vfs_export.c revision 47445
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $Id: vfs_subr.c,v 1.198 1999/05/14 20:40:15 luoqi Exp $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/conf.h>
50#include <sys/fcntl.h>
51#include <sys/kernel.h>
52#include <sys/proc.h>
53#include <sys/malloc.h>
54#include <sys/mount.h>
55#include <sys/socket.h>
56#include <sys/vnode.h>
57#include <sys/stat.h>
58#include <sys/buf.h>
59#include <sys/domain.h>
60#include <sys/dirent.h>
61#include <sys/vmmeter.h>
62
63#include <machine/limits.h>
64
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/vm_prot.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/vm_pager.h>
74#include <vm/vnode_pager.h>
75#include <vm/vm_zone.h>
76#include <sys/sysctl.h>
77
78#include <miscfs/specfs/specdev.h>
79
80static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81
82static void	insmntque __P((struct vnode *vp, struct mount *mp));
83static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
84static void	vfree __P((struct vnode *));
85static void	vgonel __P((struct vnode *vp, struct proc *p));
86static unsigned long	numvnodes;
87SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
88
89enum vtype iftovt_tab[16] = {
90	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
91	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
92};
93int vttoif_tab[9] = {
94	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
95	S_IFSOCK, S_IFIFO, S_IFMT,
96};
97
98static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
99struct tobefreelist vnode_tobefree_list;	/* vnode free list */
100
101static u_long wantfreevnodes = 25;
102SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
103static u_long freevnodes = 0;
104SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
105
106int vfs_ioopt = 0;
107#ifdef ENABLE_VFS_IOOPT
108SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
109#endif
110
111struct mntlist mountlist;	/* mounted filesystem list */
112struct simplelock mountlist_slock;
113struct simplelock mntvnode_slock;
114int	nfs_mount_type = -1;
115#ifndef NULL_SIMPLELOCKS
116static struct simplelock mntid_slock;
117static struct simplelock vnode_free_list_slock;
118static struct simplelock spechash_slock;
119#endif
120struct nfs_public nfs_pub;	/* publicly exported FS */
121static vm_zone_t vnode_zone;
122
123/*
124 * The workitem queue.
125 */
126#define SYNCER_MAXDELAY		32
127static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
128time_t syncdelay =		30;
129int rushjob;				/* number of slots to run ASAP */
130
131static int syncer_delayno = 0;
132static long syncer_mask;
133LIST_HEAD(synclist, vnode);
134static struct synclist *syncer_workitem_pending;
135
136int desiredvnodes;
137SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
138    &desiredvnodes, 0, "Maximum number of vnodes");
139
140static void	vfs_free_addrlist __P((struct netexport *nep));
141static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
142static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
143				       struct export_args *argp));
144
145/*
146 * Initialize the vnode management data structures.
147 */
148void
149vntblinit()
150{
151
152	desiredvnodes = maxproc + cnt.v_page_count / 4;
153	simple_lock_init(&mntvnode_slock);
154	simple_lock_init(&mntid_slock);
155	simple_lock_init(&spechash_slock);
156	TAILQ_INIT(&vnode_free_list);
157	TAILQ_INIT(&vnode_tobefree_list);
158	simple_lock_init(&vnode_free_list_slock);
159	CIRCLEQ_INIT(&mountlist);
160	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
161	/*
162	 * Initialize the filesystem syncer.
163	 */
164	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
165		&syncer_mask);
166	syncer_maxdelay = syncer_mask + 1;
167}
168
169/*
170 * Mark a mount point as busy. Used to synchronize access and to delay
171 * unmounting. Interlock is not released on failure.
172 */
173int
174vfs_busy(mp, flags, interlkp, p)
175	struct mount *mp;
176	int flags;
177	struct simplelock *interlkp;
178	struct proc *p;
179{
180	int lkflags;
181
182	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
183		if (flags & LK_NOWAIT)
184			return (ENOENT);
185		mp->mnt_kern_flag |= MNTK_MWAIT;
186		if (interlkp) {
187			simple_unlock(interlkp);
188		}
189		/*
190		 * Since all busy locks are shared except the exclusive
191		 * lock granted when unmounting, the only place that a
192		 * wakeup needs to be done is at the release of the
193		 * exclusive lock at the end of dounmount.
194		 */
195		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
196		if (interlkp) {
197			simple_lock(interlkp);
198		}
199		return (ENOENT);
200	}
201	lkflags = LK_SHARED | LK_NOPAUSE;
202	if (interlkp)
203		lkflags |= LK_INTERLOCK;
204	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
205		panic("vfs_busy: unexpected lock failure");
206	return (0);
207}
208
209/*
210 * Free a busy filesystem.
211 */
212void
213vfs_unbusy(mp, p)
214	struct mount *mp;
215	struct proc *p;
216{
217
218	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
219}
220
221/*
222 * Lookup a filesystem type, and if found allocate and initialize
223 * a mount structure for it.
224 *
225 * Devname is usually updated by mount(8) after booting.
226 */
227int
228vfs_rootmountalloc(fstypename, devname, mpp)
229	char *fstypename;
230	char *devname;
231	struct mount **mpp;
232{
233	struct proc *p = curproc;	/* XXX */
234	struct vfsconf *vfsp;
235	struct mount *mp;
236
237	if (fstypename == NULL)
238		return (ENODEV);
239	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
240		if (!strcmp(vfsp->vfc_name, fstypename))
241			break;
242	if (vfsp == NULL)
243		return (ENODEV);
244	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
245	bzero((char *)mp, (u_long)sizeof(struct mount));
246	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
247	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
248	LIST_INIT(&mp->mnt_vnodelist);
249	mp->mnt_vfc = vfsp;
250	mp->mnt_op = vfsp->vfc_vfsops;
251	mp->mnt_flag = MNT_RDONLY;
252	mp->mnt_vnodecovered = NULLVP;
253	vfsp->vfc_refcount++;
254	mp->mnt_stat.f_type = vfsp->vfc_typenum;
255	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
256	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
257	mp->mnt_stat.f_mntonname[0] = '/';
258	mp->mnt_stat.f_mntonname[1] = 0;
259	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
260	*mpp = mp;
261	return (0);
262}
263
264/*
265 * Find an appropriate filesystem to use for the root. If a filesystem
266 * has not been preselected, walk through the list of known filesystems
267 * trying those that have mountroot routines, and try them until one
268 * works or we have tried them all.
269 */
270#ifdef notdef	/* XXX JH */
271int
272lite2_vfs_mountroot()
273{
274	struct vfsconf *vfsp;
275	extern int (*lite2_mountroot) __P((void));
276	int error;
277
278	if (lite2_mountroot != NULL)
279		return ((*lite2_mountroot)());
280	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
281		if (vfsp->vfc_mountroot == NULL)
282			continue;
283		if ((error = (*vfsp->vfc_mountroot)()) == 0)
284			return (0);
285		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
286	}
287	return (ENODEV);
288}
289#endif
290
291/*
292 * Lookup a mount point by filesystem identifier.
293 */
294struct mount *
295vfs_getvfs(fsid)
296	fsid_t *fsid;
297{
298	register struct mount *mp;
299
300	simple_lock(&mountlist_slock);
301	for (mp = mountlist.cqh_first; mp != (void *)&mountlist;
302	    mp = mp->mnt_list.cqe_next) {
303		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
304		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
305			simple_unlock(&mountlist_slock);
306			return (mp);
307	    }
308	}
309	simple_unlock(&mountlist_slock);
310	return ((struct mount *) 0);
311}
312
313/*
314 * Get a new unique fsid
315 */
316void
317vfs_getnewfsid(mp)
318	struct mount *mp;
319{
320	static u_short xxxfs_mntid;
321
322	fsid_t tfsid;
323	int mtype;
324
325	simple_lock(&mntid_slock);
326	mtype = mp->mnt_vfc->vfc_typenum;
327	mp->mnt_stat.f_fsid.val[0] = (nblkdev + mtype) * 256;
328	mp->mnt_stat.f_fsid.val[1] = mtype;
329	if (xxxfs_mntid == 0)
330		++xxxfs_mntid;
331	tfsid.val[0] = (nblkdev + mtype) * 256 | xxxfs_mntid;
332	tfsid.val[1] = mtype;
333	if (mountlist.cqh_first != (void *)&mountlist) {
334		while (vfs_getvfs(&tfsid)) {
335			tfsid.val[0]++;
336			xxxfs_mntid++;
337		}
338	}
339	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
340	simple_unlock(&mntid_slock);
341}
342
343/*
344 * Set vnode attributes to VNOVAL
345 */
346void
347vattr_null(vap)
348	register struct vattr *vap;
349{
350
351	vap->va_type = VNON;
352	vap->va_size = VNOVAL;
353	vap->va_bytes = VNOVAL;
354	vap->va_mode = VNOVAL;
355	vap->va_nlink = VNOVAL;
356	vap->va_uid = VNOVAL;
357	vap->va_gid = VNOVAL;
358	vap->va_fsid = VNOVAL;
359	vap->va_fileid = VNOVAL;
360	vap->va_blocksize = VNOVAL;
361	vap->va_rdev = VNOVAL;
362	vap->va_atime.tv_sec = VNOVAL;
363	vap->va_atime.tv_nsec = VNOVAL;
364	vap->va_mtime.tv_sec = VNOVAL;
365	vap->va_mtime.tv_nsec = VNOVAL;
366	vap->va_ctime.tv_sec = VNOVAL;
367	vap->va_ctime.tv_nsec = VNOVAL;
368	vap->va_flags = VNOVAL;
369	vap->va_gen = VNOVAL;
370	vap->va_vaflags = 0;
371}
372
373/*
374 * Routines having to do with the management of the vnode table.
375 */
376extern vop_t **dead_vnodeop_p;
377
378/*
379 * Return the next vnode from the free list.
380 */
381int
382getnewvnode(tag, mp, vops, vpp)
383	enum vtagtype tag;
384	struct mount *mp;
385	vop_t **vops;
386	struct vnode **vpp;
387{
388	int s;
389	struct proc *p = curproc;	/* XXX */
390	struct vnode *vp, *tvp, *nvp;
391	vm_object_t object;
392	TAILQ_HEAD(freelst, vnode) vnode_tmp_list;
393
394	/*
395	 * We take the least recently used vnode from the freelist
396	 * if we can get it and it has no cached pages, and no
397	 * namecache entries are relative to it.
398	 * Otherwise we allocate a new vnode
399	 */
400
401	s = splbio();
402	simple_lock(&vnode_free_list_slock);
403	TAILQ_INIT(&vnode_tmp_list);
404
405	for (vp = TAILQ_FIRST(&vnode_tobefree_list); vp; vp = nvp) {
406		nvp = TAILQ_NEXT(vp, v_freelist);
407		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
408		if (vp->v_flag & VAGE) {
409			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
410		} else {
411			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
412		}
413		vp->v_flag &= ~(VTBFREE|VAGE);
414		vp->v_flag |= VFREE;
415		if (vp->v_usecount)
416			panic("tobe free vnode isn't");
417		freevnodes++;
418	}
419
420	if (wantfreevnodes && freevnodes < wantfreevnodes) {
421		vp = NULL;
422	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
423		/*
424		 * XXX: this is only here to be backwards compatible
425		 */
426		vp = NULL;
427	} else {
428		for (vp = TAILQ_FIRST(&vnode_free_list); vp; vp = nvp) {
429			nvp = TAILQ_NEXT(vp, v_freelist);
430			if (!simple_lock_try(&vp->v_interlock))
431				continue;
432			if (vp->v_usecount)
433				panic("free vnode isn't");
434
435			object = vp->v_object;
436			if (object && (object->resident_page_count || object->ref_count)) {
437				printf("object inconsistant state: RPC: %d, RC: %d\n",
438					object->resident_page_count, object->ref_count);
439				/* Don't recycle if it's caching some pages */
440				TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
441				TAILQ_INSERT_TAIL(&vnode_tmp_list, vp, v_freelist);
442				continue;
443			} else if (LIST_FIRST(&vp->v_cache_src)) {
444				/* Don't recycle if active in the namecache */
445				simple_unlock(&vp->v_interlock);
446				continue;
447			} else {
448				break;
449			}
450		}
451	}
452
453	for (tvp = TAILQ_FIRST(&vnode_tmp_list); tvp; tvp = nvp) {
454		nvp = TAILQ_NEXT(tvp, v_freelist);
455		TAILQ_REMOVE(&vnode_tmp_list, tvp, v_freelist);
456		TAILQ_INSERT_TAIL(&vnode_free_list, tvp, v_freelist);
457		simple_unlock(&tvp->v_interlock);
458	}
459
460	if (vp) {
461		vp->v_flag |= VDOOMED;
462		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
463		freevnodes--;
464		simple_unlock(&vnode_free_list_slock);
465		cache_purge(vp);
466		vp->v_lease = NULL;
467		if (vp->v_type != VBAD) {
468			vgonel(vp, p);
469		} else {
470			simple_unlock(&vp->v_interlock);
471		}
472
473#ifdef INVARIANTS
474		{
475			int s;
476
477			if (vp->v_data)
478				panic("cleaned vnode isn't");
479			s = splbio();
480			if (vp->v_numoutput)
481				panic("Clean vnode has pending I/O's");
482			splx(s);
483		}
484#endif
485		vp->v_flag = 0;
486		vp->v_lastr = 0;
487		vp->v_lastw = 0;
488		vp->v_lasta = 0;
489		vp->v_cstart = 0;
490		vp->v_clen = 0;
491		vp->v_socket = 0;
492		vp->v_writecount = 0;	/* XXX */
493		vp->v_maxio = 0;
494	} else {
495		simple_unlock(&vnode_free_list_slock);
496		vp = (struct vnode *) zalloc(vnode_zone);
497		bzero((char *) vp, sizeof *vp);
498		simple_lock_init(&vp->v_interlock);
499		vp->v_dd = vp;
500		cache_purge(vp);
501		LIST_INIT(&vp->v_cache_src);
502		TAILQ_INIT(&vp->v_cache_dst);
503		numvnodes++;
504	}
505
506	TAILQ_INIT(&vp->v_cleanblkhd);
507	TAILQ_INIT(&vp->v_dirtyblkhd);
508	vp->v_type = VNON;
509	vp->v_tag = tag;
510	vp->v_op = vops;
511	insmntque(vp, mp);
512	*vpp = vp;
513	vp->v_usecount = 1;
514	vp->v_data = 0;
515	splx(s);
516
517	vfs_object_create(vp, p, p->p_ucred);
518	return (0);
519}
520
521/*
522 * Move a vnode from one mount queue to another.
523 */
524static void
525insmntque(vp, mp)
526	register struct vnode *vp;
527	register struct mount *mp;
528{
529
530	simple_lock(&mntvnode_slock);
531	/*
532	 * Delete from old mount point vnode list, if on one.
533	 */
534	if (vp->v_mount != NULL)
535		LIST_REMOVE(vp, v_mntvnodes);
536	/*
537	 * Insert into list of vnodes for the new mount point, if available.
538	 */
539	if ((vp->v_mount = mp) == NULL) {
540		simple_unlock(&mntvnode_slock);
541		return;
542	}
543	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
544	simple_unlock(&mntvnode_slock);
545}
546
547/*
548 * Update outstanding I/O count and do wakeup if requested.
549 */
550void
551vwakeup(bp)
552	register struct buf *bp;
553{
554	register struct vnode *vp;
555
556	bp->b_flags &= ~B_WRITEINPROG;
557	if ((vp = bp->b_vp)) {
558		vp->v_numoutput--;
559		if (vp->v_numoutput < 0)
560			panic("vwakeup: neg numoutput");
561		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
562			vp->v_flag &= ~VBWAIT;
563			wakeup((caddr_t) &vp->v_numoutput);
564		}
565	}
566}
567
568/*
569 * Flush out and invalidate all buffers associated with a vnode.
570 * Called with the underlying object locked.
571 */
572int
573vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
574	register struct vnode *vp;
575	int flags;
576	struct ucred *cred;
577	struct proc *p;
578	int slpflag, slptimeo;
579{
580	register struct buf *bp;
581	struct buf *nbp, *blist;
582	int s, error;
583	vm_object_t object;
584
585	if (flags & V_SAVE) {
586		s = splbio();
587		while (vp->v_numoutput) {
588			vp->v_flag |= VBWAIT;
589			error = tsleep((caddr_t)&vp->v_numoutput,
590			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
591			if (error) {
592				splx(s);
593				return (error);
594			}
595		}
596		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
597			splx(s);
598			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
599				return (error);
600			s = splbio();
601			if (vp->v_numoutput > 0 ||
602			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
603				panic("vinvalbuf: dirty bufs");
604		}
605		splx(s);
606  	}
607	s = splbio();
608	for (;;) {
609		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
610		if (!blist)
611			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
612		if (!blist)
613			break;
614
615		for (bp = blist; bp; bp = nbp) {
616			nbp = TAILQ_NEXT(bp, b_vnbufs);
617			if (bp->b_flags & B_BUSY) {
618				bp->b_flags |= B_WANTED;
619				error = tsleep((caddr_t) bp,
620				    slpflag | (PRIBIO + 4), "vinvalbuf",
621				    slptimeo);
622				if (error) {
623					splx(s);
624					return (error);
625				}
626				break;
627			}
628			/*
629			 * XXX Since there are no node locks for NFS, I
630			 * believe there is a slight chance that a delayed
631			 * write will occur while sleeping just above, so
632			 * check for it.  Note that vfs_bio_awrite expects
633			 * buffers to reside on a queue, while VOP_BWRITE and
634			 * brelse do not.
635			 */
636			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
637				(flags & V_SAVE)) {
638
639				if (bp->b_vp == vp) {
640					if (bp->b_flags & B_CLUSTEROK) {
641						vfs_bio_awrite(bp);
642					} else {
643						bremfree(bp);
644						bp->b_flags |= (B_BUSY | B_ASYNC);
645						VOP_BWRITE(bp);
646					}
647				} else {
648					bremfree(bp);
649					bp->b_flags |= B_BUSY;
650					(void) VOP_BWRITE(bp);
651				}
652				break;
653			}
654			bremfree(bp);
655			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF | B_BUSY);
656			bp->b_flags &= ~B_ASYNC;
657			brelse(bp);
658		}
659	}
660
661	while (vp->v_numoutput > 0) {
662		vp->v_flag |= VBWAIT;
663		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
664	}
665
666	splx(s);
667
668	/*
669	 * Destroy the copy in the VM cache, too.
670	 */
671	simple_lock(&vp->v_interlock);
672	object = vp->v_object;
673	if (object != NULL) {
674		vm_object_page_remove(object, 0, 0,
675			(flags & V_SAVE) ? TRUE : FALSE);
676	}
677	simple_unlock(&vp->v_interlock);
678
679	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
680		panic("vinvalbuf: flush failed");
681	return (0);
682}
683
684/*
685 * Truncate a file's buffer and pages to a specified length.  This
686 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
687 * sync activity.
688 */
689int
690vtruncbuf(vp, cred, p, length, blksize)
691	register struct vnode *vp;
692	struct ucred *cred;
693	struct proc *p;
694	off_t length;
695	int blksize;
696{
697	register struct buf *bp;
698	struct buf *nbp;
699	int s, anyfreed;
700	int trunclbn;
701
702	/*
703	 * Round up to the *next* lbn.
704	 */
705	trunclbn = (length + blksize - 1) / blksize;
706
707	s = splbio();
708restart:
709	anyfreed = 1;
710	for (;anyfreed;) {
711		anyfreed = 0;
712		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
713			nbp = TAILQ_NEXT(bp, b_vnbufs);
714			if (bp->b_lblkno >= trunclbn) {
715				if (bp->b_flags & B_BUSY) {
716					bp->b_flags |= B_WANTED;
717					tsleep(bp, PRIBIO + 4, "vtrb1", 0);
718					goto restart;
719				} else {
720					bremfree(bp);
721					bp->b_flags |= (B_BUSY | B_INVAL | B_RELBUF);
722					bp->b_flags &= ~B_ASYNC;
723					brelse(bp);
724					anyfreed = 1;
725				}
726				if (nbp && (((nbp->b_xflags & B_VNCLEAN) == 0)||
727					 (nbp->b_vp != vp) ||
728					 (nbp->b_flags & B_DELWRI))) {
729					goto restart;
730				}
731			}
732		}
733
734		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
735			nbp = TAILQ_NEXT(bp, b_vnbufs);
736			if (bp->b_lblkno >= trunclbn) {
737				if (bp->b_flags & B_BUSY) {
738					bp->b_flags |= B_WANTED;
739					tsleep(bp, PRIBIO + 4, "vtrb2", 0);
740					goto restart;
741				} else {
742					bremfree(bp);
743					bp->b_flags |= (B_BUSY | B_INVAL | B_RELBUF);
744					bp->b_flags &= ~B_ASYNC;
745					brelse(bp);
746					anyfreed = 1;
747				}
748				if (nbp && (((nbp->b_xflags & B_VNDIRTY) == 0)||
749					 (nbp->b_vp != vp) ||
750					 (nbp->b_flags & B_DELWRI) == 0)) {
751					goto restart;
752				}
753			}
754		}
755	}
756
757	if (length > 0) {
758restartsync:
759		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
760			nbp = TAILQ_NEXT(bp, b_vnbufs);
761			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
762				if (bp->b_flags & B_BUSY) {
763					bp->b_flags |= B_WANTED;
764					tsleep(bp, PRIBIO, "vtrb3", 0);
765				} else {
766					bremfree(bp);
767					bp->b_flags |= B_BUSY;
768					if (bp->b_vp == vp) {
769						bp->b_flags |= B_ASYNC;
770					} else {
771						bp->b_flags &= ~B_ASYNC;
772					}
773					VOP_BWRITE(bp);
774				}
775				goto restartsync;
776			}
777
778		}
779	}
780
781	while (vp->v_numoutput > 0) {
782		vp->v_flag |= VBWAIT;
783		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
784	}
785
786	splx(s);
787
788	vnode_pager_setsize(vp, length);
789
790	return (0);
791}
792
793/*
794 * Associate a buffer with a vnode.
795 */
796void
797bgetvp(vp, bp)
798	register struct vnode *vp;
799	register struct buf *bp;
800{
801	int s;
802
803	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
804
805	vhold(vp);
806	bp->b_vp = vp;
807	if (vp->v_type == VBLK || vp->v_type == VCHR)
808		bp->b_dev = vp->v_rdev;
809	else
810		bp->b_dev = NODEV;
811	/*
812	 * Insert onto list for new vnode.
813	 */
814	s = splbio();
815	bp->b_xflags |= B_VNCLEAN;
816	bp->b_xflags &= ~B_VNDIRTY;
817	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
818	splx(s);
819}
820
821/*
822 * Disassociate a buffer from a vnode.
823 */
824void
825brelvp(bp)
826	register struct buf *bp;
827{
828	struct vnode *vp;
829	struct buflists *listheadp;
830	int s;
831
832	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
833
834	/*
835	 * Delete from old vnode list, if on one.
836	 */
837	vp = bp->b_vp;
838	s = splbio();
839	if (bp->b_xflags & (B_VNDIRTY|B_VNCLEAN)) {
840		if (bp->b_xflags & B_VNDIRTY)
841			listheadp = &vp->v_dirtyblkhd;
842		else
843			listheadp = &vp->v_cleanblkhd;
844		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
845		bp->b_xflags &= ~(B_VNDIRTY|B_VNCLEAN);
846	}
847	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
848		vp->v_flag &= ~VONWORKLST;
849		LIST_REMOVE(vp, v_synclist);
850	}
851	splx(s);
852	bp->b_vp = (struct vnode *) 0;
853	vdrop(vp);
854}
855
856/*
857 * The workitem queue.
858 *
859 * It is useful to delay writes of file data and filesystem metadata
860 * for tens of seconds so that quickly created and deleted files need
861 * not waste disk bandwidth being created and removed. To realize this,
862 * we append vnodes to a "workitem" queue. When running with a soft
863 * updates implementation, most pending metadata dependencies should
864 * not wait for more than a few seconds. Thus, mounted on block devices
865 * are delayed only about a half the time that file data is delayed.
866 * Similarly, directory updates are more critical, so are only delayed
867 * about a third the time that file data is delayed. Thus, there are
868 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
869 * one each second (driven off the filesystem syner process). The
870 * syncer_delayno variable indicates the next queue that is to be processed.
871 * Items that need to be processed soon are placed in this queue:
872 *
873 *	syncer_workitem_pending[syncer_delayno]
874 *
875 * A delay of fifteen seconds is done by placing the request fifteen
876 * entries later in the queue:
877 *
878 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
879 *
880 */
881
882/*
883 * Add an item to the syncer work queue.
884 */
885static void
886vn_syncer_add_to_worklist(struct vnode *vp, int delay)
887{
888	int s, slot;
889
890	s = splbio();
891
892	if (vp->v_flag & VONWORKLST) {
893		LIST_REMOVE(vp, v_synclist);
894	}
895
896	if (delay > syncer_maxdelay - 2)
897		delay = syncer_maxdelay - 2;
898	slot = (syncer_delayno + delay) & syncer_mask;
899
900	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
901	vp->v_flag |= VONWORKLST;
902	splx(s);
903}
904
905struct  proc *updateproc;
906static void sched_sync __P((void));
907static const struct kproc_desc up_kp = {
908	"syncer",
909	sched_sync,
910	&updateproc
911};
912SYSINIT_KT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
913
914/*
915 * System filesystem synchronizer daemon.
916 */
917void
918sched_sync(void)
919{
920	struct synclist *slp;
921	struct vnode *vp;
922	long starttime;
923	int s;
924	struct proc *p = updateproc;
925
926	for (;;) {
927		starttime = time_second;
928
929		/*
930		 * Push files whose dirty time has expired.  Be careful
931		 * of interrupt race on slp queue.
932		 */
933		s = splbio();
934		slp = &syncer_workitem_pending[syncer_delayno];
935		syncer_delayno += 1;
936		if (syncer_delayno == syncer_maxdelay)
937			syncer_delayno = 0;
938		splx(s);
939
940		while ((vp = LIST_FIRST(slp)) != NULL) {
941			if (VOP_ISLOCKED(vp) == 0) {
942				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
943				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
944				VOP_UNLOCK(vp, 0, p);
945			}
946			s = splbio();
947			if (LIST_FIRST(slp) == vp) {
948				/*
949				 * Note: v_tag VT_VFS vps can remain on the
950				 * worklist too with no dirty blocks, but
951				 * since sync_fsync() moves it to a different
952				 * slot we are safe.
953				 */
954				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
955				    vp->v_type != VBLK)
956					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
957				/*
958				 * Put us back on the worklist.  The worklist
959				 * routine will remove us from our current
960				 * position and then add us back in at a later
961				 * position.
962				 */
963				vn_syncer_add_to_worklist(vp, syncdelay);
964			}
965			splx(s);
966		}
967
968		/*
969		 * Do soft update processing.
970		 */
971		if (bioops.io_sync)
972			(*bioops.io_sync)(NULL);
973
974		/*
975		 * The variable rushjob allows the kernel to speed up the
976		 * processing of the filesystem syncer process. A rushjob
977		 * value of N tells the filesystem syncer to process the next
978		 * N seconds worth of work on its queue ASAP. Currently rushjob
979		 * is used by the soft update code to speed up the filesystem
980		 * syncer process when the incore state is getting so far
981		 * ahead of the disk that the kernel memory pool is being
982		 * threatened with exhaustion.
983		 */
984		if (rushjob > 0) {
985			rushjob -= 1;
986			continue;
987		}
988		/*
989		 * If it has taken us less than a second to process the
990		 * current work, then wait. Otherwise start right over
991		 * again. We can still lose time if any single round
992		 * takes more than two seconds, but it does not really
993		 * matter as we are just trying to generally pace the
994		 * filesystem activity.
995		 */
996		if (time_second == starttime)
997			tsleep(&lbolt, PPAUSE, "syncer", 0);
998	}
999}
1000
1001/*
1002 * Associate a p-buffer with a vnode.
1003 *
1004 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1005 * with the buffer.  i.e. the bp has not been linked into the vnode or
1006 * ref-counted.
1007 */
1008void
1009pbgetvp(vp, bp)
1010	register struct vnode *vp;
1011	register struct buf *bp;
1012{
1013
1014	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1015
1016	bp->b_vp = vp;
1017	bp->b_flags |= B_PAGING;
1018	if (vp->v_type == VBLK || vp->v_type == VCHR)
1019		bp->b_dev = vp->v_rdev;
1020	else
1021		bp->b_dev = NODEV;
1022}
1023
1024/*
1025 * Disassociate a p-buffer from a vnode.
1026 */
1027void
1028pbrelvp(bp)
1029	register struct buf *bp;
1030{
1031
1032	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1033
1034#if !defined(MAX_PERF)
1035	/* XXX REMOVE ME */
1036	if (bp->b_vnbufs.tqe_next != NULL) {
1037		panic(
1038		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1039		    bp,
1040		    (int)bp->b_flags
1041		);
1042	}
1043#endif
1044	bp->b_vp = (struct vnode *) 0;
1045	bp->b_flags &= ~B_PAGING;
1046}
1047
1048void
1049pbreassignbuf(bp, newvp)
1050	struct buf *bp;
1051	struct vnode *newvp;
1052{
1053#if !defined(MAX_PERF)
1054	if ((bp->b_flags & B_PAGING) == 0) {
1055		panic(
1056		    "pbreassignbuf() on non phys bp %p",
1057		    bp
1058		);
1059	}
1060#endif
1061	bp->b_vp = newvp;
1062}
1063
1064/*
1065 * Reassign a buffer from one vnode to another.
1066 * Used to assign file specific control information
1067 * (indirect blocks) to the vnode to which they belong.
1068 */
1069void
1070reassignbuf(bp, newvp)
1071	register struct buf *bp;
1072	register struct vnode *newvp;
1073{
1074	struct buflists *listheadp;
1075	int delay;
1076	int s;
1077
1078	if (newvp == NULL) {
1079		printf("reassignbuf: NULL");
1080		return;
1081	}
1082
1083#if !defined(MAX_PERF)
1084	/*
1085	 * B_PAGING flagged buffers cannot be reassigned because their vp
1086	 * is not fully linked in.
1087	 */
1088	if (bp->b_flags & B_PAGING)
1089		panic("cannot reassign paging buffer");
1090#endif
1091
1092	s = splbio();
1093	/*
1094	 * Delete from old vnode list, if on one.
1095	 */
1096	if (bp->b_xflags & (B_VNDIRTY|B_VNCLEAN)) {
1097		if (bp->b_xflags & B_VNDIRTY)
1098			listheadp = &bp->b_vp->v_dirtyblkhd;
1099		else
1100			listheadp = &bp->b_vp->v_cleanblkhd;
1101		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1102		bp->b_xflags &= ~(B_VNDIRTY|B_VNCLEAN);
1103		if (bp->b_vp != newvp) {
1104			vdrop(bp->b_vp);
1105			bp->b_vp = NULL;	/* for clarification */
1106		}
1107	}
1108	/*
1109	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1110	 * of clean buffers.
1111	 */
1112	if (bp->b_flags & B_DELWRI) {
1113		struct buf *tbp;
1114
1115		listheadp = &newvp->v_dirtyblkhd;
1116		if ((newvp->v_flag & VONWORKLST) == 0) {
1117			switch (newvp->v_type) {
1118			case VDIR:
1119				delay = syncdelay / 2;
1120				break;
1121			case VBLK:
1122				if (newvp->v_specmountpoint != NULL) {
1123					delay = syncdelay / 3;
1124					break;
1125				}
1126				/* fall through */
1127			default:
1128				delay = syncdelay;
1129			}
1130			vn_syncer_add_to_worklist(newvp, delay);
1131		}
1132		bp->b_xflags |= B_VNDIRTY;
1133		tbp = TAILQ_FIRST(listheadp);
1134		if (tbp == NULL ||
1135		    (bp->b_lblkno >= 0 && tbp->b_lblkno > bp->b_lblkno)) {
1136			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1137		} else {
1138			if (bp->b_lblkno >= 0) {
1139				struct buf *ttbp;
1140				while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1141				    (ttbp->b_lblkno < bp->b_lblkno)) {
1142					tbp = ttbp;
1143				}
1144				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1145			} else {
1146				TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1147			}
1148		}
1149	} else {
1150		bp->b_xflags |= B_VNCLEAN;
1151		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1152		if ((newvp->v_flag & VONWORKLST) &&
1153		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1154			newvp->v_flag &= ~VONWORKLST;
1155			LIST_REMOVE(newvp, v_synclist);
1156		}
1157	}
1158	if (bp->b_vp != newvp) {
1159		bp->b_vp = newvp;
1160		vhold(bp->b_vp);
1161	}
1162	splx(s);
1163}
1164
1165/*
1166 * Create a vnode for a block device.
1167 * Used for mounting the root file system.
1168 */
1169int
1170bdevvp(dev, vpp)
1171	dev_t dev;
1172	struct vnode **vpp;
1173{
1174	register struct vnode *vp;
1175	struct vnode *nvp;
1176	int error;
1177
1178	if (dev == NODEV || major(dev) >= nblkdev) {
1179		*vpp = NULLVP;
1180		return (ENXIO);
1181	}
1182	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1183	if (error) {
1184		*vpp = NULLVP;
1185		return (error);
1186	}
1187	vp = nvp;
1188	vp->v_type = VBLK;
1189	if ((nvp = checkalias(vp, dev2udev(dev), (struct mount *)0)) != NULL) {
1190		vput(vp);
1191		vp = nvp;
1192	}
1193	*vpp = vp;
1194	return (0);
1195}
1196
1197/*
1198 * Check to see if the new vnode represents a special device
1199 * for which we already have a vnode (either because of
1200 * bdevvp() or because of a different vnode representing
1201 * the same block device). If such an alias exists, deallocate
1202 * the existing contents and return the aliased vnode. The
1203 * caller is responsible for filling it with its new contents.
1204 */
1205struct vnode *
1206checkalias(nvp, nvp_rdev, mp)
1207	register struct vnode *nvp;
1208	udev_t nvp_rdev;
1209	struct mount *mp;
1210{
1211	struct proc *p = curproc;	/* XXX */
1212	struct vnode *vp;
1213	struct vnode **vpp;
1214	int rmaj = umajor(nvp_rdev);
1215	dev_t	dev;
1216
1217	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1218		return (NULLVP);
1219
1220	dev = udev2dev(nvp_rdev, 2);
1221
1222	vpp = &speclisth[SPECHASH(dev)];
1223loop:
1224	simple_lock(&spechash_slock);
1225	for (vp = *vpp; vp; vp = vp->v_specnext) {
1226		if (dev != vp->v_rdev || nvp->v_type != vp->v_type)
1227			continue;
1228		/*
1229		 * Alias, but not in use, so flush it out.
1230		 * Only alias active device nodes.
1231		 * Not sure why we don't re-use this like we do below.
1232		 */
1233		simple_lock(&vp->v_interlock);
1234		if (vp->v_usecount == 0) {
1235			simple_unlock(&spechash_slock);
1236			vgonel(vp, p);
1237			goto loop;
1238		}
1239		if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK, p)) {
1240			/*
1241			 * It dissappeared, and we may have slept.
1242			 * Restart from the beginning
1243			 */
1244			simple_unlock(&spechash_slock);
1245			goto loop;
1246		}
1247		break;
1248	}
1249	/*
1250	 * It would be a lot clearer what is going on here if
1251	 * this had been expressed as:
1252	 * if ( vp && (vp->v_tag == VT_NULL))
1253	 * and the clauses had been swapped.
1254	 */
1255	if (vp == NULL || vp->v_tag != VT_NON) {
1256		struct specinfo *sinfo;
1257
1258		/*
1259		 * Put the new vnode into the hash chain.
1260		 * and if there was an alias, connect them.
1261		 */
1262		MALLOC(sinfo, struct specinfo *,
1263		    sizeof(struct specinfo), M_VNODE, M_WAITOK);
1264		bzero(sinfo, sizeof(struct specinfo));
1265		nvp->v_specinfo = sinfo;
1266		sinfo->si_rdev = dev;
1267		sinfo->si_hashchain = vpp;
1268		sinfo->si_specnext = *vpp;
1269		sinfo->si_bsize_phys = DEV_BSIZE;
1270		sinfo->si_bsize_best = BLKDEV_IOSIZE;
1271		sinfo->si_bsize_max = MAXBSIZE;
1272
1273		/*
1274		 * Ask the device to fix up specinfo.  Typically the
1275		 * si_bsize_* parameters may need fixing up.
1276		 */
1277
1278		if (nvp->v_type == VBLK && rmaj < nblkdev) {
1279			if (bdevsw(dev) && bdevsw(dev)->d_parms)
1280				(*bdevsw(dev)->d_parms)(dev, sinfo, DPARM_GET);
1281		} else if (nvp->v_type == VCHR && rmaj < nchrdev) {
1282			if (devsw(dev) && devsw(dev)->d_parms)
1283				(*devsw(dev)->d_parms)(dev, sinfo, DPARM_GET);
1284		}
1285
1286		simple_unlock(&spechash_slock);
1287		*vpp = nvp;
1288		if (vp != NULLVP) {
1289			nvp->v_flag |= VALIASED;
1290			vp->v_flag |= VALIASED;
1291			vput(vp);
1292		}
1293		return (NULLVP);
1294	}
1295	/*
1296	 * if ( vp && (vp->v_tag == VT_NULL))
1297	 * We have a vnode alias, but it is a trashed.
1298	 * Make it look like it's newley allocated. (by getnewvnode())
1299	 * The caller should use this instead.
1300	 */
1301	simple_unlock(&spechash_slock);
1302	VOP_UNLOCK(vp, 0, p);
1303	simple_lock(&vp->v_interlock);
1304	vclean(vp, 0, p);
1305	vp->v_op = nvp->v_op;
1306	vp->v_tag = nvp->v_tag;
1307	nvp->v_type = VNON;
1308	insmntque(vp, mp);
1309	return (vp);
1310}
1311
1312/*
1313 * Grab a particular vnode from the free list, increment its
1314 * reference count and lock it. The vnode lock bit is set the
1315 * vnode is being eliminated in vgone. The process is awakened
1316 * when the transition is completed, and an error returned to
1317 * indicate that the vnode is no longer usable (possibly having
1318 * been changed to a new file system type).
1319 */
1320int
1321vget(vp, flags, p)
1322	register struct vnode *vp;
1323	int flags;
1324	struct proc *p;
1325{
1326	int error;
1327
1328	/*
1329	 * If the vnode is in the process of being cleaned out for
1330	 * another use, we wait for the cleaning to finish and then
1331	 * return failure. Cleaning is determined by checking that
1332	 * the VXLOCK flag is set.
1333	 */
1334	if ((flags & LK_INTERLOCK) == 0) {
1335		simple_lock(&vp->v_interlock);
1336	}
1337	if (vp->v_flag & VXLOCK) {
1338		vp->v_flag |= VXWANT;
1339		simple_unlock(&vp->v_interlock);
1340		tsleep((caddr_t)vp, PINOD, "vget", 0);
1341		return (ENOENT);
1342	}
1343
1344	vp->v_usecount++;
1345
1346	if (VSHOULDBUSY(vp))
1347		vbusy(vp);
1348	if (flags & LK_TYPE_MASK) {
1349		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1350			/*
1351			 * must expand vrele here because we do not want
1352			 * to call VOP_INACTIVE if the reference count
1353			 * drops back to zero since it was never really
1354			 * active. We must remove it from the free list
1355			 * before sleeping so that multiple processes do
1356			 * not try to recycle it.
1357			 */
1358			simple_lock(&vp->v_interlock);
1359			vp->v_usecount--;
1360			if (VSHOULDFREE(vp))
1361				vfree(vp);
1362			simple_unlock(&vp->v_interlock);
1363		}
1364		return (error);
1365	}
1366	simple_unlock(&vp->v_interlock);
1367	return (0);
1368}
1369
1370void
1371vref(struct vnode *vp)
1372{
1373	simple_lock(&vp->v_interlock);
1374	vp->v_usecount++;
1375	simple_unlock(&vp->v_interlock);
1376}
1377
1378/*
1379 * Vnode put/release.
1380 * If count drops to zero, call inactive routine and return to freelist.
1381 */
1382void
1383vrele(vp)
1384	struct vnode *vp;
1385{
1386	struct proc *p = curproc;	/* XXX */
1387
1388	KASSERT(vp != NULL, ("vrele: null vp"));
1389
1390	simple_lock(&vp->v_interlock);
1391
1392	if (vp->v_usecount > 1) {
1393
1394		vp->v_usecount--;
1395		simple_unlock(&vp->v_interlock);
1396
1397		return;
1398	}
1399
1400	if (vp->v_usecount == 1) {
1401
1402		vp->v_usecount--;
1403		if (VSHOULDFREE(vp))
1404			vfree(vp);
1405	/*
1406	 * If we are doing a vput, the node is already locked, and we must
1407	 * call VOP_INACTIVE with the node locked.  So, in the case of
1408	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1409	 */
1410		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1411			VOP_INACTIVE(vp, p);
1412		}
1413
1414	} else {
1415#ifdef DIAGNOSTIC
1416		vprint("vrele: negative ref count", vp);
1417		simple_unlock(&vp->v_interlock);
1418#endif
1419		panic("vrele: negative ref cnt");
1420	}
1421}
1422
1423void
1424vput(vp)
1425	struct vnode *vp;
1426{
1427	struct proc *p = curproc;	/* XXX */
1428
1429	KASSERT(vp != NULL, ("vput: null vp"));
1430
1431	simple_lock(&vp->v_interlock);
1432
1433	if (vp->v_usecount > 1) {
1434
1435		vp->v_usecount--;
1436		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1437		return;
1438
1439	}
1440
1441	if (vp->v_usecount == 1) {
1442
1443		vp->v_usecount--;
1444		if (VSHOULDFREE(vp))
1445			vfree(vp);
1446	/*
1447	 * If we are doing a vput, the node is already locked, and we must
1448	 * call VOP_INACTIVE with the node locked.  So, in the case of
1449	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1450	 */
1451		simple_unlock(&vp->v_interlock);
1452		VOP_INACTIVE(vp, p);
1453
1454	} else {
1455#ifdef DIAGNOSTIC
1456		vprint("vput: negative ref count", vp);
1457#endif
1458		panic("vput: negative ref cnt");
1459	}
1460}
1461
1462/*
1463 * Somebody doesn't want the vnode recycled.
1464 */
1465void
1466vhold(vp)
1467	register struct vnode *vp;
1468{
1469	int s;
1470
1471  	s = splbio();
1472	vp->v_holdcnt++;
1473	if (VSHOULDBUSY(vp))
1474		vbusy(vp);
1475	splx(s);
1476}
1477
1478/*
1479 * One less who cares about this vnode.
1480 */
1481void
1482vdrop(vp)
1483	register struct vnode *vp;
1484{
1485	int s;
1486
1487	s = splbio();
1488	if (vp->v_holdcnt <= 0)
1489		panic("vdrop: holdcnt");
1490	vp->v_holdcnt--;
1491	if (VSHOULDFREE(vp))
1492		vfree(vp);
1493	splx(s);
1494}
1495
1496/*
1497 * Remove any vnodes in the vnode table belonging to mount point mp.
1498 *
1499 * If MNT_NOFORCE is specified, there should not be any active ones,
1500 * return error if any are found (nb: this is a user error, not a
1501 * system error). If MNT_FORCE is specified, detach any active vnodes
1502 * that are found.
1503 */
1504#ifdef DIAGNOSTIC
1505static int busyprt = 0;		/* print out busy vnodes */
1506SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1507#endif
1508
1509int
1510vflush(mp, skipvp, flags)
1511	struct mount *mp;
1512	struct vnode *skipvp;
1513	int flags;
1514{
1515	struct proc *p = curproc;	/* XXX */
1516	struct vnode *vp, *nvp;
1517	int busy = 0;
1518
1519	simple_lock(&mntvnode_slock);
1520loop:
1521	for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
1522		/*
1523		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1524		 * Start over if it has (it won't be on the list anymore).
1525		 */
1526		if (vp->v_mount != mp)
1527			goto loop;
1528		nvp = vp->v_mntvnodes.le_next;
1529		/*
1530		 * Skip over a selected vnode.
1531		 */
1532		if (vp == skipvp)
1533			continue;
1534
1535		simple_lock(&vp->v_interlock);
1536		/*
1537		 * Skip over a vnodes marked VSYSTEM.
1538		 */
1539		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1540			simple_unlock(&vp->v_interlock);
1541			continue;
1542		}
1543		/*
1544		 * If WRITECLOSE is set, only flush out regular file vnodes
1545		 * open for writing.
1546		 */
1547		if ((flags & WRITECLOSE) &&
1548		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1549			simple_unlock(&vp->v_interlock);
1550			continue;
1551		}
1552
1553		/*
1554		 * With v_usecount == 0, all we need to do is clear out the
1555		 * vnode data structures and we are done.
1556		 */
1557		if (vp->v_usecount == 0) {
1558			simple_unlock(&mntvnode_slock);
1559			vgonel(vp, p);
1560			simple_lock(&mntvnode_slock);
1561			continue;
1562		}
1563
1564		/*
1565		 * If FORCECLOSE is set, forcibly close the vnode. For block
1566		 * or character devices, revert to an anonymous device. For
1567		 * all other files, just kill them.
1568		 */
1569		if (flags & FORCECLOSE) {
1570			simple_unlock(&mntvnode_slock);
1571			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1572				vgonel(vp, p);
1573			} else {
1574				vclean(vp, 0, p);
1575				vp->v_op = spec_vnodeop_p;
1576				insmntque(vp, (struct mount *) 0);
1577			}
1578			simple_lock(&mntvnode_slock);
1579			continue;
1580		}
1581#ifdef DIAGNOSTIC
1582		if (busyprt)
1583			vprint("vflush: busy vnode", vp);
1584#endif
1585		simple_unlock(&vp->v_interlock);
1586		busy++;
1587	}
1588	simple_unlock(&mntvnode_slock);
1589	if (busy)
1590		return (EBUSY);
1591	return (0);
1592}
1593
1594/*
1595 * Disassociate the underlying file system from a vnode.
1596 */
1597static void
1598vclean(vp, flags, p)
1599	struct vnode *vp;
1600	int flags;
1601	struct proc *p;
1602{
1603	int active;
1604	vm_object_t obj;
1605
1606	/*
1607	 * Check to see if the vnode is in use. If so we have to reference it
1608	 * before we clean it out so that its count cannot fall to zero and
1609	 * generate a race against ourselves to recycle it.
1610	 */
1611	if ((active = vp->v_usecount))
1612		vp->v_usecount++;
1613
1614	/*
1615	 * Prevent the vnode from being recycled or brought into use while we
1616	 * clean it out.
1617	 */
1618	if (vp->v_flag & VXLOCK)
1619		panic("vclean: deadlock");
1620	vp->v_flag |= VXLOCK;
1621	/*
1622	 * Even if the count is zero, the VOP_INACTIVE routine may still
1623	 * have the object locked while it cleans it out. The VOP_LOCK
1624	 * ensures that the VOP_INACTIVE routine is done with its work.
1625	 * For active vnodes, it ensures that no other activity can
1626	 * occur while the underlying object is being cleaned out.
1627	 */
1628	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1629
1630	/*
1631	 * Clean out any buffers associated with the vnode.
1632	 */
1633	vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0);
1634	if ((obj = vp->v_object) != NULL) {
1635		if (obj->ref_count == 0) {
1636			/*
1637			 * This is a normal way of shutting down the object/vnode
1638			 * association.
1639			 */
1640			vm_object_terminate(obj);
1641		} else {
1642			/*
1643			 * Woe to the process that tries to page now :-).
1644			 */
1645			vm_pager_deallocate(obj);
1646		}
1647	}
1648
1649	/*
1650	 * If purging an active vnode, it must be closed and
1651	 * deactivated before being reclaimed. Note that the
1652	 * VOP_INACTIVE will unlock the vnode.
1653	 */
1654	if (active) {
1655		if (flags & DOCLOSE)
1656			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1657		VOP_INACTIVE(vp, p);
1658	} else {
1659		/*
1660		 * Any other processes trying to obtain this lock must first
1661		 * wait for VXLOCK to clear, then call the new lock operation.
1662		 */
1663		VOP_UNLOCK(vp, 0, p);
1664	}
1665	/*
1666	 * Reclaim the vnode.
1667	 */
1668	if (VOP_RECLAIM(vp, p))
1669		panic("vclean: cannot reclaim");
1670
1671	if (active)
1672		vrele(vp);
1673
1674	cache_purge(vp);
1675	if (vp->v_vnlock) {
1676#if 0 /* This is the only place we have LK_DRAINED in the entire kernel ??? */
1677#ifdef DIAGNOSTIC
1678		if ((vp->v_vnlock->lk_flags & LK_DRAINED) == 0)
1679			vprint("vclean: lock not drained", vp);
1680#endif
1681#endif
1682		FREE(vp->v_vnlock, M_VNODE);
1683		vp->v_vnlock = NULL;
1684	}
1685
1686	if (VSHOULDFREE(vp))
1687		vfree(vp);
1688
1689	/*
1690	 * Done with purge, notify sleepers of the grim news.
1691	 */
1692	vp->v_op = dead_vnodeop_p;
1693	vn_pollgone(vp);
1694	vp->v_tag = VT_NON;
1695	vp->v_flag &= ~VXLOCK;
1696	if (vp->v_flag & VXWANT) {
1697		vp->v_flag &= ~VXWANT;
1698		wakeup((caddr_t) vp);
1699	}
1700}
1701
1702/*
1703 * Eliminate all activity associated with the requested vnode
1704 * and with all vnodes aliased to the requested vnode.
1705 */
1706int
1707vop_revoke(ap)
1708	struct vop_revoke_args /* {
1709		struct vnode *a_vp;
1710		int a_flags;
1711	} */ *ap;
1712{
1713	struct vnode *vp, *vq;
1714	struct proc *p = curproc;	/* XXX */
1715
1716	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1717
1718	vp = ap->a_vp;
1719	simple_lock(&vp->v_interlock);
1720
1721	if (vp->v_flag & VALIASED) {
1722		/*
1723		 * If a vgone (or vclean) is already in progress,
1724		 * wait until it is done and return.
1725		 */
1726		if (vp->v_flag & VXLOCK) {
1727			vp->v_flag |= VXWANT;
1728			simple_unlock(&vp->v_interlock);
1729			tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1730			return (0);
1731		}
1732		/*
1733		 * Ensure that vp will not be vgone'd while we
1734		 * are eliminating its aliases.
1735		 */
1736		vp->v_flag |= VXLOCK;
1737		simple_unlock(&vp->v_interlock);
1738		while (vp->v_flag & VALIASED) {
1739			simple_lock(&spechash_slock);
1740			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
1741				if (vq->v_rdev != vp->v_rdev ||
1742				    vq->v_type != vp->v_type || vp == vq)
1743					continue;
1744				simple_unlock(&spechash_slock);
1745				vgone(vq);
1746				break;
1747			}
1748			if (vq == NULLVP) {
1749				simple_unlock(&spechash_slock);
1750			}
1751		}
1752		/*
1753		 * Remove the lock so that vgone below will
1754		 * really eliminate the vnode after which time
1755		 * vgone will awaken any sleepers.
1756		 */
1757		simple_lock(&vp->v_interlock);
1758		vp->v_flag &= ~VXLOCK;
1759		if (vp->v_flag & VXWANT) {
1760			vp->v_flag &= ~VXWANT;
1761			wakeup(vp);
1762		}
1763	}
1764	vgonel(vp, p);
1765	return (0);
1766}
1767
1768/*
1769 * Recycle an unused vnode to the front of the free list.
1770 * Release the passed interlock if the vnode will be recycled.
1771 */
1772int
1773vrecycle(vp, inter_lkp, p)
1774	struct vnode *vp;
1775	struct simplelock *inter_lkp;
1776	struct proc *p;
1777{
1778
1779	simple_lock(&vp->v_interlock);
1780	if (vp->v_usecount == 0) {
1781		if (inter_lkp) {
1782			simple_unlock(inter_lkp);
1783		}
1784		vgonel(vp, p);
1785		return (1);
1786	}
1787	simple_unlock(&vp->v_interlock);
1788	return (0);
1789}
1790
1791/*
1792 * Eliminate all activity associated with a vnode
1793 * in preparation for reuse.
1794 */
1795void
1796vgone(vp)
1797	register struct vnode *vp;
1798{
1799	struct proc *p = curproc;	/* XXX */
1800
1801	simple_lock(&vp->v_interlock);
1802	vgonel(vp, p);
1803}
1804
1805/*
1806 * vgone, with the vp interlock held.
1807 */
1808static void
1809vgonel(vp, p)
1810	struct vnode *vp;
1811	struct proc *p;
1812{
1813	int s;
1814	struct vnode *vq;
1815	struct vnode *vx;
1816
1817	/*
1818	 * If a vgone (or vclean) is already in progress,
1819	 * wait until it is done and return.
1820	 */
1821	if (vp->v_flag & VXLOCK) {
1822		vp->v_flag |= VXWANT;
1823		simple_unlock(&vp->v_interlock);
1824		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1825		return;
1826	}
1827
1828	/*
1829	 * Clean out the filesystem specific data.
1830	 */
1831	vclean(vp, DOCLOSE, p);
1832	simple_lock(&vp->v_interlock);
1833
1834	/*
1835	 * Delete from old mount point vnode list, if on one.
1836	 */
1837	if (vp->v_mount != NULL)
1838		insmntque(vp, (struct mount *)0);
1839	/*
1840	 * If special device, remove it from special device alias list
1841	 * if it is on one.
1842	 */
1843	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specinfo != 0) {
1844		simple_lock(&spechash_slock);
1845		if (*vp->v_hashchain == vp) {
1846			*vp->v_hashchain = vp->v_specnext;
1847		} else {
1848			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
1849				if (vq->v_specnext != vp)
1850					continue;
1851				vq->v_specnext = vp->v_specnext;
1852				break;
1853			}
1854			if (vq == NULL)
1855				panic("missing bdev");
1856		}
1857		if (vp->v_flag & VALIASED) {
1858			vx = NULL;
1859			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
1860				if (vq->v_rdev != vp->v_rdev ||
1861				    vq->v_type != vp->v_type)
1862					continue;
1863				if (vx)
1864					break;
1865				vx = vq;
1866			}
1867			if (vx == NULL)
1868				panic("missing alias");
1869			if (vq == NULL)
1870				vx->v_flag &= ~VALIASED;
1871			vp->v_flag &= ~VALIASED;
1872		}
1873		simple_unlock(&spechash_slock);
1874		FREE(vp->v_specinfo, M_VNODE);
1875		vp->v_specinfo = NULL;
1876	}
1877
1878	/*
1879	 * If it is on the freelist and not already at the head,
1880	 * move it to the head of the list. The test of the back
1881	 * pointer and the reference count of zero is because
1882	 * it will be removed from the free list by getnewvnode,
1883	 * but will not have its reference count incremented until
1884	 * after calling vgone. If the reference count were
1885	 * incremented first, vgone would (incorrectly) try to
1886	 * close the previous instance of the underlying object.
1887	 */
1888	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1889		s = splbio();
1890		simple_lock(&vnode_free_list_slock);
1891		if (vp->v_flag & VFREE) {
1892			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1893		} else if (vp->v_flag & VTBFREE) {
1894			TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
1895			vp->v_flag &= ~VTBFREE;
1896			freevnodes++;
1897		} else
1898			freevnodes++;
1899		vp->v_flag |= VFREE;
1900		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1901		simple_unlock(&vnode_free_list_slock);
1902		splx(s);
1903	}
1904
1905	vp->v_type = VBAD;
1906	simple_unlock(&vp->v_interlock);
1907}
1908
1909/*
1910 * Lookup a vnode by device number.
1911 */
1912int
1913vfinddev(dev, type, vpp)
1914	dev_t dev;
1915	enum vtype type;
1916	struct vnode **vpp;
1917{
1918	register struct vnode *vp;
1919	int rc = 0;
1920
1921	simple_lock(&spechash_slock);
1922	for (vp = speclisth[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
1923		if (dev != vp->v_rdev || type != vp->v_type)
1924			continue;
1925		*vpp = vp;
1926		rc = 1;
1927		break;
1928	}
1929	simple_unlock(&spechash_slock);
1930	return (rc);
1931}
1932
1933/*
1934 * Calculate the total number of references to a special device.
1935 */
1936int
1937vcount(vp)
1938	register struct vnode *vp;
1939{
1940	struct vnode *vq, *vnext;
1941	int count;
1942
1943loop:
1944	if ((vp->v_flag & VALIASED) == 0)
1945		return (vp->v_usecount);
1946	simple_lock(&spechash_slock);
1947	for (count = 0, vq = *vp->v_hashchain; vq; vq = vnext) {
1948		vnext = vq->v_specnext;
1949		if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type)
1950			continue;
1951		/*
1952		 * Alias, but not in use, so flush it out.
1953		 */
1954		if (vq->v_usecount == 0 && vq != vp) {
1955			simple_unlock(&spechash_slock);
1956			vgone(vq);
1957			goto loop;
1958		}
1959		count += vq->v_usecount;
1960	}
1961	simple_unlock(&spechash_slock);
1962	return (count);
1963}
1964/*
1965 * Print out a description of a vnode.
1966 */
1967static char *typename[] =
1968{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1969
1970void
1971vprint(label, vp)
1972	char *label;
1973	register struct vnode *vp;
1974{
1975	char buf[96];
1976
1977	if (label != NULL)
1978		printf("%s: %p: ", label, (void *)vp);
1979	else
1980		printf("%p: ", (void *)vp);
1981	printf("type %s, usecount %d, writecount %d, refcount %d,",
1982	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1983	    vp->v_holdcnt);
1984	buf[0] = '\0';
1985	if (vp->v_flag & VROOT)
1986		strcat(buf, "|VROOT");
1987	if (vp->v_flag & VTEXT)
1988		strcat(buf, "|VTEXT");
1989	if (vp->v_flag & VSYSTEM)
1990		strcat(buf, "|VSYSTEM");
1991	if (vp->v_flag & VXLOCK)
1992		strcat(buf, "|VXLOCK");
1993	if (vp->v_flag & VXWANT)
1994		strcat(buf, "|VXWANT");
1995	if (vp->v_flag & VBWAIT)
1996		strcat(buf, "|VBWAIT");
1997	if (vp->v_flag & VALIASED)
1998		strcat(buf, "|VALIASED");
1999	if (vp->v_flag & VDOOMED)
2000		strcat(buf, "|VDOOMED");
2001	if (vp->v_flag & VFREE)
2002		strcat(buf, "|VFREE");
2003	if (vp->v_flag & VOBJBUF)
2004		strcat(buf, "|VOBJBUF");
2005	if (buf[0] != '\0')
2006		printf(" flags (%s)", &buf[1]);
2007	if (vp->v_data == NULL) {
2008		printf("\n");
2009	} else {
2010		printf("\n\t");
2011		VOP_PRINT(vp);
2012	}
2013}
2014
2015#ifdef DDB
2016#include <ddb/ddb.h>
2017/*
2018 * List all of the locked vnodes in the system.
2019 * Called when debugging the kernel.
2020 */
2021DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2022{
2023	struct proc *p = curproc;	/* XXX */
2024	struct mount *mp, *nmp;
2025	struct vnode *vp;
2026
2027	printf("Locked vnodes\n");
2028	simple_lock(&mountlist_slock);
2029	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
2030		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2031			nmp = mp->mnt_list.cqe_next;
2032			continue;
2033		}
2034		for (vp = mp->mnt_vnodelist.lh_first;
2035		     vp != NULL;
2036		     vp = vp->v_mntvnodes.le_next) {
2037			if (VOP_ISLOCKED(vp))
2038				vprint((char *)0, vp);
2039		}
2040		simple_lock(&mountlist_slock);
2041		nmp = mp->mnt_list.cqe_next;
2042		vfs_unbusy(mp, p);
2043	}
2044	simple_unlock(&mountlist_slock);
2045}
2046#endif
2047
2048/*
2049 * Top level filesystem related information gathering.
2050 */
2051static int	sysctl_ovfs_conf __P(SYSCTL_HANDLER_ARGS);
2052
2053static int
2054vfs_sysctl SYSCTL_HANDLER_ARGS
2055{
2056	int *name = (int *)arg1 - 1;	/* XXX */
2057	u_int namelen = arg2 + 1;	/* XXX */
2058	struct vfsconf *vfsp;
2059
2060#if 1 || defined(COMPAT_PRELITE2)
2061	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2062	if (namelen == 1)
2063		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2064#endif
2065
2066#ifdef notyet
2067	/* all sysctl names at this level are at least name and field */
2068	if (namelen < 2)
2069		return (ENOTDIR);		/* overloaded */
2070	if (name[0] != VFS_GENERIC) {
2071		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2072			if (vfsp->vfc_typenum == name[0])
2073				break;
2074		if (vfsp == NULL)
2075			return (EOPNOTSUPP);
2076		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2077		    oldp, oldlenp, newp, newlen, p));
2078	}
2079#endif
2080	switch (name[1]) {
2081	case VFS_MAXTYPENUM:
2082		if (namelen != 2)
2083			return (ENOTDIR);
2084		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2085	case VFS_CONF:
2086		if (namelen != 3)
2087			return (ENOTDIR);	/* overloaded */
2088		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2089			if (vfsp->vfc_typenum == name[2])
2090				break;
2091		if (vfsp == NULL)
2092			return (EOPNOTSUPP);
2093		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2094	}
2095	return (EOPNOTSUPP);
2096}
2097
2098SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2099	"Generic filesystem");
2100
2101#if 1 || defined(COMPAT_PRELITE2)
2102
2103static int
2104sysctl_ovfs_conf SYSCTL_HANDLER_ARGS
2105{
2106	int error;
2107	struct vfsconf *vfsp;
2108	struct ovfsconf ovfs;
2109
2110	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2111		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2112		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2113		ovfs.vfc_index = vfsp->vfc_typenum;
2114		ovfs.vfc_refcount = vfsp->vfc_refcount;
2115		ovfs.vfc_flags = vfsp->vfc_flags;
2116		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2117		if (error)
2118			return error;
2119	}
2120	return 0;
2121}
2122
2123#endif /* 1 || COMPAT_PRELITE2 */
2124
2125#if 0
2126#define KINFO_VNODESLOP	10
2127/*
2128 * Dump vnode list (via sysctl).
2129 * Copyout address of vnode followed by vnode.
2130 */
2131/* ARGSUSED */
2132static int
2133sysctl_vnode SYSCTL_HANDLER_ARGS
2134{
2135	struct proc *p = curproc;	/* XXX */
2136	struct mount *mp, *nmp;
2137	struct vnode *nvp, *vp;
2138	int error;
2139
2140#define VPTRSZ	sizeof (struct vnode *)
2141#define VNODESZ	sizeof (struct vnode)
2142
2143	req->lock = 0;
2144	if (!req->oldptr) /* Make an estimate */
2145		return (SYSCTL_OUT(req, 0,
2146			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2147
2148	simple_lock(&mountlist_slock);
2149	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
2150		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2151			nmp = mp->mnt_list.cqe_next;
2152			continue;
2153		}
2154again:
2155		simple_lock(&mntvnode_slock);
2156		for (vp = mp->mnt_vnodelist.lh_first;
2157		     vp != NULL;
2158		     vp = nvp) {
2159			/*
2160			 * Check that the vp is still associated with
2161			 * this filesystem.  RACE: could have been
2162			 * recycled onto the same filesystem.
2163			 */
2164			if (vp->v_mount != mp) {
2165				simple_unlock(&mntvnode_slock);
2166				goto again;
2167			}
2168			nvp = vp->v_mntvnodes.le_next;
2169			simple_unlock(&mntvnode_slock);
2170			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2171			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2172				return (error);
2173			simple_lock(&mntvnode_slock);
2174		}
2175		simple_unlock(&mntvnode_slock);
2176		simple_lock(&mountlist_slock);
2177		nmp = mp->mnt_list.cqe_next;
2178		vfs_unbusy(mp, p);
2179	}
2180	simple_unlock(&mountlist_slock);
2181
2182	return (0);
2183}
2184#endif
2185
2186/*
2187 * XXX
2188 * Exporting the vnode list on large systems causes them to crash.
2189 * Exporting the vnode list on medium systems causes sysctl to coredump.
2190 */
2191#if 0
2192SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2193	0, 0, sysctl_vnode, "S,vnode", "");
2194#endif
2195
2196/*
2197 * Check to see if a filesystem is mounted on a block device.
2198 */
2199int
2200vfs_mountedon(vp)
2201	struct vnode *vp;
2202{
2203	struct vnode *vq;
2204	int error = 0;
2205
2206	if (vp->v_specmountpoint != NULL)
2207		return (EBUSY);
2208	if (vp->v_flag & VALIASED) {
2209		simple_lock(&spechash_slock);
2210		for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2211			if (vq->v_rdev != vp->v_rdev ||
2212			    vq->v_type != vp->v_type)
2213				continue;
2214			if (vq->v_specmountpoint != NULL) {
2215				error = EBUSY;
2216				break;
2217			}
2218		}
2219		simple_unlock(&spechash_slock);
2220	}
2221	return (error);
2222}
2223
2224/*
2225 * Unmount all filesystems. The list is traversed in reverse order
2226 * of mounting to avoid dependencies.
2227 */
2228void
2229vfs_unmountall()
2230{
2231	struct mount *mp, *nmp;
2232	struct proc *p;
2233	int error;
2234
2235	if (curproc != NULL)
2236		p = curproc;
2237	else
2238		p = initproc;	/* XXX XXX should this be proc0? */
2239	/*
2240	 * Since this only runs when rebooting, it is not interlocked.
2241	 */
2242	for (mp = mountlist.cqh_last; mp != (void *)&mountlist; mp = nmp) {
2243		nmp = mp->mnt_list.cqe_prev;
2244		error = dounmount(mp, MNT_FORCE, p);
2245		if (error) {
2246			printf("unmount of %s failed (",
2247			    mp->mnt_stat.f_mntonname);
2248			if (error == EBUSY)
2249				printf("BUSY)\n");
2250			else
2251				printf("%d)\n", error);
2252		}
2253	}
2254}
2255
2256/*
2257 * Build hash lists of net addresses and hang them off the mount point.
2258 * Called by ufs_mount() to set up the lists of export addresses.
2259 */
2260static int
2261vfs_hang_addrlist(mp, nep, argp)
2262	struct mount *mp;
2263	struct netexport *nep;
2264	struct export_args *argp;
2265{
2266	register struct netcred *np;
2267	register struct radix_node_head *rnh;
2268	register int i;
2269	struct radix_node *rn;
2270	struct sockaddr *saddr, *smask = 0;
2271	struct domain *dom;
2272	int error;
2273
2274	if (argp->ex_addrlen == 0) {
2275		if (mp->mnt_flag & MNT_DEFEXPORTED)
2276			return (EPERM);
2277		np = &nep->ne_defexported;
2278		np->netc_exflags = argp->ex_flags;
2279		np->netc_anon = argp->ex_anon;
2280		np->netc_anon.cr_ref = 1;
2281		mp->mnt_flag |= MNT_DEFEXPORTED;
2282		return (0);
2283	}
2284	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2285	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2286	bzero((caddr_t) np, i);
2287	saddr = (struct sockaddr *) (np + 1);
2288	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2289		goto out;
2290	if (saddr->sa_len > argp->ex_addrlen)
2291		saddr->sa_len = argp->ex_addrlen;
2292	if (argp->ex_masklen) {
2293		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2294		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2295		if (error)
2296			goto out;
2297		if (smask->sa_len > argp->ex_masklen)
2298			smask->sa_len = argp->ex_masklen;
2299	}
2300	i = saddr->sa_family;
2301	if ((rnh = nep->ne_rtable[i]) == 0) {
2302		/*
2303		 * Seems silly to initialize every AF when most are not used,
2304		 * do so on demand here
2305		 */
2306		for (dom = domains; dom; dom = dom->dom_next)
2307			if (dom->dom_family == i && dom->dom_rtattach) {
2308				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2309				    dom->dom_rtoffset);
2310				break;
2311			}
2312		if ((rnh = nep->ne_rtable[i]) == 0) {
2313			error = ENOBUFS;
2314			goto out;
2315		}
2316	}
2317	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2318	    np->netc_rnodes);
2319	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2320		error = EPERM;
2321		goto out;
2322	}
2323	np->netc_exflags = argp->ex_flags;
2324	np->netc_anon = argp->ex_anon;
2325	np->netc_anon.cr_ref = 1;
2326	return (0);
2327out:
2328	free(np, M_NETADDR);
2329	return (error);
2330}
2331
2332/* ARGSUSED */
2333static int
2334vfs_free_netcred(rn, w)
2335	struct radix_node *rn;
2336	void *w;
2337{
2338	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2339
2340	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2341	free((caddr_t) rn, M_NETADDR);
2342	return (0);
2343}
2344
2345/*
2346 * Free the net address hash lists that are hanging off the mount points.
2347 */
2348static void
2349vfs_free_addrlist(nep)
2350	struct netexport *nep;
2351{
2352	register int i;
2353	register struct radix_node_head *rnh;
2354
2355	for (i = 0; i <= AF_MAX; i++)
2356		if ((rnh = nep->ne_rtable[i])) {
2357			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2358			    (caddr_t) rnh);
2359			free((caddr_t) rnh, M_RTABLE);
2360			nep->ne_rtable[i] = 0;
2361		}
2362}
2363
2364int
2365vfs_export(mp, nep, argp)
2366	struct mount *mp;
2367	struct netexport *nep;
2368	struct export_args *argp;
2369{
2370	int error;
2371
2372	if (argp->ex_flags & MNT_DELEXPORT) {
2373		if (mp->mnt_flag & MNT_EXPUBLIC) {
2374			vfs_setpublicfs(NULL, NULL, NULL);
2375			mp->mnt_flag &= ~MNT_EXPUBLIC;
2376		}
2377		vfs_free_addrlist(nep);
2378		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2379	}
2380	if (argp->ex_flags & MNT_EXPORTED) {
2381		if (argp->ex_flags & MNT_EXPUBLIC) {
2382			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2383				return (error);
2384			mp->mnt_flag |= MNT_EXPUBLIC;
2385		}
2386		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2387			return (error);
2388		mp->mnt_flag |= MNT_EXPORTED;
2389	}
2390	return (0);
2391}
2392
2393
2394/*
2395 * Set the publicly exported filesystem (WebNFS). Currently, only
2396 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2397 */
2398int
2399vfs_setpublicfs(mp, nep, argp)
2400	struct mount *mp;
2401	struct netexport *nep;
2402	struct export_args *argp;
2403{
2404	int error;
2405	struct vnode *rvp;
2406	char *cp;
2407
2408	/*
2409	 * mp == NULL -> invalidate the current info, the FS is
2410	 * no longer exported. May be called from either vfs_export
2411	 * or unmount, so check if it hasn't already been done.
2412	 */
2413	if (mp == NULL) {
2414		if (nfs_pub.np_valid) {
2415			nfs_pub.np_valid = 0;
2416			if (nfs_pub.np_index != NULL) {
2417				FREE(nfs_pub.np_index, M_TEMP);
2418				nfs_pub.np_index = NULL;
2419			}
2420		}
2421		return (0);
2422	}
2423
2424	/*
2425	 * Only one allowed at a time.
2426	 */
2427	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2428		return (EBUSY);
2429
2430	/*
2431	 * Get real filehandle for root of exported FS.
2432	 */
2433	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2434	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2435
2436	if ((error = VFS_ROOT(mp, &rvp)))
2437		return (error);
2438
2439	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2440		return (error);
2441
2442	vput(rvp);
2443
2444	/*
2445	 * If an indexfile was specified, pull it in.
2446	 */
2447	if (argp->ex_indexfile != NULL) {
2448		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2449		    M_WAITOK);
2450		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2451		    MAXNAMLEN, (size_t *)0);
2452		if (!error) {
2453			/*
2454			 * Check for illegal filenames.
2455			 */
2456			for (cp = nfs_pub.np_index; *cp; cp++) {
2457				if (*cp == '/') {
2458					error = EINVAL;
2459					break;
2460				}
2461			}
2462		}
2463		if (error) {
2464			FREE(nfs_pub.np_index, M_TEMP);
2465			return (error);
2466		}
2467	}
2468
2469	nfs_pub.np_mount = mp;
2470	nfs_pub.np_valid = 1;
2471	return (0);
2472}
2473
2474struct netcred *
2475vfs_export_lookup(mp, nep, nam)
2476	register struct mount *mp;
2477	struct netexport *nep;
2478	struct sockaddr *nam;
2479{
2480	register struct netcred *np;
2481	register struct radix_node_head *rnh;
2482	struct sockaddr *saddr;
2483
2484	np = NULL;
2485	if (mp->mnt_flag & MNT_EXPORTED) {
2486		/*
2487		 * Lookup in the export list first.
2488		 */
2489		if (nam != NULL) {
2490			saddr = nam;
2491			rnh = nep->ne_rtable[saddr->sa_family];
2492			if (rnh != NULL) {
2493				np = (struct netcred *)
2494					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2495							      rnh);
2496				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2497					np = NULL;
2498			}
2499		}
2500		/*
2501		 * If no address match, use the default if it exists.
2502		 */
2503		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2504			np = &nep->ne_defexported;
2505	}
2506	return (np);
2507}
2508
2509/*
2510 * perform msync on all vnodes under a mount point
2511 * the mount point must be locked.
2512 */
2513void
2514vfs_msync(struct mount *mp, int flags) {
2515	struct vnode *vp, *nvp;
2516	struct vm_object *obj;
2517	int anyio, tries;
2518
2519	tries = 5;
2520loop:
2521	anyio = 0;
2522	for (vp = mp->mnt_vnodelist.lh_first; vp != NULL; vp = nvp) {
2523
2524		nvp = vp->v_mntvnodes.le_next;
2525
2526		if (vp->v_mount != mp) {
2527			goto loop;
2528		}
2529
2530		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2531			continue;
2532
2533		if (flags != MNT_WAIT) {
2534			obj = vp->v_object;
2535			if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2536				continue;
2537			if (VOP_ISLOCKED(vp))
2538				continue;
2539		}
2540
2541		simple_lock(&vp->v_interlock);
2542		if (vp->v_object &&
2543		   (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
2544			if (!vget(vp,
2545				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2546				if (vp->v_object) {
2547					vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : 0);
2548					anyio = 1;
2549				}
2550				vput(vp);
2551			}
2552		} else {
2553			simple_unlock(&vp->v_interlock);
2554		}
2555	}
2556	if (anyio && (--tries > 0))
2557		goto loop;
2558}
2559
2560/*
2561 * Create the VM object needed for VMIO and mmap support.  This
2562 * is done for all VREG files in the system.  Some filesystems might
2563 * afford the additional metadata buffering capability of the
2564 * VMIO code by making the device node be VMIO mode also.
2565 *
2566 * vp must be locked when vfs_object_create is called.
2567 */
2568int
2569vfs_object_create(vp, p, cred)
2570	struct vnode *vp;
2571	struct proc *p;
2572	struct ucred *cred;
2573{
2574	struct vattr vat;
2575	vm_object_t object;
2576	int error = 0;
2577
2578	if ((vp->v_type != VREG) && (vp->v_type != VBLK))
2579		return 0;
2580
2581retry:
2582	if ((object = vp->v_object) == NULL) {
2583		if (vp->v_type == VREG) {
2584			if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
2585				goto retn;
2586			object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
2587		} else if (major(vp->v_rdev) < nblkdev &&
2588		    bdevsw(vp->v_rdev) != NULL) {
2589			/*
2590			 * This simply allocates the biggest object possible
2591			 * for a VBLK vnode.  This should be fixed, but doesn't
2592			 * cause any problems (yet).
2593			 */
2594			object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
2595		} else {
2596			goto retn;
2597		}
2598		/*
2599		 * Dereference the reference we just created.  This assumes
2600		 * that the object is associated with the vp.
2601		 */
2602		object->ref_count--;
2603		vp->v_usecount--;
2604	} else {
2605		if (object->flags & OBJ_DEAD) {
2606			VOP_UNLOCK(vp, 0, p);
2607			tsleep(object, PVM, "vodead", 0);
2608			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
2609			goto retry;
2610		}
2611	}
2612
2613	KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
2614	vp->v_flag |= VOBJBUF;
2615
2616retn:
2617	return error;
2618}
2619
2620static void
2621vfree(vp)
2622	struct vnode *vp;
2623{
2624	int s;
2625
2626	s = splbio();
2627	simple_lock(&vnode_free_list_slock);
2628	if (vp->v_flag & VTBFREE) {
2629		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2630		vp->v_flag &= ~VTBFREE;
2631	}
2632	if (vp->v_flag & VAGE) {
2633		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2634	} else {
2635		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2636	}
2637	freevnodes++;
2638	simple_unlock(&vnode_free_list_slock);
2639	vp->v_flag &= ~VAGE;
2640	vp->v_flag |= VFREE;
2641	splx(s);
2642}
2643
2644void
2645vbusy(vp)
2646	struct vnode *vp;
2647{
2648	int s;
2649
2650	s = splbio();
2651	simple_lock(&vnode_free_list_slock);
2652	if (vp->v_flag & VTBFREE) {
2653		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2654		vp->v_flag &= ~VTBFREE;
2655	} else {
2656		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2657		freevnodes--;
2658	}
2659	simple_unlock(&vnode_free_list_slock);
2660	vp->v_flag &= ~(VFREE|VAGE);
2661	splx(s);
2662}
2663
2664/*
2665 * Record a process's interest in events which might happen to
2666 * a vnode.  Because poll uses the historic select-style interface
2667 * internally, this routine serves as both the ``check for any
2668 * pending events'' and the ``record my interest in future events''
2669 * functions.  (These are done together, while the lock is held,
2670 * to avoid race conditions.)
2671 */
2672int
2673vn_pollrecord(vp, p, events)
2674	struct vnode *vp;
2675	struct proc *p;
2676	short events;
2677{
2678	simple_lock(&vp->v_pollinfo.vpi_lock);
2679	if (vp->v_pollinfo.vpi_revents & events) {
2680		/*
2681		 * This leaves events we are not interested
2682		 * in available for the other process which
2683		 * which presumably had requested them
2684		 * (otherwise they would never have been
2685		 * recorded).
2686		 */
2687		events &= vp->v_pollinfo.vpi_revents;
2688		vp->v_pollinfo.vpi_revents &= ~events;
2689
2690		simple_unlock(&vp->v_pollinfo.vpi_lock);
2691		return events;
2692	}
2693	vp->v_pollinfo.vpi_events |= events;
2694	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2695	simple_unlock(&vp->v_pollinfo.vpi_lock);
2696	return 0;
2697}
2698
2699/*
2700 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2701 * it is possible for us to miss an event due to race conditions, but
2702 * that condition is expected to be rare, so for the moment it is the
2703 * preferred interface.
2704 */
2705void
2706vn_pollevent(vp, events)
2707	struct vnode *vp;
2708	short events;
2709{
2710	simple_lock(&vp->v_pollinfo.vpi_lock);
2711	if (vp->v_pollinfo.vpi_events & events) {
2712		/*
2713		 * We clear vpi_events so that we don't
2714		 * call selwakeup() twice if two events are
2715		 * posted before the polling process(es) is
2716		 * awakened.  This also ensures that we take at
2717		 * most one selwakeup() if the polling process
2718		 * is no longer interested.  However, it does
2719		 * mean that only one event can be noticed at
2720		 * a time.  (Perhaps we should only clear those
2721		 * event bits which we note?) XXX
2722		 */
2723		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2724		vp->v_pollinfo.vpi_revents |= events;
2725		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2726	}
2727	simple_unlock(&vp->v_pollinfo.vpi_lock);
2728}
2729
2730/*
2731 * Wake up anyone polling on vp because it is being revoked.
2732 * This depends on dead_poll() returning POLLHUP for correct
2733 * behavior.
2734 */
2735void
2736vn_pollgone(vp)
2737	struct vnode *vp;
2738{
2739	simple_lock(&vp->v_pollinfo.vpi_lock);
2740	if (vp->v_pollinfo.vpi_events) {
2741		vp->v_pollinfo.vpi_events = 0;
2742		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2743	}
2744	simple_unlock(&vp->v_pollinfo.vpi_lock);
2745}
2746
2747
2748
2749/*
2750 * Routine to create and manage a filesystem syncer vnode.
2751 */
2752#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2753static int	sync_fsync __P((struct  vop_fsync_args *));
2754static int	sync_inactive __P((struct  vop_inactive_args *));
2755static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2756#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2757#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2758static int	sync_print __P((struct vop_print_args *));
2759#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2760
2761static vop_t **sync_vnodeop_p;
2762static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2763	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2764	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2765	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2766	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2767	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2768	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2769	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2770	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2771	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2772	{ NULL, NULL }
2773};
2774static struct vnodeopv_desc sync_vnodeop_opv_desc =
2775	{ &sync_vnodeop_p, sync_vnodeop_entries };
2776
2777VNODEOP_SET(sync_vnodeop_opv_desc);
2778
2779/*
2780 * Create a new filesystem syncer vnode for the specified mount point.
2781 */
2782int
2783vfs_allocate_syncvnode(mp)
2784	struct mount *mp;
2785{
2786	struct vnode *vp;
2787	static long start, incr, next;
2788	int error;
2789
2790	/* Allocate a new vnode */
2791	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2792		mp->mnt_syncer = NULL;
2793		return (error);
2794	}
2795	vp->v_type = VNON;
2796	/*
2797	 * Place the vnode onto the syncer worklist. We attempt to
2798	 * scatter them about on the list so that they will go off
2799	 * at evenly distributed times even if all the filesystems
2800	 * are mounted at once.
2801	 */
2802	next += incr;
2803	if (next == 0 || next > syncer_maxdelay) {
2804		start /= 2;
2805		incr /= 2;
2806		if (start == 0) {
2807			start = syncer_maxdelay / 2;
2808			incr = syncer_maxdelay;
2809		}
2810		next = start;
2811	}
2812	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2813	mp->mnt_syncer = vp;
2814	return (0);
2815}
2816
2817/*
2818 * Do a lazy sync of the filesystem.
2819 */
2820static int
2821sync_fsync(ap)
2822	struct vop_fsync_args /* {
2823		struct vnode *a_vp;
2824		struct ucred *a_cred;
2825		int a_waitfor;
2826		struct proc *a_p;
2827	} */ *ap;
2828{
2829	struct vnode *syncvp = ap->a_vp;
2830	struct mount *mp = syncvp->v_mount;
2831	struct proc *p = ap->a_p;
2832	int asyncflag;
2833
2834	/*
2835	 * We only need to do something if this is a lazy evaluation.
2836	 */
2837	if (ap->a_waitfor != MNT_LAZY)
2838		return (0);
2839
2840	/*
2841	 * Move ourselves to the back of the sync list.
2842	 */
2843	vn_syncer_add_to_worklist(syncvp, syncdelay);
2844
2845	/*
2846	 * Walk the list of vnodes pushing all that are dirty and
2847	 * not already on the sync list.
2848	 */
2849	simple_lock(&mountlist_slock);
2850	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2851		simple_unlock(&mountlist_slock);
2852		return (0);
2853	}
2854	asyncflag = mp->mnt_flag & MNT_ASYNC;
2855	mp->mnt_flag &= ~MNT_ASYNC;
2856	vfs_msync(mp, MNT_NOWAIT);
2857	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2858	if (asyncflag)
2859		mp->mnt_flag |= MNT_ASYNC;
2860	vfs_unbusy(mp, p);
2861	return (0);
2862}
2863
2864/*
2865 * The syncer vnode is no referenced.
2866 */
2867static int
2868sync_inactive(ap)
2869	struct vop_inactive_args /* {
2870		struct vnode *a_vp;
2871		struct proc *a_p;
2872	} */ *ap;
2873{
2874
2875	vgone(ap->a_vp);
2876	return (0);
2877}
2878
2879/*
2880 * The syncer vnode is no longer needed and is being decommissioned.
2881 *
2882 * Modifications to the worklist must be protected at splbio().
2883 */
2884static int
2885sync_reclaim(ap)
2886	struct vop_reclaim_args /* {
2887		struct vnode *a_vp;
2888	} */ *ap;
2889{
2890	struct vnode *vp = ap->a_vp;
2891	int s;
2892
2893	s = splbio();
2894	vp->v_mount->mnt_syncer = NULL;
2895	if (vp->v_flag & VONWORKLST) {
2896		LIST_REMOVE(vp, v_synclist);
2897		vp->v_flag &= ~VONWORKLST;
2898	}
2899	splx(s);
2900
2901	return (0);
2902}
2903
2904/*
2905 * Print out a syncer vnode.
2906 */
2907static int
2908sync_print(ap)
2909	struct vop_print_args /* {
2910		struct vnode *a_vp;
2911	} */ *ap;
2912{
2913	struct vnode *vp = ap->a_vp;
2914
2915	printf("syncer vnode");
2916	if (vp->v_vnlock != NULL)
2917		lockmgr_printinfo(vp->v_vnlock);
2918	printf("\n");
2919	return (0);
2920}
2921