vfs_export.c revision 47132
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $Id: vfs_subr.c,v 1.196 1999/05/12 19:06:40 peter Exp $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/conf.h>
50#include <sys/fcntl.h>
51#include <sys/kernel.h>
52#include <sys/proc.h>
53#include <sys/malloc.h>
54#include <sys/mount.h>
55#include <sys/socket.h>
56#include <sys/vnode.h>
57#include <sys/stat.h>
58#include <sys/buf.h>
59#include <sys/domain.h>
60#include <sys/dirent.h>
61#include <sys/vmmeter.h>
62
63#include <machine/limits.h>
64
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/vm_prot.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/vm_pager.h>
74#include <vm/vnode_pager.h>
75#include <vm/vm_zone.h>
76#include <sys/sysctl.h>
77
78#include <miscfs/specfs/specdev.h>
79
80static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81
82static void	insmntque __P((struct vnode *vp, struct mount *mp));
83static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
84static void	vfree __P((struct vnode *));
85static void	vgonel __P((struct vnode *vp, struct proc *p));
86static unsigned long	numvnodes;
87SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
88
89enum vtype iftovt_tab[16] = {
90	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
91	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
92};
93int vttoif_tab[9] = {
94	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
95	S_IFSOCK, S_IFIFO, S_IFMT,
96};
97
98static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
99struct tobefreelist vnode_tobefree_list;	/* vnode free list */
100
101static u_long wantfreevnodes = 25;
102SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
103static u_long freevnodes = 0;
104SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
105
106int vfs_ioopt = 0;
107#ifdef ENABLE_VFS_IOOPT
108SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
109#endif
110
111struct mntlist mountlist;	/* mounted filesystem list */
112struct simplelock mountlist_slock;
113struct simplelock mntvnode_slock;
114int	nfs_mount_type = -1;
115#ifndef NULL_SIMPLELOCKS
116static struct simplelock mntid_slock;
117static struct simplelock vnode_free_list_slock;
118static struct simplelock spechash_slock;
119#endif
120struct nfs_public nfs_pub;	/* publicly exported FS */
121static vm_zone_t vnode_zone;
122
123/*
124 * The workitem queue.
125 */
126#define SYNCER_MAXDELAY		32
127static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
128time_t syncdelay =		30;
129int rushjob;				/* number of slots to run ASAP */
130
131static int syncer_delayno = 0;
132static long syncer_mask;
133LIST_HEAD(synclist, vnode);
134static struct synclist *syncer_workitem_pending;
135
136int desiredvnodes;
137SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
138    &desiredvnodes, 0, "Maximum number of vnodes");
139
140static void	vfs_free_addrlist __P((struct netexport *nep));
141static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
142static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
143				       struct export_args *argp));
144
145/*
146 * Initialize the vnode management data structures.
147 */
148void
149vntblinit()
150{
151
152	desiredvnodes = maxproc + cnt.v_page_count / 4;
153	simple_lock_init(&mntvnode_slock);
154	simple_lock_init(&mntid_slock);
155	simple_lock_init(&spechash_slock);
156	TAILQ_INIT(&vnode_free_list);
157	TAILQ_INIT(&vnode_tobefree_list);
158	simple_lock_init(&vnode_free_list_slock);
159	CIRCLEQ_INIT(&mountlist);
160	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
161	/*
162	 * Initialize the filesystem syncer.
163	 */
164	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
165		&syncer_mask);
166	syncer_maxdelay = syncer_mask + 1;
167}
168
169/*
170 * Mark a mount point as busy. Used to synchronize access and to delay
171 * unmounting. Interlock is not released on failure.
172 */
173int
174vfs_busy(mp, flags, interlkp, p)
175	struct mount *mp;
176	int flags;
177	struct simplelock *interlkp;
178	struct proc *p;
179{
180	int lkflags;
181
182	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
183		if (flags & LK_NOWAIT)
184			return (ENOENT);
185		mp->mnt_kern_flag |= MNTK_MWAIT;
186		if (interlkp) {
187			simple_unlock(interlkp);
188		}
189		/*
190		 * Since all busy locks are shared except the exclusive
191		 * lock granted when unmounting, the only place that a
192		 * wakeup needs to be done is at the release of the
193		 * exclusive lock at the end of dounmount.
194		 */
195		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
196		if (interlkp) {
197			simple_lock(interlkp);
198		}
199		return (ENOENT);
200	}
201	lkflags = LK_SHARED | LK_NOPAUSE;
202	if (interlkp)
203		lkflags |= LK_INTERLOCK;
204	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
205		panic("vfs_busy: unexpected lock failure");
206	return (0);
207}
208
209/*
210 * Free a busy filesystem.
211 */
212void
213vfs_unbusy(mp, p)
214	struct mount *mp;
215	struct proc *p;
216{
217
218	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
219}
220
221/*
222 * Lookup a filesystem type, and if found allocate and initialize
223 * a mount structure for it.
224 *
225 * Devname is usually updated by mount(8) after booting.
226 */
227int
228vfs_rootmountalloc(fstypename, devname, mpp)
229	char *fstypename;
230	char *devname;
231	struct mount **mpp;
232{
233	struct proc *p = curproc;	/* XXX */
234	struct vfsconf *vfsp;
235	struct mount *mp;
236
237	if (fstypename == NULL)
238		return (ENODEV);
239	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
240		if (!strcmp(vfsp->vfc_name, fstypename))
241			break;
242	if (vfsp == NULL)
243		return (ENODEV);
244	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
245	bzero((char *)mp, (u_long)sizeof(struct mount));
246	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
247	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
248	LIST_INIT(&mp->mnt_vnodelist);
249	mp->mnt_vfc = vfsp;
250	mp->mnt_op = vfsp->vfc_vfsops;
251	mp->mnt_flag = MNT_RDONLY;
252	mp->mnt_vnodecovered = NULLVP;
253	vfsp->vfc_refcount++;
254	mp->mnt_stat.f_type = vfsp->vfc_typenum;
255	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
256	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
257	mp->mnt_stat.f_mntonname[0] = '/';
258	mp->mnt_stat.f_mntonname[1] = 0;
259	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
260	*mpp = mp;
261	return (0);
262}
263
264/*
265 * Find an appropriate filesystem to use for the root. If a filesystem
266 * has not been preselected, walk through the list of known filesystems
267 * trying those that have mountroot routines, and try them until one
268 * works or we have tried them all.
269 */
270#ifdef notdef	/* XXX JH */
271int
272lite2_vfs_mountroot()
273{
274	struct vfsconf *vfsp;
275	extern int (*lite2_mountroot) __P((void));
276	int error;
277
278	if (lite2_mountroot != NULL)
279		return ((*lite2_mountroot)());
280	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
281		if (vfsp->vfc_mountroot == NULL)
282			continue;
283		if ((error = (*vfsp->vfc_mountroot)()) == 0)
284			return (0);
285		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
286	}
287	return (ENODEV);
288}
289#endif
290
291/*
292 * Lookup a mount point by filesystem identifier.
293 */
294struct mount *
295vfs_getvfs(fsid)
296	fsid_t *fsid;
297{
298	register struct mount *mp;
299
300	simple_lock(&mountlist_slock);
301	for (mp = mountlist.cqh_first; mp != (void *)&mountlist;
302	    mp = mp->mnt_list.cqe_next) {
303		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
304		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
305			simple_unlock(&mountlist_slock);
306			return (mp);
307	    }
308	}
309	simple_unlock(&mountlist_slock);
310	return ((struct mount *) 0);
311}
312
313/*
314 * Get a new unique fsid
315 */
316void
317vfs_getnewfsid(mp)
318	struct mount *mp;
319{
320	static u_short xxxfs_mntid;
321
322	fsid_t tfsid;
323	int mtype;
324
325	simple_lock(&mntid_slock);
326	mtype = mp->mnt_vfc->vfc_typenum;
327	mp->mnt_stat.f_fsid.val[0] = (nblkdev + mtype) * 256;
328	mp->mnt_stat.f_fsid.val[1] = mtype;
329	if (xxxfs_mntid == 0)
330		++xxxfs_mntid;
331	tfsid.val[0] = (nblkdev + mtype) * 256 | xxxfs_mntid;
332	tfsid.val[1] = mtype;
333	if (mountlist.cqh_first != (void *)&mountlist) {
334		while (vfs_getvfs(&tfsid)) {
335			tfsid.val[0]++;
336			xxxfs_mntid++;
337		}
338	}
339	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
340	simple_unlock(&mntid_slock);
341}
342
343/*
344 * Set vnode attributes to VNOVAL
345 */
346void
347vattr_null(vap)
348	register struct vattr *vap;
349{
350
351	vap->va_type = VNON;
352	vap->va_size = VNOVAL;
353	vap->va_bytes = VNOVAL;
354	vap->va_mode = VNOVAL;
355	vap->va_nlink = VNOVAL;
356	vap->va_uid = VNOVAL;
357	vap->va_gid = VNOVAL;
358	vap->va_fsid = VNOVAL;
359	vap->va_fileid = VNOVAL;
360	vap->va_blocksize = VNOVAL;
361	vap->va_rdev = VNOVAL;
362	vap->va_atime.tv_sec = VNOVAL;
363	vap->va_atime.tv_nsec = VNOVAL;
364	vap->va_mtime.tv_sec = VNOVAL;
365	vap->va_mtime.tv_nsec = VNOVAL;
366	vap->va_ctime.tv_sec = VNOVAL;
367	vap->va_ctime.tv_nsec = VNOVAL;
368	vap->va_flags = VNOVAL;
369	vap->va_gen = VNOVAL;
370	vap->va_vaflags = 0;
371}
372
373/*
374 * Routines having to do with the management of the vnode table.
375 */
376extern vop_t **dead_vnodeop_p;
377
378/*
379 * Return the next vnode from the free list.
380 */
381int
382getnewvnode(tag, mp, vops, vpp)
383	enum vtagtype tag;
384	struct mount *mp;
385	vop_t **vops;
386	struct vnode **vpp;
387{
388	int s;
389	struct proc *p = curproc;	/* XXX */
390	struct vnode *vp, *tvp, *nvp;
391	vm_object_t object;
392	TAILQ_HEAD(freelst, vnode) vnode_tmp_list;
393
394	/*
395	 * We take the least recently used vnode from the freelist
396	 * if we can get it and it has no cached pages, and no
397	 * namecache entries are relative to it.
398	 * Otherwise we allocate a new vnode
399	 */
400
401	s = splbio();
402	simple_lock(&vnode_free_list_slock);
403	TAILQ_INIT(&vnode_tmp_list);
404
405	for (vp = TAILQ_FIRST(&vnode_tobefree_list); vp; vp = nvp) {
406		nvp = TAILQ_NEXT(vp, v_freelist);
407		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
408		if (vp->v_flag & VAGE) {
409			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
410		} else {
411			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
412		}
413		vp->v_flag &= ~(VTBFREE|VAGE);
414		vp->v_flag |= VFREE;
415		if (vp->v_usecount)
416			panic("tobe free vnode isn't");
417		freevnodes++;
418	}
419
420	if (wantfreevnodes && freevnodes < wantfreevnodes) {
421		vp = NULL;
422	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
423		/*
424		 * XXX: this is only here to be backwards compatible
425		 */
426		vp = NULL;
427	} else {
428		for (vp = TAILQ_FIRST(&vnode_free_list); vp; vp = nvp) {
429			nvp = TAILQ_NEXT(vp, v_freelist);
430			if (!simple_lock_try(&vp->v_interlock))
431				continue;
432			if (vp->v_usecount)
433				panic("free vnode isn't");
434
435			object = vp->v_object;
436			if (object && (object->resident_page_count || object->ref_count)) {
437				printf("object inconsistant state: RPC: %d, RC: %d\n",
438					object->resident_page_count, object->ref_count);
439				/* Don't recycle if it's caching some pages */
440				TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
441				TAILQ_INSERT_TAIL(&vnode_tmp_list, vp, v_freelist);
442				continue;
443			} else if (LIST_FIRST(&vp->v_cache_src)) {
444				/* Don't recycle if active in the namecache */
445				simple_unlock(&vp->v_interlock);
446				continue;
447			} else {
448				break;
449			}
450		}
451	}
452
453	for (tvp = TAILQ_FIRST(&vnode_tmp_list); tvp; tvp = nvp) {
454		nvp = TAILQ_NEXT(tvp, v_freelist);
455		TAILQ_REMOVE(&vnode_tmp_list, tvp, v_freelist);
456		TAILQ_INSERT_TAIL(&vnode_free_list, tvp, v_freelist);
457		simple_unlock(&tvp->v_interlock);
458	}
459
460	if (vp) {
461		vp->v_flag |= VDOOMED;
462		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
463		freevnodes--;
464		simple_unlock(&vnode_free_list_slock);
465		cache_purge(vp);
466		vp->v_lease = NULL;
467		if (vp->v_type != VBAD) {
468			vgonel(vp, p);
469		} else {
470			simple_unlock(&vp->v_interlock);
471		}
472
473#ifdef INVARIANTS
474		{
475			int s;
476
477			if (vp->v_data)
478				panic("cleaned vnode isn't");
479			s = splbio();
480			if (vp->v_numoutput)
481				panic("Clean vnode has pending I/O's");
482			splx(s);
483		}
484#endif
485		vp->v_flag = 0;
486		vp->v_lastr = 0;
487		vp->v_lastw = 0;
488		vp->v_lasta = 0;
489		vp->v_cstart = 0;
490		vp->v_clen = 0;
491		vp->v_socket = 0;
492		vp->v_writecount = 0;	/* XXX */
493		vp->v_maxio = 0;
494	} else {
495		simple_unlock(&vnode_free_list_slock);
496		vp = (struct vnode *) zalloc(vnode_zone);
497		bzero((char *) vp, sizeof *vp);
498		simple_lock_init(&vp->v_interlock);
499		vp->v_dd = vp;
500		cache_purge(vp);
501		LIST_INIT(&vp->v_cache_src);
502		TAILQ_INIT(&vp->v_cache_dst);
503		numvnodes++;
504	}
505
506	TAILQ_INIT(&vp->v_cleanblkhd);
507	TAILQ_INIT(&vp->v_dirtyblkhd);
508	vp->v_type = VNON;
509	vp->v_tag = tag;
510	vp->v_op = vops;
511	insmntque(vp, mp);
512	*vpp = vp;
513	vp->v_usecount = 1;
514	vp->v_data = 0;
515	splx(s);
516
517	vfs_object_create(vp, p, p->p_ucred);
518	return (0);
519}
520
521/*
522 * Move a vnode from one mount queue to another.
523 */
524static void
525insmntque(vp, mp)
526	register struct vnode *vp;
527	register struct mount *mp;
528{
529
530	simple_lock(&mntvnode_slock);
531	/*
532	 * Delete from old mount point vnode list, if on one.
533	 */
534	if (vp->v_mount != NULL)
535		LIST_REMOVE(vp, v_mntvnodes);
536	/*
537	 * Insert into list of vnodes for the new mount point, if available.
538	 */
539	if ((vp->v_mount = mp) == NULL) {
540		simple_unlock(&mntvnode_slock);
541		return;
542	}
543	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
544	simple_unlock(&mntvnode_slock);
545}
546
547/*
548 * Update outstanding I/O count and do wakeup if requested.
549 */
550void
551vwakeup(bp)
552	register struct buf *bp;
553{
554	register struct vnode *vp;
555
556	bp->b_flags &= ~B_WRITEINPROG;
557	if ((vp = bp->b_vp)) {
558		vp->v_numoutput--;
559		if (vp->v_numoutput < 0)
560			panic("vwakeup: neg numoutput");
561		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
562			vp->v_flag &= ~VBWAIT;
563			wakeup((caddr_t) &vp->v_numoutput);
564		}
565	}
566}
567
568/*
569 * Flush out and invalidate all buffers associated with a vnode.
570 * Called with the underlying object locked.
571 */
572int
573vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
574	register struct vnode *vp;
575	int flags;
576	struct ucred *cred;
577	struct proc *p;
578	int slpflag, slptimeo;
579{
580	register struct buf *bp;
581	struct buf *nbp, *blist;
582	int s, error;
583	vm_object_t object;
584
585	if (flags & V_SAVE) {
586		s = splbio();
587		while (vp->v_numoutput) {
588			vp->v_flag |= VBWAIT;
589			error = tsleep((caddr_t)&vp->v_numoutput,
590			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
591			if (error) {
592				splx(s);
593				return (error);
594			}
595		}
596		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
597			splx(s);
598			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
599				return (error);
600			s = splbio();
601			if (vp->v_numoutput > 0 ||
602			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
603				panic("vinvalbuf: dirty bufs");
604		}
605		splx(s);
606  	}
607	s = splbio();
608	for (;;) {
609		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
610		if (!blist)
611			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
612		if (!blist)
613			break;
614
615		for (bp = blist; bp; bp = nbp) {
616			nbp = TAILQ_NEXT(bp, b_vnbufs);
617			if (bp->b_flags & B_BUSY) {
618				bp->b_flags |= B_WANTED;
619				error = tsleep((caddr_t) bp,
620				    slpflag | (PRIBIO + 4), "vinvalbuf",
621				    slptimeo);
622				if (error) {
623					splx(s);
624					return (error);
625				}
626				break;
627			}
628			/*
629			 * XXX Since there are no node locks for NFS, I
630			 * believe there is a slight chance that a delayed
631			 * write will occur while sleeping just above, so
632			 * check for it.  Note that vfs_bio_awrite expects
633			 * buffers to reside on a queue, while VOP_BWRITE and
634			 * brelse do not.
635			 */
636			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
637				(flags & V_SAVE)) {
638
639				if (bp->b_vp == vp) {
640					if (bp->b_flags & B_CLUSTEROK) {
641						vfs_bio_awrite(bp);
642					} else {
643						bremfree(bp);
644						bp->b_flags |= (B_BUSY | B_ASYNC);
645						VOP_BWRITE(bp);
646					}
647				} else {
648					bremfree(bp);
649					bp->b_flags |= B_BUSY;
650					(void) VOP_BWRITE(bp);
651				}
652				break;
653			}
654			bremfree(bp);
655			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF | B_BUSY);
656			bp->b_flags &= ~B_ASYNC;
657			brelse(bp);
658		}
659	}
660
661	while (vp->v_numoutput > 0) {
662		vp->v_flag |= VBWAIT;
663		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
664	}
665
666	splx(s);
667
668	/*
669	 * Destroy the copy in the VM cache, too.
670	 */
671	simple_lock(&vp->v_interlock);
672	object = vp->v_object;
673	if (object != NULL) {
674		vm_object_page_remove(object, 0, 0,
675			(flags & V_SAVE) ? TRUE : FALSE);
676	}
677	simple_unlock(&vp->v_interlock);
678
679	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
680		panic("vinvalbuf: flush failed");
681	return (0);
682}
683
684/*
685 * Truncate a file's buffer and pages to a specified length.  This
686 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
687 * sync activity.
688 */
689int
690vtruncbuf(vp, cred, p, length, blksize)
691	register struct vnode *vp;
692	struct ucred *cred;
693	struct proc *p;
694	off_t length;
695	int blksize;
696{
697	register struct buf *bp;
698	struct buf *nbp;
699	int s, anyfreed;
700	int trunclbn;
701
702	/*
703	 * Round up to the *next* lbn.
704	 */
705	trunclbn = (length + blksize - 1) / blksize;
706
707	s = splbio();
708restart:
709	anyfreed = 1;
710	for (;anyfreed;) {
711		anyfreed = 0;
712		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
713			nbp = TAILQ_NEXT(bp, b_vnbufs);
714			if (bp->b_lblkno >= trunclbn) {
715				if (bp->b_flags & B_BUSY) {
716					bp->b_flags |= B_WANTED;
717					tsleep(bp, PRIBIO + 4, "vtrb1", 0);
718					goto restart;
719				} else {
720					bremfree(bp);
721					bp->b_flags |= (B_BUSY | B_INVAL | B_RELBUF);
722					bp->b_flags &= ~B_ASYNC;
723					brelse(bp);
724					anyfreed = 1;
725				}
726				if (nbp && (((nbp->b_xflags & B_VNCLEAN) == 0)||
727					 (nbp->b_vp != vp) ||
728					 (nbp->b_flags & B_DELWRI))) {
729					goto restart;
730				}
731			}
732		}
733
734		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
735			nbp = TAILQ_NEXT(bp, b_vnbufs);
736			if (bp->b_lblkno >= trunclbn) {
737				if (bp->b_flags & B_BUSY) {
738					bp->b_flags |= B_WANTED;
739					tsleep(bp, PRIBIO + 4, "vtrb2", 0);
740					goto restart;
741				} else {
742					bremfree(bp);
743					bp->b_flags |= (B_BUSY | B_INVAL | B_RELBUF);
744					bp->b_flags &= ~B_ASYNC;
745					brelse(bp);
746					anyfreed = 1;
747				}
748				if (nbp && (((nbp->b_xflags & B_VNDIRTY) == 0)||
749					 (nbp->b_vp != vp) ||
750					 (nbp->b_flags & B_DELWRI) == 0)) {
751					goto restart;
752				}
753			}
754		}
755	}
756
757	if (length > 0) {
758restartsync:
759		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
760			nbp = TAILQ_NEXT(bp, b_vnbufs);
761			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
762				if (bp->b_flags & B_BUSY) {
763					bp->b_flags |= B_WANTED;
764					tsleep(bp, PRIBIO, "vtrb3", 0);
765				} else {
766					bremfree(bp);
767					bp->b_flags |= B_BUSY;
768					if (bp->b_vp == vp) {
769						bp->b_flags |= B_ASYNC;
770					} else {
771						bp->b_flags &= ~B_ASYNC;
772					}
773					VOP_BWRITE(bp);
774				}
775				goto restartsync;
776			}
777
778		}
779	}
780
781	while (vp->v_numoutput > 0) {
782		vp->v_flag |= VBWAIT;
783		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
784	}
785
786	splx(s);
787
788	vnode_pager_setsize(vp, length);
789
790	return (0);
791}
792
793/*
794 * Associate a buffer with a vnode.
795 */
796void
797bgetvp(vp, bp)
798	register struct vnode *vp;
799	register struct buf *bp;
800{
801	int s;
802
803	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
804
805	vhold(vp);
806	bp->b_vp = vp;
807	if (vp->v_type == VBLK || vp->v_type == VCHR)
808		bp->b_dev = vp->v_rdev;
809	else
810		bp->b_dev = NODEV;
811	/*
812	 * Insert onto list for new vnode.
813	 */
814	s = splbio();
815	bp->b_xflags |= B_VNCLEAN;
816	bp->b_xflags &= ~B_VNDIRTY;
817	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
818	splx(s);
819}
820
821/*
822 * Disassociate a buffer from a vnode.
823 */
824void
825brelvp(bp)
826	register struct buf *bp;
827{
828	struct vnode *vp;
829	struct buflists *listheadp;
830	int s;
831
832	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
833
834	/*
835	 * Delete from old vnode list, if on one.
836	 */
837	vp = bp->b_vp;
838	s = splbio();
839	if (bp->b_xflags & (B_VNDIRTY|B_VNCLEAN)) {
840		if (bp->b_xflags & B_VNDIRTY)
841			listheadp = &vp->v_dirtyblkhd;
842		else
843			listheadp = &vp->v_cleanblkhd;
844		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
845		bp->b_xflags &= ~(B_VNDIRTY|B_VNCLEAN);
846	}
847	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
848		vp->v_flag &= ~VONWORKLST;
849		LIST_REMOVE(vp, v_synclist);
850	}
851	splx(s);
852	bp->b_vp = (struct vnode *) 0;
853	vdrop(vp);
854}
855
856/*
857 * The workitem queue.
858 *
859 * It is useful to delay writes of file data and filesystem metadata
860 * for tens of seconds so that quickly created and deleted files need
861 * not waste disk bandwidth being created and removed. To realize this,
862 * we append vnodes to a "workitem" queue. When running with a soft
863 * updates implementation, most pending metadata dependencies should
864 * not wait for more than a few seconds. Thus, mounted on block devices
865 * are delayed only about a half the time that file data is delayed.
866 * Similarly, directory updates are more critical, so are only delayed
867 * about a third the time that file data is delayed. Thus, there are
868 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
869 * one each second (driven off the filesystem syner process). The
870 * syncer_delayno variable indicates the next queue that is to be processed.
871 * Items that need to be processed soon are placed in this queue:
872 *
873 *	syncer_workitem_pending[syncer_delayno]
874 *
875 * A delay of fifteen seconds is done by placing the request fifteen
876 * entries later in the queue:
877 *
878 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
879 *
880 */
881
882/*
883 * Add an item to the syncer work queue.
884 */
885static void
886vn_syncer_add_to_worklist(struct vnode *vp, int delay)
887{
888	int s, slot;
889
890	s = splbio();
891
892	if (vp->v_flag & VONWORKLST) {
893		LIST_REMOVE(vp, v_synclist);
894	}
895
896	if (delay > syncer_maxdelay - 2)
897		delay = syncer_maxdelay - 2;
898	slot = (syncer_delayno + delay) & syncer_mask;
899
900	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
901	vp->v_flag |= VONWORKLST;
902	splx(s);
903}
904
905struct  proc *updateproc;
906static void sched_sync __P((void));
907static const struct kproc_desc up_kp = {
908	"syncer",
909	sched_sync,
910	&updateproc
911};
912SYSINIT_KT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
913
914/*
915 * System filesystem synchronizer daemon.
916 */
917void
918sched_sync(void)
919{
920	struct synclist *slp;
921	struct vnode *vp;
922	long starttime;
923	int s;
924	struct proc *p = updateproc;
925
926	for (;;) {
927		starttime = time_second;
928
929		/*
930		 * Push files whose dirty time has expired.  Be careful
931		 * of interrupt race on slp queue.
932		 */
933		s = splbio();
934		slp = &syncer_workitem_pending[syncer_delayno];
935		syncer_delayno += 1;
936		if (syncer_delayno == syncer_maxdelay)
937			syncer_delayno = 0;
938		splx(s);
939
940		while ((vp = LIST_FIRST(slp)) != NULL) {
941			if (VOP_ISLOCKED(vp) == 0) {
942				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
943				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
944				VOP_UNLOCK(vp, 0, p);
945			}
946			s = splbio();
947			if (LIST_FIRST(slp) == vp) {
948				/*
949				 * Note: v_tag VT_VFS vps can remain on the
950				 * worklist too with no dirty blocks, but
951				 * since sync_fsync() moves it to a different
952				 * slot we are safe.
953				 */
954				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
955				    vp->v_type != VBLK)
956					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
957				/*
958				 * Put us back on the worklist.  The worklist
959				 * routine will remove us from our current
960				 * position and then add us back in at a later
961				 * position.
962				 */
963				vn_syncer_add_to_worklist(vp, syncdelay);
964			}
965			splx(s);
966		}
967
968		/*
969		 * Do soft update processing.
970		 */
971		if (bioops.io_sync)
972			(*bioops.io_sync)(NULL);
973
974		/*
975		 * The variable rushjob allows the kernel to speed up the
976		 * processing of the filesystem syncer process. A rushjob
977		 * value of N tells the filesystem syncer to process the next
978		 * N seconds worth of work on its queue ASAP. Currently rushjob
979		 * is used by the soft update code to speed up the filesystem
980		 * syncer process when the incore state is getting so far
981		 * ahead of the disk that the kernel memory pool is being
982		 * threatened with exhaustion.
983		 */
984		if (rushjob > 0) {
985			rushjob -= 1;
986			continue;
987		}
988		/*
989		 * If it has taken us less than a second to process the
990		 * current work, then wait. Otherwise start right over
991		 * again. We can still lose time if any single round
992		 * takes more than two seconds, but it does not really
993		 * matter as we are just trying to generally pace the
994		 * filesystem activity.
995		 */
996		if (time_second == starttime)
997			tsleep(&lbolt, PPAUSE, "syncer", 0);
998	}
999}
1000
1001/*
1002 * Associate a p-buffer with a vnode.
1003 *
1004 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1005 * with the buffer.  i.e. the bp has not been linked into the vnode or
1006 * ref-counted.
1007 */
1008void
1009pbgetvp(vp, bp)
1010	register struct vnode *vp;
1011	register struct buf *bp;
1012{
1013
1014	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1015
1016	bp->b_vp = vp;
1017	bp->b_flags |= B_PAGING;
1018	if (vp->v_type == VBLK || vp->v_type == VCHR)
1019		bp->b_dev = vp->v_rdev;
1020	else
1021		bp->b_dev = NODEV;
1022}
1023
1024/*
1025 * Disassociate a p-buffer from a vnode.
1026 */
1027void
1028pbrelvp(bp)
1029	register struct buf *bp;
1030{
1031
1032	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1033
1034#if !defined(MAX_PERF)
1035	/* XXX REMOVE ME */
1036	if (bp->b_vnbufs.tqe_next != NULL) {
1037		panic(
1038		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1039		    bp,
1040		    (int)bp->b_flags
1041		);
1042	}
1043#endif
1044	bp->b_vp = (struct vnode *) 0;
1045	bp->b_flags &= ~B_PAGING;
1046}
1047
1048void
1049pbreassignbuf(bp, newvp)
1050	struct buf *bp;
1051	struct vnode *newvp;
1052{
1053#if !defined(MAX_PERF)
1054	if ((bp->b_flags & B_PAGING) == 0) {
1055		panic(
1056		    "pbreassignbuf() on non phys bp %p",
1057		    bp
1058		);
1059	}
1060#endif
1061	bp->b_vp = newvp;
1062}
1063
1064/*
1065 * Reassign a buffer from one vnode to another.
1066 * Used to assign file specific control information
1067 * (indirect blocks) to the vnode to which they belong.
1068 */
1069void
1070reassignbuf(bp, newvp)
1071	register struct buf *bp;
1072	register struct vnode *newvp;
1073{
1074	struct buflists *listheadp;
1075	int delay;
1076	int s;
1077
1078	if (newvp == NULL) {
1079		printf("reassignbuf: NULL");
1080		return;
1081	}
1082
1083#if !defined(MAX_PERF)
1084	/*
1085	 * B_PAGING flagged buffers cannot be reassigned because their vp
1086	 * is not fully linked in.
1087	 */
1088	if (bp->b_flags & B_PAGING)
1089		panic("cannot reassign paging buffer");
1090#endif
1091
1092	s = splbio();
1093	/*
1094	 * Delete from old vnode list, if on one.
1095	 */
1096	if (bp->b_xflags & (B_VNDIRTY|B_VNCLEAN)) {
1097		if (bp->b_xflags & B_VNDIRTY)
1098			listheadp = &bp->b_vp->v_dirtyblkhd;
1099		else
1100			listheadp = &bp->b_vp->v_cleanblkhd;
1101		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1102		bp->b_xflags &= ~(B_VNDIRTY|B_VNCLEAN);
1103		if (bp->b_vp != newvp) {
1104			vdrop(bp->b_vp);
1105			bp->b_vp = NULL;	/* for clarification */
1106		}
1107	}
1108	/*
1109	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1110	 * of clean buffers.
1111	 */
1112	if (bp->b_flags & B_DELWRI) {
1113		struct buf *tbp;
1114
1115		listheadp = &newvp->v_dirtyblkhd;
1116		if ((newvp->v_flag & VONWORKLST) == 0) {
1117			switch (newvp->v_type) {
1118			case VDIR:
1119				delay = syncdelay / 2;
1120				break;
1121			case VBLK:
1122				if (newvp->v_specmountpoint != NULL) {
1123					delay = syncdelay / 3;
1124					break;
1125				}
1126				/* fall through */
1127			default:
1128				delay = syncdelay;
1129			}
1130			vn_syncer_add_to_worklist(newvp, delay);
1131		}
1132		bp->b_xflags |= B_VNDIRTY;
1133		tbp = TAILQ_FIRST(listheadp);
1134		if (tbp == NULL ||
1135		    (bp->b_lblkno >= 0 && tbp->b_lblkno > bp->b_lblkno)) {
1136			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1137		} else {
1138			if (bp->b_lblkno >= 0) {
1139				struct buf *ttbp;
1140				while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1141				    (ttbp->b_lblkno < bp->b_lblkno)) {
1142					tbp = ttbp;
1143				}
1144				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1145			} else {
1146				TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1147			}
1148		}
1149	} else {
1150		bp->b_xflags |= B_VNCLEAN;
1151		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1152		if ((newvp->v_flag & VONWORKLST) &&
1153		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1154			newvp->v_flag &= ~VONWORKLST;
1155			LIST_REMOVE(newvp, v_synclist);
1156		}
1157	}
1158	if (bp->b_vp != newvp) {
1159		bp->b_vp = newvp;
1160		vhold(bp->b_vp);
1161	}
1162	splx(s);
1163}
1164
1165/*
1166 * Create a vnode for a block device.
1167 * Used for mounting the root file system.
1168 */
1169int
1170bdevvp(dev, vpp)
1171	dev_t dev;
1172	struct vnode **vpp;
1173{
1174	register struct vnode *vp;
1175	struct vnode *nvp;
1176	int error;
1177
1178	/* XXX 255 is for mfs. */
1179	if (dev == NODEV || (major(dev) != 255 && (major(dev) >= nblkdev ||
1180	    bdevsw(dev) == NULL))) {
1181		*vpp = NULLVP;
1182		return (ENXIO);
1183	}
1184	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1185	if (error) {
1186		*vpp = NULLVP;
1187		return (error);
1188	}
1189	vp = nvp;
1190	vp->v_type = VBLK;
1191	if ((nvp = checkalias(vp, dev2udev(dev), (struct mount *)0)) != NULL) {
1192		vput(vp);
1193		vp = nvp;
1194	}
1195	*vpp = vp;
1196	return (0);
1197}
1198
1199/*
1200 * Check to see if the new vnode represents a special device
1201 * for which we already have a vnode (either because of
1202 * bdevvp() or because of a different vnode representing
1203 * the same block device). If such an alias exists, deallocate
1204 * the existing contents and return the aliased vnode. The
1205 * caller is responsible for filling it with its new contents.
1206 */
1207struct vnode *
1208checkalias(nvp, nvp_rdev, mp)
1209	register struct vnode *nvp;
1210	udev_t nvp_rdev;
1211	struct mount *mp;
1212{
1213	struct proc *p = curproc;	/* XXX */
1214	struct vnode *vp;
1215	struct vnode **vpp;
1216	int rmaj = umajor(nvp_rdev);
1217	dev_t	dev;
1218
1219	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1220		return (NULLVP);
1221
1222	dev = udev2dev(nvp_rdev, 2);
1223
1224	vpp = &speclisth[SPECHASH(dev)];
1225loop:
1226	simple_lock(&spechash_slock);
1227	for (vp = *vpp; vp; vp = vp->v_specnext) {
1228		if (dev != vp->v_rdev || nvp->v_type != vp->v_type)
1229			continue;
1230		/*
1231		 * Alias, but not in use, so flush it out.
1232		 * Only alias active device nodes.
1233		 * Not sure why we don't re-use this like we do below.
1234		 */
1235		simple_lock(&vp->v_interlock);
1236		if (vp->v_usecount == 0) {
1237			simple_unlock(&spechash_slock);
1238			vgonel(vp, p);
1239			goto loop;
1240		}
1241		if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK, p)) {
1242			/*
1243			 * It dissappeared, and we may have slept.
1244			 * Restart from the beginning
1245			 */
1246			simple_unlock(&spechash_slock);
1247			goto loop;
1248		}
1249		break;
1250	}
1251	/*
1252	 * It would be a lot clearer what is going on here if
1253	 * this had been expressed as:
1254	 * if ( vp && (vp->v_tag == VT_NULL))
1255	 * and the clauses had been swapped.
1256	 */
1257	if (vp == NULL || vp->v_tag != VT_NON) {
1258		struct specinfo *sinfo;
1259
1260		/*
1261		 * Put the new vnode into the hash chain.
1262		 * and if there was an alias, connect them.
1263		 */
1264		MALLOC(sinfo, struct specinfo *,
1265		    sizeof(struct specinfo), M_VNODE, M_WAITOK);
1266		bzero(sinfo, sizeof(struct specinfo));
1267		nvp->v_specinfo = sinfo;
1268		sinfo->si_rdev = dev;
1269		sinfo->si_hashchain = vpp;
1270		sinfo->si_specnext = *vpp;
1271		sinfo->si_bsize_phys = DEV_BSIZE;
1272		sinfo->si_bsize_best = BLKDEV_IOSIZE;
1273		sinfo->si_bsize_max = MAXBSIZE;
1274
1275		/*
1276		 * Ask the device to fix up specinfo.  Typically the
1277		 * si_bsize_* parameters may need fixing up.
1278		 */
1279
1280		if (nvp->v_type == VBLK && rmaj < nblkdev) {
1281			if (bdevsw(dev) && bdevsw(dev)->d_parms)
1282
1283				(*bdevsw(dev)->d_parms)(dev, sinfo, DPARM_GET);
1284		} else if (nvp->v_type == VCHR && rmaj < nchrdev) {
1285			if (devsw(dev) && devsw(dev)->d_parms)
1286				(*devsw(dev)->d_parms)(dev, sinfo, DPARM_GET);
1287		}
1288
1289		simple_unlock(&spechash_slock);
1290		*vpp = nvp;
1291		if (vp != NULLVP) {
1292			nvp->v_flag |= VALIASED;
1293			vp->v_flag |= VALIASED;
1294			vput(vp);
1295		}
1296		return (NULLVP);
1297	}
1298	/*
1299	 * if ( vp && (vp->v_tag == VT_NULL))
1300	 * We have a vnode alias, but it is a trashed.
1301	 * Make it look like it's newley allocated. (by getnewvnode())
1302	 * The caller should use this instead.
1303	 */
1304	simple_unlock(&spechash_slock);
1305	VOP_UNLOCK(vp, 0, p);
1306	simple_lock(&vp->v_interlock);
1307	vclean(vp, 0, p);
1308	vp->v_op = nvp->v_op;
1309	vp->v_tag = nvp->v_tag;
1310	nvp->v_type = VNON;
1311	insmntque(vp, mp);
1312	return (vp);
1313}
1314
1315/*
1316 * Grab a particular vnode from the free list, increment its
1317 * reference count and lock it. The vnode lock bit is set the
1318 * vnode is being eliminated in vgone. The process is awakened
1319 * when the transition is completed, and an error returned to
1320 * indicate that the vnode is no longer usable (possibly having
1321 * been changed to a new file system type).
1322 */
1323int
1324vget(vp, flags, p)
1325	register struct vnode *vp;
1326	int flags;
1327	struct proc *p;
1328{
1329	int error;
1330
1331	/*
1332	 * If the vnode is in the process of being cleaned out for
1333	 * another use, we wait for the cleaning to finish and then
1334	 * return failure. Cleaning is determined by checking that
1335	 * the VXLOCK flag is set.
1336	 */
1337	if ((flags & LK_INTERLOCK) == 0) {
1338		simple_lock(&vp->v_interlock);
1339	}
1340	if (vp->v_flag & VXLOCK) {
1341		vp->v_flag |= VXWANT;
1342		simple_unlock(&vp->v_interlock);
1343		tsleep((caddr_t)vp, PINOD, "vget", 0);
1344		return (ENOENT);
1345	}
1346
1347	vp->v_usecount++;
1348
1349	if (VSHOULDBUSY(vp))
1350		vbusy(vp);
1351	if (flags & LK_TYPE_MASK) {
1352		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1353			/*
1354			 * must expand vrele here because we do not want
1355			 * to call VOP_INACTIVE if the reference count
1356			 * drops back to zero since it was never really
1357			 * active. We must remove it from the free list
1358			 * before sleeping so that multiple processes do
1359			 * not try to recycle it.
1360			 */
1361			simple_lock(&vp->v_interlock);
1362			vp->v_usecount--;
1363			if (VSHOULDFREE(vp))
1364				vfree(vp);
1365			simple_unlock(&vp->v_interlock);
1366		}
1367		return (error);
1368	}
1369	simple_unlock(&vp->v_interlock);
1370	return (0);
1371}
1372
1373void
1374vref(struct vnode *vp)
1375{
1376	simple_lock(&vp->v_interlock);
1377	vp->v_usecount++;
1378	simple_unlock(&vp->v_interlock);
1379}
1380
1381/*
1382 * Vnode put/release.
1383 * If count drops to zero, call inactive routine and return to freelist.
1384 */
1385void
1386vrele(vp)
1387	struct vnode *vp;
1388{
1389	struct proc *p = curproc;	/* XXX */
1390
1391	KASSERT(vp != NULL, ("vrele: null vp"));
1392
1393	simple_lock(&vp->v_interlock);
1394
1395	if (vp->v_usecount > 1) {
1396
1397		vp->v_usecount--;
1398		simple_unlock(&vp->v_interlock);
1399
1400		return;
1401	}
1402
1403	if (vp->v_usecount == 1) {
1404
1405		vp->v_usecount--;
1406		if (VSHOULDFREE(vp))
1407			vfree(vp);
1408	/*
1409	 * If we are doing a vput, the node is already locked, and we must
1410	 * call VOP_INACTIVE with the node locked.  So, in the case of
1411	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1412	 */
1413		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1414			VOP_INACTIVE(vp, p);
1415		}
1416
1417	} else {
1418#ifdef DIAGNOSTIC
1419		vprint("vrele: negative ref count", vp);
1420		simple_unlock(&vp->v_interlock);
1421#endif
1422		panic("vrele: negative ref cnt");
1423	}
1424}
1425
1426void
1427vput(vp)
1428	struct vnode *vp;
1429{
1430	struct proc *p = curproc;	/* XXX */
1431
1432	KASSERT(vp != NULL, ("vput: null vp"));
1433
1434	simple_lock(&vp->v_interlock);
1435
1436	if (vp->v_usecount > 1) {
1437
1438		vp->v_usecount--;
1439		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1440		return;
1441
1442	}
1443
1444	if (vp->v_usecount == 1) {
1445
1446		vp->v_usecount--;
1447		if (VSHOULDFREE(vp))
1448			vfree(vp);
1449	/*
1450	 * If we are doing a vput, the node is already locked, and we must
1451	 * call VOP_INACTIVE with the node locked.  So, in the case of
1452	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1453	 */
1454		simple_unlock(&vp->v_interlock);
1455		VOP_INACTIVE(vp, p);
1456
1457	} else {
1458#ifdef DIAGNOSTIC
1459		vprint("vput: negative ref count", vp);
1460#endif
1461		panic("vput: negative ref cnt");
1462	}
1463}
1464
1465/*
1466 * Somebody doesn't want the vnode recycled.
1467 */
1468void
1469vhold(vp)
1470	register struct vnode *vp;
1471{
1472	int s;
1473
1474  	s = splbio();
1475	vp->v_holdcnt++;
1476	if (VSHOULDBUSY(vp))
1477		vbusy(vp);
1478	splx(s);
1479}
1480
1481/*
1482 * One less who cares about this vnode.
1483 */
1484void
1485vdrop(vp)
1486	register struct vnode *vp;
1487{
1488	int s;
1489
1490	s = splbio();
1491	if (vp->v_holdcnt <= 0)
1492		panic("vdrop: holdcnt");
1493	vp->v_holdcnt--;
1494	if (VSHOULDFREE(vp))
1495		vfree(vp);
1496	splx(s);
1497}
1498
1499/*
1500 * Remove any vnodes in the vnode table belonging to mount point mp.
1501 *
1502 * If MNT_NOFORCE is specified, there should not be any active ones,
1503 * return error if any are found (nb: this is a user error, not a
1504 * system error). If MNT_FORCE is specified, detach any active vnodes
1505 * that are found.
1506 */
1507#ifdef DIAGNOSTIC
1508static int busyprt = 0;		/* print out busy vnodes */
1509SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1510#endif
1511
1512int
1513vflush(mp, skipvp, flags)
1514	struct mount *mp;
1515	struct vnode *skipvp;
1516	int flags;
1517{
1518	struct proc *p = curproc;	/* XXX */
1519	struct vnode *vp, *nvp;
1520	int busy = 0;
1521
1522	simple_lock(&mntvnode_slock);
1523loop:
1524	for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
1525		/*
1526		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1527		 * Start over if it has (it won't be on the list anymore).
1528		 */
1529		if (vp->v_mount != mp)
1530			goto loop;
1531		nvp = vp->v_mntvnodes.le_next;
1532		/*
1533		 * Skip over a selected vnode.
1534		 */
1535		if (vp == skipvp)
1536			continue;
1537
1538		simple_lock(&vp->v_interlock);
1539		/*
1540		 * Skip over a vnodes marked VSYSTEM.
1541		 */
1542		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1543			simple_unlock(&vp->v_interlock);
1544			continue;
1545		}
1546		/*
1547		 * If WRITECLOSE is set, only flush out regular file vnodes
1548		 * open for writing.
1549		 */
1550		if ((flags & WRITECLOSE) &&
1551		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1552			simple_unlock(&vp->v_interlock);
1553			continue;
1554		}
1555
1556		/*
1557		 * With v_usecount == 0, all we need to do is clear out the
1558		 * vnode data structures and we are done.
1559		 */
1560		if (vp->v_usecount == 0) {
1561			simple_unlock(&mntvnode_slock);
1562			vgonel(vp, p);
1563			simple_lock(&mntvnode_slock);
1564			continue;
1565		}
1566
1567		/*
1568		 * If FORCECLOSE is set, forcibly close the vnode. For block
1569		 * or character devices, revert to an anonymous device. For
1570		 * all other files, just kill them.
1571		 */
1572		if (flags & FORCECLOSE) {
1573			simple_unlock(&mntvnode_slock);
1574			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1575				vgonel(vp, p);
1576			} else {
1577				vclean(vp, 0, p);
1578				vp->v_op = spec_vnodeop_p;
1579				insmntque(vp, (struct mount *) 0);
1580			}
1581			simple_lock(&mntvnode_slock);
1582			continue;
1583		}
1584#ifdef DIAGNOSTIC
1585		if (busyprt)
1586			vprint("vflush: busy vnode", vp);
1587#endif
1588		simple_unlock(&vp->v_interlock);
1589		busy++;
1590	}
1591	simple_unlock(&mntvnode_slock);
1592	if (busy)
1593		return (EBUSY);
1594	return (0);
1595}
1596
1597/*
1598 * Disassociate the underlying file system from a vnode.
1599 */
1600static void
1601vclean(vp, flags, p)
1602	struct vnode *vp;
1603	int flags;
1604	struct proc *p;
1605{
1606	int active;
1607	vm_object_t obj;
1608
1609	/*
1610	 * Check to see if the vnode is in use. If so we have to reference it
1611	 * before we clean it out so that its count cannot fall to zero and
1612	 * generate a race against ourselves to recycle it.
1613	 */
1614	if ((active = vp->v_usecount))
1615		vp->v_usecount++;
1616
1617	/*
1618	 * Prevent the vnode from being recycled or brought into use while we
1619	 * clean it out.
1620	 */
1621	if (vp->v_flag & VXLOCK)
1622		panic("vclean: deadlock");
1623	vp->v_flag |= VXLOCK;
1624	/*
1625	 * Even if the count is zero, the VOP_INACTIVE routine may still
1626	 * have the object locked while it cleans it out. The VOP_LOCK
1627	 * ensures that the VOP_INACTIVE routine is done with its work.
1628	 * For active vnodes, it ensures that no other activity can
1629	 * occur while the underlying object is being cleaned out.
1630	 */
1631	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1632
1633	/*
1634	 * Clean out any buffers associated with the vnode.
1635	 */
1636	vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0);
1637	if ((obj = vp->v_object) != NULL) {
1638		if (obj->ref_count == 0) {
1639			/*
1640			 * This is a normal way of shutting down the object/vnode
1641			 * association.
1642			 */
1643			vm_object_terminate(obj);
1644		} else {
1645			/*
1646			 * Woe to the process that tries to page now :-).
1647			 */
1648			vm_pager_deallocate(obj);
1649		}
1650	}
1651
1652	/*
1653	 * If purging an active vnode, it must be closed and
1654	 * deactivated before being reclaimed. Note that the
1655	 * VOP_INACTIVE will unlock the vnode.
1656	 */
1657	if (active) {
1658		if (flags & DOCLOSE)
1659			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1660		VOP_INACTIVE(vp, p);
1661	} else {
1662		/*
1663		 * Any other processes trying to obtain this lock must first
1664		 * wait for VXLOCK to clear, then call the new lock operation.
1665		 */
1666		VOP_UNLOCK(vp, 0, p);
1667	}
1668	/*
1669	 * Reclaim the vnode.
1670	 */
1671	if (VOP_RECLAIM(vp, p))
1672		panic("vclean: cannot reclaim");
1673
1674	if (active)
1675		vrele(vp);
1676
1677	cache_purge(vp);
1678	if (vp->v_vnlock) {
1679#if 0 /* This is the only place we have LK_DRAINED in the entire kernel ??? */
1680#ifdef DIAGNOSTIC
1681		if ((vp->v_vnlock->lk_flags & LK_DRAINED) == 0)
1682			vprint("vclean: lock not drained", vp);
1683#endif
1684#endif
1685		FREE(vp->v_vnlock, M_VNODE);
1686		vp->v_vnlock = NULL;
1687	}
1688
1689	if (VSHOULDFREE(vp))
1690		vfree(vp);
1691
1692	/*
1693	 * Done with purge, notify sleepers of the grim news.
1694	 */
1695	vp->v_op = dead_vnodeop_p;
1696	vn_pollgone(vp);
1697	vp->v_tag = VT_NON;
1698	vp->v_flag &= ~VXLOCK;
1699	if (vp->v_flag & VXWANT) {
1700		vp->v_flag &= ~VXWANT;
1701		wakeup((caddr_t) vp);
1702	}
1703}
1704
1705/*
1706 * Eliminate all activity associated with the requested vnode
1707 * and with all vnodes aliased to the requested vnode.
1708 */
1709int
1710vop_revoke(ap)
1711	struct vop_revoke_args /* {
1712		struct vnode *a_vp;
1713		int a_flags;
1714	} */ *ap;
1715{
1716	struct vnode *vp, *vq;
1717	struct proc *p = curproc;	/* XXX */
1718
1719	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1720
1721	vp = ap->a_vp;
1722	simple_lock(&vp->v_interlock);
1723
1724	if (vp->v_flag & VALIASED) {
1725		/*
1726		 * If a vgone (or vclean) is already in progress,
1727		 * wait until it is done and return.
1728		 */
1729		if (vp->v_flag & VXLOCK) {
1730			vp->v_flag |= VXWANT;
1731			simple_unlock(&vp->v_interlock);
1732			tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1733			return (0);
1734		}
1735		/*
1736		 * Ensure that vp will not be vgone'd while we
1737		 * are eliminating its aliases.
1738		 */
1739		vp->v_flag |= VXLOCK;
1740		simple_unlock(&vp->v_interlock);
1741		while (vp->v_flag & VALIASED) {
1742			simple_lock(&spechash_slock);
1743			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
1744				if (vq->v_rdev != vp->v_rdev ||
1745				    vq->v_type != vp->v_type || vp == vq)
1746					continue;
1747				simple_unlock(&spechash_slock);
1748				vgone(vq);
1749				break;
1750			}
1751			if (vq == NULLVP) {
1752				simple_unlock(&spechash_slock);
1753			}
1754		}
1755		/*
1756		 * Remove the lock so that vgone below will
1757		 * really eliminate the vnode after which time
1758		 * vgone will awaken any sleepers.
1759		 */
1760		simple_lock(&vp->v_interlock);
1761		vp->v_flag &= ~VXLOCK;
1762		if (vp->v_flag & VXWANT) {
1763			vp->v_flag &= ~VXWANT;
1764			wakeup(vp);
1765		}
1766	}
1767	vgonel(vp, p);
1768	return (0);
1769}
1770
1771/*
1772 * Recycle an unused vnode to the front of the free list.
1773 * Release the passed interlock if the vnode will be recycled.
1774 */
1775int
1776vrecycle(vp, inter_lkp, p)
1777	struct vnode *vp;
1778	struct simplelock *inter_lkp;
1779	struct proc *p;
1780{
1781
1782	simple_lock(&vp->v_interlock);
1783	if (vp->v_usecount == 0) {
1784		if (inter_lkp) {
1785			simple_unlock(inter_lkp);
1786		}
1787		vgonel(vp, p);
1788		return (1);
1789	}
1790	simple_unlock(&vp->v_interlock);
1791	return (0);
1792}
1793
1794/*
1795 * Eliminate all activity associated with a vnode
1796 * in preparation for reuse.
1797 */
1798void
1799vgone(vp)
1800	register struct vnode *vp;
1801{
1802	struct proc *p = curproc;	/* XXX */
1803
1804	simple_lock(&vp->v_interlock);
1805	vgonel(vp, p);
1806}
1807
1808/*
1809 * vgone, with the vp interlock held.
1810 */
1811static void
1812vgonel(vp, p)
1813	struct vnode *vp;
1814	struct proc *p;
1815{
1816	int s;
1817	struct vnode *vq;
1818	struct vnode *vx;
1819
1820	/*
1821	 * If a vgone (or vclean) is already in progress,
1822	 * wait until it is done and return.
1823	 */
1824	if (vp->v_flag & VXLOCK) {
1825		vp->v_flag |= VXWANT;
1826		simple_unlock(&vp->v_interlock);
1827		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1828		return;
1829	}
1830
1831	/*
1832	 * Clean out the filesystem specific data.
1833	 */
1834	vclean(vp, DOCLOSE, p);
1835	simple_lock(&vp->v_interlock);
1836
1837	/*
1838	 * Delete from old mount point vnode list, if on one.
1839	 */
1840	if (vp->v_mount != NULL)
1841		insmntque(vp, (struct mount *)0);
1842	/*
1843	 * If special device, remove it from special device alias list
1844	 * if it is on one.
1845	 */
1846	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specinfo != 0) {
1847		simple_lock(&spechash_slock);
1848		if (*vp->v_hashchain == vp) {
1849			*vp->v_hashchain = vp->v_specnext;
1850		} else {
1851			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
1852				if (vq->v_specnext != vp)
1853					continue;
1854				vq->v_specnext = vp->v_specnext;
1855				break;
1856			}
1857			if (vq == NULL)
1858				panic("missing bdev");
1859		}
1860		if (vp->v_flag & VALIASED) {
1861			vx = NULL;
1862			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
1863				if (vq->v_rdev != vp->v_rdev ||
1864				    vq->v_type != vp->v_type)
1865					continue;
1866				if (vx)
1867					break;
1868				vx = vq;
1869			}
1870			if (vx == NULL)
1871				panic("missing alias");
1872			if (vq == NULL)
1873				vx->v_flag &= ~VALIASED;
1874			vp->v_flag &= ~VALIASED;
1875		}
1876		simple_unlock(&spechash_slock);
1877		FREE(vp->v_specinfo, M_VNODE);
1878		vp->v_specinfo = NULL;
1879	}
1880
1881	/*
1882	 * If it is on the freelist and not already at the head,
1883	 * move it to the head of the list. The test of the back
1884	 * pointer and the reference count of zero is because
1885	 * it will be removed from the free list by getnewvnode,
1886	 * but will not have its reference count incremented until
1887	 * after calling vgone. If the reference count were
1888	 * incremented first, vgone would (incorrectly) try to
1889	 * close the previous instance of the underlying object.
1890	 */
1891	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1892		s = splbio();
1893		simple_lock(&vnode_free_list_slock);
1894		if (vp->v_flag & VFREE) {
1895			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1896		} else if (vp->v_flag & VTBFREE) {
1897			TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
1898			vp->v_flag &= ~VTBFREE;
1899			freevnodes++;
1900		} else
1901			freevnodes++;
1902		vp->v_flag |= VFREE;
1903		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1904		simple_unlock(&vnode_free_list_slock);
1905		splx(s);
1906	}
1907
1908	vp->v_type = VBAD;
1909	simple_unlock(&vp->v_interlock);
1910}
1911
1912/*
1913 * Lookup a vnode by device number.
1914 */
1915int
1916vfinddev(dev, type, vpp)
1917	dev_t dev;
1918	enum vtype type;
1919	struct vnode **vpp;
1920{
1921	register struct vnode *vp;
1922	int rc = 0;
1923
1924	simple_lock(&spechash_slock);
1925	for (vp = speclisth[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
1926		if (dev != vp->v_rdev || type != vp->v_type)
1927			continue;
1928		*vpp = vp;
1929		rc = 1;
1930		break;
1931	}
1932	simple_unlock(&spechash_slock);
1933	return (rc);
1934}
1935
1936/*
1937 * Calculate the total number of references to a special device.
1938 */
1939int
1940vcount(vp)
1941	register struct vnode *vp;
1942{
1943	struct vnode *vq, *vnext;
1944	int count;
1945
1946loop:
1947	if ((vp->v_flag & VALIASED) == 0)
1948		return (vp->v_usecount);
1949	simple_lock(&spechash_slock);
1950	for (count = 0, vq = *vp->v_hashchain; vq; vq = vnext) {
1951		vnext = vq->v_specnext;
1952		if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type)
1953			continue;
1954		/*
1955		 * Alias, but not in use, so flush it out.
1956		 */
1957		if (vq->v_usecount == 0 && vq != vp) {
1958			simple_unlock(&spechash_slock);
1959			vgone(vq);
1960			goto loop;
1961		}
1962		count += vq->v_usecount;
1963	}
1964	simple_unlock(&spechash_slock);
1965	return (count);
1966}
1967/*
1968 * Print out a description of a vnode.
1969 */
1970static char *typename[] =
1971{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1972
1973void
1974vprint(label, vp)
1975	char *label;
1976	register struct vnode *vp;
1977{
1978	char buf[96];
1979
1980	if (label != NULL)
1981		printf("%s: %p: ", label, (void *)vp);
1982	else
1983		printf("%p: ", (void *)vp);
1984	printf("type %s, usecount %d, writecount %d, refcount %d,",
1985	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1986	    vp->v_holdcnt);
1987	buf[0] = '\0';
1988	if (vp->v_flag & VROOT)
1989		strcat(buf, "|VROOT");
1990	if (vp->v_flag & VTEXT)
1991		strcat(buf, "|VTEXT");
1992	if (vp->v_flag & VSYSTEM)
1993		strcat(buf, "|VSYSTEM");
1994	if (vp->v_flag & VXLOCK)
1995		strcat(buf, "|VXLOCK");
1996	if (vp->v_flag & VXWANT)
1997		strcat(buf, "|VXWANT");
1998	if (vp->v_flag & VBWAIT)
1999		strcat(buf, "|VBWAIT");
2000	if (vp->v_flag & VALIASED)
2001		strcat(buf, "|VALIASED");
2002	if (vp->v_flag & VDOOMED)
2003		strcat(buf, "|VDOOMED");
2004	if (vp->v_flag & VFREE)
2005		strcat(buf, "|VFREE");
2006	if (vp->v_flag & VOBJBUF)
2007		strcat(buf, "|VOBJBUF");
2008	if (buf[0] != '\0')
2009		printf(" flags (%s)", &buf[1]);
2010	if (vp->v_data == NULL) {
2011		printf("\n");
2012	} else {
2013		printf("\n\t");
2014		VOP_PRINT(vp);
2015	}
2016}
2017
2018#ifdef DDB
2019#include <ddb/ddb.h>
2020/*
2021 * List all of the locked vnodes in the system.
2022 * Called when debugging the kernel.
2023 */
2024DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2025{
2026	struct proc *p = curproc;	/* XXX */
2027	struct mount *mp, *nmp;
2028	struct vnode *vp;
2029
2030	printf("Locked vnodes\n");
2031	simple_lock(&mountlist_slock);
2032	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
2033		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2034			nmp = mp->mnt_list.cqe_next;
2035			continue;
2036		}
2037		for (vp = mp->mnt_vnodelist.lh_first;
2038		     vp != NULL;
2039		     vp = vp->v_mntvnodes.le_next) {
2040			if (VOP_ISLOCKED(vp))
2041				vprint((char *)0, vp);
2042		}
2043		simple_lock(&mountlist_slock);
2044		nmp = mp->mnt_list.cqe_next;
2045		vfs_unbusy(mp, p);
2046	}
2047	simple_unlock(&mountlist_slock);
2048}
2049#endif
2050
2051/*
2052 * Top level filesystem related information gathering.
2053 */
2054static int	sysctl_ovfs_conf __P(SYSCTL_HANDLER_ARGS);
2055
2056static int
2057vfs_sysctl SYSCTL_HANDLER_ARGS
2058{
2059	int *name = (int *)arg1 - 1;	/* XXX */
2060	u_int namelen = arg2 + 1;	/* XXX */
2061	struct vfsconf *vfsp;
2062
2063#if 1 || defined(COMPAT_PRELITE2)
2064	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2065	if (namelen == 1)
2066		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2067#endif
2068
2069#ifdef notyet
2070	/* all sysctl names at this level are at least name and field */
2071	if (namelen < 2)
2072		return (ENOTDIR);		/* overloaded */
2073	if (name[0] != VFS_GENERIC) {
2074		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2075			if (vfsp->vfc_typenum == name[0])
2076				break;
2077		if (vfsp == NULL)
2078			return (EOPNOTSUPP);
2079		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2080		    oldp, oldlenp, newp, newlen, p));
2081	}
2082#endif
2083	switch (name[1]) {
2084	case VFS_MAXTYPENUM:
2085		if (namelen != 2)
2086			return (ENOTDIR);
2087		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2088	case VFS_CONF:
2089		if (namelen != 3)
2090			return (ENOTDIR);	/* overloaded */
2091		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2092			if (vfsp->vfc_typenum == name[2])
2093				break;
2094		if (vfsp == NULL)
2095			return (EOPNOTSUPP);
2096		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2097	}
2098	return (EOPNOTSUPP);
2099}
2100
2101SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2102	"Generic filesystem");
2103
2104#if 1 || defined(COMPAT_PRELITE2)
2105
2106static int
2107sysctl_ovfs_conf SYSCTL_HANDLER_ARGS
2108{
2109	int error;
2110	struct vfsconf *vfsp;
2111	struct ovfsconf ovfs;
2112
2113	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2114		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2115		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2116		ovfs.vfc_index = vfsp->vfc_typenum;
2117		ovfs.vfc_refcount = vfsp->vfc_refcount;
2118		ovfs.vfc_flags = vfsp->vfc_flags;
2119		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2120		if (error)
2121			return error;
2122	}
2123	return 0;
2124}
2125
2126#endif /* 1 || COMPAT_PRELITE2 */
2127
2128#if 0
2129#define KINFO_VNODESLOP	10
2130/*
2131 * Dump vnode list (via sysctl).
2132 * Copyout address of vnode followed by vnode.
2133 */
2134/* ARGSUSED */
2135static int
2136sysctl_vnode SYSCTL_HANDLER_ARGS
2137{
2138	struct proc *p = curproc;	/* XXX */
2139	struct mount *mp, *nmp;
2140	struct vnode *nvp, *vp;
2141	int error;
2142
2143#define VPTRSZ	sizeof (struct vnode *)
2144#define VNODESZ	sizeof (struct vnode)
2145
2146	req->lock = 0;
2147	if (!req->oldptr) /* Make an estimate */
2148		return (SYSCTL_OUT(req, 0,
2149			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2150
2151	simple_lock(&mountlist_slock);
2152	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
2153		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2154			nmp = mp->mnt_list.cqe_next;
2155			continue;
2156		}
2157again:
2158		simple_lock(&mntvnode_slock);
2159		for (vp = mp->mnt_vnodelist.lh_first;
2160		     vp != NULL;
2161		     vp = nvp) {
2162			/*
2163			 * Check that the vp is still associated with
2164			 * this filesystem.  RACE: could have been
2165			 * recycled onto the same filesystem.
2166			 */
2167			if (vp->v_mount != mp) {
2168				simple_unlock(&mntvnode_slock);
2169				goto again;
2170			}
2171			nvp = vp->v_mntvnodes.le_next;
2172			simple_unlock(&mntvnode_slock);
2173			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2174			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2175				return (error);
2176			simple_lock(&mntvnode_slock);
2177		}
2178		simple_unlock(&mntvnode_slock);
2179		simple_lock(&mountlist_slock);
2180		nmp = mp->mnt_list.cqe_next;
2181		vfs_unbusy(mp, p);
2182	}
2183	simple_unlock(&mountlist_slock);
2184
2185	return (0);
2186}
2187#endif
2188
2189/*
2190 * XXX
2191 * Exporting the vnode list on large systems causes them to crash.
2192 * Exporting the vnode list on medium systems causes sysctl to coredump.
2193 */
2194#if 0
2195SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2196	0, 0, sysctl_vnode, "S,vnode", "");
2197#endif
2198
2199/*
2200 * Check to see if a filesystem is mounted on a block device.
2201 */
2202int
2203vfs_mountedon(vp)
2204	struct vnode *vp;
2205{
2206	struct vnode *vq;
2207	int error = 0;
2208
2209	if (vp->v_specmountpoint != NULL)
2210		return (EBUSY);
2211	if (vp->v_flag & VALIASED) {
2212		simple_lock(&spechash_slock);
2213		for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2214			if (vq->v_rdev != vp->v_rdev ||
2215			    vq->v_type != vp->v_type)
2216				continue;
2217			if (vq->v_specmountpoint != NULL) {
2218				error = EBUSY;
2219				break;
2220			}
2221		}
2222		simple_unlock(&spechash_slock);
2223	}
2224	return (error);
2225}
2226
2227/*
2228 * Unmount all filesystems. The list is traversed in reverse order
2229 * of mounting to avoid dependencies.
2230 */
2231void
2232vfs_unmountall()
2233{
2234	struct mount *mp, *nmp;
2235	struct proc *p;
2236	int error;
2237
2238	if (curproc != NULL)
2239		p = curproc;
2240	else
2241		p = initproc;	/* XXX XXX should this be proc0? */
2242	/*
2243	 * Since this only runs when rebooting, it is not interlocked.
2244	 */
2245	for (mp = mountlist.cqh_last; mp != (void *)&mountlist; mp = nmp) {
2246		nmp = mp->mnt_list.cqe_prev;
2247		error = dounmount(mp, MNT_FORCE, p);
2248		if (error) {
2249			printf("unmount of %s failed (",
2250			    mp->mnt_stat.f_mntonname);
2251			if (error == EBUSY)
2252				printf("BUSY)\n");
2253			else
2254				printf("%d)\n", error);
2255		}
2256	}
2257}
2258
2259/*
2260 * Build hash lists of net addresses and hang them off the mount point.
2261 * Called by ufs_mount() to set up the lists of export addresses.
2262 */
2263static int
2264vfs_hang_addrlist(mp, nep, argp)
2265	struct mount *mp;
2266	struct netexport *nep;
2267	struct export_args *argp;
2268{
2269	register struct netcred *np;
2270	register struct radix_node_head *rnh;
2271	register int i;
2272	struct radix_node *rn;
2273	struct sockaddr *saddr, *smask = 0;
2274	struct domain *dom;
2275	int error;
2276
2277	if (argp->ex_addrlen == 0) {
2278		if (mp->mnt_flag & MNT_DEFEXPORTED)
2279			return (EPERM);
2280		np = &nep->ne_defexported;
2281		np->netc_exflags = argp->ex_flags;
2282		np->netc_anon = argp->ex_anon;
2283		np->netc_anon.cr_ref = 1;
2284		mp->mnt_flag |= MNT_DEFEXPORTED;
2285		return (0);
2286	}
2287	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2288	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2289	bzero((caddr_t) np, i);
2290	saddr = (struct sockaddr *) (np + 1);
2291	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2292		goto out;
2293	if (saddr->sa_len > argp->ex_addrlen)
2294		saddr->sa_len = argp->ex_addrlen;
2295	if (argp->ex_masklen) {
2296		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2297		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2298		if (error)
2299			goto out;
2300		if (smask->sa_len > argp->ex_masklen)
2301			smask->sa_len = argp->ex_masklen;
2302	}
2303	i = saddr->sa_family;
2304	if ((rnh = nep->ne_rtable[i]) == 0) {
2305		/*
2306		 * Seems silly to initialize every AF when most are not used,
2307		 * do so on demand here
2308		 */
2309		for (dom = domains; dom; dom = dom->dom_next)
2310			if (dom->dom_family == i && dom->dom_rtattach) {
2311				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2312				    dom->dom_rtoffset);
2313				break;
2314			}
2315		if ((rnh = nep->ne_rtable[i]) == 0) {
2316			error = ENOBUFS;
2317			goto out;
2318		}
2319	}
2320	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2321	    np->netc_rnodes);
2322	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2323		error = EPERM;
2324		goto out;
2325	}
2326	np->netc_exflags = argp->ex_flags;
2327	np->netc_anon = argp->ex_anon;
2328	np->netc_anon.cr_ref = 1;
2329	return (0);
2330out:
2331	free(np, M_NETADDR);
2332	return (error);
2333}
2334
2335/* ARGSUSED */
2336static int
2337vfs_free_netcred(rn, w)
2338	struct radix_node *rn;
2339	void *w;
2340{
2341	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2342
2343	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2344	free((caddr_t) rn, M_NETADDR);
2345	return (0);
2346}
2347
2348/*
2349 * Free the net address hash lists that are hanging off the mount points.
2350 */
2351static void
2352vfs_free_addrlist(nep)
2353	struct netexport *nep;
2354{
2355	register int i;
2356	register struct radix_node_head *rnh;
2357
2358	for (i = 0; i <= AF_MAX; i++)
2359		if ((rnh = nep->ne_rtable[i])) {
2360			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2361			    (caddr_t) rnh);
2362			free((caddr_t) rnh, M_RTABLE);
2363			nep->ne_rtable[i] = 0;
2364		}
2365}
2366
2367int
2368vfs_export(mp, nep, argp)
2369	struct mount *mp;
2370	struct netexport *nep;
2371	struct export_args *argp;
2372{
2373	int error;
2374
2375	if (argp->ex_flags & MNT_DELEXPORT) {
2376		if (mp->mnt_flag & MNT_EXPUBLIC) {
2377			vfs_setpublicfs(NULL, NULL, NULL);
2378			mp->mnt_flag &= ~MNT_EXPUBLIC;
2379		}
2380		vfs_free_addrlist(nep);
2381		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2382	}
2383	if (argp->ex_flags & MNT_EXPORTED) {
2384		if (argp->ex_flags & MNT_EXPUBLIC) {
2385			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2386				return (error);
2387			mp->mnt_flag |= MNT_EXPUBLIC;
2388		}
2389		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2390			return (error);
2391		mp->mnt_flag |= MNT_EXPORTED;
2392	}
2393	return (0);
2394}
2395
2396
2397/*
2398 * Set the publicly exported filesystem (WebNFS). Currently, only
2399 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2400 */
2401int
2402vfs_setpublicfs(mp, nep, argp)
2403	struct mount *mp;
2404	struct netexport *nep;
2405	struct export_args *argp;
2406{
2407	int error;
2408	struct vnode *rvp;
2409	char *cp;
2410
2411	/*
2412	 * mp == NULL -> invalidate the current info, the FS is
2413	 * no longer exported. May be called from either vfs_export
2414	 * or unmount, so check if it hasn't already been done.
2415	 */
2416	if (mp == NULL) {
2417		if (nfs_pub.np_valid) {
2418			nfs_pub.np_valid = 0;
2419			if (nfs_pub.np_index != NULL) {
2420				FREE(nfs_pub.np_index, M_TEMP);
2421				nfs_pub.np_index = NULL;
2422			}
2423		}
2424		return (0);
2425	}
2426
2427	/*
2428	 * Only one allowed at a time.
2429	 */
2430	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2431		return (EBUSY);
2432
2433	/*
2434	 * Get real filehandle for root of exported FS.
2435	 */
2436	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2437	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2438
2439	if ((error = VFS_ROOT(mp, &rvp)))
2440		return (error);
2441
2442	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2443		return (error);
2444
2445	vput(rvp);
2446
2447	/*
2448	 * If an indexfile was specified, pull it in.
2449	 */
2450	if (argp->ex_indexfile != NULL) {
2451		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2452		    M_WAITOK);
2453		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2454		    MAXNAMLEN, (size_t *)0);
2455		if (!error) {
2456			/*
2457			 * Check for illegal filenames.
2458			 */
2459			for (cp = nfs_pub.np_index; *cp; cp++) {
2460				if (*cp == '/') {
2461					error = EINVAL;
2462					break;
2463				}
2464			}
2465		}
2466		if (error) {
2467			FREE(nfs_pub.np_index, M_TEMP);
2468			return (error);
2469		}
2470	}
2471
2472	nfs_pub.np_mount = mp;
2473	nfs_pub.np_valid = 1;
2474	return (0);
2475}
2476
2477struct netcred *
2478vfs_export_lookup(mp, nep, nam)
2479	register struct mount *mp;
2480	struct netexport *nep;
2481	struct sockaddr *nam;
2482{
2483	register struct netcred *np;
2484	register struct radix_node_head *rnh;
2485	struct sockaddr *saddr;
2486
2487	np = NULL;
2488	if (mp->mnt_flag & MNT_EXPORTED) {
2489		/*
2490		 * Lookup in the export list first.
2491		 */
2492		if (nam != NULL) {
2493			saddr = nam;
2494			rnh = nep->ne_rtable[saddr->sa_family];
2495			if (rnh != NULL) {
2496				np = (struct netcred *)
2497					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2498							      rnh);
2499				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2500					np = NULL;
2501			}
2502		}
2503		/*
2504		 * If no address match, use the default if it exists.
2505		 */
2506		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2507			np = &nep->ne_defexported;
2508	}
2509	return (np);
2510}
2511
2512/*
2513 * perform msync on all vnodes under a mount point
2514 * the mount point must be locked.
2515 */
2516void
2517vfs_msync(struct mount *mp, int flags) {
2518	struct vnode *vp, *nvp;
2519	struct vm_object *obj;
2520	int anyio, tries;
2521
2522	tries = 5;
2523loop:
2524	anyio = 0;
2525	for (vp = mp->mnt_vnodelist.lh_first; vp != NULL; vp = nvp) {
2526
2527		nvp = vp->v_mntvnodes.le_next;
2528
2529		if (vp->v_mount != mp) {
2530			goto loop;
2531		}
2532
2533		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2534			continue;
2535
2536		if (flags != MNT_WAIT) {
2537			obj = vp->v_object;
2538			if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2539				continue;
2540			if (VOP_ISLOCKED(vp))
2541				continue;
2542		}
2543
2544		simple_lock(&vp->v_interlock);
2545		if (vp->v_object &&
2546		   (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
2547			if (!vget(vp,
2548				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2549				if (vp->v_object) {
2550					vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : 0);
2551					anyio = 1;
2552				}
2553				vput(vp);
2554			}
2555		} else {
2556			simple_unlock(&vp->v_interlock);
2557		}
2558	}
2559	if (anyio && (--tries > 0))
2560		goto loop;
2561}
2562
2563/*
2564 * Create the VM object needed for VMIO and mmap support.  This
2565 * is done for all VREG files in the system.  Some filesystems might
2566 * afford the additional metadata buffering capability of the
2567 * VMIO code by making the device node be VMIO mode also.
2568 *
2569 * vp must be locked when vfs_object_create is called.
2570 */
2571int
2572vfs_object_create(vp, p, cred)
2573	struct vnode *vp;
2574	struct proc *p;
2575	struct ucred *cred;
2576{
2577	struct vattr vat;
2578	vm_object_t object;
2579	int error = 0;
2580
2581	if ((vp->v_type != VREG) && (vp->v_type != VBLK))
2582		return 0;
2583
2584retry:
2585	if ((object = vp->v_object) == NULL) {
2586		if (vp->v_type == VREG) {
2587			if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
2588				goto retn;
2589			object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
2590		} else if (major(vp->v_rdev) < nblkdev &&
2591		    bdevsw(vp->v_rdev) != NULL) {
2592			/*
2593			 * This simply allocates the biggest object possible
2594			 * for a VBLK vnode.  This should be fixed, but doesn't
2595			 * cause any problems (yet).
2596			 */
2597			object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
2598		} else {
2599			goto retn;
2600		}
2601		/*
2602		 * Dereference the reference we just created.  This assumes
2603		 * that the object is associated with the vp.
2604		 */
2605		object->ref_count--;
2606		vp->v_usecount--;
2607	} else {
2608		if (object->flags & OBJ_DEAD) {
2609			VOP_UNLOCK(vp, 0, p);
2610			tsleep(object, PVM, "vodead", 0);
2611			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
2612			goto retry;
2613		}
2614	}
2615
2616	KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
2617	vp->v_flag |= VOBJBUF;
2618
2619retn:
2620	return error;
2621}
2622
2623static void
2624vfree(vp)
2625	struct vnode *vp;
2626{
2627	int s;
2628
2629	s = splbio();
2630	simple_lock(&vnode_free_list_slock);
2631	if (vp->v_flag & VTBFREE) {
2632		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2633		vp->v_flag &= ~VTBFREE;
2634	}
2635	if (vp->v_flag & VAGE) {
2636		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2637	} else {
2638		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2639	}
2640	freevnodes++;
2641	simple_unlock(&vnode_free_list_slock);
2642	vp->v_flag &= ~VAGE;
2643	vp->v_flag |= VFREE;
2644	splx(s);
2645}
2646
2647void
2648vbusy(vp)
2649	struct vnode *vp;
2650{
2651	int s;
2652
2653	s = splbio();
2654	simple_lock(&vnode_free_list_slock);
2655	if (vp->v_flag & VTBFREE) {
2656		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2657		vp->v_flag &= ~VTBFREE;
2658	} else {
2659		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2660		freevnodes--;
2661	}
2662	simple_unlock(&vnode_free_list_slock);
2663	vp->v_flag &= ~(VFREE|VAGE);
2664	splx(s);
2665}
2666
2667/*
2668 * Record a process's interest in events which might happen to
2669 * a vnode.  Because poll uses the historic select-style interface
2670 * internally, this routine serves as both the ``check for any
2671 * pending events'' and the ``record my interest in future events''
2672 * functions.  (These are done together, while the lock is held,
2673 * to avoid race conditions.)
2674 */
2675int
2676vn_pollrecord(vp, p, events)
2677	struct vnode *vp;
2678	struct proc *p;
2679	short events;
2680{
2681	simple_lock(&vp->v_pollinfo.vpi_lock);
2682	if (vp->v_pollinfo.vpi_revents & events) {
2683		/*
2684		 * This leaves events we are not interested
2685		 * in available for the other process which
2686		 * which presumably had requested them
2687		 * (otherwise they would never have been
2688		 * recorded).
2689		 */
2690		events &= vp->v_pollinfo.vpi_revents;
2691		vp->v_pollinfo.vpi_revents &= ~events;
2692
2693		simple_unlock(&vp->v_pollinfo.vpi_lock);
2694		return events;
2695	}
2696	vp->v_pollinfo.vpi_events |= events;
2697	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2698	simple_unlock(&vp->v_pollinfo.vpi_lock);
2699	return 0;
2700}
2701
2702/*
2703 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2704 * it is possible for us to miss an event due to race conditions, but
2705 * that condition is expected to be rare, so for the moment it is the
2706 * preferred interface.
2707 */
2708void
2709vn_pollevent(vp, events)
2710	struct vnode *vp;
2711	short events;
2712{
2713	simple_lock(&vp->v_pollinfo.vpi_lock);
2714	if (vp->v_pollinfo.vpi_events & events) {
2715		/*
2716		 * We clear vpi_events so that we don't
2717		 * call selwakeup() twice if two events are
2718		 * posted before the polling process(es) is
2719		 * awakened.  This also ensures that we take at
2720		 * most one selwakeup() if the polling process
2721		 * is no longer interested.  However, it does
2722		 * mean that only one event can be noticed at
2723		 * a time.  (Perhaps we should only clear those
2724		 * event bits which we note?) XXX
2725		 */
2726		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2727		vp->v_pollinfo.vpi_revents |= events;
2728		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2729	}
2730	simple_unlock(&vp->v_pollinfo.vpi_lock);
2731}
2732
2733/*
2734 * Wake up anyone polling on vp because it is being revoked.
2735 * This depends on dead_poll() returning POLLHUP for correct
2736 * behavior.
2737 */
2738void
2739vn_pollgone(vp)
2740	struct vnode *vp;
2741{
2742	simple_lock(&vp->v_pollinfo.vpi_lock);
2743	if (vp->v_pollinfo.vpi_events) {
2744		vp->v_pollinfo.vpi_events = 0;
2745		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2746	}
2747	simple_unlock(&vp->v_pollinfo.vpi_lock);
2748}
2749
2750
2751
2752/*
2753 * Routine to create and manage a filesystem syncer vnode.
2754 */
2755#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2756static int	sync_fsync __P((struct  vop_fsync_args *));
2757static int	sync_inactive __P((struct  vop_inactive_args *));
2758static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2759#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2760#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2761static int	sync_print __P((struct vop_print_args *));
2762#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2763
2764static vop_t **sync_vnodeop_p;
2765static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2766	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2767	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2768	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2769	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2770	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2771	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2772	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2773	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2774	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2775	{ NULL, NULL }
2776};
2777static struct vnodeopv_desc sync_vnodeop_opv_desc =
2778	{ &sync_vnodeop_p, sync_vnodeop_entries };
2779
2780VNODEOP_SET(sync_vnodeop_opv_desc);
2781
2782/*
2783 * Create a new filesystem syncer vnode for the specified mount point.
2784 */
2785int
2786vfs_allocate_syncvnode(mp)
2787	struct mount *mp;
2788{
2789	struct vnode *vp;
2790	static long start, incr, next;
2791	int error;
2792
2793	/* Allocate a new vnode */
2794	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2795		mp->mnt_syncer = NULL;
2796		return (error);
2797	}
2798	vp->v_type = VNON;
2799	/*
2800	 * Place the vnode onto the syncer worklist. We attempt to
2801	 * scatter them about on the list so that they will go off
2802	 * at evenly distributed times even if all the filesystems
2803	 * are mounted at once.
2804	 */
2805	next += incr;
2806	if (next == 0 || next > syncer_maxdelay) {
2807		start /= 2;
2808		incr /= 2;
2809		if (start == 0) {
2810			start = syncer_maxdelay / 2;
2811			incr = syncer_maxdelay;
2812		}
2813		next = start;
2814	}
2815	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2816	mp->mnt_syncer = vp;
2817	return (0);
2818}
2819
2820/*
2821 * Do a lazy sync of the filesystem.
2822 */
2823static int
2824sync_fsync(ap)
2825	struct vop_fsync_args /* {
2826		struct vnode *a_vp;
2827		struct ucred *a_cred;
2828		int a_waitfor;
2829		struct proc *a_p;
2830	} */ *ap;
2831{
2832	struct vnode *syncvp = ap->a_vp;
2833	struct mount *mp = syncvp->v_mount;
2834	struct proc *p = ap->a_p;
2835	int asyncflag;
2836
2837	/*
2838	 * We only need to do something if this is a lazy evaluation.
2839	 */
2840	if (ap->a_waitfor != MNT_LAZY)
2841		return (0);
2842
2843	/*
2844	 * Move ourselves to the back of the sync list.
2845	 */
2846	vn_syncer_add_to_worklist(syncvp, syncdelay);
2847
2848	/*
2849	 * Walk the list of vnodes pushing all that are dirty and
2850	 * not already on the sync list.
2851	 */
2852	simple_lock(&mountlist_slock);
2853	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2854		simple_unlock(&mountlist_slock);
2855		return (0);
2856	}
2857	asyncflag = mp->mnt_flag & MNT_ASYNC;
2858	mp->mnt_flag &= ~MNT_ASYNC;
2859	vfs_msync(mp, MNT_NOWAIT);
2860	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2861	if (asyncflag)
2862		mp->mnt_flag |= MNT_ASYNC;
2863	vfs_unbusy(mp, p);
2864	return (0);
2865}
2866
2867/*
2868 * The syncer vnode is no referenced.
2869 */
2870static int
2871sync_inactive(ap)
2872	struct vop_inactive_args /* {
2873		struct vnode *a_vp;
2874		struct proc *a_p;
2875	} */ *ap;
2876{
2877
2878	vgone(ap->a_vp);
2879	return (0);
2880}
2881
2882/*
2883 * The syncer vnode is no longer needed and is being decommissioned.
2884 *
2885 * Modifications to the worklist must be protected at splbio().
2886 */
2887static int
2888sync_reclaim(ap)
2889	struct vop_reclaim_args /* {
2890		struct vnode *a_vp;
2891	} */ *ap;
2892{
2893	struct vnode *vp = ap->a_vp;
2894	int s;
2895
2896	s = splbio();
2897	vp->v_mount->mnt_syncer = NULL;
2898	if (vp->v_flag & VONWORKLST) {
2899		LIST_REMOVE(vp, v_synclist);
2900		vp->v_flag &= ~VONWORKLST;
2901	}
2902	splx(s);
2903
2904	return (0);
2905}
2906
2907/*
2908 * Print out a syncer vnode.
2909 */
2910static int
2911sync_print(ap)
2912	struct vop_print_args /* {
2913		struct vnode *a_vp;
2914	} */ *ap;
2915{
2916	struct vnode *vp = ap->a_vp;
2917
2918	printf("syncer vnode");
2919	if (vp->v_vnlock != NULL)
2920		lockmgr_printinfo(vp->v_vnlock);
2921	printf("\n");
2922	return (0);
2923}
2924