vfs_export.c revision 55611
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_export.c 55611 2000-01-08 16:20:06Z eivind $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/buf.h>
50#include <sys/conf.h>
51#include <sys/dirent.h>
52#include <sys/domain.h>
53#include <sys/eventhandler.h>
54#include <sys/fcntl.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/malloc.h>
58#include <sys/mount.h>
59#include <sys/namei.h>
60#include <sys/proc.h>
61#include <sys/reboot.h>
62#include <sys/socket.h>
63#include <sys/stat.h>
64#include <sys/sysctl.h>
65#include <sys/vmmeter.h>
66#include <sys/vnode.h>
67
68#include <machine/limits.h>
69
70#include <vm/vm.h>
71#include <vm/vm_object.h>
72#include <vm/vm_extern.h>
73#include <vm/pmap.h>
74#include <vm/vm_map.h>
75#include <vm/vm_page.h>
76#include <vm/vm_pager.h>
77#include <vm/vnode_pager.h>
78#include <vm/vm_zone.h>
79
80static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81
82static void	insmntque __P((struct vnode *vp, struct mount *mp));
83static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
84static void	vfree __P((struct vnode *));
85static void	vgonel __P((struct vnode *vp, struct proc *p));
86static unsigned long	numvnodes;
87SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
88
89enum vtype iftovt_tab[16] = {
90	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
91	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
92};
93int vttoif_tab[9] = {
94	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
95	S_IFSOCK, S_IFIFO, S_IFMT,
96};
97
98static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
99struct tobefreelist vnode_tobefree_list;	/* vnode free list */
100
101static u_long wantfreevnodes = 25;
102SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
103static u_long freevnodes = 0;
104SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
105
106static int reassignbufcalls;
107SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
108static int reassignbufloops;
109SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
110static int reassignbufsortgood;
111SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
112static int reassignbufsortbad;
113SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
114static int reassignbufmethod = 1;
115SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
116
117#ifdef ENABLE_VFS_IOOPT
118int vfs_ioopt = 0;
119SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
120#endif
121
122struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
123struct simplelock mountlist_slock;
124struct simplelock mntvnode_slock;
125int	nfs_mount_type = -1;
126#ifndef NULL_SIMPLELOCKS
127static struct simplelock mntid_slock;
128static struct simplelock vnode_free_list_slock;
129static struct simplelock spechash_slock;
130#endif
131struct nfs_public nfs_pub;	/* publicly exported FS */
132static vm_zone_t vnode_zone;
133
134/*
135 * The workitem queue.
136 */
137#define SYNCER_MAXDELAY		32
138static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
139time_t syncdelay = 30;		/* max time to delay syncing data */
140time_t filedelay = 30;		/* time to delay syncing files */
141SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
142time_t dirdelay = 29;		/* time to delay syncing directories */
143SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
144time_t metadelay = 28;		/* time to delay syncing metadata */
145SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
146static int rushjob;			/* number of slots to run ASAP */
147static int stat_rush_requests;	/* number of times I/O speeded up */
148SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
149
150static int syncer_delayno = 0;
151static long syncer_mask;
152LIST_HEAD(synclist, vnode);
153static struct synclist *syncer_workitem_pending;
154
155int desiredvnodes;
156SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
157    &desiredvnodes, 0, "Maximum number of vnodes");
158
159static void	vfs_free_addrlist __P((struct netexport *nep));
160static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
161static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
162				       struct export_args *argp));
163
164/*
165 * Initialize the vnode management data structures.
166 */
167void
168vntblinit()
169{
170
171	desiredvnodes = maxproc + cnt.v_page_count / 4;
172	simple_lock_init(&mntvnode_slock);
173	simple_lock_init(&mntid_slock);
174	simple_lock_init(&spechash_slock);
175	TAILQ_INIT(&vnode_free_list);
176	TAILQ_INIT(&vnode_tobefree_list);
177	simple_lock_init(&vnode_free_list_slock);
178	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
179	/*
180	 * Initialize the filesystem syncer.
181	 */
182	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
183		&syncer_mask);
184	syncer_maxdelay = syncer_mask + 1;
185}
186
187/*
188 * Mark a mount point as busy. Used to synchronize access and to delay
189 * unmounting. Interlock is not released on failure.
190 */
191int
192vfs_busy(mp, flags, interlkp, p)
193	struct mount *mp;
194	int flags;
195	struct simplelock *interlkp;
196	struct proc *p;
197{
198	int lkflags;
199
200	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
201		if (flags & LK_NOWAIT)
202			return (ENOENT);
203		mp->mnt_kern_flag |= MNTK_MWAIT;
204		if (interlkp) {
205			simple_unlock(interlkp);
206		}
207		/*
208		 * Since all busy locks are shared except the exclusive
209		 * lock granted when unmounting, the only place that a
210		 * wakeup needs to be done is at the release of the
211		 * exclusive lock at the end of dounmount.
212		 */
213		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
214		if (interlkp) {
215			simple_lock(interlkp);
216		}
217		return (ENOENT);
218	}
219	lkflags = LK_SHARED | LK_NOPAUSE;
220	if (interlkp)
221		lkflags |= LK_INTERLOCK;
222	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
223		panic("vfs_busy: unexpected lock failure");
224	return (0);
225}
226
227/*
228 * Free a busy filesystem.
229 */
230void
231vfs_unbusy(mp, p)
232	struct mount *mp;
233	struct proc *p;
234{
235
236	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
237}
238
239/*
240 * Lookup a filesystem type, and if found allocate and initialize
241 * a mount structure for it.
242 *
243 * Devname is usually updated by mount(8) after booting.
244 */
245int
246vfs_rootmountalloc(fstypename, devname, mpp)
247	char *fstypename;
248	char *devname;
249	struct mount **mpp;
250{
251	struct proc *p = curproc;	/* XXX */
252	struct vfsconf *vfsp;
253	struct mount *mp;
254
255	if (fstypename == NULL)
256		return (ENODEV);
257	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
258		if (!strcmp(vfsp->vfc_name, fstypename))
259			break;
260	if (vfsp == NULL)
261		return (ENODEV);
262	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
263	bzero((char *)mp, (u_long)sizeof(struct mount));
264	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
265	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
266	LIST_INIT(&mp->mnt_vnodelist);
267	mp->mnt_vfc = vfsp;
268	mp->mnt_op = vfsp->vfc_vfsops;
269	mp->mnt_flag = MNT_RDONLY;
270	mp->mnt_vnodecovered = NULLVP;
271	vfsp->vfc_refcount++;
272	mp->mnt_iosize_max = DFLTPHYS;
273	mp->mnt_stat.f_type = vfsp->vfc_typenum;
274	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
275	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
276	mp->mnt_stat.f_mntonname[0] = '/';
277	mp->mnt_stat.f_mntonname[1] = 0;
278	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
279	*mpp = mp;
280	return (0);
281}
282
283/*
284 * Find an appropriate filesystem to use for the root. If a filesystem
285 * has not been preselected, walk through the list of known filesystems
286 * trying those that have mountroot routines, and try them until one
287 * works or we have tried them all.
288 */
289#ifdef notdef	/* XXX JH */
290int
291lite2_vfs_mountroot()
292{
293	struct vfsconf *vfsp;
294	extern int (*lite2_mountroot) __P((void));
295	int error;
296
297	if (lite2_mountroot != NULL)
298		return ((*lite2_mountroot)());
299	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
300		if (vfsp->vfc_mountroot == NULL)
301			continue;
302		if ((error = (*vfsp->vfc_mountroot)()) == 0)
303			return (0);
304		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
305	}
306	return (ENODEV);
307}
308#endif
309
310/*
311 * Lookup a mount point by filesystem identifier.
312 */
313struct mount *
314vfs_getvfs(fsid)
315	fsid_t *fsid;
316{
317	register struct mount *mp;
318
319	simple_lock(&mountlist_slock);
320	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
321		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
322		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
323			simple_unlock(&mountlist_slock);
324			return (mp);
325	    }
326	}
327	simple_unlock(&mountlist_slock);
328	return ((struct mount *) 0);
329}
330
331/*
332 * Get a new unique fsid
333 *
334 * Keep in mind that several mounts may be running in parallel,
335 * so always increment mntid_base even if lower numbers are available.
336 */
337
338static u_short mntid_base;
339
340void
341vfs_getnewfsid(mp)
342	struct mount *mp;
343{
344	fsid_t tfsid;
345	int mtype;
346
347	simple_lock(&mntid_slock);
348
349	mtype = mp->mnt_vfc->vfc_typenum;
350	for (;;) {
351		tfsid.val[0] = makeudev(255, mtype + (mntid_base << 16));
352		tfsid.val[1] = mtype;
353		++mntid_base;
354		if (vfs_getvfs(&tfsid) == NULL)
355			break;
356	}
357
358	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
359	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
360
361	simple_unlock(&mntid_slock);
362}
363
364/*
365 * Knob to control the precision of file timestamps:
366 *
367 *   0 = seconds only; nanoseconds zeroed.
368 *   1 = seconds and nanoseconds, accurate within 1/HZ.
369 *   2 = seconds and nanoseconds, truncated to microseconds.
370 * >=3 = seconds and nanoseconds, maximum precision.
371 */
372enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
373
374static int timestamp_precision = TSP_SEC;
375SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
376    &timestamp_precision, 0, "");
377
378/*
379 * Get a current timestamp.
380 */
381void
382vfs_timestamp(tsp)
383	struct timespec *tsp;
384{
385	struct timeval tv;
386
387	switch (timestamp_precision) {
388	case TSP_SEC:
389		tsp->tv_sec = time_second;
390		tsp->tv_nsec = 0;
391		break;
392	case TSP_HZ:
393		getnanotime(tsp);
394		break;
395	case TSP_USEC:
396		microtime(&tv);
397		TIMEVAL_TO_TIMESPEC(&tv, tsp);
398		break;
399	case TSP_NSEC:
400	default:
401		nanotime(tsp);
402		break;
403	}
404}
405
406/*
407 * Set vnode attributes to VNOVAL
408 */
409void
410vattr_null(vap)
411	register struct vattr *vap;
412{
413
414	vap->va_type = VNON;
415	vap->va_size = VNOVAL;
416	vap->va_bytes = VNOVAL;
417	vap->va_mode = VNOVAL;
418	vap->va_nlink = VNOVAL;
419	vap->va_uid = VNOVAL;
420	vap->va_gid = VNOVAL;
421	vap->va_fsid = VNOVAL;
422	vap->va_fileid = VNOVAL;
423	vap->va_blocksize = VNOVAL;
424	vap->va_rdev = VNOVAL;
425	vap->va_atime.tv_sec = VNOVAL;
426	vap->va_atime.tv_nsec = VNOVAL;
427	vap->va_mtime.tv_sec = VNOVAL;
428	vap->va_mtime.tv_nsec = VNOVAL;
429	vap->va_ctime.tv_sec = VNOVAL;
430	vap->va_ctime.tv_nsec = VNOVAL;
431	vap->va_flags = VNOVAL;
432	vap->va_gen = VNOVAL;
433	vap->va_vaflags = 0;
434}
435
436/*
437 * Routines having to do with the management of the vnode table.
438 */
439extern vop_t **dead_vnodeop_p;
440
441/*
442 * Return the next vnode from the free list.
443 */
444int
445getnewvnode(tag, mp, vops, vpp)
446	enum vtagtype tag;
447	struct mount *mp;
448	vop_t **vops;
449	struct vnode **vpp;
450{
451	int s;
452	struct proc *p = curproc;	/* XXX */
453	struct vnode *vp, *tvp, *nvp;
454	vm_object_t object;
455	TAILQ_HEAD(freelst, vnode) vnode_tmp_list;
456
457	/*
458	 * We take the least recently used vnode from the freelist
459	 * if we can get it and it has no cached pages, and no
460	 * namecache entries are relative to it.
461	 * Otherwise we allocate a new vnode
462	 */
463
464	s = splbio();
465	simple_lock(&vnode_free_list_slock);
466	TAILQ_INIT(&vnode_tmp_list);
467
468	for (vp = TAILQ_FIRST(&vnode_tobefree_list); vp; vp = nvp) {
469		nvp = TAILQ_NEXT(vp, v_freelist);
470		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
471		if (vp->v_flag & VAGE) {
472			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
473		} else {
474			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
475		}
476		vp->v_flag &= ~(VTBFREE|VAGE);
477		vp->v_flag |= VFREE;
478		if (vp->v_usecount)
479			panic("tobe free vnode isn't");
480		freevnodes++;
481	}
482
483	if (wantfreevnodes && freevnodes < wantfreevnodes) {
484		vp = NULL;
485	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
486		/*
487		 * XXX: this is only here to be backwards compatible
488		 */
489		vp = NULL;
490	} else {
491		for (vp = TAILQ_FIRST(&vnode_free_list); vp; vp = nvp) {
492			nvp = TAILQ_NEXT(vp, v_freelist);
493			if (!simple_lock_try(&vp->v_interlock))
494				continue;
495			if (vp->v_usecount)
496				panic("free vnode isn't");
497
498			object = vp->v_object;
499			if (object && (object->resident_page_count || object->ref_count)) {
500				printf("object inconsistant state: RPC: %d, RC: %d\n",
501					object->resident_page_count, object->ref_count);
502				/* Don't recycle if it's caching some pages */
503				TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
504				TAILQ_INSERT_TAIL(&vnode_tmp_list, vp, v_freelist);
505				continue;
506			} else if (LIST_FIRST(&vp->v_cache_src)) {
507				/* Don't recycle if active in the namecache */
508				simple_unlock(&vp->v_interlock);
509				continue;
510			} else {
511				break;
512			}
513		}
514	}
515
516	for (tvp = TAILQ_FIRST(&vnode_tmp_list); tvp; tvp = nvp) {
517		nvp = TAILQ_NEXT(tvp, v_freelist);
518		TAILQ_REMOVE(&vnode_tmp_list, tvp, v_freelist);
519		TAILQ_INSERT_TAIL(&vnode_free_list, tvp, v_freelist);
520		simple_unlock(&tvp->v_interlock);
521	}
522
523	if (vp) {
524		vp->v_flag |= VDOOMED;
525		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
526		freevnodes--;
527		simple_unlock(&vnode_free_list_slock);
528		cache_purge(vp);
529		vp->v_lease = NULL;
530		if (vp->v_type != VBAD) {
531			vgonel(vp, p);
532		} else {
533			simple_unlock(&vp->v_interlock);
534		}
535
536#ifdef INVARIANTS
537		{
538			int s;
539
540			if (vp->v_data)
541				panic("cleaned vnode isn't");
542			s = splbio();
543			if (vp->v_numoutput)
544				panic("Clean vnode has pending I/O's");
545			splx(s);
546		}
547#endif
548		vp->v_flag = 0;
549		vp->v_lastw = 0;
550		vp->v_lasta = 0;
551		vp->v_cstart = 0;
552		vp->v_clen = 0;
553		vp->v_socket = 0;
554		vp->v_writecount = 0;	/* XXX */
555	} else {
556		simple_unlock(&vnode_free_list_slock);
557		vp = (struct vnode *) zalloc(vnode_zone);
558		bzero((char *) vp, sizeof *vp);
559		simple_lock_init(&vp->v_interlock);
560		vp->v_dd = vp;
561		cache_purge(vp);
562		LIST_INIT(&vp->v_cache_src);
563		TAILQ_INIT(&vp->v_cache_dst);
564		numvnodes++;
565	}
566
567	TAILQ_INIT(&vp->v_cleanblkhd);
568	TAILQ_INIT(&vp->v_dirtyblkhd);
569	vp->v_type = VNON;
570	vp->v_tag = tag;
571	vp->v_op = vops;
572	insmntque(vp, mp);
573	*vpp = vp;
574	vp->v_usecount = 1;
575	vp->v_data = 0;
576	splx(s);
577
578	vfs_object_create(vp, p, p->p_ucred);
579	return (0);
580}
581
582/*
583 * Move a vnode from one mount queue to another.
584 */
585static void
586insmntque(vp, mp)
587	register struct vnode *vp;
588	register struct mount *mp;
589{
590
591	simple_lock(&mntvnode_slock);
592	/*
593	 * Delete from old mount point vnode list, if on one.
594	 */
595	if (vp->v_mount != NULL)
596		LIST_REMOVE(vp, v_mntvnodes);
597	/*
598	 * Insert into list of vnodes for the new mount point, if available.
599	 */
600	if ((vp->v_mount = mp) == NULL) {
601		simple_unlock(&mntvnode_slock);
602		return;
603	}
604	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
605	simple_unlock(&mntvnode_slock);
606}
607
608/*
609 * Update outstanding I/O count and do wakeup if requested.
610 */
611void
612vwakeup(bp)
613	register struct buf *bp;
614{
615	register struct vnode *vp;
616
617	bp->b_flags &= ~B_WRITEINPROG;
618	if ((vp = bp->b_vp)) {
619		vp->v_numoutput--;
620		if (vp->v_numoutput < 0)
621			panic("vwakeup: neg numoutput");
622		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
623			vp->v_flag &= ~VBWAIT;
624			wakeup((caddr_t) &vp->v_numoutput);
625		}
626	}
627}
628
629/*
630 * Flush out and invalidate all buffers associated with a vnode.
631 * Called with the underlying object locked.
632 */
633int
634vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
635	register struct vnode *vp;
636	int flags;
637	struct ucred *cred;
638	struct proc *p;
639	int slpflag, slptimeo;
640{
641	register struct buf *bp;
642	struct buf *nbp, *blist;
643	int s, error;
644	vm_object_t object;
645
646	if (flags & V_SAVE) {
647		s = splbio();
648		while (vp->v_numoutput) {
649			vp->v_flag |= VBWAIT;
650			error = tsleep((caddr_t)&vp->v_numoutput,
651			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
652			if (error) {
653				splx(s);
654				return (error);
655			}
656		}
657		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
658			splx(s);
659			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
660				return (error);
661			s = splbio();
662			if (vp->v_numoutput > 0 ||
663			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
664				panic("vinvalbuf: dirty bufs");
665		}
666		splx(s);
667  	}
668	s = splbio();
669	for (;;) {
670		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
671		if (!blist)
672			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
673		if (!blist)
674			break;
675
676		for (bp = blist; bp; bp = nbp) {
677			nbp = TAILQ_NEXT(bp, b_vnbufs);
678			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
679				error = BUF_TIMELOCK(bp,
680				    LK_EXCLUSIVE | LK_SLEEPFAIL,
681				    "vinvalbuf", slpflag, slptimeo);
682				if (error == ENOLCK)
683					break;
684				splx(s);
685				return (error);
686			}
687			/*
688			 * XXX Since there are no node locks for NFS, I
689			 * believe there is a slight chance that a delayed
690			 * write will occur while sleeping just above, so
691			 * check for it.  Note that vfs_bio_awrite expects
692			 * buffers to reside on a queue, while VOP_BWRITE and
693			 * brelse do not.
694			 */
695			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
696				(flags & V_SAVE)) {
697
698				if (bp->b_vp == vp) {
699					if (bp->b_flags & B_CLUSTEROK) {
700						BUF_UNLOCK(bp);
701						vfs_bio_awrite(bp);
702					} else {
703						bremfree(bp);
704						bp->b_flags |= B_ASYNC;
705						VOP_BWRITE(bp->b_vp, bp);
706					}
707				} else {
708					bremfree(bp);
709					(void) VOP_BWRITE(bp->b_vp, bp);
710				}
711				break;
712			}
713			bremfree(bp);
714			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
715			bp->b_flags &= ~B_ASYNC;
716			brelse(bp);
717		}
718	}
719
720	while (vp->v_numoutput > 0) {
721		vp->v_flag |= VBWAIT;
722		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
723	}
724
725	splx(s);
726
727	/*
728	 * Destroy the copy in the VM cache, too.
729	 */
730	simple_lock(&vp->v_interlock);
731	object = vp->v_object;
732	if (object != NULL) {
733		vm_object_page_remove(object, 0, 0,
734			(flags & V_SAVE) ? TRUE : FALSE);
735	}
736	simple_unlock(&vp->v_interlock);
737
738	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
739		panic("vinvalbuf: flush failed");
740	return (0);
741}
742
743/*
744 * Truncate a file's buffer and pages to a specified length.  This
745 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
746 * sync activity.
747 */
748int
749vtruncbuf(vp, cred, p, length, blksize)
750	register struct vnode *vp;
751	struct ucred *cred;
752	struct proc *p;
753	off_t length;
754	int blksize;
755{
756	register struct buf *bp;
757	struct buf *nbp;
758	int s, anyfreed;
759	int trunclbn;
760
761	/*
762	 * Round up to the *next* lbn.
763	 */
764	trunclbn = (length + blksize - 1) / blksize;
765
766	s = splbio();
767restart:
768	anyfreed = 1;
769	for (;anyfreed;) {
770		anyfreed = 0;
771		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
772			nbp = TAILQ_NEXT(bp, b_vnbufs);
773			if (bp->b_lblkno >= trunclbn) {
774				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
775					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
776					goto restart;
777				} else {
778					bremfree(bp);
779					bp->b_flags |= (B_INVAL | B_RELBUF);
780					bp->b_flags &= ~B_ASYNC;
781					brelse(bp);
782					anyfreed = 1;
783				}
784				if (nbp &&
785				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
786				    (nbp->b_vp != vp) ||
787				    (nbp->b_flags & B_DELWRI))) {
788					goto restart;
789				}
790			}
791		}
792
793		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
794			nbp = TAILQ_NEXT(bp, b_vnbufs);
795			if (bp->b_lblkno >= trunclbn) {
796				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
797					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
798					goto restart;
799				} else {
800					bremfree(bp);
801					bp->b_flags |= (B_INVAL | B_RELBUF);
802					bp->b_flags &= ~B_ASYNC;
803					brelse(bp);
804					anyfreed = 1;
805				}
806				if (nbp &&
807				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
808				    (nbp->b_vp != vp) ||
809				    (nbp->b_flags & B_DELWRI) == 0)) {
810					goto restart;
811				}
812			}
813		}
814	}
815
816	if (length > 0) {
817restartsync:
818		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
819			nbp = TAILQ_NEXT(bp, b_vnbufs);
820			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
821				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
822					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
823					goto restart;
824				} else {
825					bremfree(bp);
826					if (bp->b_vp == vp) {
827						bp->b_flags |= B_ASYNC;
828					} else {
829						bp->b_flags &= ~B_ASYNC;
830					}
831					VOP_BWRITE(bp->b_vp, bp);
832				}
833				goto restartsync;
834			}
835
836		}
837	}
838
839	while (vp->v_numoutput > 0) {
840		vp->v_flag |= VBWAIT;
841		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
842	}
843
844	splx(s);
845
846	vnode_pager_setsize(vp, length);
847
848	return (0);
849}
850
851/*
852 * Associate a buffer with a vnode.
853 */
854void
855bgetvp(vp, bp)
856	register struct vnode *vp;
857	register struct buf *bp;
858{
859	int s;
860
861	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
862
863	vhold(vp);
864	bp->b_vp = vp;
865	bp->b_dev = vn_todev(vp);
866	/*
867	 * Insert onto list for new vnode.
868	 */
869	s = splbio();
870	bp->b_xflags |= BX_VNCLEAN;
871	bp->b_xflags &= ~BX_VNDIRTY;
872	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
873	splx(s);
874}
875
876/*
877 * Disassociate a buffer from a vnode.
878 */
879void
880brelvp(bp)
881	register struct buf *bp;
882{
883	struct vnode *vp;
884	struct buflists *listheadp;
885	int s;
886
887	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
888
889	/*
890	 * Delete from old vnode list, if on one.
891	 */
892	vp = bp->b_vp;
893	s = splbio();
894	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
895		if (bp->b_xflags & BX_VNDIRTY)
896			listheadp = &vp->v_dirtyblkhd;
897		else
898			listheadp = &vp->v_cleanblkhd;
899		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
900		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
901	}
902	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
903		vp->v_flag &= ~VONWORKLST;
904		LIST_REMOVE(vp, v_synclist);
905	}
906	splx(s);
907	bp->b_vp = (struct vnode *) 0;
908	vdrop(vp);
909}
910
911/*
912 * The workitem queue.
913 *
914 * It is useful to delay writes of file data and filesystem metadata
915 * for tens of seconds so that quickly created and deleted files need
916 * not waste disk bandwidth being created and removed. To realize this,
917 * we append vnodes to a "workitem" queue. When running with a soft
918 * updates implementation, most pending metadata dependencies should
919 * not wait for more than a few seconds. Thus, mounted on block devices
920 * are delayed only about a half the time that file data is delayed.
921 * Similarly, directory updates are more critical, so are only delayed
922 * about a third the time that file data is delayed. Thus, there are
923 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
924 * one each second (driven off the filesystem syncer process). The
925 * syncer_delayno variable indicates the next queue that is to be processed.
926 * Items that need to be processed soon are placed in this queue:
927 *
928 *	syncer_workitem_pending[syncer_delayno]
929 *
930 * A delay of fifteen seconds is done by placing the request fifteen
931 * entries later in the queue:
932 *
933 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
934 *
935 */
936
937/*
938 * Add an item to the syncer work queue.
939 */
940static void
941vn_syncer_add_to_worklist(struct vnode *vp, int delay)
942{
943	int s, slot;
944
945	s = splbio();
946
947	if (vp->v_flag & VONWORKLST) {
948		LIST_REMOVE(vp, v_synclist);
949	}
950
951	if (delay > syncer_maxdelay - 2)
952		delay = syncer_maxdelay - 2;
953	slot = (syncer_delayno + delay) & syncer_mask;
954
955	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
956	vp->v_flag |= VONWORKLST;
957	splx(s);
958}
959
960struct  proc *updateproc;
961static void sched_sync __P((void));
962static struct kproc_desc up_kp = {
963	"syncer",
964	sched_sync,
965	&updateproc
966};
967SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
968
969/*
970 * System filesystem synchronizer daemon.
971 */
972void
973sched_sync(void)
974{
975	struct synclist *slp;
976	struct vnode *vp;
977	long starttime;
978	int s;
979	struct proc *p = updateproc;
980
981	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, p,
982	    SHUTDOWN_PRI_LAST);
983
984	p->p_flag |= P_BUFEXHAUST;
985
986	for (;;) {
987		kproc_suspend_loop(p);
988
989		starttime = time_second;
990
991		/*
992		 * Push files whose dirty time has expired.  Be careful
993		 * of interrupt race on slp queue.
994		 */
995		s = splbio();
996		slp = &syncer_workitem_pending[syncer_delayno];
997		syncer_delayno += 1;
998		if (syncer_delayno == syncer_maxdelay)
999			syncer_delayno = 0;
1000		splx(s);
1001
1002		while ((vp = LIST_FIRST(slp)) != NULL) {
1003			if (VOP_ISLOCKED(vp, NULL) == 0) {
1004				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1005				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
1006				VOP_UNLOCK(vp, 0, p);
1007			}
1008			s = splbio();
1009			if (LIST_FIRST(slp) == vp) {
1010				/*
1011				 * Note: v_tag VT_VFS vps can remain on the
1012				 * worklist too with no dirty blocks, but
1013				 * since sync_fsync() moves it to a different
1014				 * slot we are safe.
1015				 */
1016				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1017				    !vn_isdisk(vp))
1018					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1019				/*
1020				 * Put us back on the worklist.  The worklist
1021				 * routine will remove us from our current
1022				 * position and then add us back in at a later
1023				 * position.
1024				 */
1025				vn_syncer_add_to_worklist(vp, syncdelay);
1026			}
1027			splx(s);
1028		}
1029
1030		/*
1031		 * Do soft update processing.
1032		 */
1033		if (bioops.io_sync)
1034			(*bioops.io_sync)(NULL);
1035
1036		/*
1037		 * The variable rushjob allows the kernel to speed up the
1038		 * processing of the filesystem syncer process. A rushjob
1039		 * value of N tells the filesystem syncer to process the next
1040		 * N seconds worth of work on its queue ASAP. Currently rushjob
1041		 * is used by the soft update code to speed up the filesystem
1042		 * syncer process when the incore state is getting so far
1043		 * ahead of the disk that the kernel memory pool is being
1044		 * threatened with exhaustion.
1045		 */
1046		if (rushjob > 0) {
1047			rushjob -= 1;
1048			continue;
1049		}
1050		/*
1051		 * If it has taken us less than a second to process the
1052		 * current work, then wait. Otherwise start right over
1053		 * again. We can still lose time if any single round
1054		 * takes more than two seconds, but it does not really
1055		 * matter as we are just trying to generally pace the
1056		 * filesystem activity.
1057		 */
1058		if (time_second == starttime)
1059			tsleep(&lbolt, PPAUSE, "syncer", 0);
1060	}
1061}
1062
1063/*
1064 * Request the syncer daemon to speed up its work.
1065 * We never push it to speed up more than half of its
1066 * normal turn time, otherwise it could take over the cpu.
1067 */
1068int
1069speedup_syncer()
1070{
1071	int s;
1072
1073	s = splhigh();
1074	if (updateproc->p_wchan == &lbolt)
1075		setrunnable(updateproc);
1076	splx(s);
1077	if (rushjob < syncdelay / 2) {
1078		rushjob += 1;
1079		stat_rush_requests += 1;
1080		return (1);
1081	}
1082	return(0);
1083}
1084
1085/*
1086 * Associate a p-buffer with a vnode.
1087 *
1088 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1089 * with the buffer.  i.e. the bp has not been linked into the vnode or
1090 * ref-counted.
1091 */
1092void
1093pbgetvp(vp, bp)
1094	register struct vnode *vp;
1095	register struct buf *bp;
1096{
1097
1098	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1099
1100	bp->b_vp = vp;
1101	bp->b_flags |= B_PAGING;
1102	bp->b_dev = vn_todev(vp);
1103}
1104
1105/*
1106 * Disassociate a p-buffer from a vnode.
1107 */
1108void
1109pbrelvp(bp)
1110	register struct buf *bp;
1111{
1112
1113	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1114
1115#if !defined(MAX_PERF)
1116	/* XXX REMOVE ME */
1117	if (bp->b_vnbufs.tqe_next != NULL) {
1118		panic(
1119		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1120		    bp,
1121		    (int)bp->b_flags
1122		);
1123	}
1124#endif
1125	bp->b_vp = (struct vnode *) 0;
1126	bp->b_flags &= ~B_PAGING;
1127}
1128
1129void
1130pbreassignbuf(bp, newvp)
1131	struct buf *bp;
1132	struct vnode *newvp;
1133{
1134#if !defined(MAX_PERF)
1135	if ((bp->b_flags & B_PAGING) == 0) {
1136		panic(
1137		    "pbreassignbuf() on non phys bp %p",
1138		    bp
1139		);
1140	}
1141#endif
1142	bp->b_vp = newvp;
1143}
1144
1145/*
1146 * Reassign a buffer from one vnode to another.
1147 * Used to assign file specific control information
1148 * (indirect blocks) to the vnode to which they belong.
1149 */
1150void
1151reassignbuf(bp, newvp)
1152	register struct buf *bp;
1153	register struct vnode *newvp;
1154{
1155	struct buflists *listheadp;
1156	int delay;
1157	int s;
1158
1159	if (newvp == NULL) {
1160		printf("reassignbuf: NULL");
1161		return;
1162	}
1163	++reassignbufcalls;
1164
1165#if !defined(MAX_PERF)
1166	/*
1167	 * B_PAGING flagged buffers cannot be reassigned because their vp
1168	 * is not fully linked in.
1169	 */
1170	if (bp->b_flags & B_PAGING)
1171		panic("cannot reassign paging buffer");
1172#endif
1173
1174	s = splbio();
1175	/*
1176	 * Delete from old vnode list, if on one.
1177	 */
1178	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1179		if (bp->b_xflags & BX_VNDIRTY)
1180			listheadp = &bp->b_vp->v_dirtyblkhd;
1181		else
1182			listheadp = &bp->b_vp->v_cleanblkhd;
1183		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1184		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1185		if (bp->b_vp != newvp) {
1186			vdrop(bp->b_vp);
1187			bp->b_vp = NULL;	/* for clarification */
1188		}
1189	}
1190	/*
1191	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1192	 * of clean buffers.
1193	 */
1194	if (bp->b_flags & B_DELWRI) {
1195		struct buf *tbp;
1196
1197		listheadp = &newvp->v_dirtyblkhd;
1198		if ((newvp->v_flag & VONWORKLST) == 0) {
1199			switch (newvp->v_type) {
1200			case VDIR:
1201				delay = dirdelay;
1202				break;
1203			case VCHR:
1204			case VBLK:
1205				if (newvp->v_specmountpoint != NULL) {
1206					delay = metadelay;
1207					break;
1208				}
1209				/* fall through */
1210			default:
1211				delay = filedelay;
1212			}
1213			vn_syncer_add_to_worklist(newvp, delay);
1214		}
1215		bp->b_xflags |= BX_VNDIRTY;
1216		tbp = TAILQ_FIRST(listheadp);
1217		if (tbp == NULL ||
1218		    bp->b_lblkno == 0 ||
1219		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1220		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1221			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1222			++reassignbufsortgood;
1223		} else if (bp->b_lblkno < 0) {
1224			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1225			++reassignbufsortgood;
1226		} else if (reassignbufmethod == 1) {
1227			/*
1228			 * New sorting algorithm, only handle sequential case,
1229			 * otherwise append to end (but before metadata)
1230			 */
1231			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1232			    (tbp->b_xflags & BX_VNDIRTY)) {
1233				/*
1234				 * Found the best place to insert the buffer
1235				 */
1236				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1237				++reassignbufsortgood;
1238			} else {
1239				/*
1240				 * Missed, append to end, but before meta-data.
1241				 * We know that the head buffer in the list is
1242				 * not meta-data due to prior conditionals.
1243				 *
1244				 * Indirect effects:  NFS second stage write
1245				 * tends to wind up here, giving maximum
1246				 * distance between the unstable write and the
1247				 * commit rpc.
1248				 */
1249				tbp = TAILQ_LAST(listheadp, buflists);
1250				while (tbp && tbp->b_lblkno < 0)
1251					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1252				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1253				++reassignbufsortbad;
1254			}
1255		} else {
1256			/*
1257			 * Old sorting algorithm, scan queue and insert
1258			 */
1259			struct buf *ttbp;
1260			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1261			    (ttbp->b_lblkno < bp->b_lblkno)) {
1262				++reassignbufloops;
1263				tbp = ttbp;
1264			}
1265			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1266		}
1267	} else {
1268		bp->b_xflags |= BX_VNCLEAN;
1269		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1270		if ((newvp->v_flag & VONWORKLST) &&
1271		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1272			newvp->v_flag &= ~VONWORKLST;
1273			LIST_REMOVE(newvp, v_synclist);
1274		}
1275	}
1276	if (bp->b_vp != newvp) {
1277		bp->b_vp = newvp;
1278		vhold(bp->b_vp);
1279	}
1280	splx(s);
1281}
1282
1283/*
1284 * Create a vnode for a block device.
1285 * Used for mounting the root file system.
1286 */
1287int
1288bdevvp(dev, vpp)
1289	dev_t dev;
1290	struct vnode **vpp;
1291{
1292	register struct vnode *vp;
1293	struct vnode *nvp;
1294	int error;
1295
1296	if (dev == NODEV) {
1297		*vpp = NULLVP;
1298		return (ENXIO);
1299	}
1300	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1301	if (error) {
1302		*vpp = NULLVP;
1303		return (error);
1304	}
1305	vp = nvp;
1306	vp->v_type = VBLK;
1307	addalias(vp, dev);
1308	*vpp = vp;
1309	return (0);
1310}
1311
1312/*
1313 * Add vnode to the alias list hung off the dev_t.
1314 *
1315 * The reason for this gunk is that multiple vnodes can reference
1316 * the same physical device, so checking vp->v_usecount to see
1317 * how many users there are is inadequate; the v_usecount for
1318 * the vnodes need to be accumulated.  vcount() does that.
1319 */
1320void
1321addaliasu(nvp, nvp_rdev)
1322	struct vnode *nvp;
1323	udev_t nvp_rdev;
1324{
1325
1326	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1327		panic("addaliasu on non-special vnode");
1328	addalias(nvp, udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0));
1329}
1330
1331void
1332addalias(nvp, dev)
1333	struct vnode *nvp;
1334	dev_t dev;
1335{
1336
1337	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1338		panic("addalias on non-special vnode");
1339
1340	nvp->v_rdev = dev;
1341	simple_lock(&spechash_slock);
1342	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1343	simple_unlock(&spechash_slock);
1344}
1345
1346/*
1347 * Grab a particular vnode from the free list, increment its
1348 * reference count and lock it. The vnode lock bit is set if the
1349 * vnode is being eliminated in vgone. The process is awakened
1350 * when the transition is completed, and an error returned to
1351 * indicate that the vnode is no longer usable (possibly having
1352 * been changed to a new file system type).
1353 */
1354int
1355vget(vp, flags, p)
1356	register struct vnode *vp;
1357	int flags;
1358	struct proc *p;
1359{
1360	int error;
1361
1362	/*
1363	 * If the vnode is in the process of being cleaned out for
1364	 * another use, we wait for the cleaning to finish and then
1365	 * return failure. Cleaning is determined by checking that
1366	 * the VXLOCK flag is set.
1367	 */
1368	if ((flags & LK_INTERLOCK) == 0) {
1369		simple_lock(&vp->v_interlock);
1370	}
1371	if (vp->v_flag & VXLOCK) {
1372		vp->v_flag |= VXWANT;
1373		simple_unlock(&vp->v_interlock);
1374		tsleep((caddr_t)vp, PINOD, "vget", 0);
1375		return (ENOENT);
1376	}
1377
1378	vp->v_usecount++;
1379
1380	if (VSHOULDBUSY(vp))
1381		vbusy(vp);
1382	if (flags & LK_TYPE_MASK) {
1383		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1384			/*
1385			 * must expand vrele here because we do not want
1386			 * to call VOP_INACTIVE if the reference count
1387			 * drops back to zero since it was never really
1388			 * active. We must remove it from the free list
1389			 * before sleeping so that multiple processes do
1390			 * not try to recycle it.
1391			 */
1392			simple_lock(&vp->v_interlock);
1393			vp->v_usecount--;
1394			if (VSHOULDFREE(vp))
1395				vfree(vp);
1396			simple_unlock(&vp->v_interlock);
1397		}
1398		return (error);
1399	}
1400	simple_unlock(&vp->v_interlock);
1401	return (0);
1402}
1403
1404void
1405vref(struct vnode *vp)
1406{
1407	simple_lock(&vp->v_interlock);
1408	vp->v_usecount++;
1409	simple_unlock(&vp->v_interlock);
1410}
1411
1412/*
1413 * Vnode put/release.
1414 * If count drops to zero, call inactive routine and return to freelist.
1415 */
1416void
1417vrele(vp)
1418	struct vnode *vp;
1419{
1420	struct proc *p = curproc;	/* XXX */
1421
1422	KASSERT(vp != NULL, ("vrele: null vp"));
1423
1424	simple_lock(&vp->v_interlock);
1425
1426	if (vp->v_usecount > 1) {
1427
1428		vp->v_usecount--;
1429		simple_unlock(&vp->v_interlock);
1430
1431		return;
1432	}
1433
1434	if (vp->v_usecount == 1) {
1435
1436		vp->v_usecount--;
1437		if (VSHOULDFREE(vp))
1438			vfree(vp);
1439	/*
1440	 * If we are doing a vput, the node is already locked, and we must
1441	 * call VOP_INACTIVE with the node locked.  So, in the case of
1442	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1443	 */
1444		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1445			VOP_INACTIVE(vp, p);
1446		}
1447
1448	} else {
1449#ifdef DIAGNOSTIC
1450		vprint("vrele: negative ref count", vp);
1451		simple_unlock(&vp->v_interlock);
1452#endif
1453		panic("vrele: negative ref cnt");
1454	}
1455}
1456
1457void
1458vput(vp)
1459	struct vnode *vp;
1460{
1461	struct proc *p = curproc;	/* XXX */
1462
1463	KASSERT(vp != NULL, ("vput: null vp"));
1464
1465	simple_lock(&vp->v_interlock);
1466
1467	if (vp->v_usecount > 1) {
1468
1469		vp->v_usecount--;
1470		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1471		return;
1472
1473	}
1474
1475	if (vp->v_usecount == 1) {
1476
1477		vp->v_usecount--;
1478		if (VSHOULDFREE(vp))
1479			vfree(vp);
1480	/*
1481	 * If we are doing a vput, the node is already locked, and we must
1482	 * call VOP_INACTIVE with the node locked.  So, in the case of
1483	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1484	 */
1485		simple_unlock(&vp->v_interlock);
1486		VOP_INACTIVE(vp, p);
1487
1488	} else {
1489#ifdef DIAGNOSTIC
1490		vprint("vput: negative ref count", vp);
1491#endif
1492		panic("vput: negative ref cnt");
1493	}
1494}
1495
1496/*
1497 * Somebody doesn't want the vnode recycled.
1498 */
1499void
1500vhold(vp)
1501	register struct vnode *vp;
1502{
1503	int s;
1504
1505  	s = splbio();
1506	vp->v_holdcnt++;
1507	if (VSHOULDBUSY(vp))
1508		vbusy(vp);
1509	splx(s);
1510}
1511
1512/*
1513 * One less who cares about this vnode.
1514 */
1515void
1516vdrop(vp)
1517	register struct vnode *vp;
1518{
1519	int s;
1520
1521	s = splbio();
1522	if (vp->v_holdcnt <= 0)
1523		panic("vdrop: holdcnt");
1524	vp->v_holdcnt--;
1525	if (VSHOULDFREE(vp))
1526		vfree(vp);
1527	splx(s);
1528}
1529
1530/*
1531 * Remove any vnodes in the vnode table belonging to mount point mp.
1532 *
1533 * If MNT_NOFORCE is specified, there should not be any active ones,
1534 * return error if any are found (nb: this is a user error, not a
1535 * system error). If MNT_FORCE is specified, detach any active vnodes
1536 * that are found.
1537 */
1538#ifdef DIAGNOSTIC
1539static int busyprt = 0;		/* print out busy vnodes */
1540SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1541#endif
1542
1543int
1544vflush(mp, skipvp, flags)
1545	struct mount *mp;
1546	struct vnode *skipvp;
1547	int flags;
1548{
1549	struct proc *p = curproc;	/* XXX */
1550	struct vnode *vp, *nvp;
1551	int busy = 0;
1552
1553	simple_lock(&mntvnode_slock);
1554loop:
1555	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1556		/*
1557		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1558		 * Start over if it has (it won't be on the list anymore).
1559		 */
1560		if (vp->v_mount != mp)
1561			goto loop;
1562		nvp = LIST_NEXT(vp, v_mntvnodes);
1563		/*
1564		 * Skip over a selected vnode.
1565		 */
1566		if (vp == skipvp)
1567			continue;
1568
1569		simple_lock(&vp->v_interlock);
1570		/*
1571		 * Skip over a vnodes marked VSYSTEM.
1572		 */
1573		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1574			simple_unlock(&vp->v_interlock);
1575			continue;
1576		}
1577		/*
1578		 * If WRITECLOSE is set, only flush out regular file vnodes
1579		 * open for writing.
1580		 */
1581		if ((flags & WRITECLOSE) &&
1582		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1583			simple_unlock(&vp->v_interlock);
1584			continue;
1585		}
1586
1587		/*
1588		 * With v_usecount == 0, all we need to do is clear out the
1589		 * vnode data structures and we are done.
1590		 */
1591		if (vp->v_usecount == 0) {
1592			simple_unlock(&mntvnode_slock);
1593			vgonel(vp, p);
1594			simple_lock(&mntvnode_slock);
1595			continue;
1596		}
1597
1598		/*
1599		 * If FORCECLOSE is set, forcibly close the vnode. For block
1600		 * or character devices, revert to an anonymous device. For
1601		 * all other files, just kill them.
1602		 */
1603		if (flags & FORCECLOSE) {
1604			simple_unlock(&mntvnode_slock);
1605			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1606				vgonel(vp, p);
1607			} else {
1608				vclean(vp, 0, p);
1609				vp->v_op = spec_vnodeop_p;
1610				insmntque(vp, (struct mount *) 0);
1611			}
1612			simple_lock(&mntvnode_slock);
1613			continue;
1614		}
1615#ifdef DIAGNOSTIC
1616		if (busyprt)
1617			vprint("vflush: busy vnode", vp);
1618#endif
1619		simple_unlock(&vp->v_interlock);
1620		busy++;
1621	}
1622	simple_unlock(&mntvnode_slock);
1623	if (busy)
1624		return (EBUSY);
1625	return (0);
1626}
1627
1628/*
1629 * Disassociate the underlying file system from a vnode.
1630 */
1631static void
1632vclean(vp, flags, p)
1633	struct vnode *vp;
1634	int flags;
1635	struct proc *p;
1636{
1637	int active;
1638	vm_object_t obj;
1639
1640	/*
1641	 * Check to see if the vnode is in use. If so we have to reference it
1642	 * before we clean it out so that its count cannot fall to zero and
1643	 * generate a race against ourselves to recycle it.
1644	 */
1645	if ((active = vp->v_usecount))
1646		vp->v_usecount++;
1647
1648	/*
1649	 * Prevent the vnode from being recycled or brought into use while we
1650	 * clean it out.
1651	 */
1652	if (vp->v_flag & VXLOCK)
1653		panic("vclean: deadlock");
1654	vp->v_flag |= VXLOCK;
1655	/*
1656	 * Even if the count is zero, the VOP_INACTIVE routine may still
1657	 * have the object locked while it cleans it out. The VOP_LOCK
1658	 * ensures that the VOP_INACTIVE routine is done with its work.
1659	 * For active vnodes, it ensures that no other activity can
1660	 * occur while the underlying object is being cleaned out.
1661	 */
1662	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1663
1664	/*
1665	 * Clean out any buffers associated with the vnode.
1666	 */
1667	vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0);
1668	if ((obj = vp->v_object) != NULL) {
1669		if (obj->ref_count == 0) {
1670			/*
1671			 * vclean() may be called twice.  The first time removes the
1672			 * primary reference to the object, the second time goes
1673			 * one further and is a special-case to terminate the object.
1674			 */
1675			vm_object_terminate(obj);
1676		} else {
1677			/*
1678			 * Woe to the process that tries to page now :-).
1679			 */
1680			vm_pager_deallocate(obj);
1681		}
1682	}
1683
1684	/*
1685	 * If purging an active vnode, it must be closed and
1686	 * deactivated before being reclaimed. Note that the
1687	 * VOP_INACTIVE will unlock the vnode.
1688	 */
1689	if (active) {
1690		if (flags & DOCLOSE)
1691			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1692		VOP_INACTIVE(vp, p);
1693	} else {
1694		/*
1695		 * Any other processes trying to obtain this lock must first
1696		 * wait for VXLOCK to clear, then call the new lock operation.
1697		 */
1698		VOP_UNLOCK(vp, 0, p);
1699	}
1700	/*
1701	 * Reclaim the vnode.
1702	 */
1703	if (VOP_RECLAIM(vp, p))
1704		panic("vclean: cannot reclaim");
1705
1706	if (active)
1707		vrele(vp);
1708
1709	cache_purge(vp);
1710	if (vp->v_vnlock) {
1711		FREE(vp->v_vnlock, M_VNODE);
1712		vp->v_vnlock = NULL;
1713	}
1714
1715	if (VSHOULDFREE(vp))
1716		vfree(vp);
1717
1718	/*
1719	 * Done with purge, notify sleepers of the grim news.
1720	 */
1721	vp->v_op = dead_vnodeop_p;
1722	vn_pollgone(vp);
1723	vp->v_tag = VT_NON;
1724	vp->v_flag &= ~VXLOCK;
1725	if (vp->v_flag & VXWANT) {
1726		vp->v_flag &= ~VXWANT;
1727		wakeup((caddr_t) vp);
1728	}
1729}
1730
1731/*
1732 * Eliminate all activity associated with the requested vnode
1733 * and with all vnodes aliased to the requested vnode.
1734 */
1735int
1736vop_revoke(ap)
1737	struct vop_revoke_args /* {
1738		struct vnode *a_vp;
1739		int a_flags;
1740	} */ *ap;
1741{
1742	struct vnode *vp, *vq;
1743	dev_t dev;
1744
1745	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1746
1747	vp = ap->a_vp;
1748	/*
1749	 * If a vgone (or vclean) is already in progress,
1750	 * wait until it is done and return.
1751	 */
1752	if (vp->v_flag & VXLOCK) {
1753		vp->v_flag |= VXWANT;
1754		simple_unlock(&vp->v_interlock);
1755		tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1756		return (0);
1757	}
1758	dev = vp->v_rdev;
1759	for (;;) {
1760		simple_lock(&spechash_slock);
1761		vq = SLIST_FIRST(&dev->si_hlist);
1762		simple_unlock(&spechash_slock);
1763		if (!vq)
1764			break;
1765		vgone(vq);
1766	}
1767	return (0);
1768}
1769
1770/*
1771 * Recycle an unused vnode to the front of the free list.
1772 * Release the passed interlock if the vnode will be recycled.
1773 */
1774int
1775vrecycle(vp, inter_lkp, p)
1776	struct vnode *vp;
1777	struct simplelock *inter_lkp;
1778	struct proc *p;
1779{
1780
1781	simple_lock(&vp->v_interlock);
1782	if (vp->v_usecount == 0) {
1783		if (inter_lkp) {
1784			simple_unlock(inter_lkp);
1785		}
1786		vgonel(vp, p);
1787		return (1);
1788	}
1789	simple_unlock(&vp->v_interlock);
1790	return (0);
1791}
1792
1793/*
1794 * Eliminate all activity associated with a vnode
1795 * in preparation for reuse.
1796 */
1797void
1798vgone(vp)
1799	register struct vnode *vp;
1800{
1801	struct proc *p = curproc;	/* XXX */
1802
1803	simple_lock(&vp->v_interlock);
1804	vgonel(vp, p);
1805}
1806
1807/*
1808 * vgone, with the vp interlock held.
1809 */
1810static void
1811vgonel(vp, p)
1812	struct vnode *vp;
1813	struct proc *p;
1814{
1815	int s;
1816
1817	/*
1818	 * If a vgone (or vclean) is already in progress,
1819	 * wait until it is done and return.
1820	 */
1821	if (vp->v_flag & VXLOCK) {
1822		vp->v_flag |= VXWANT;
1823		simple_unlock(&vp->v_interlock);
1824		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1825		return;
1826	}
1827
1828	/*
1829	 * Clean out the filesystem specific data.
1830	 */
1831	vclean(vp, DOCLOSE, p);
1832	simple_lock(&vp->v_interlock);
1833
1834	/*
1835	 * Delete from old mount point vnode list, if on one.
1836	 */
1837	if (vp->v_mount != NULL)
1838		insmntque(vp, (struct mount *)0);
1839	/*
1840	 * If special device, remove it from special device alias list
1841	 * if it is on one.
1842	 */
1843	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1844		simple_lock(&spechash_slock);
1845		SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
1846		freedev(vp->v_rdev);
1847		simple_unlock(&spechash_slock);
1848		vp->v_rdev = NULL;
1849	}
1850
1851	/*
1852	 * If it is on the freelist and not already at the head,
1853	 * move it to the head of the list. The test of the back
1854	 * pointer and the reference count of zero is because
1855	 * it will be removed from the free list by getnewvnode,
1856	 * but will not have its reference count incremented until
1857	 * after calling vgone. If the reference count were
1858	 * incremented first, vgone would (incorrectly) try to
1859	 * close the previous instance of the underlying object.
1860	 */
1861	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1862		s = splbio();
1863		simple_lock(&vnode_free_list_slock);
1864		if (vp->v_flag & VFREE) {
1865			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1866		} else if (vp->v_flag & VTBFREE) {
1867			TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
1868			vp->v_flag &= ~VTBFREE;
1869			freevnodes++;
1870		} else
1871			freevnodes++;
1872		vp->v_flag |= VFREE;
1873		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1874		simple_unlock(&vnode_free_list_slock);
1875		splx(s);
1876	}
1877
1878	vp->v_type = VBAD;
1879	simple_unlock(&vp->v_interlock);
1880}
1881
1882/*
1883 * Lookup a vnode by device number.
1884 */
1885int
1886vfinddev(dev, type, vpp)
1887	dev_t dev;
1888	enum vtype type;
1889	struct vnode **vpp;
1890{
1891	struct vnode *vp;
1892
1893	simple_lock(&spechash_slock);
1894	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1895		if (type == vp->v_type) {
1896			*vpp = vp;
1897			simple_unlock(&spechash_slock);
1898			return (1);
1899		}
1900	}
1901	simple_unlock(&spechash_slock);
1902	return (0);
1903}
1904
1905/*
1906 * Calculate the total number of references to a special device.
1907 */
1908int
1909vcount(vp)
1910	struct vnode *vp;
1911{
1912	struct vnode *vq;
1913	int count;
1914
1915	count = 0;
1916	simple_lock(&spechash_slock);
1917	SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
1918		count += vq->v_usecount;
1919	simple_unlock(&spechash_slock);
1920	return (count);
1921}
1922
1923/*
1924 * Print out a description of a vnode.
1925 */
1926static char *typename[] =
1927{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1928
1929void
1930vprint(label, vp)
1931	char *label;
1932	struct vnode *vp;
1933{
1934	char buf[96];
1935
1936	if (label != NULL)
1937		printf("%s: %p: ", label, (void *)vp);
1938	else
1939		printf("%p: ", (void *)vp);
1940	printf("type %s, usecount %d, writecount %d, refcount %d,",
1941	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1942	    vp->v_holdcnt);
1943	buf[0] = '\0';
1944	if (vp->v_flag & VROOT)
1945		strcat(buf, "|VROOT");
1946	if (vp->v_flag & VTEXT)
1947		strcat(buf, "|VTEXT");
1948	if (vp->v_flag & VSYSTEM)
1949		strcat(buf, "|VSYSTEM");
1950	if (vp->v_flag & VXLOCK)
1951		strcat(buf, "|VXLOCK");
1952	if (vp->v_flag & VXWANT)
1953		strcat(buf, "|VXWANT");
1954	if (vp->v_flag & VBWAIT)
1955		strcat(buf, "|VBWAIT");
1956	if (vp->v_flag & VDOOMED)
1957		strcat(buf, "|VDOOMED");
1958	if (vp->v_flag & VFREE)
1959		strcat(buf, "|VFREE");
1960	if (vp->v_flag & VOBJBUF)
1961		strcat(buf, "|VOBJBUF");
1962	if (buf[0] != '\0')
1963		printf(" flags (%s)", &buf[1]);
1964	if (vp->v_data == NULL) {
1965		printf("\n");
1966	} else {
1967		printf("\n\t");
1968		VOP_PRINT(vp);
1969	}
1970}
1971
1972#ifdef DDB
1973#include <ddb/ddb.h>
1974/*
1975 * List all of the locked vnodes in the system.
1976 * Called when debugging the kernel.
1977 */
1978DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1979{
1980	struct proc *p = curproc;	/* XXX */
1981	struct mount *mp, *nmp;
1982	struct vnode *vp;
1983
1984	printf("Locked vnodes\n");
1985	simple_lock(&mountlist_slock);
1986	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1987		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
1988			nmp = TAILQ_NEXT(mp, mnt_list);
1989			continue;
1990		}
1991		LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
1992			if (VOP_ISLOCKED(vp, NULL))
1993				vprint((char *)0, vp);
1994		}
1995		simple_lock(&mountlist_slock);
1996		nmp = TAILQ_NEXT(mp, mnt_list);
1997		vfs_unbusy(mp, p);
1998	}
1999	simple_unlock(&mountlist_slock);
2000}
2001#endif
2002
2003/*
2004 * Top level filesystem related information gathering.
2005 */
2006static int	sysctl_ovfs_conf __P(SYSCTL_HANDLER_ARGS);
2007
2008static int
2009vfs_sysctl SYSCTL_HANDLER_ARGS
2010{
2011	int *name = (int *)arg1 - 1;	/* XXX */
2012	u_int namelen = arg2 + 1;	/* XXX */
2013	struct vfsconf *vfsp;
2014
2015#if 1 || defined(COMPAT_PRELITE2)
2016	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2017	if (namelen == 1)
2018		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2019#endif
2020
2021#ifdef notyet
2022	/* all sysctl names at this level are at least name and field */
2023	if (namelen < 2)
2024		return (ENOTDIR);		/* overloaded */
2025	if (name[0] != VFS_GENERIC) {
2026		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2027			if (vfsp->vfc_typenum == name[0])
2028				break;
2029		if (vfsp == NULL)
2030			return (EOPNOTSUPP);
2031		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2032		    oldp, oldlenp, newp, newlen, p));
2033	}
2034#endif
2035	switch (name[1]) {
2036	case VFS_MAXTYPENUM:
2037		if (namelen != 2)
2038			return (ENOTDIR);
2039		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2040	case VFS_CONF:
2041		if (namelen != 3)
2042			return (ENOTDIR);	/* overloaded */
2043		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2044			if (vfsp->vfc_typenum == name[2])
2045				break;
2046		if (vfsp == NULL)
2047			return (EOPNOTSUPP);
2048		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2049	}
2050	return (EOPNOTSUPP);
2051}
2052
2053SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2054	"Generic filesystem");
2055
2056#if 1 || defined(COMPAT_PRELITE2)
2057
2058static int
2059sysctl_ovfs_conf SYSCTL_HANDLER_ARGS
2060{
2061	int error;
2062	struct vfsconf *vfsp;
2063	struct ovfsconf ovfs;
2064
2065	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2066		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2067		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2068		ovfs.vfc_index = vfsp->vfc_typenum;
2069		ovfs.vfc_refcount = vfsp->vfc_refcount;
2070		ovfs.vfc_flags = vfsp->vfc_flags;
2071		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2072		if (error)
2073			return error;
2074	}
2075	return 0;
2076}
2077
2078#endif /* 1 || COMPAT_PRELITE2 */
2079
2080#if 0
2081#define KINFO_VNODESLOP	10
2082/*
2083 * Dump vnode list (via sysctl).
2084 * Copyout address of vnode followed by vnode.
2085 */
2086/* ARGSUSED */
2087static int
2088sysctl_vnode SYSCTL_HANDLER_ARGS
2089{
2090	struct proc *p = curproc;	/* XXX */
2091	struct mount *mp, *nmp;
2092	struct vnode *nvp, *vp;
2093	int error;
2094
2095#define VPTRSZ	sizeof (struct vnode *)
2096#define VNODESZ	sizeof (struct vnode)
2097
2098	req->lock = 0;
2099	if (!req->oldptr) /* Make an estimate */
2100		return (SYSCTL_OUT(req, 0,
2101			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2102
2103	simple_lock(&mountlist_slock);
2104	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2105		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2106			nmp = TAILQ_NEXT(mp, mnt_list);
2107			continue;
2108		}
2109again:
2110		simple_lock(&mntvnode_slock);
2111		for (vp = LIST_FIRST(&mp->mnt_vnodelist);
2112		     vp != NULL;
2113		     vp = nvp) {
2114			/*
2115			 * Check that the vp is still associated with
2116			 * this filesystem.  RACE: could have been
2117			 * recycled onto the same filesystem.
2118			 */
2119			if (vp->v_mount != mp) {
2120				simple_unlock(&mntvnode_slock);
2121				goto again;
2122			}
2123			nvp = LIST_NEXT(vp, v_mntvnodes);
2124			simple_unlock(&mntvnode_slock);
2125			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2126			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2127				return (error);
2128			simple_lock(&mntvnode_slock);
2129		}
2130		simple_unlock(&mntvnode_slock);
2131		simple_lock(&mountlist_slock);
2132		nmp = TAILQ_NEXT(mp, mnt_list);
2133		vfs_unbusy(mp, p);
2134	}
2135	simple_unlock(&mountlist_slock);
2136
2137	return (0);
2138}
2139#endif
2140
2141/*
2142 * XXX
2143 * Exporting the vnode list on large systems causes them to crash.
2144 * Exporting the vnode list on medium systems causes sysctl to coredump.
2145 */
2146#if 0
2147SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2148	0, 0, sysctl_vnode, "S,vnode", "");
2149#endif
2150
2151/*
2152 * Check to see if a filesystem is mounted on a block device.
2153 */
2154int
2155vfs_mountedon(vp)
2156	struct vnode *vp;
2157{
2158
2159	if (vp->v_specmountpoint != NULL)
2160		return (EBUSY);
2161	return (0);
2162}
2163
2164/*
2165 * Unmount all filesystems. The list is traversed in reverse order
2166 * of mounting to avoid dependencies.
2167 */
2168void
2169vfs_unmountall()
2170{
2171	struct mount *mp;
2172	struct proc *p;
2173	int error;
2174
2175	if (curproc != NULL)
2176		p = curproc;
2177	else
2178		p = initproc;	/* XXX XXX should this be proc0? */
2179	/*
2180	 * Since this only runs when rebooting, it is not interlocked.
2181	 */
2182	while(!TAILQ_EMPTY(&mountlist)) {
2183		mp = TAILQ_LAST(&mountlist, mntlist);
2184		error = dounmount(mp, MNT_FORCE, p);
2185		if (error) {
2186			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2187			printf("unmount of %s failed (",
2188			    mp->mnt_stat.f_mntonname);
2189			if (error == EBUSY)
2190				printf("BUSY)\n");
2191			else
2192				printf("%d)\n", error);
2193		} else {
2194			/* The unmount has removed mp from the mountlist */
2195		}
2196	}
2197}
2198
2199/*
2200 * Build hash lists of net addresses and hang them off the mount point.
2201 * Called by ufs_mount() to set up the lists of export addresses.
2202 */
2203static int
2204vfs_hang_addrlist(mp, nep, argp)
2205	struct mount *mp;
2206	struct netexport *nep;
2207	struct export_args *argp;
2208{
2209	register struct netcred *np;
2210	register struct radix_node_head *rnh;
2211	register int i;
2212	struct radix_node *rn;
2213	struct sockaddr *saddr, *smask = 0;
2214	struct domain *dom;
2215	int error;
2216
2217	if (argp->ex_addrlen == 0) {
2218		if (mp->mnt_flag & MNT_DEFEXPORTED)
2219			return (EPERM);
2220		np = &nep->ne_defexported;
2221		np->netc_exflags = argp->ex_flags;
2222		np->netc_anon = argp->ex_anon;
2223		np->netc_anon.cr_ref = 1;
2224		mp->mnt_flag |= MNT_DEFEXPORTED;
2225		return (0);
2226	}
2227	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2228	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2229	bzero((caddr_t) np, i);
2230	saddr = (struct sockaddr *) (np + 1);
2231	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2232		goto out;
2233	if (saddr->sa_len > argp->ex_addrlen)
2234		saddr->sa_len = argp->ex_addrlen;
2235	if (argp->ex_masklen) {
2236		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2237		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2238		if (error)
2239			goto out;
2240		if (smask->sa_len > argp->ex_masklen)
2241			smask->sa_len = argp->ex_masklen;
2242	}
2243	i = saddr->sa_family;
2244	if ((rnh = nep->ne_rtable[i]) == 0) {
2245		/*
2246		 * Seems silly to initialize every AF when most are not used,
2247		 * do so on demand here
2248		 */
2249		for (dom = domains; dom; dom = dom->dom_next)
2250			if (dom->dom_family == i && dom->dom_rtattach) {
2251				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2252				    dom->dom_rtoffset);
2253				break;
2254			}
2255		if ((rnh = nep->ne_rtable[i]) == 0) {
2256			error = ENOBUFS;
2257			goto out;
2258		}
2259	}
2260	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2261	    np->netc_rnodes);
2262	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2263		error = EPERM;
2264		goto out;
2265	}
2266	np->netc_exflags = argp->ex_flags;
2267	np->netc_anon = argp->ex_anon;
2268	np->netc_anon.cr_ref = 1;
2269	return (0);
2270out:
2271	free(np, M_NETADDR);
2272	return (error);
2273}
2274
2275/* ARGSUSED */
2276static int
2277vfs_free_netcred(rn, w)
2278	struct radix_node *rn;
2279	void *w;
2280{
2281	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2282
2283	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2284	free((caddr_t) rn, M_NETADDR);
2285	return (0);
2286}
2287
2288/*
2289 * Free the net address hash lists that are hanging off the mount points.
2290 */
2291static void
2292vfs_free_addrlist(nep)
2293	struct netexport *nep;
2294{
2295	register int i;
2296	register struct radix_node_head *rnh;
2297
2298	for (i = 0; i <= AF_MAX; i++)
2299		if ((rnh = nep->ne_rtable[i])) {
2300			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2301			    (caddr_t) rnh);
2302			free((caddr_t) rnh, M_RTABLE);
2303			nep->ne_rtable[i] = 0;
2304		}
2305}
2306
2307int
2308vfs_export(mp, nep, argp)
2309	struct mount *mp;
2310	struct netexport *nep;
2311	struct export_args *argp;
2312{
2313	int error;
2314
2315	if (argp->ex_flags & MNT_DELEXPORT) {
2316		if (mp->mnt_flag & MNT_EXPUBLIC) {
2317			vfs_setpublicfs(NULL, NULL, NULL);
2318			mp->mnt_flag &= ~MNT_EXPUBLIC;
2319		}
2320		vfs_free_addrlist(nep);
2321		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2322	}
2323	if (argp->ex_flags & MNT_EXPORTED) {
2324		if (argp->ex_flags & MNT_EXPUBLIC) {
2325			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2326				return (error);
2327			mp->mnt_flag |= MNT_EXPUBLIC;
2328		}
2329		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2330			return (error);
2331		mp->mnt_flag |= MNT_EXPORTED;
2332	}
2333	return (0);
2334}
2335
2336
2337/*
2338 * Set the publicly exported filesystem (WebNFS). Currently, only
2339 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2340 */
2341int
2342vfs_setpublicfs(mp, nep, argp)
2343	struct mount *mp;
2344	struct netexport *nep;
2345	struct export_args *argp;
2346{
2347	int error;
2348	struct vnode *rvp;
2349	char *cp;
2350
2351	/*
2352	 * mp == NULL -> invalidate the current info, the FS is
2353	 * no longer exported. May be called from either vfs_export
2354	 * or unmount, so check if it hasn't already been done.
2355	 */
2356	if (mp == NULL) {
2357		if (nfs_pub.np_valid) {
2358			nfs_pub.np_valid = 0;
2359			if (nfs_pub.np_index != NULL) {
2360				FREE(nfs_pub.np_index, M_TEMP);
2361				nfs_pub.np_index = NULL;
2362			}
2363		}
2364		return (0);
2365	}
2366
2367	/*
2368	 * Only one allowed at a time.
2369	 */
2370	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2371		return (EBUSY);
2372
2373	/*
2374	 * Get real filehandle for root of exported FS.
2375	 */
2376	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2377	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2378
2379	if ((error = VFS_ROOT(mp, &rvp)))
2380		return (error);
2381
2382	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2383		return (error);
2384
2385	vput(rvp);
2386
2387	/*
2388	 * If an indexfile was specified, pull it in.
2389	 */
2390	if (argp->ex_indexfile != NULL) {
2391		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2392		    M_WAITOK);
2393		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2394		    MAXNAMLEN, (size_t *)0);
2395		if (!error) {
2396			/*
2397			 * Check for illegal filenames.
2398			 */
2399			for (cp = nfs_pub.np_index; *cp; cp++) {
2400				if (*cp == '/') {
2401					error = EINVAL;
2402					break;
2403				}
2404			}
2405		}
2406		if (error) {
2407			FREE(nfs_pub.np_index, M_TEMP);
2408			return (error);
2409		}
2410	}
2411
2412	nfs_pub.np_mount = mp;
2413	nfs_pub.np_valid = 1;
2414	return (0);
2415}
2416
2417struct netcred *
2418vfs_export_lookup(mp, nep, nam)
2419	register struct mount *mp;
2420	struct netexport *nep;
2421	struct sockaddr *nam;
2422{
2423	register struct netcred *np;
2424	register struct radix_node_head *rnh;
2425	struct sockaddr *saddr;
2426
2427	np = NULL;
2428	if (mp->mnt_flag & MNT_EXPORTED) {
2429		/*
2430		 * Lookup in the export list first.
2431		 */
2432		if (nam != NULL) {
2433			saddr = nam;
2434			rnh = nep->ne_rtable[saddr->sa_family];
2435			if (rnh != NULL) {
2436				np = (struct netcred *)
2437					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2438							      rnh);
2439				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2440					np = NULL;
2441			}
2442		}
2443		/*
2444		 * If no address match, use the default if it exists.
2445		 */
2446		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2447			np = &nep->ne_defexported;
2448	}
2449	return (np);
2450}
2451
2452/*
2453 * perform msync on all vnodes under a mount point
2454 * the mount point must be locked.
2455 */
2456void
2457vfs_msync(struct mount *mp, int flags) {
2458	struct vnode *vp, *nvp;
2459	struct vm_object *obj;
2460	int anyio, tries;
2461
2462	tries = 5;
2463loop:
2464	anyio = 0;
2465	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) {
2466
2467		nvp = LIST_NEXT(vp, v_mntvnodes);
2468
2469		if (vp->v_mount != mp) {
2470			goto loop;
2471		}
2472
2473		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2474			continue;
2475
2476		if (flags != MNT_WAIT) {
2477			obj = vp->v_object;
2478			if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2479				continue;
2480			if (VOP_ISLOCKED(vp, NULL))
2481				continue;
2482		}
2483
2484		simple_lock(&vp->v_interlock);
2485		if (vp->v_object &&
2486		   (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
2487			if (!vget(vp,
2488				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2489				if (vp->v_object) {
2490					vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2491					anyio = 1;
2492				}
2493				vput(vp);
2494			}
2495		} else {
2496			simple_unlock(&vp->v_interlock);
2497		}
2498	}
2499	if (anyio && (--tries > 0))
2500		goto loop;
2501}
2502
2503/*
2504 * Create the VM object needed for VMIO and mmap support.  This
2505 * is done for all VREG files in the system.  Some filesystems might
2506 * afford the additional metadata buffering capability of the
2507 * VMIO code by making the device node be VMIO mode also.
2508 *
2509 * vp must be locked when vfs_object_create is called.
2510 */
2511int
2512vfs_object_create(vp, p, cred)
2513	struct vnode *vp;
2514	struct proc *p;
2515	struct ucred *cred;
2516{
2517	struct vattr vat;
2518	vm_object_t object;
2519	int error = 0;
2520
2521	if (!vn_isdisk(vp) && vn_canvmio(vp) == FALSE)
2522		return 0;
2523
2524retry:
2525	if ((object = vp->v_object) == NULL) {
2526		if (vp->v_type == VREG || vp->v_type == VDIR) {
2527			if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
2528				goto retn;
2529			object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
2530		} else if (devsw(vp->v_rdev) != NULL) {
2531			/*
2532			 * This simply allocates the biggest object possible
2533			 * for a disk vnode.  This should be fixed, but doesn't
2534			 * cause any problems (yet).
2535			 */
2536			object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
2537		} else {
2538			goto retn;
2539		}
2540		/*
2541		 * Dereference the reference we just created.  This assumes
2542		 * that the object is associated with the vp.
2543		 */
2544		object->ref_count--;
2545		vp->v_usecount--;
2546	} else {
2547		if (object->flags & OBJ_DEAD) {
2548			VOP_UNLOCK(vp, 0, p);
2549			tsleep(object, PVM, "vodead", 0);
2550			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
2551			goto retry;
2552		}
2553	}
2554
2555	KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
2556	vp->v_flag |= VOBJBUF;
2557
2558retn:
2559	return error;
2560}
2561
2562static void
2563vfree(vp)
2564	struct vnode *vp;
2565{
2566	int s;
2567
2568	s = splbio();
2569	simple_lock(&vnode_free_list_slock);
2570	if (vp->v_flag & VTBFREE) {
2571		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2572		vp->v_flag &= ~VTBFREE;
2573	}
2574	if (vp->v_flag & VAGE) {
2575		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2576	} else {
2577		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2578	}
2579	freevnodes++;
2580	simple_unlock(&vnode_free_list_slock);
2581	vp->v_flag &= ~VAGE;
2582	vp->v_flag |= VFREE;
2583	splx(s);
2584}
2585
2586void
2587vbusy(vp)
2588	struct vnode *vp;
2589{
2590	int s;
2591
2592	s = splbio();
2593	simple_lock(&vnode_free_list_slock);
2594	if (vp->v_flag & VTBFREE) {
2595		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2596		vp->v_flag &= ~VTBFREE;
2597	} else {
2598		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2599		freevnodes--;
2600	}
2601	simple_unlock(&vnode_free_list_slock);
2602	vp->v_flag &= ~(VFREE|VAGE);
2603	splx(s);
2604}
2605
2606/*
2607 * Record a process's interest in events which might happen to
2608 * a vnode.  Because poll uses the historic select-style interface
2609 * internally, this routine serves as both the ``check for any
2610 * pending events'' and the ``record my interest in future events''
2611 * functions.  (These are done together, while the lock is held,
2612 * to avoid race conditions.)
2613 */
2614int
2615vn_pollrecord(vp, p, events)
2616	struct vnode *vp;
2617	struct proc *p;
2618	short events;
2619{
2620	simple_lock(&vp->v_pollinfo.vpi_lock);
2621	if (vp->v_pollinfo.vpi_revents & events) {
2622		/*
2623		 * This leaves events we are not interested
2624		 * in available for the other process which
2625		 * which presumably had requested them
2626		 * (otherwise they would never have been
2627		 * recorded).
2628		 */
2629		events &= vp->v_pollinfo.vpi_revents;
2630		vp->v_pollinfo.vpi_revents &= ~events;
2631
2632		simple_unlock(&vp->v_pollinfo.vpi_lock);
2633		return events;
2634	}
2635	vp->v_pollinfo.vpi_events |= events;
2636	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2637	simple_unlock(&vp->v_pollinfo.vpi_lock);
2638	return 0;
2639}
2640
2641/*
2642 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2643 * it is possible for us to miss an event due to race conditions, but
2644 * that condition is expected to be rare, so for the moment it is the
2645 * preferred interface.
2646 */
2647void
2648vn_pollevent(vp, events)
2649	struct vnode *vp;
2650	short events;
2651{
2652	simple_lock(&vp->v_pollinfo.vpi_lock);
2653	if (vp->v_pollinfo.vpi_events & events) {
2654		/*
2655		 * We clear vpi_events so that we don't
2656		 * call selwakeup() twice if two events are
2657		 * posted before the polling process(es) is
2658		 * awakened.  This also ensures that we take at
2659		 * most one selwakeup() if the polling process
2660		 * is no longer interested.  However, it does
2661		 * mean that only one event can be noticed at
2662		 * a time.  (Perhaps we should only clear those
2663		 * event bits which we note?) XXX
2664		 */
2665		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2666		vp->v_pollinfo.vpi_revents |= events;
2667		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2668	}
2669	simple_unlock(&vp->v_pollinfo.vpi_lock);
2670}
2671
2672/*
2673 * Wake up anyone polling on vp because it is being revoked.
2674 * This depends on dead_poll() returning POLLHUP for correct
2675 * behavior.
2676 */
2677void
2678vn_pollgone(vp)
2679	struct vnode *vp;
2680{
2681	simple_lock(&vp->v_pollinfo.vpi_lock);
2682	if (vp->v_pollinfo.vpi_events) {
2683		vp->v_pollinfo.vpi_events = 0;
2684		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2685	}
2686	simple_unlock(&vp->v_pollinfo.vpi_lock);
2687}
2688
2689
2690
2691/*
2692 * Routine to create and manage a filesystem syncer vnode.
2693 */
2694#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2695static int	sync_fsync __P((struct  vop_fsync_args *));
2696static int	sync_inactive __P((struct  vop_inactive_args *));
2697static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2698#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2699#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2700static int	sync_print __P((struct vop_print_args *));
2701#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2702
2703static vop_t **sync_vnodeop_p;
2704static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2705	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2706	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2707	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2708	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2709	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2710	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2711	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2712	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2713	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2714	{ NULL, NULL }
2715};
2716static struct vnodeopv_desc sync_vnodeop_opv_desc =
2717	{ &sync_vnodeop_p, sync_vnodeop_entries };
2718
2719VNODEOP_SET(sync_vnodeop_opv_desc);
2720
2721/*
2722 * Create a new filesystem syncer vnode for the specified mount point.
2723 */
2724int
2725vfs_allocate_syncvnode(mp)
2726	struct mount *mp;
2727{
2728	struct vnode *vp;
2729	static long start, incr, next;
2730	int error;
2731
2732	/* Allocate a new vnode */
2733	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2734		mp->mnt_syncer = NULL;
2735		return (error);
2736	}
2737	vp->v_type = VNON;
2738	/*
2739	 * Place the vnode onto the syncer worklist. We attempt to
2740	 * scatter them about on the list so that they will go off
2741	 * at evenly distributed times even if all the filesystems
2742	 * are mounted at once.
2743	 */
2744	next += incr;
2745	if (next == 0 || next > syncer_maxdelay) {
2746		start /= 2;
2747		incr /= 2;
2748		if (start == 0) {
2749			start = syncer_maxdelay / 2;
2750			incr = syncer_maxdelay;
2751		}
2752		next = start;
2753	}
2754	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2755	mp->mnt_syncer = vp;
2756	return (0);
2757}
2758
2759/*
2760 * Do a lazy sync of the filesystem.
2761 */
2762static int
2763sync_fsync(ap)
2764	struct vop_fsync_args /* {
2765		struct vnode *a_vp;
2766		struct ucred *a_cred;
2767		int a_waitfor;
2768		struct proc *a_p;
2769	} */ *ap;
2770{
2771	struct vnode *syncvp = ap->a_vp;
2772	struct mount *mp = syncvp->v_mount;
2773	struct proc *p = ap->a_p;
2774	int asyncflag;
2775
2776	/*
2777	 * We only need to do something if this is a lazy evaluation.
2778	 */
2779	if (ap->a_waitfor != MNT_LAZY)
2780		return (0);
2781
2782	/*
2783	 * Move ourselves to the back of the sync list.
2784	 */
2785	vn_syncer_add_to_worklist(syncvp, syncdelay);
2786
2787	/*
2788	 * Walk the list of vnodes pushing all that are dirty and
2789	 * not already on the sync list.
2790	 */
2791	simple_lock(&mountlist_slock);
2792	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2793		simple_unlock(&mountlist_slock);
2794		return (0);
2795	}
2796	asyncflag = mp->mnt_flag & MNT_ASYNC;
2797	mp->mnt_flag &= ~MNT_ASYNC;
2798	vfs_msync(mp, MNT_NOWAIT);
2799	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2800	if (asyncflag)
2801		mp->mnt_flag |= MNT_ASYNC;
2802	vfs_unbusy(mp, p);
2803	return (0);
2804}
2805
2806/*
2807 * The syncer vnode is no referenced.
2808 */
2809static int
2810sync_inactive(ap)
2811	struct vop_inactive_args /* {
2812		struct vnode *a_vp;
2813		struct proc *a_p;
2814	} */ *ap;
2815{
2816
2817	vgone(ap->a_vp);
2818	return (0);
2819}
2820
2821/*
2822 * The syncer vnode is no longer needed and is being decommissioned.
2823 *
2824 * Modifications to the worklist must be protected at splbio().
2825 */
2826static int
2827sync_reclaim(ap)
2828	struct vop_reclaim_args /* {
2829		struct vnode *a_vp;
2830	} */ *ap;
2831{
2832	struct vnode *vp = ap->a_vp;
2833	int s;
2834
2835	s = splbio();
2836	vp->v_mount->mnt_syncer = NULL;
2837	if (vp->v_flag & VONWORKLST) {
2838		LIST_REMOVE(vp, v_synclist);
2839		vp->v_flag &= ~VONWORKLST;
2840	}
2841	splx(s);
2842
2843	return (0);
2844}
2845
2846/*
2847 * Print out a syncer vnode.
2848 */
2849static int
2850sync_print(ap)
2851	struct vop_print_args /* {
2852		struct vnode *a_vp;
2853	} */ *ap;
2854{
2855	struct vnode *vp = ap->a_vp;
2856
2857	printf("syncer vnode");
2858	if (vp->v_vnlock != NULL)
2859		lockmgr_printinfo(vp->v_vnlock);
2860	printf("\n");
2861	return (0);
2862}
2863
2864/*
2865 * extract the dev_t from a VBLK or VCHR
2866 */
2867dev_t
2868vn_todev(vp)
2869	struct vnode *vp;
2870{
2871	if (vp->v_type != VBLK && vp->v_type != VCHR)
2872		return (NODEV);
2873	return (vp->v_rdev);
2874}
2875
2876/*
2877 * Check if vnode represents a disk device
2878 */
2879int
2880vn_isdisk(vp)
2881	struct vnode *vp;
2882{
2883	if (vp->v_type != VBLK && vp->v_type != VCHR)
2884		return (0);
2885	if (!devsw(vp->v_rdev))
2886		return (0);
2887	if (!(devsw(vp->v_rdev)->d_flags & D_DISK))
2888		return (0);
2889	return (1);
2890}
2891
2892void
2893NDFREE(ndp, flags)
2894     struct nameidata *ndp;
2895     const uint flags;
2896{
2897	if (!(flags & NDF_NO_FREE_PNBUF) &&
2898	    (ndp->ni_cnd.cn_flags & HASBUF)) {
2899		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2900		ndp->ni_cnd.cn_flags &= ~HASBUF;
2901	}
2902	if (!(flags & NDF_NO_DVP_UNLOCK) &&
2903	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
2904	    ndp->ni_dvp != ndp->ni_vp)
2905		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc);
2906	if (!(flags & NDF_NO_DVP_RELE) &&
2907	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
2908		vrele(ndp->ni_dvp);
2909		ndp->ni_dvp = NULL;
2910	}
2911	if (!(flags & NDF_NO_VP_UNLOCK) &&
2912	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
2913		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc);
2914	if (!(flags & NDF_NO_VP_RELE) &&
2915	    ndp->ni_vp) {
2916		vrele(ndp->ni_vp);
2917		ndp->ni_vp = NULL;
2918	}
2919	if (!(flags & NDF_NO_STARTDIR_RELE) &&
2920	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
2921		vrele(ndp->ni_startdir);
2922		ndp->ni_startdir = NULL;
2923	}
2924}
2925