vp->v_object) != NULL) {
1638		if (obj->ref_count == 0) {
1639			/*
1640			 * vclean() may be called twice. The first time
1641			 * removes the primary reference to the object,
1642			 * the second time goes one further and is a
1643			 * special-case to terminate the object.
1644			 */
1645			vm_object_terminate(obj);
1646		} else {
1647			/*
1648			 * Woe to the process that tries to page now :-).
1649			 */
1650			vm_pager_deallocate(obj);
1651		}
1652	}
1653
1654	/*
1655	 * If purging an active vnode, it must be closed and
1656	 * deactivated before being reclaimed. Note that the
1657	 * VOP_INACTIVE will unlock the vnode.
1658	 */
1659	if (active) {
1660		if (flags & DOCLOSE)
1661			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1662		VOP_INACTIVE(vp, p);
1663	} else {
1664		/*
1665		 * Any other processes trying to obtain this lock must first
1666		 * wait for VXLOCK to clear, then call the new lock operation.
1667		 */
1668		VOP_UNLOCK(vp, 0, p);
1669	}
1670	/*
1671	 * Reclaim the vnode.
1672	 */
1673	if (VOP_RECLAIM(vp, p))
1674		panic("vclean: cannot reclaim");
1675
1676	if (active) {
1677		/*
1678		 * Inline copy of vrele() since VOP_INACTIVE
1679		 * has already been called.
1680		 */
1681		simple_lock(&vp->v_interlock);
1682		if (--vp->v_usecount <= 0) {
1683#ifdef DIAGNOSTIC
1684			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1685				vprint("vclean: bad ref count", vp);
1686				panic("vclean: ref cnt");
1687			}
1688#endif
1689			vfree(vp);
1690		}
1691		simple_unlock(&vp->v_interlock);
1692	}
1693
1694	cache_purge(vp);
1695	if (vp->v_vnlock) {
1696		FREE(vp->v_vnlock, M_VNODE);
1697		vp->v_vnlock = NULL;
1698	}
1699
1700	if (VSHOULDFREE(vp))
1701		vfree(vp);
1702
1703	/*
1704	 * Done with purge, notify sleepers of the grim news.
1705	 */
1706	vp->v_op = dead_vnodeop_p;
1707	vn_pollgone(vp);
1708	vp->v_tag = VT_NON;
1709	vp->v_flag &= ~VXLOCK;
1710	if (vp->v_flag & VXWANT) {
1711		vp->v_flag &= ~VXWANT;
1712		wakeup((caddr_t) vp);
1713	}
1714}
1715
1716/*
1717 * Eliminate all activity associated with the requested vnode
1718 * and with all vnodes aliased to the requested vnode.
1719 */
1720int
1721vop_revoke(ap)
1722	struct vop_revoke_args /* {
1723		struct vnode *a_vp;
1724		int a_flags;
1725	} */ *ap;
1726{
1727	struct vnode *vp, *vq;
1728	dev_t dev;
1729
1730	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1731
1732	vp = ap->a_vp;
1733	/*
1734	 * If a vgone (or vclean) is already in progress,
1735	 * wait until it is done and return.
1736	 */
1737	if (vp->v_flag & VXLOCK) {
1738		vp->v_flag |= VXWANT;
1739		simple_unlock(&vp->v_interlock);
1740		tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1741		return (0);
1742	}
1743	dev = vp->v_rdev;
1744	for (;;) {
1745		simple_lock(&spechash_slock);
1746		vq = SLIST_FIRST(&dev->si_hlist);
1747		simple_unlock(&spechash_slock);
1748		if (!vq)
1749			break;
1750		vgone(vq);
1751	}
1752	return (0);
1753}
1754
1755/*
1756 * Recycle an unused vnode to the front of the free list.
1757 * Release the passed interlock if the vnode will be recycled.
1758 */
1759int
1760vrecycle(vp, inter_lkp, p)
1761	struct vnode *vp;
1762	struct simplelock *inter_lkp;
1763	struct proc *p;
1764{
1765
1766	simple_lock(&vp->v_interlock);
1767	if (vp->v_usecount == 0) {
1768		if (inter_lkp) {
1769			simple_unlock(inter_lkp);
1770		}
1771		vgonel(vp, p);
1772		return (1);
1773	}
1774	simple_unlock(&vp->v_interlock);
1775	return (0);
1776}
1777
1778/*
1779 * Eliminate all activity associated with a vnode
1780 * in preparation for reuse.
1781 */
1782void
1783vgone(vp)
1784	register struct vnode *vp;
1785{
1786	struct proc *p = curproc;	/* XXX */
1787
1788	simple_lock(&vp->v_interlock);
1789	vgonel(vp, p);
1790}
1791
1792/*
1793 * vgone, with the vp interlock held.
1794 */
1795void
1796vgonel(vp, p)
1797	struct vnode *vp;
1798	struct proc *p;
1799{
1800	int s;
1801
1802	/*
1803	 * If a vgone (or vclean) is already in progress,
1804	 * wait until it is done and return.
1805	 */
1806	if (vp->v_flag & VXLOCK) {
1807		vp->v_flag |= VXWANT;
1808		simple_unlock(&vp->v_interlock);
1809		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1810		return;
1811	}
1812
1813	/*
1814	 * Clean out the filesystem specific data.
1815	 */
1816	vclean(vp, DOCLOSE, p);
1817	simple_lock(&vp->v_interlock);
1818
1819	/*
1820	 * Delete from old mount point vnode list, if on one.
1821	 */
1822	if (vp->v_mount != NULL)
1823		insmntque(vp, (struct mount *)0);
1824	/*
1825	 * If special device, remove it from special device alias list
1826	 * if it is on one.
1827	 */
1828	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1829		simple_lock(&spechash_slock);
1830		SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
1831		freedev(vp->v_rdev);
1832		simple_unlock(&spechash_slock);
1833		vp->v_rdev = NULL;
1834	}
1835
1836	/*
1837	 * If it is on the freelist and not already at the head,
1838	 * move it to the head of the list. The test of the
1839	 * VDOOMED flag and the reference count of zero is because
1840	 * it will be removed from the free list by getnewvnode,
1841	 * but will not have its reference count incremented until
1842	 * after calling vgone. If the reference count were
1843	 * incremented first, vgone would (incorrectly) try to
1844	 * close the previous instance of the underlying object.
1845	 */
1846	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1847		s = splbio();
1848		simple_lock(&vnode_free_list_slock);
1849		if (vp->v_flag & VFREE)
1850			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1851		else
1852			freevnodes++;
1853		vp->v_flag |= VFREE;
1854		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1855		simple_unlock(&vnode_free_list_slock);
1856		splx(s);
1857	}
1858
1859	vp->v_type = VBAD;
1860	simple_unlock(&vp->v_interlock);
1861}
1862
1863/*
1864 * Lookup a vnode by device number.
1865 */
1866int
1867vfinddev(dev, type, vpp)
1868	dev_t dev;
1869	enum vtype type;
1870	struct vnode **vpp;
1871{
1872	struct vnode *vp;
1873
1874	simple_lock(&spechash_slock);
1875	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1876		if (type == vp->v_type) {
1877			*vpp = vp;
1878			simple_unlock(&spechash_slock);
1879			return (1);
1880		}
1881	}
1882	simple_unlock(&spechash_slock);
1883	return (0);
1884}
1885
1886/*
1887 * Calculate the total number of references to a special device.
1888 */
1889int
1890vcount(vp)
1891	struct vnode *vp;
1892{
1893	struct vnode *vq;
1894	int count;
1895
1896	count = 0;
1897	simple_lock(&spechash_slock);
1898	SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
1899		count += vq->v_usecount;
1900	simple_unlock(&spechash_slock);
1901	return (count);
1902}
1903
1904/*
1905 * Same as above, but using the dev_t as argument
1906 */
1907
1908int
1909count_dev(dev)
1910	dev_t dev;
1911{
1912	struct vnode *vp;
1913
1914	vp = SLIST_FIRST(&dev->si_hlist);
1915	if (vp == NULL)
1916		return (0);
1917	return(vcount(vp));
1918}
1919
1920/*
1921 * Print out a description of a vnode.
1922 */
1923static char *typename[] =
1924{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1925
1926void
1927vprint(label, vp)
1928	char *label;
1929	struct vnode *vp;
1930{
1931	char buf[96];
1932
1933	if (label != NULL)
1934		printf("%s: %p: ", label, (void *)vp);
1935	else
1936		printf("%p: ", (void *)vp);
1937	printf("type %s, usecount %d, writecount %d, refcount %d,",
1938	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1939	    vp->v_holdcnt);
1940	buf[0] = '\0';
1941	if (vp->v_flag & VROOT)
1942		strcat(buf, "|VROOT");
1943	if (vp->v_flag & VTEXT)
1944		strcat(buf, "|VTEXT");
1945	if (vp->v_flag & VSYSTEM)
1946		strcat(buf, "|VSYSTEM");
1947	if (vp->v_flag & VXLOCK)
1948		strcat(buf, "|VXLOCK");
1949	if (vp->v_flag & VXWANT)
1950		strcat(buf, "|VXWANT");
1951	if (vp->v_flag & VBWAIT)
1952		strcat(buf, "|VBWAIT");
1953	if (vp->v_flag & VDOOMED)
1954		strcat(buf, "|VDOOMED");
1955	if (vp->v_flag & VFREE)
1956		strcat(buf, "|VFREE");
1957	if (vp->v_flag & VOBJBUF)
1958		strcat(buf, "|VOBJBUF");
1959	if (buf[0] != '\0')
1960		printf(" flags (%s)", &buf[1]);
1961	if (vp->v_data == NULL) {
1962		printf("\n");
1963	} else {
1964		printf("\n\t");
1965		VOP_PRINT(vp);
1966	}
1967}
1968
1969#ifdef DDB
1970#include <ddb/ddb.h>
1971/*
1972 * List all of the locked vnodes in the system.
1973 * Called when debugging the kernel.
1974 */
1975DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1976{
1977	struct proc *p = curproc;	/* XXX */
1978	struct mount *mp, *nmp;
1979	struct vnode *vp;
1980
1981	printf("Locked vnodes\n");
1982	simple_lock(&mountlist_slock);
1983	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1984		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
1985			nmp = TAILQ_NEXT(mp, mnt_list);
1986			continue;
1987		}
1988		LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
1989			if (VOP_ISLOCKED(vp, NULL))
1990				vprint((char *)0, vp);
1991		}
1992		simple_lock(&mountlist_slock);
1993		nmp = TAILQ_NEXT(mp, mnt_list);
1994		vfs_unbusy(mp, p);
1995	}
1996	simple_unlock(&mountlist_slock);
1997}
1998#endif
1999
2000/*
2001 * Top level filesystem related information gathering.
2002 */
2003static int	sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS));
2004
2005static int
2006vfs_sysctl(SYSCTL_HANDLER_ARGS)
2007{
2008	int *name = (int *)arg1 - 1;	/* XXX */
2009	u_int namelen = arg2 + 1;	/* XXX */
2010	struct vfsconf *vfsp;
2011
2012#if 1 || defined(COMPAT_PRELITE2)
2013	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2014	if (namelen == 1)
2015		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2016#endif
2017
2018#ifdef notyet
2019	/* all sysctl names at this level are at least name and field */
2020	if (namelen < 2)
2021		return (ENOTDIR);		/* overloaded */
2022	if (name[0] != VFS_GENERIC) {
2023		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2024			if (vfsp->vfc_typenum == name[0])
2025				break;
2026		if (vfsp == NULL)
2027			return (EOPNOTSUPP);
2028		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2029		    oldp, oldlenp, newp, newlen, p));
2030	}
2031#endif
2032	switch (name[1]) {
2033	case VFS_MAXTYPENUM:
2034		if (namelen != 2)
2035			return (ENOTDIR);
2036		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2037	case VFS_CONF:
2038		if (namelen != 3)
2039			return (ENOTDIR);	/* overloaded */
2040		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2041			if (vfsp->vfc_typenum == name[2])
2042				break;
2043		if (vfsp == NULL)
2044			return (EOPNOTSUPP);
2045		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2046	}
2047	return (EOPNOTSUPP);
2048}
2049
2050SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2051	"Generic filesystem");
2052
2053#if 1 || defined(COMPAT_PRELITE2)
2054
2055static int
2056sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2057{
2058	int error;
2059	struct vfsconf *vfsp;
2060	struct ovfsconf ovfs;
2061
2062	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2063		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2064		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2065		ovfs.vfc_index = vfsp->vfc_typenum;
2066		ovfs.vfc_refcount = vfsp->vfc_refcount;
2067		ovfs.vfc_flags = vfsp->vfc_flags;
2068		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2069		if (error)
2070			return error;
2071	}
2072	return 0;
2073}
2074
2075#endif /* 1 || COMPAT_PRELITE2 */
2076
2077#if 0
2078#define KINFO_VNODESLOP	10
2079/*
2080 * Dump vnode list (via sysctl).
2081 * Copyout address of vnode followed by vnode.
2082 */
2083/* ARGSUSED */
2084static int
2085sysctl_vnode(SYSCTL_HANDLER_ARGS)
2086{
2087	struct proc *p = curproc;	/* XXX */
2088	struct mount *mp, *nmp;
2089	struct vnode *nvp, *vp;
2090	int error;
2091
2092#define VPTRSZ	sizeof (struct vnode *)
2093#define VNODESZ	sizeof (struct vnode)
2094
2095	req->lock = 0;
2096	if (!req->oldptr) /* Make an estimate */
2097		return (SYSCTL_OUT(req, 0,
2098			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2099
2100	simple_lock(&mountlist_slock);
2101	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2102		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2103			nmp = TAILQ_NEXT(mp, mnt_list);
2104			continue;
2105		}
2106again:
2107		simple_lock(&mntvnode_slock);
2108		for (vp = LIST_FIRST(&mp->mnt_vnodelist);
2109		     vp != NULL;
2110		     vp = nvp) {
2111			/*
2112			 * Check that the vp is still associated with
2113			 * this filesystem.  RACE: could have been
2114			 * recycled onto the same filesystem.
2115			 */
2116			if (vp->v_mount != mp) {
2117				simple_unlock(&mntvnode_slock);
2118				goto again;
2119			}
2120			nvp = LIST_NEXT(vp, v_mntvnodes);
2121			simple_unlock(&mntvnode_slock);
2122			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2123			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2124				return (error);
2125			simple_lock(&mntvnode_slock);
2126		}
2127		simple_unlock(&mntvnode_slock);
2128		simple_lock(&mountlist_slock);
2129		nmp = TAILQ_NEXT(mp, mnt_list);
2130		vfs_unbusy(mp, p);
2131	}
2132	simple_unlock(&mountlist_slock);
2133
2134	return (0);
2135}
2136#endif
2137
2138/*
2139 * XXX
2140 * Exporting the vnode list on large systems causes them to crash.
2141 * Exporting the vnode list on medium systems causes sysctl to coredump.
2142 */
2143#if 0
2144SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2145	0, 0, sysctl_vnode, "S,vnode", "");
2146#endif
2147
2148/*
2149 * Check to see if a filesystem is mounted on a block device.
2150 */
2151int
2152vfs_mountedon(vp)
2153	struct vnode *vp;
2154{
2155
2156	if (vp->v_specmountpoint != NULL)
2157		return (EBUSY);
2158	return (0);
2159}
2160
2161/*
2162 * Unmount all filesystems. The list is traversed in reverse order
2163 * of mounting to avoid dependencies.
2164 */
2165void
2166vfs_unmountall()
2167{
2168	struct mount *mp;
2169	struct proc *p;
2170	int error;
2171
2172	if (curproc != NULL)
2173		p = curproc;
2174	else
2175		p = initproc;	/* XXX XXX should this be proc0? */
2176	/*
2177	 * Since this only runs when rebooting, it is not interlocked.
2178	 */
2179	while(!TAILQ_EMPTY(&mountlist)) {
2180		mp = TAILQ_LAST(&mountlist, mntlist);
2181		error = dounmount(mp, MNT_FORCE, p);
2182		if (error) {
2183			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2184			printf("unmount of %s failed (",
2185			    mp->mnt_stat.f_mntonname);
2186			if (error == EBUSY)
2187				printf("BUSY)\n");
2188			else
2189				printf("%d)\n", error);
2190		} else {
2191			/* The unmount has removed mp from the mountlist */
2192		}
2193	}
2194}
2195
2196/*
2197 * Build hash lists of net addresses and hang them off the mount point.
2198 * Called by ufs_mount() to set up the lists of export addresses.
2199 */
2200static int
2201vfs_hang_addrlist(mp, nep, argp)
2202	struct mount *mp;
2203	struct netexport *nep;
2204	struct export_args *argp;
2205{
2206	register struct netcred *np;
2207	register struct radix_node_head *rnh;
2208	register int i;
2209	struct radix_node *rn;
2210	struct sockaddr *saddr, *smask = 0;
2211	struct domain *dom;
2212	int error;
2213
2214	if (argp->ex_addrlen == 0) {
2215		if (mp->mnt_flag & MNT_DEFEXPORTED)
2216			return (EPERM);
2217		np = &nep->ne_defexported;
2218		np->netc_exflags = argp->ex_flags;
2219		np->netc_anon = argp->ex_anon;
2220		np->netc_anon.cr_ref = 1;
2221		mp->mnt_flag |= MNT_DEFEXPORTED;
2222		return (0);
2223	}
2224	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2225	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2226	bzero((caddr_t) np, i);
2227	saddr = (struct sockaddr *) (np + 1);
2228	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2229		goto out;
2230	if (saddr->sa_len > argp->ex_addrlen)
2231		saddr->sa_len = argp->ex_addrlen;
2232	if (argp->ex_masklen) {
2233		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2234		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2235		if (error)
2236			goto out;
2237		if (smask->sa_len > argp->ex_masklen)
2238			smask->sa_len = argp->ex_masklen;
2239	}
2240	i = saddr->sa_family;
2241	if ((rnh = nep->ne_rtable[i]) == 0) {
2242		/*
2243		 * Seems silly to initialize every AF when most are not used,
2244		 * do so on demand here
2245		 */
2246		for (dom = domains; dom; dom = dom->dom_next)
2247			if (dom->dom_family == i && dom->dom_rtattach) {
2248				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2249				    dom->dom_rtoffset);
2250				break;
2251			}
2252		if ((rnh = nep->ne_rtable[i]) == 0) {
2253			error = ENOBUFS;
2254			goto out;
2255		}
2256	}
2257	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2258	    np->netc_rnodes);
2259	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2260		error = EPERM;
2261		goto out;
2262	}
2263	np->netc_exflags = argp->ex_flags;
2264	np->netc_anon = argp->ex_anon;
2265	np->netc_anon.cr_ref = 1;
2266	return (0);
2267out:
2268	free(np, M_NETADDR);
2269	return (error);
2270}
2271
2272/* ARGSUSED */
2273static int
2274vfs_free_netcred(rn, w)
2275	struct radix_node *rn;
2276	void *w;
2277{
2278	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2279
2280	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2281	free((caddr_t) rn, M_NETADDR);
2282	return (0);
2283}
2284
2285/*
2286 * Free the net address hash lists that are hanging off the mount points.
2287 */
2288static void
2289vfs_free_addrlist(nep)
2290	struct netexport *nep;
2291{
2292	register int i;
2293	register struct radix_node_head *rnh;
2294
2295	for (i = 0; i <= AF_MAX; i++)
2296		if ((rnh = nep->ne_rtable[i])) {
2297			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2298			    (caddr_t) rnh);
2299			free((caddr_t) rnh, M_RTABLE);
2300			nep->ne_rtable[i] = 0;
2301		}
2302}
2303
2304int
2305vfs_export(mp, nep, argp)
2306	struct mount *mp;
2307	struct netexport *nep;
2308	struct export_args *argp;
2309{
2310	int error;
2311
2312	if (argp->ex_flags & MNT_DELEXPORT) {
2313		if (mp->mnt_flag & MNT_EXPUBLIC) {
2314			vfs_setpublicfs(NULL, NULL, NULL);
2315			mp->mnt_flag &= ~MNT_EXPUBLIC;
2316		}
2317		vfs_free_addrlist(nep);
2318		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2319	}
2320	if (argp->ex_flags & MNT_EXPORTED) {
2321		if (argp->ex_flags & MNT_EXPUBLIC) {
2322			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2323				return (error);
2324			mp->mnt_flag |= MNT_EXPUBLIC;
2325		}
2326		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2327			return (error);
2328		mp->mnt_flag |= MNT_EXPORTED;
2329	}
2330	return (0);
2331}
2332
2333
2334/*
2335 * Set the publicly exported filesystem (WebNFS). Currently, only
2336 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2337 */
2338int
2339vfs_setpublicfs(mp, nep, argp)
2340	struct mount *mp;
2341	struct netexport *nep;
2342	struct export_args *argp;
2343{
2344	int error;
2345	struct vnode *rvp;
2346	char *cp;
2347
2348	/*
2349	 * mp == NULL -> invalidate the current info, the FS is
2350	 * no longer exported. May be called from either vfs_export
2351	 * or unmount, so check if it hasn't already been done.
2352	 */
2353	if (mp == NULL) {
2354		if (nfs_pub.np_valid) {
2355			nfs_pub.np_valid = 0;
2356			if (nfs_pub.np_index != NULL) {
2357				FREE(nfs_pub.np_index, M_TEMP);
2358				nfs_pub.np_index = NULL;
2359			}
2360		}
2361		return (0);
2362	}
2363
2364	/*
2365	 * Only one allowed at a time.
2366	 */
2367	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2368		return (EBUSY);
2369
2370	/*
2371	 * Get real filehandle for root of exported FS.
2372	 */
2373	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2374	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2375
2376	if ((error = VFS_ROOT(mp, &rvp)))
2377		return (error);
2378
2379	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2380		return (error);
2381
2382	vput(rvp);
2383
2384	/*
2385	 * If an indexfile was specified, pull it in.
2386	 */
2387	if (argp->ex_indexfile != NULL) {
2388		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2389		    M_WAITOK);
2390		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2391		    MAXNAMLEN, (size_t *)0);
2392		if (!error) {
2393			/*
2394			 * Check for illegal filenames.
2395			 */
2396			for (cp = nfs_pub.np_index; *cp; cp++) {
2397				if (*cp == '/') {
2398					error = EINVAL;
2399					break;
2400				}
2401			}
2402		}
2403		if (error) {
2404			FREE(nfs_pub.np_index, M_TEMP);
2405			return (error);
2406		}
2407	}
2408
2409	nfs_pub.np_mount = mp;
2410	nfs_pub.np_valid = 1;
2411	return (0);
2412}
2413
2414struct netcred *
2415vfs_export_lookup(mp, nep, nam)
2416	register struct mount *mp;
2417	struct netexport *nep;
2418	struct sockaddr *nam;
2419{
2420	register struct netcred *np;
2421	register struct radix_node_head *rnh;
2422	struct sockaddr *saddr;
2423
2424	np = NULL;
2425	if (mp->mnt_flag & MNT_EXPORTED) {
2426		/*
2427		 * Lookup in the export list first.
2428		 */
2429		if (nam != NULL) {
2430			saddr = nam;
2431			rnh = nep->ne_rtable[saddr->sa_family];
2432			if (rnh != NULL) {
2433				np = (struct netcred *)
2434					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2435							      rnh);
2436				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2437					np = NULL;
2438			}
2439		}
2440		/*
2441		 * If no address match, use the default if it exists.
2442		 */
2443		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2444			np = &nep->ne_defexported;
2445	}
2446	return (np);
2447}
2448
2449/*
2450 * perform msync on all vnodes under a mount point
2451 * the mount point must be locked.
2452 */
2453void
2454vfs_msync(struct mount *mp, int flags) {
2455	struct vnode *vp, *nvp;
2456	struct vm_object *obj;
2457	int anyio, tries;
2458
2459	tries = 5;
2460loop:
2461	anyio = 0;
2462	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) {
2463
2464		nvp = LIST_NEXT(vp, v_mntvnodes);
2465
2466		if (vp->v_mount != mp) {
2467			goto loop;
2468		}
2469
2470		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2471			continue;
2472
2473		if (flags != MNT_WAIT) {
2474			obj = vp->v_object;
2475			if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2476				continue;
2477			if (VOP_ISLOCKED(vp, NULL))
2478				continue;
2479		}
2480
2481		simple_lock(&vp->v_interlock);
2482		if (vp->v_object &&
2483		   (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
2484			if (!vget(vp,
2485				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2486				if (vp->v_object) {
2487					vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2488					anyio = 1;
2489				}
2490				vput(vp);
2491			}
2492		} else {
2493			simple_unlock(&vp->v_interlock);
2494		}
2495	}
2496	if (anyio && (--tries > 0))
2497		goto loop;
2498}
2499
2500/*
2501 * Create the VM object needed for VMIO and mmap support.  This
2502 * is done for all VREG files in the system.  Some filesystems might
2503 * afford the additional metadata buffering capability of the
2504 * VMIO code by making the device node be VMIO mode also.
2505 *
2506 * vp must be locked when vfs_object_create is called.
2507 */
2508int
2509vfs_object_create(vp, p, cred)
2510	struct vnode *vp;
2511	struct proc *p;
2512	struct ucred *cred;
2513{
2514	struct vattr vat;
2515	vm_object_t object;
2516	int error = 0;
2517
2518	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
2519		return 0;
2520
2521retry:
2522	if ((object = vp->v_object) == NULL) {
2523		if (vp->v_type == VREG || vp->v_type == VDIR) {
2524			if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
2525				goto retn;
2526			object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
2527		} else if (devsw(vp->v_rdev) != NULL) {
2528			/*
2529			 * This simply allocates the biggest object possible
2530			 * for a disk vnode.  This should be fixed, but doesn't
2531			 * cause any problems (yet).
2532			 */
2533			object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
2534		} else {
2535			goto retn;
2536		}
2537		/*
2538		 * Dereference the reference we just created.  This assumes
2539		 * that the object is associated with the vp.
2540		 */
2541		object->ref_count--;
2542		vp->v_usecount--;
2543	} else {
2544		if (object->flags & OBJ_DEAD) {
2545			VOP_UNLOCK(vp, 0, p);
2546			tsleep(object, PVM, "vodead", 0);
2547			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
2548			goto retry;
2549		}
2550	}
2551
2552	KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
2553	vp->v_flag |= VOBJBUF;
2554
2555retn:
2556	return error;
2557}
2558
2559void
2560vfree(vp)
2561	struct vnode *vp;
2562{
2563	int s;
2564
2565	s = splbio();
2566	simple_lock(&vnode_free_list_slock);
2567	KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2568	if (vp->v_flag & VAGE) {
2569		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2570	} else {
2571		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2572	}
2573	freevnodes++;
2574	simple_unlock(&vnode_free_list_slock);
2575	vp->v_flag &= ~VAGE;
2576	vp->v_flag |= VFREE;
2577	splx(s);
2578}
2579
2580void
2581vbusy(vp)
2582	struct vnode *vp;
2583{
2584	int s;
2585
2586	s = splbio();
2587	simple_lock(&vnode_free_list_slock);
2588	KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2589	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2590	freevnodes--;
2591	simple_unlock(&vnode_free_list_slock);
2592	vp->v_flag &= ~(VFREE|VAGE);
2593	splx(s);
2594}
2595
2596/*
2597 * Record a process's interest in events which might happen to
2598 * a vnode.  Because poll uses the historic select-style interface
2599 * internally, this routine serves as both the ``check for any
2600 * pending events'' and the ``record my interest in future events''
2601 * functions.  (These are done together, while the lock is held,
2602 * to avoid race conditions.)
2603 */
2604int
2605vn_pollrecord(vp, p, events)
2606	struct vnode *vp;
2607	struct proc *p;
2608	short events;
2609{
2610	simple_lock(&vp->v_pollinfo.vpi_lock);
2611	if (vp->v_pollinfo.vpi_revents & events) {
2612		/*
2613		 * This leaves events we are not interested
2614		 * in available for the other process which
2615		 * which presumably had requested them
2616		 * (otherwise they would never have been
2617		 * recorded).
2618		 */
2619		events &= vp->v_pollinfo.vpi_revents;
2620		vp->v_pollinfo.vpi_revents &= ~events;
2621
2622		simple_unlock(&vp->v_pollinfo.vpi_lock);
2623		return events;
2624	}
2625	vp->v_pollinfo.vpi_events |= events;
2626	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2627	simple_unlock(&vp->v_pollinfo.vpi_lock);
2628	return 0;
2629}
2630
2631/*
2632 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2633 * it is possible for us to miss an event due to race conditions, but
2634 * that condition is expected to be rare, so for the moment it is the
2635 * preferred interface.
2636 */
2637void
2638vn_pollevent(vp, events)
2639	struct vnode *vp;
2640	short events;
2641{
2642	simple_lock(&vp->v_pollinfo.vpi_lock);
2643	if (vp->v_pollinfo.vpi_events & events) {
2644		/*
2645		 * We clear vpi_events so that we don't
2646		 * call selwakeup() twice if two events are
2647		 * posted before the polling process(es) is
2648		 * awakened.  This also ensures that we take at
2649		 * most one selwakeup() if the polling process
2650		 * is no longer interested.  However, it does
2651		 * mean that only one event can be noticed at
2652		 * a time.  (Perhaps we should only clear those
2653		 * event bits which we note?) XXX
2654		 */
2655		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2656		vp->v_pollinfo.vpi_revents |= events;
2657		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2658	}
2659	simple_unlock(&vp->v_pollinfo.vpi_lock);
2660}
2661
2662/*
2663 * Wake up anyone polling on vp because it is being revoked.
2664 * This depends on dead_poll() returning POLLHUP for correct
2665 * behavior.
2666 */
2667void
2668vn_pollgone(vp)
2669	struct vnode *vp;
2670{
2671	simple_lock(&vp->v_pollinfo.vpi_lock);
2672	if (vp->v_pollinfo.vpi_events) {
2673		vp->v_pollinfo.vpi_events = 0;
2674		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2675	}
2676	simple_unlock(&vp->v_pollinfo.vpi_lock);
2677}
2678
2679
2680
2681/*
2682 * Routine to create and manage a filesystem syncer vnode.
2683 */
2684#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2685static int	sync_fsync __P((struct  vop_fsync_args *));
2686static int	sync_inactive __P((struct  vop_inactive_args *));
2687static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2688#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2689#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2690static int	sync_print __P((struct vop_print_args *));
2691#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2692
2693static vop_t **sync_vnodeop_p;
2694static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2695	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2696	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2697	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2698	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2699	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2700	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2701	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2702	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2703	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2704	{ NULL, NULL }
2705};
2706static struct vnodeopv_desc sync_vnodeop_opv_desc =
2707	{ &sync_vnodeop_p, sync_vnodeop_entries };
2708
2709VNODEOP_SET(sync_vnodeop_opv_desc);
2710
2711/*
2712 * Create a new filesystem syncer vnode for the specified mount point.
2713 */
2714int
2715vfs_allocate_syncvnode(mp)
2716	struct mount *mp;
2717{
2718	struct vnode *vp;
2719	static long start, incr, next;
2720	int error;
2721
2722	/* Allocate a new vnode */
2723	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2724		mp->mnt_syncer = NULL;
2725		return (error);
2726	}
2727	vp->v_type = VNON;
2728	/*
2729	 * Place the vnode onto the syncer worklist. We attempt to
2730	 * scatter them about on the list so that they will go off
2731	 * at evenly distributed times even if all the filesystems
2732	 * are mounted at once.
2733	 */
2734	next += incr;
2735	if (next == 0 || next > syncer_maxdelay) {
2736		start /= 2;
2737		incr /= 2;
2738		if (start == 0) {
2739			start = syncer_maxdelay / 2;
2740			incr = syncer_maxdelay;
2741		}
2742		next = start;
2743	}
2744	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2745	mp->mnt_syncer = vp;
2746	return (0);
2747}
2748
2749/*
2750 * Do a lazy sync of the filesystem.
2751 */
2752static int
2753sync_fsync(ap)
2754	struct vop_fsync_args /* {
2755		struct vnode *a_vp;
2756		struct ucred *a_cred;
2757		int a_waitfor;
2758		struct proc *a_p;
2759	} */ *ap;
2760{
2761	struct vnode *syncvp = ap->a_vp;
2762	struct mount *mp = syncvp->v_mount;
2763	struct proc *p = ap->a_p;
2764	int asyncflag;
2765
2766	/*
2767	 * We only need to do something if this is a lazy evaluation.
2768	 */
2769	if (ap->a_waitfor != MNT_LAZY)
2770		return (0);
2771
2772	/*
2773	 * Move ourselves to the back of the sync list.
2774	 */
2775	vn_syncer_add_to_worklist(syncvp, syncdelay);
2776
2777	/*
2778	 * Walk the list of vnodes pushing all that are dirty and
2779	 * not already on the sync list.
2780	 */
2781	simple_lock(&mountlist_slock);
2782	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2783		simple_unlock(&mountlist_slock);
2784		return (0);
2785	}
2786	asyncflag = mp->mnt_flag & MNT_ASYNC;
2787	mp->mnt_flag &= ~MNT_ASYNC;
2788	vfs_msync(mp, MNT_NOWAIT);
2789	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2790	if (asyncflag)
2791		mp->mnt_flag |= MNT_ASYNC;
2792	vfs_unbusy(mp, p);
2793	return (0);
2794}
2795
2796/*
2797 * The syncer vnode is no referenced.
2798 */
2799static int
2800sync_inactive(ap)
2801	struct vop_inactive_args /* {
2802		struct vnode *a_vp;
2803		struct proc *a_p;
2804	} */ *ap;
2805{
2806
2807	vgone(ap->a_vp);
2808	return (0);
2809}
2810
2811/*
2812 * The syncer vnode is no longer needed and is being decommissioned.
2813 *
2814 * Modifications to the worklist must be protected at splbio().
2815 */
2816static int
2817sync_reclaim(ap)
2818	struct vop_reclaim_args /* {
2819		struct vnode *a_vp;
2820	} */ *ap;
2821{
2822	struct vnode *vp = ap->a_vp;
2823	int s;
2824
2825	s = splbio();
2826	vp->v_mount->mnt_syncer = NULL;
2827	if (vp->v_flag & VONWORKLST) {
2828		LIST_REMOVE(vp, v_synclist);
2829		vp->v_flag &= ~VONWORKLST;
2830	}
2831	splx(s);
2832
2833	return (0);
2834}
2835
2836/*
2837 * Print out a syncer vnode.
2838 */
2839static int
2840sync_print(ap)
2841	struct vop_print_args /* {
2842		struct vnode *a_vp;
2843	} */ *ap;
2844{
2845	struct vnode *vp = ap->a_vp;
2846
2847	printf("syncer vnode");
2848	if (vp->v_vnlock != NULL)
2849		lockmgr_printinfo(vp->v_vnlock);
2850	printf("\n");
2851	return (0);
2852}
2853
2854/*
2855 * extract the dev_t from a VBLK or VCHR
2856 */
2857dev_t
2858vn_todev(vp)
2859	struct vnode *vp;
2860{
2861	if (vp->v_type != VBLK && vp->v_type != VCHR)
2862		return (NODEV);
2863	return (vp->v_rdev);
2864}
2865
2866/*
2867 * Check if vnode represents a disk device
2868 */
2869int
2870vn_isdisk(vp, errp)
2871	struct vnode *vp;
2872	int *errp;
2873{
2874	if (vp->v_type != VBLK && vp->v_type != VCHR) {
2875		if (errp != NULL)
2876			*errp = ENOTBLK;
2877		return (0);
2878	}
2879	if (vp->v_rdev == NULL) {
2880		if (errp != NULL)
2881			*errp = ENXIO;
2882		return (0);
2883	}
2884	if (!devsw(vp->v_rdev)) {
2885		if (errp != NULL)
2886			*errp = ENXIO;
2887		return (0);
2888	}
2889	if (!(devsw(vp->v_rdev)->d_flags & D_DISK)) {
2890		if (errp != NULL)
2891			*errp = ENOTBLK;
2892		return (0);
2893	}
2894	if (errp != NULL)
2895		*errp = 0;
2896	return (1);
2897}
2898
2899void
2900NDFREE(ndp, flags)
2901     struct nameidata *ndp;
2902     const uint flags;
2903{
2904	if (!(flags & NDF_NO_FREE_PNBUF) &&
2905	    (ndp->ni_cnd.cn_flags & HASBUF)) {
2906		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2907		ndp->ni_cnd.cn_flags &= ~HASBUF;
2908	}
2909	if (!(flags & NDF_NO_DVP_UNLOCK) &&
2910	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
2911	    ndp->ni_dvp != ndp->ni_vp)
2912		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc);
2913	if (!(flags & NDF_NO_DVP_RELE) &&
2914	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
2915		vrele(ndp->ni_dvp);
2916		ndp->ni_dvp = NULL;
2917	}
2918	if (!(flags & NDF_NO_VP_UNLOCK) &&
2919	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
2920		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc);
2921	if (!(flags & NDF_NO_VP_RELE) &&
2922	    ndp->ni_vp) {
2923		vrele(ndp->ni_vp);
2924		ndp->ni_vp = NULL;
2925	}
2926	if (!(flags & NDF_NO_STARTDIR_RELE) &&
2927	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
2928		vrele(ndp->ni_startdir);
2929		ndp->ni_startdir = NULL;
2930	}
2931}
2932