vfs_export.c revision 44150
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $Id: vfs_subr.c,v 1.186 1999/02/04 18:25:39 dillon Exp $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/conf.h>
50#include <sys/fcntl.h>
51#include <sys/kernel.h>
52#include <sys/proc.h>
53#include <sys/malloc.h>
54#include <sys/mount.h>
55#include <sys/socket.h>
56#include <sys/vnode.h>
57#include <sys/stat.h>
58#include <sys/buf.h>
59#include <sys/domain.h>
60#include <sys/dirent.h>
61#include <sys/vmmeter.h>
62
63#include <machine/limits.h>
64
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/vm_prot.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/vm_pager.h>
74#include <vm/vnode_pager.h>
75#include <vm/vm_zone.h>
76#include <sys/sysctl.h>
77
78#include <miscfs/specfs/specdev.h>
79
80static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81
82static void	insmntque __P((struct vnode *vp, struct mount *mp));
83static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
84static void	vfree __P((struct vnode *));
85static void	vgonel __P((struct vnode *vp, struct proc *p));
86static unsigned long	numvnodes;
87SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
88
89enum vtype iftovt_tab[16] = {
90	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
91	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
92};
93int vttoif_tab[9] = {
94	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
95	S_IFSOCK, S_IFIFO, S_IFMT,
96};
97
98static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
99struct tobefreelist vnode_tobefree_list;	/* vnode free list */
100
101static u_long wantfreevnodes = 25;
102SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
103static u_long freevnodes = 0;
104SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
105
106int vfs_ioopt = 0;
107#ifdef ENABLE_VFS_IOOPT
108SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
109#endif
110
111struct mntlist mountlist;	/* mounted filesystem list */
112struct simplelock mountlist_slock;
113struct simplelock mntvnode_slock;
114int	nfs_mount_type = -1;
115#ifndef NULL_SIMPLELOCKS
116static struct simplelock mntid_slock;
117static struct simplelock vnode_free_list_slock;
118static struct simplelock spechash_slock;
119#endif
120struct nfs_public nfs_pub;	/* publicly exported FS */
121static vm_zone_t vnode_zone;
122
123/*
124 * The workitem queue.
125 */
126#define SYNCER_MAXDELAY		32
127static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
128time_t syncdelay =		30;
129int rushjob;				/* number of slots to run ASAP */
130
131static int syncer_delayno = 0;
132static long syncer_mask;
133LIST_HEAD(synclist, vnode);
134static struct synclist *syncer_workitem_pending;
135
136int desiredvnodes;
137SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, &desiredvnodes, 0, "");
138
139static void	vfs_free_addrlist __P((struct netexport *nep));
140static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
141static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
142				       struct export_args *argp));
143
144/*
145 * Initialize the vnode management data structures.
146 */
147void
148vntblinit()
149{
150
151	desiredvnodes = maxproc + cnt.v_page_count / 4;
152	simple_lock_init(&mntvnode_slock);
153	simple_lock_init(&mntid_slock);
154	simple_lock_init(&spechash_slock);
155	TAILQ_INIT(&vnode_free_list);
156	TAILQ_INIT(&vnode_tobefree_list);
157	simple_lock_init(&vnode_free_list_slock);
158	CIRCLEQ_INIT(&mountlist);
159	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
160	/*
161	 * Initialize the filesystem syncer.
162	 */
163	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
164		&syncer_mask);
165	syncer_maxdelay = syncer_mask + 1;
166}
167
168/*
169 * Mark a mount point as busy. Used to synchronize access and to delay
170 * unmounting. Interlock is not released on failure.
171 */
172int
173vfs_busy(mp, flags, interlkp, p)
174	struct mount *mp;
175	int flags;
176	struct simplelock *interlkp;
177	struct proc *p;
178{
179	int lkflags;
180
181	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
182		if (flags & LK_NOWAIT)
183			return (ENOENT);
184		mp->mnt_kern_flag |= MNTK_MWAIT;
185		if (interlkp) {
186			simple_unlock(interlkp);
187		}
188		/*
189		 * Since all busy locks are shared except the exclusive
190		 * lock granted when unmounting, the only place that a
191		 * wakeup needs to be done is at the release of the
192		 * exclusive lock at the end of dounmount.
193		 */
194		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
195		if (interlkp) {
196			simple_lock(interlkp);
197		}
198		return (ENOENT);
199	}
200	lkflags = LK_SHARED | LK_NOPAUSE;
201	if (interlkp)
202		lkflags |= LK_INTERLOCK;
203	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
204		panic("vfs_busy: unexpected lock failure");
205	return (0);
206}
207
208/*
209 * Free a busy filesystem.
210 */
211void
212vfs_unbusy(mp, p)
213	struct mount *mp;
214	struct proc *p;
215{
216
217	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
218}
219
220/*
221 * Lookup a filesystem type, and if found allocate and initialize
222 * a mount structure for it.
223 *
224 * Devname is usually updated by mount(8) after booting.
225 */
226int
227vfs_rootmountalloc(fstypename, devname, mpp)
228	char *fstypename;
229	char *devname;
230	struct mount **mpp;
231{
232	struct proc *p = curproc;	/* XXX */
233	struct vfsconf *vfsp;
234	struct mount *mp;
235
236	if (fstypename == NULL)
237		return (ENODEV);
238	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
239		if (!strcmp(vfsp->vfc_name, fstypename))
240			break;
241	if (vfsp == NULL)
242		return (ENODEV);
243	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
244	bzero((char *)mp, (u_long)sizeof(struct mount));
245	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
246	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
247	LIST_INIT(&mp->mnt_vnodelist);
248	mp->mnt_vfc = vfsp;
249	mp->mnt_op = vfsp->vfc_vfsops;
250	mp->mnt_flag = MNT_RDONLY;
251	mp->mnt_vnodecovered = NULLVP;
252	vfsp->vfc_refcount++;
253	mp->mnt_stat.f_type = vfsp->vfc_typenum;
254	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
255	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
256	mp->mnt_stat.f_mntonname[0] = '/';
257	mp->mnt_stat.f_mntonname[1] = 0;
258	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
259	*mpp = mp;
260	return (0);
261}
262
263/*
264 * Find an appropriate filesystem to use for the root. If a filesystem
265 * has not been preselected, walk through the list of known filesystems
266 * trying those that have mountroot routines, and try them until one
267 * works or we have tried them all.
268 */
269#ifdef notdef	/* XXX JH */
270int
271lite2_vfs_mountroot()
272{
273	struct vfsconf *vfsp;
274	extern int (*lite2_mountroot) __P((void));
275	int error;
276
277	if (lite2_mountroot != NULL)
278		return ((*lite2_mountroot)());
279	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
280		if (vfsp->vfc_mountroot == NULL)
281			continue;
282		if ((error = (*vfsp->vfc_mountroot)()) == 0)
283			return (0);
284		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
285	}
286	return (ENODEV);
287}
288#endif
289
290/*
291 * Lookup a mount point by filesystem identifier.
292 */
293struct mount *
294vfs_getvfs(fsid)
295	fsid_t *fsid;
296{
297	register struct mount *mp;
298
299	simple_lock(&mountlist_slock);
300	for (mp = mountlist.cqh_first; mp != (void *)&mountlist;
301	    mp = mp->mnt_list.cqe_next) {
302		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
303		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
304			simple_unlock(&mountlist_slock);
305			return (mp);
306	    }
307	}
308	simple_unlock(&mountlist_slock);
309	return ((struct mount *) 0);
310}
311
312/*
313 * Get a new unique fsid
314 */
315void
316vfs_getnewfsid(mp)
317	struct mount *mp;
318{
319	static u_short xxxfs_mntid;
320
321	fsid_t tfsid;
322	int mtype;
323
324	simple_lock(&mntid_slock);
325	mtype = mp->mnt_vfc->vfc_typenum;
326	mp->mnt_stat.f_fsid.val[0] = makedev(nblkdev + mtype, 0);
327	mp->mnt_stat.f_fsid.val[1] = mtype;
328	if (xxxfs_mntid == 0)
329		++xxxfs_mntid;
330	tfsid.val[0] = makedev(nblkdev + mtype, xxxfs_mntid);
331	tfsid.val[1] = mtype;
332	if (mountlist.cqh_first != (void *)&mountlist) {
333		while (vfs_getvfs(&tfsid)) {
334			tfsid.val[0]++;
335			xxxfs_mntid++;
336		}
337	}
338	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
339	simple_unlock(&mntid_slock);
340}
341
342/*
343 * Set vnode attributes to VNOVAL
344 */
345void
346vattr_null(vap)
347	register struct vattr *vap;
348{
349
350	vap->va_type = VNON;
351	vap->va_size = VNOVAL;
352	vap->va_bytes = VNOVAL;
353	vap->va_mode = VNOVAL;
354	vap->va_nlink = VNOVAL;
355	vap->va_uid = VNOVAL;
356	vap->va_gid = VNOVAL;
357	vap->va_fsid = VNOVAL;
358	vap->va_fileid = VNOVAL;
359	vap->va_blocksize = VNOVAL;
360	vap->va_rdev = VNOVAL;
361	vap->va_atime.tv_sec = VNOVAL;
362	vap->va_atime.tv_nsec = VNOVAL;
363	vap->va_mtime.tv_sec = VNOVAL;
364	vap->va_mtime.tv_nsec = VNOVAL;
365	vap->va_ctime.tv_sec = VNOVAL;
366	vap->va_ctime.tv_nsec = VNOVAL;
367	vap->va_flags = VNOVAL;
368	vap->va_gen = VNOVAL;
369	vap->va_vaflags = 0;
370}
371
372/*
373 * Routines having to do with the management of the vnode table.
374 */
375extern vop_t **dead_vnodeop_p;
376
377/*
378 * Return the next vnode from the free list.
379 */
380int
381getnewvnode(tag, mp, vops, vpp)
382	enum vtagtype tag;
383	struct mount *mp;
384	vop_t **vops;
385	struct vnode **vpp;
386{
387	int s;
388	struct proc *p = curproc;	/* XXX */
389	struct vnode *vp, *tvp, *nvp;
390	vm_object_t object;
391	TAILQ_HEAD(freelst, vnode) vnode_tmp_list;
392
393	/*
394	 * We take the least recently used vnode from the freelist
395	 * if we can get it and it has no cached pages, and no
396	 * namecache entries are relative to it.
397	 * Otherwise we allocate a new vnode
398	 */
399
400	s = splbio();
401	simple_lock(&vnode_free_list_slock);
402	TAILQ_INIT(&vnode_tmp_list);
403
404	for (vp = TAILQ_FIRST(&vnode_tobefree_list); vp; vp = nvp) {
405		nvp = TAILQ_NEXT(vp, v_freelist);
406		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
407		if (vp->v_flag & VAGE) {
408			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
409		} else {
410			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
411		}
412		vp->v_flag &= ~(VTBFREE|VAGE);
413		vp->v_flag |= VFREE;
414		if (vp->v_usecount)
415			panic("tobe free vnode isn't");
416		freevnodes++;
417	}
418
419	if (wantfreevnodes && freevnodes < wantfreevnodes) {
420		vp = NULL;
421	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
422		/*
423		 * XXX: this is only here to be backwards compatible
424		 */
425		vp = NULL;
426	} else {
427		for (vp = TAILQ_FIRST(&vnode_free_list); vp; vp = nvp) {
428			nvp = TAILQ_NEXT(vp, v_freelist);
429			if (!simple_lock_try(&vp->v_interlock))
430				continue;
431			if (vp->v_usecount)
432				panic("free vnode isn't");
433
434			object = vp->v_object;
435			if (object && (object->resident_page_count || object->ref_count)) {
436				printf("object inconsistant state: RPC: %d, RC: %d\n",
437					object->resident_page_count, object->ref_count);
438				/* Don't recycle if it's caching some pages */
439				TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
440				TAILQ_INSERT_TAIL(&vnode_tmp_list, vp, v_freelist);
441				continue;
442			} else if (LIST_FIRST(&vp->v_cache_src)) {
443				/* Don't recycle if active in the namecache */
444				simple_unlock(&vp->v_interlock);
445				continue;
446			} else {
447				break;
448			}
449		}
450	}
451
452	for (tvp = TAILQ_FIRST(&vnode_tmp_list); tvp; tvp = nvp) {
453		nvp = TAILQ_NEXT(tvp, v_freelist);
454		TAILQ_REMOVE(&vnode_tmp_list, tvp, v_freelist);
455		TAILQ_INSERT_TAIL(&vnode_free_list, tvp, v_freelist);
456		simple_unlock(&tvp->v_interlock);
457	}
458
459	if (vp) {
460		vp->v_flag |= VDOOMED;
461		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
462		freevnodes--;
463		simple_unlock(&vnode_free_list_slock);
464		cache_purge(vp);
465		vp->v_lease = NULL;
466		if (vp->v_type != VBAD) {
467			vgonel(vp, p);
468		} else {
469			simple_unlock(&vp->v_interlock);
470		}
471
472#ifdef INVARIANTS
473		{
474			int s;
475
476			if (vp->v_data)
477				panic("cleaned vnode isn't");
478			s = splbio();
479			if (vp->v_numoutput)
480				panic("Clean vnode has pending I/O's");
481			splx(s);
482		}
483#endif
484		vp->v_flag = 0;
485		vp->v_lastr = 0;
486		vp->v_lastw = 0;
487		vp->v_lasta = 0;
488		vp->v_cstart = 0;
489		vp->v_clen = 0;
490		vp->v_socket = 0;
491		vp->v_writecount = 0;	/* XXX */
492		vp->v_maxio = 0;
493	} else {
494		simple_unlock(&vnode_free_list_slock);
495		vp = (struct vnode *) zalloc(vnode_zone);
496		bzero((char *) vp, sizeof *vp);
497		simple_lock_init(&vp->v_interlock);
498		vp->v_dd = vp;
499		cache_purge(vp);
500		LIST_INIT(&vp->v_cache_src);
501		TAILQ_INIT(&vp->v_cache_dst);
502		numvnodes++;
503	}
504
505	TAILQ_INIT(&vp->v_cleanblkhd);
506	TAILQ_INIT(&vp->v_dirtyblkhd);
507	vp->v_type = VNON;
508	vp->v_tag = tag;
509	vp->v_op = vops;
510	insmntque(vp, mp);
511	*vpp = vp;
512	vp->v_usecount = 1;
513	vp->v_data = 0;
514	splx(s);
515
516	vfs_object_create(vp, p, p->p_ucred);
517	return (0);
518}
519
520/*
521 * Move a vnode from one mount queue to another.
522 */
523static void
524insmntque(vp, mp)
525	register struct vnode *vp;
526	register struct mount *mp;
527{
528
529	simple_lock(&mntvnode_slock);
530	/*
531	 * Delete from old mount point vnode list, if on one.
532	 */
533	if (vp->v_mount != NULL)
534		LIST_REMOVE(vp, v_mntvnodes);
535	/*
536	 * Insert into list of vnodes for the new mount point, if available.
537	 */
538	if ((vp->v_mount = mp) == NULL) {
539		simple_unlock(&mntvnode_slock);
540		return;
541	}
542	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
543	simple_unlock(&mntvnode_slock);
544}
545
546/*
547 * Update outstanding I/O count and do wakeup if requested.
548 */
549void
550vwakeup(bp)
551	register struct buf *bp;
552{
553	register struct vnode *vp;
554
555	bp->b_flags &= ~B_WRITEINPROG;
556	if ((vp = bp->b_vp)) {
557		vp->v_numoutput--;
558		if (vp->v_numoutput < 0)
559			panic("vwakeup: neg numoutput");
560		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
561			vp->v_flag &= ~VBWAIT;
562			wakeup((caddr_t) &vp->v_numoutput);
563		}
564	}
565}
566
567/*
568 * Flush out and invalidate all buffers associated with a vnode.
569 * Called with the underlying object locked.
570 */
571int
572vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
573	register struct vnode *vp;
574	int flags;
575	struct ucred *cred;
576	struct proc *p;
577	int slpflag, slptimeo;
578{
579	register struct buf *bp;
580	struct buf *nbp, *blist;
581	int s, error;
582	vm_object_t object;
583
584	if (flags & V_SAVE) {
585		s = splbio();
586		while (vp->v_numoutput) {
587			vp->v_flag |= VBWAIT;
588			error = tsleep((caddr_t)&vp->v_numoutput,
589			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
590			if (error) {
591				splx(s);
592				return (error);
593			}
594		}
595		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
596			splx(s);
597			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
598				return (error);
599			s = splbio();
600			if (vp->v_numoutput > 0 ||
601			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
602				panic("vinvalbuf: dirty bufs");
603		}
604		splx(s);
605  	}
606	s = splbio();
607	for (;;) {
608		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
609		if (!blist)
610			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
611		if (!blist)
612			break;
613
614		for (bp = blist; bp; bp = nbp) {
615			nbp = TAILQ_NEXT(bp, b_vnbufs);
616			if (bp->b_flags & B_BUSY) {
617				bp->b_flags |= B_WANTED;
618				error = tsleep((caddr_t) bp,
619				    slpflag | (PRIBIO + 4), "vinvalbuf",
620				    slptimeo);
621				if (error) {
622					splx(s);
623					return (error);
624				}
625				break;
626			}
627			/*
628			 * XXX Since there are no node locks for NFS, I
629			 * believe there is a slight chance that a delayed
630			 * write will occur while sleeping just above, so
631			 * check for it.  Note that vfs_bio_awrite expects
632			 * buffers to reside on a queue, while VOP_BWRITE and
633			 * brelse do not.
634			 */
635			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
636				(flags & V_SAVE)) {
637
638				if (bp->b_vp == vp) {
639					if (bp->b_flags & B_CLUSTEROK) {
640						vfs_bio_awrite(bp);
641					} else {
642						bremfree(bp);
643						bp->b_flags |= (B_BUSY | B_ASYNC);
644						VOP_BWRITE(bp);
645					}
646				} else {
647					bremfree(bp);
648					bp->b_flags |= B_BUSY;
649					(void) VOP_BWRITE(bp);
650				}
651				break;
652			}
653			bremfree(bp);
654			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF | B_BUSY);
655			bp->b_flags &= ~B_ASYNC;
656			brelse(bp);
657		}
658	}
659
660	while (vp->v_numoutput > 0) {
661		vp->v_flag |= VBWAIT;
662		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
663	}
664
665	splx(s);
666
667	/*
668	 * Destroy the copy in the VM cache, too.
669	 */
670	simple_lock(&vp->v_interlock);
671	object = vp->v_object;
672	if (object != NULL) {
673		vm_object_page_remove(object, 0, 0,
674			(flags & V_SAVE) ? TRUE : FALSE);
675	}
676	simple_unlock(&vp->v_interlock);
677
678	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
679		panic("vinvalbuf: flush failed");
680	return (0);
681}
682
683/*
684 * Truncate a file's buffer and pages to a specified length.  This
685 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
686 * sync activity.
687 */
688int
689vtruncbuf(vp, cred, p, length, blksize)
690	register struct vnode *vp;
691	struct ucred *cred;
692	struct proc *p;
693	off_t length;
694	int blksize;
695{
696	register struct buf *bp;
697	struct buf *nbp;
698	int s, anyfreed;
699	int trunclbn;
700
701	/*
702	 * Round up to the *next* lbn.
703	 */
704	trunclbn = (length + blksize - 1) / blksize;
705
706	s = splbio();
707restart:
708	anyfreed = 1;
709	for (;anyfreed;) {
710		anyfreed = 0;
711		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
712			nbp = TAILQ_NEXT(bp, b_vnbufs);
713			if (bp->b_lblkno >= trunclbn) {
714				if (bp->b_flags & B_BUSY) {
715					bp->b_flags |= B_WANTED;
716					tsleep(bp, PRIBIO + 4, "vtrb1", 0);
717					goto restart;
718				} else {
719					bremfree(bp);
720					bp->b_flags |= (B_BUSY | B_INVAL | B_RELBUF);
721					bp->b_flags &= ~B_ASYNC;
722					brelse(bp);
723					anyfreed = 1;
724				}
725				if (nbp && (((nbp->b_xflags & B_VNCLEAN) == 0)||
726					 (nbp->b_vp != vp) ||
727					 (nbp->b_flags & B_DELWRI))) {
728					goto restart;
729				}
730			}
731		}
732
733		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
734			nbp = TAILQ_NEXT(bp, b_vnbufs);
735			if (bp->b_lblkno >= trunclbn) {
736				if (bp->b_flags & B_BUSY) {
737					bp->b_flags |= B_WANTED;
738					tsleep(bp, PRIBIO + 4, "vtrb2", 0);
739					goto restart;
740				} else {
741					bremfree(bp);
742					bp->b_flags |= (B_BUSY | B_INVAL | B_RELBUF);
743					bp->b_flags &= ~B_ASYNC;
744					brelse(bp);
745					anyfreed = 1;
746				}
747				if (nbp && (((nbp->b_xflags & B_VNDIRTY) == 0)||
748					 (nbp->b_vp != vp) ||
749					 (nbp->b_flags & B_DELWRI) == 0)) {
750					goto restart;
751				}
752			}
753		}
754	}
755
756	if (length > 0) {
757restartsync:
758		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
759			nbp = TAILQ_NEXT(bp, b_vnbufs);
760			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
761				if (bp->b_flags & B_BUSY) {
762					bp->b_flags |= B_WANTED;
763					tsleep(bp, PRIBIO, "vtrb3", 0);
764				} else {
765					bremfree(bp);
766					bp->b_flags |= B_BUSY;
767					if (bp->b_vp == vp) {
768						bp->b_flags |= B_ASYNC;
769					} else {
770						bp->b_flags &= ~B_ASYNC;
771					}
772					VOP_BWRITE(bp);
773				}
774				goto restartsync;
775			}
776
777		}
778	}
779
780	while (vp->v_numoutput > 0) {
781		vp->v_flag |= VBWAIT;
782		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
783	}
784
785	splx(s);
786
787	vnode_pager_setsize(vp, length);
788
789	return (0);
790}
791
792/*
793 * Associate a buffer with a vnode.
794 */
795void
796bgetvp(vp, bp)
797	register struct vnode *vp;
798	register struct buf *bp;
799{
800	int s;
801
802	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
803
804	vhold(vp);
805	bp->b_vp = vp;
806	if (vp->v_type == VBLK || vp->v_type == VCHR)
807		bp->b_dev = vp->v_rdev;
808	else
809		bp->b_dev = NODEV;
810	/*
811	 * Insert onto list for new vnode.
812	 */
813	s = splbio();
814	bp->b_xflags |= B_VNCLEAN;
815	bp->b_xflags &= ~B_VNDIRTY;
816	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
817	splx(s);
818}
819
820/*
821 * Disassociate a buffer from a vnode.
822 */
823void
824brelvp(bp)
825	register struct buf *bp;
826{
827	struct vnode *vp;
828	struct buflists *listheadp;
829	int s;
830
831	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
832
833	/*
834	 * Delete from old vnode list, if on one.
835	 */
836	vp = bp->b_vp;
837	s = splbio();
838	if (bp->b_xflags & (B_VNDIRTY|B_VNCLEAN)) {
839		if (bp->b_xflags & B_VNDIRTY)
840			listheadp = &vp->v_dirtyblkhd;
841		else
842			listheadp = &vp->v_cleanblkhd;
843		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
844		bp->b_xflags &= ~(B_VNDIRTY|B_VNCLEAN);
845	}
846	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
847		vp->v_flag &= ~VONWORKLST;
848		LIST_REMOVE(vp, v_synclist);
849	}
850	splx(s);
851	bp->b_vp = (struct vnode *) 0;
852	vdrop(vp);
853}
854
855/*
856 * The workitem queue.
857 *
858 * It is useful to delay writes of file data and filesystem metadata
859 * for tens of seconds so that quickly created and deleted files need
860 * not waste disk bandwidth being created and removed. To realize this,
861 * we append vnodes to a "workitem" queue. When running with a soft
862 * updates implementation, most pending metadata dependencies should
863 * not wait for more than a few seconds. Thus, mounted on block devices
864 * are delayed only about a half the time that file data is delayed.
865 * Similarly, directory updates are more critical, so are only delayed
866 * about a third the time that file data is delayed. Thus, there are
867 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
868 * one each second (driven off the filesystem syner process). The
869 * syncer_delayno variable indicates the next queue that is to be processed.
870 * Items that need to be processed soon are placed in this queue:
871 *
872 *	syncer_workitem_pending[syncer_delayno]
873 *
874 * A delay of fifteen seconds is done by placing the request fifteen
875 * entries later in the queue:
876 *
877 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
878 *
879 */
880
881/*
882 * Add an item to the syncer work queue.
883 */
884static void
885vn_syncer_add_to_worklist(struct vnode *vp, int delay)
886{
887	int s, slot;
888
889	s = splbio();
890
891	if (vp->v_flag & VONWORKLST) {
892		LIST_REMOVE(vp, v_synclist);
893	}
894
895	if (delay > syncer_maxdelay - 2)
896		delay = syncer_maxdelay - 2;
897	slot = (syncer_delayno + delay) & syncer_mask;
898
899	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
900	vp->v_flag |= VONWORKLST;
901	splx(s);
902}
903
904static void sched_sync __P((void));
905static struct	proc *updateproc;
906static const struct kproc_desc up_kp = {
907	"syncer",
908	sched_sync,
909	&updateproc
910};
911SYSINIT_KT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
912
913/*
914 * System filesystem synchronizer daemon.
915 */
916void
917sched_sync(void)
918{
919	struct synclist *slp;
920	struct vnode *vp;
921	long starttime;
922	int s;
923	struct proc *p = updateproc;
924
925	for (;;) {
926		starttime = time_second;
927
928		/*
929		 * Push files whose dirty time has expired.  Be careful
930		 * of interrupt race on slp queue.
931		 */
932		s = splbio();
933		slp = &syncer_workitem_pending[syncer_delayno];
934		syncer_delayno += 1;
935		if (syncer_delayno == syncer_maxdelay)
936			syncer_delayno = 0;
937		splx(s);
938
939		while ((vp = LIST_FIRST(slp)) != NULL) {
940			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
941			(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
942			VOP_UNLOCK(vp, 0, p);
943			s = splbio();
944			if (LIST_FIRST(slp) == vp) {
945				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
946				    vp->v_type != VBLK)
947					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
948				/*
949				 * Put us back on the worklist.  The worklist
950				 * routine will remove us from our current
951				 * position and then add us back in at a later
952				 * position.
953				 */
954				vn_syncer_add_to_worklist(vp, syncdelay);
955			}
956			splx(s);
957		}
958
959		/*
960		 * Do soft update processing.
961		 */
962		if (bioops.io_sync)
963			(*bioops.io_sync)(NULL);
964
965		/*
966		 * The variable rushjob allows the kernel to speed up the
967		 * processing of the filesystem syncer process. A rushjob
968		 * value of N tells the filesystem syncer to process the next
969		 * N seconds worth of work on its queue ASAP. Currently rushjob
970		 * is used by the soft update code to speed up the filesystem
971		 * syncer process when the incore state is getting so far
972		 * ahead of the disk that the kernel memory pool is being
973		 * threatened with exhaustion.
974		 */
975		if (rushjob > 0) {
976			rushjob -= 1;
977			continue;
978		}
979		/*
980		 * If it has taken us less than a second to process the
981		 * current work, then wait. Otherwise start right over
982		 * again. We can still lose time if any single round
983		 * takes more than two seconds, but it does not really
984		 * matter as we are just trying to generally pace the
985		 * filesystem activity.
986		 */
987		if (time_second == starttime)
988			tsleep(&lbolt, PPAUSE, "syncer", 0);
989	}
990}
991
992/*
993 * Associate a p-buffer with a vnode.
994 *
995 * Also sets B_PAGING flag to indicate that vnode is not fully associated
996 * with the buffer.  i.e. the bp has not been linked into the vnode or
997 * ref-counted.
998 */
999void
1000pbgetvp(vp, bp)
1001	register struct vnode *vp;
1002	register struct buf *bp;
1003{
1004
1005	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1006
1007	bp->b_vp = vp;
1008	bp->b_flags |= B_PAGING;
1009	if (vp->v_type == VBLK || vp->v_type == VCHR)
1010		bp->b_dev = vp->v_rdev;
1011	else
1012		bp->b_dev = NODEV;
1013}
1014
1015/*
1016 * Disassociate a p-buffer from a vnode.
1017 */
1018void
1019pbrelvp(bp)
1020	register struct buf *bp;
1021{
1022
1023	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1024
1025#if !defined(MAX_PERF)
1026	/* XXX REMOVE ME */
1027	if (bp->b_vnbufs.tqe_next != NULL) {
1028		panic(
1029		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1030		    bp,
1031		    (int)bp->b_flags
1032		);
1033	}
1034#endif
1035	bp->b_vp = (struct vnode *) 0;
1036	bp->b_flags &= ~B_PAGING;
1037}
1038
1039void
1040pbreassignbuf(bp, newvp)
1041	struct buf *bp;
1042	struct vnode *newvp;
1043{
1044#if !defined(MAX_PERF)
1045	if ((bp->b_flags & B_PAGING) == 0) {
1046		panic(
1047		    "pbreassignbuf() on non phys bp %p",
1048		    bp
1049		);
1050	}
1051#endif
1052	bp->b_vp = newvp;
1053}
1054
1055/*
1056 * Reassign a buffer from one vnode to another.
1057 * Used to assign file specific control information
1058 * (indirect blocks) to the vnode to which they belong.
1059 */
1060void
1061reassignbuf(bp, newvp)
1062	register struct buf *bp;
1063	register struct vnode *newvp;
1064{
1065	struct buflists *listheadp;
1066	struct vnode *oldvp;
1067	int delay;
1068	int s;
1069
1070	if (newvp == NULL) {
1071		printf("reassignbuf: NULL");
1072		return;
1073	}
1074
1075#if !defined(MAX_PERF)
1076	/*
1077	 * B_PAGING flagged buffers cannot be reassigned because their vp
1078	 * is not fully linked in.
1079	 */
1080	if (bp->b_flags & B_PAGING)
1081		panic("cannot reassign paging buffer");
1082#endif
1083
1084	s = splbio();
1085	/*
1086	 * Delete from old vnode list, if on one.
1087	 */
1088	if (bp->b_xflags & (B_VNDIRTY|B_VNCLEAN)) {
1089		oldvp = bp->b_vp;
1090		if (bp->b_xflags & B_VNDIRTY)
1091			listheadp = &oldvp->v_dirtyblkhd;
1092		else
1093			listheadp = &oldvp->v_cleanblkhd;
1094		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1095		bp->b_xflags &= ~(B_VNDIRTY|B_VNCLEAN);
1096		vdrop(oldvp);
1097	}
1098	/*
1099	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1100	 * of clean buffers.
1101	 */
1102	if (bp->b_flags & B_DELWRI) {
1103		struct buf *tbp;
1104
1105		listheadp = &newvp->v_dirtyblkhd;
1106		if ((newvp->v_flag & VONWORKLST) == 0) {
1107			switch (newvp->v_type) {
1108			case VDIR:
1109				delay = syncdelay / 3;
1110				break;
1111			case VBLK:
1112				if (newvp->v_specmountpoint != NULL) {
1113					delay = syncdelay / 2;
1114					break;
1115				}
1116				/* fall through */
1117			default:
1118				delay = syncdelay;
1119			}
1120			vn_syncer_add_to_worklist(newvp, delay);
1121		}
1122		bp->b_xflags |= B_VNDIRTY;
1123		tbp = TAILQ_FIRST(listheadp);
1124		if (tbp == NULL ||
1125		    (bp->b_lblkno >= 0 && tbp->b_lblkno > bp->b_lblkno)) {
1126			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1127		} else {
1128			if (bp->b_lblkno >= 0) {
1129				struct buf *ttbp;
1130				while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1131				    (ttbp->b_lblkno < bp->b_lblkno)) {
1132					tbp = ttbp;
1133				}
1134				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1135			} else {
1136				TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1137			}
1138		}
1139	} else {
1140		bp->b_xflags |= B_VNCLEAN;
1141		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1142		if ((newvp->v_flag & VONWORKLST) &&
1143		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1144			newvp->v_flag &= ~VONWORKLST;
1145			LIST_REMOVE(newvp, v_synclist);
1146		}
1147	}
1148	bp->b_vp = newvp;
1149	vhold(bp->b_vp);
1150	splx(s);
1151}
1152
1153/*
1154 * Create a vnode for a block device.
1155 * Used for mounting the root file system.
1156 */
1157int
1158bdevvp(dev, vpp)
1159	dev_t dev;
1160	struct vnode **vpp;
1161{
1162	register struct vnode *vp;
1163	struct vnode *nvp;
1164	int error;
1165
1166	/* XXX 255 is for mfs. */
1167	if (dev == NODEV || (major(dev) != 255 && (major(dev) >= nblkdev ||
1168	    bdevsw[major(dev)] == NULL))) {
1169		*vpp = NULLVP;
1170		return (ENXIO);
1171	}
1172	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1173	if (error) {
1174		*vpp = NULLVP;
1175		return (error);
1176	}
1177	vp = nvp;
1178	vp->v_type = VBLK;
1179	if ((nvp = checkalias(vp, dev, (struct mount *)0)) != NULL) {
1180		vput(vp);
1181		vp = nvp;
1182	}
1183	*vpp = vp;
1184	return (0);
1185}
1186
1187/*
1188 * Check to see if the new vnode represents a special device
1189 * for which we already have a vnode (either because of
1190 * bdevvp() or because of a different vnode representing
1191 * the same block device). If such an alias exists, deallocate
1192 * the existing contents and return the aliased vnode. The
1193 * caller is responsible for filling it with its new contents.
1194 */
1195struct vnode *
1196checkalias(nvp, nvp_rdev, mp)
1197	register struct vnode *nvp;
1198	dev_t nvp_rdev;
1199	struct mount *mp;
1200{
1201	struct proc *p = curproc;	/* XXX */
1202	struct vnode *vp;
1203	struct vnode **vpp;
1204
1205	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1206		return (NULLVP);
1207
1208	vpp = &speclisth[SPECHASH(nvp_rdev)];
1209loop:
1210	simple_lock(&spechash_slock);
1211	for (vp = *vpp; vp; vp = vp->v_specnext) {
1212		if (nvp_rdev != vp->v_rdev || nvp->v_type != vp->v_type)
1213			continue;
1214		/*
1215		 * Alias, but not in use, so flush it out.
1216		 * Only alias active device nodes.
1217		 * Not sure why we don't re-use this like we do below.
1218		 */
1219		simple_lock(&vp->v_interlock);
1220		if (vp->v_usecount == 0) {
1221			simple_unlock(&spechash_slock);
1222			vgonel(vp, p);
1223			goto loop;
1224		}
1225		if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK, p)) {
1226			/*
1227			 * It dissappeared, and we may have slept.
1228			 * Restart from the beginning
1229			 */
1230			simple_unlock(&spechash_slock);
1231			goto loop;
1232		}
1233		break;
1234	}
1235	/*
1236	 * It would be a lot clearer what is going on here if
1237	 * this had been expressed as:
1238	 * if ( vp && (vp->v_tag == VT_NULL))
1239	 * and the clauses had been swapped.
1240	 */
1241	if (vp == NULL || vp->v_tag != VT_NON) {
1242		/*
1243		 * Put the new vnode into the hash chain.
1244		 * and if there was an alias, connect them.
1245		 */
1246		MALLOC(nvp->v_specinfo, struct specinfo *,
1247		    sizeof(struct specinfo), M_VNODE, M_WAITOK);
1248		nvp->v_rdev = nvp_rdev;
1249		nvp->v_hashchain = vpp;
1250		nvp->v_specnext = *vpp;
1251		nvp->v_specmountpoint = NULL;
1252		simple_unlock(&spechash_slock);
1253		*vpp = nvp;
1254		if (vp != NULLVP) {
1255			nvp->v_flag |= VALIASED;
1256			vp->v_flag |= VALIASED;
1257			vput(vp);
1258		}
1259		return (NULLVP);
1260	}
1261	/*
1262	 * if ( vp && (vp->v_tag == VT_NULL))
1263	 * We have a vnode alias, but it is a trashed.
1264	 * Make it look like it's newley allocated. (by getnewvnode())
1265	 * The caller should use this instead.
1266	 */
1267	simple_unlock(&spechash_slock);
1268	VOP_UNLOCK(vp, 0, p);
1269	simple_lock(&vp->v_interlock);
1270	vclean(vp, 0, p);
1271	vp->v_op = nvp->v_op;
1272	vp->v_tag = nvp->v_tag;
1273	nvp->v_type = VNON;
1274	insmntque(vp, mp);
1275	return (vp);
1276}
1277
1278/*
1279 * Grab a particular vnode from the free list, increment its
1280 * reference count and lock it. The vnode lock bit is set the
1281 * vnode is being eliminated in vgone. The process is awakened
1282 * when the transition is completed, and an error returned to
1283 * indicate that the vnode is no longer usable (possibly having
1284 * been changed to a new file system type).
1285 */
1286int
1287vget(vp, flags, p)
1288	register struct vnode *vp;
1289	int flags;
1290	struct proc *p;
1291{
1292	int error;
1293
1294	/*
1295	 * If the vnode is in the process of being cleaned out for
1296	 * another use, we wait for the cleaning to finish and then
1297	 * return failure. Cleaning is determined by checking that
1298	 * the VXLOCK flag is set.
1299	 */
1300	if ((flags & LK_INTERLOCK) == 0) {
1301		simple_lock(&vp->v_interlock);
1302	}
1303	if (vp->v_flag & VXLOCK) {
1304		vp->v_flag |= VXWANT;
1305		simple_unlock(&vp->v_interlock);
1306		tsleep((caddr_t)vp, PINOD, "vget", 0);
1307		return (ENOENT);
1308	}
1309
1310	vp->v_usecount++;
1311
1312	if (VSHOULDBUSY(vp))
1313		vbusy(vp);
1314	if (flags & LK_TYPE_MASK) {
1315		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1316			/*
1317			 * must expand vrele here because we do not want
1318			 * to call VOP_INACTIVE if the reference count
1319			 * drops back to zero since it was never really
1320			 * active. We must remove it from the free list
1321			 * before sleeping so that multiple processes do
1322			 * not try to recycle it.
1323			 */
1324			simple_lock(&vp->v_interlock);
1325			vp->v_usecount--;
1326			if (VSHOULDFREE(vp))
1327				vfree(vp);
1328			simple_unlock(&vp->v_interlock);
1329		}
1330		return (error);
1331	}
1332	simple_unlock(&vp->v_interlock);
1333	return (0);
1334}
1335
1336void
1337vref(struct vnode *vp)
1338{
1339	simple_lock(&vp->v_interlock);
1340	vp->v_usecount++;
1341	simple_unlock(&vp->v_interlock);
1342}
1343
1344/*
1345 * Vnode put/release.
1346 * If count drops to zero, call inactive routine and return to freelist.
1347 */
1348void
1349vrele(vp)
1350	struct vnode *vp;
1351{
1352	struct proc *p = curproc;	/* XXX */
1353
1354	KASSERT(vp != NULL, ("vrele: null vp"));
1355
1356	simple_lock(&vp->v_interlock);
1357
1358	if (vp->v_usecount > 1) {
1359
1360		vp->v_usecount--;
1361		simple_unlock(&vp->v_interlock);
1362
1363		return;
1364	}
1365
1366	if (vp->v_usecount == 1) {
1367
1368		vp->v_usecount--;
1369		if (VSHOULDFREE(vp))
1370			vfree(vp);
1371	/*
1372	 * If we are doing a vput, the node is already locked, and we must
1373	 * call VOP_INACTIVE with the node locked.  So, in the case of
1374	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1375	 */
1376		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1377			VOP_INACTIVE(vp, p);
1378		}
1379
1380	} else {
1381#ifdef DIAGNOSTIC
1382		vprint("vrele: negative ref count", vp);
1383		simple_unlock(&vp->v_interlock);
1384#endif
1385		panic("vrele: negative ref cnt");
1386	}
1387}
1388
1389void
1390vput(vp)
1391	struct vnode *vp;
1392{
1393	struct proc *p = curproc;	/* XXX */
1394
1395	KASSERT(vp != NULL, ("vput: null vp"));
1396
1397	simple_lock(&vp->v_interlock);
1398
1399	if (vp->v_usecount > 1) {
1400
1401		vp->v_usecount--;
1402		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1403		return;
1404
1405	}
1406
1407	if (vp->v_usecount == 1) {
1408
1409		vp->v_usecount--;
1410		if (VSHOULDFREE(vp))
1411			vfree(vp);
1412	/*
1413	 * If we are doing a vput, the node is already locked, and we must
1414	 * call VOP_INACTIVE with the node locked.  So, in the case of
1415	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1416	 */
1417		simple_unlock(&vp->v_interlock);
1418		VOP_INACTIVE(vp, p);
1419
1420	} else {
1421#ifdef DIAGNOSTIC
1422		vprint("vput: negative ref count", vp);
1423#endif
1424		panic("vput: negative ref cnt");
1425	}
1426}
1427
1428/*
1429 * Somebody doesn't want the vnode recycled.
1430 */
1431void
1432vhold(vp)
1433	register struct vnode *vp;
1434{
1435	int s;
1436
1437  	s = splbio();
1438	vp->v_holdcnt++;
1439	if (VSHOULDBUSY(vp))
1440		vbusy(vp);
1441	splx(s);
1442}
1443
1444/*
1445 * One less who cares about this vnode.
1446 */
1447void
1448vdrop(vp)
1449	register struct vnode *vp;
1450{
1451	int s;
1452
1453	s = splbio();
1454	if (vp->v_holdcnt <= 0)
1455		panic("vdrop: holdcnt");
1456	vp->v_holdcnt--;
1457	if (VSHOULDFREE(vp))
1458		vfree(vp);
1459	splx(s);
1460}
1461
1462/*
1463 * Remove any vnodes in the vnode table belonging to mount point mp.
1464 *
1465 * If MNT_NOFORCE is specified, there should not be any active ones,
1466 * return error if any are found (nb: this is a user error, not a
1467 * system error). If MNT_FORCE is specified, detach any active vnodes
1468 * that are found.
1469 */
1470#ifdef DIAGNOSTIC
1471static int busyprt = 0;		/* print out busy vnodes */
1472SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1473#endif
1474
1475int
1476vflush(mp, skipvp, flags)
1477	struct mount *mp;
1478	struct vnode *skipvp;
1479	int flags;
1480{
1481	struct proc *p = curproc;	/* XXX */
1482	struct vnode *vp, *nvp;
1483	int busy = 0;
1484
1485	simple_lock(&mntvnode_slock);
1486loop:
1487	for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
1488		/*
1489		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1490		 * Start over if it has (it won't be on the list anymore).
1491		 */
1492		if (vp->v_mount != mp)
1493			goto loop;
1494		nvp = vp->v_mntvnodes.le_next;
1495		/*
1496		 * Skip over a selected vnode.
1497		 */
1498		if (vp == skipvp)
1499			continue;
1500
1501		simple_lock(&vp->v_interlock);
1502		/*
1503		 * Skip over a vnodes marked VSYSTEM.
1504		 */
1505		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1506			simple_unlock(&vp->v_interlock);
1507			continue;
1508		}
1509		/*
1510		 * If WRITECLOSE is set, only flush out regular file vnodes
1511		 * open for writing.
1512		 */
1513		if ((flags & WRITECLOSE) &&
1514		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1515			simple_unlock(&vp->v_interlock);
1516			continue;
1517		}
1518
1519		/*
1520		 * With v_usecount == 0, all we need to do is clear out the
1521		 * vnode data structures and we are done.
1522		 */
1523		if (vp->v_usecount == 0) {
1524			simple_unlock(&mntvnode_slock);
1525			vgonel(vp, p);
1526			simple_lock(&mntvnode_slock);
1527			continue;
1528		}
1529
1530		/*
1531		 * If FORCECLOSE is set, forcibly close the vnode. For block
1532		 * or character devices, revert to an anonymous device. For
1533		 * all other files, just kill them.
1534		 */
1535		if (flags & FORCECLOSE) {
1536			simple_unlock(&mntvnode_slock);
1537			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1538				vgonel(vp, p);
1539			} else {
1540				vclean(vp, 0, p);
1541				vp->v_op = spec_vnodeop_p;
1542				insmntque(vp, (struct mount *) 0);
1543			}
1544			simple_lock(&mntvnode_slock);
1545			continue;
1546		}
1547#ifdef DIAGNOSTIC
1548		if (busyprt)
1549			vprint("vflush: busy vnode", vp);
1550#endif
1551		simple_unlock(&vp->v_interlock);
1552		busy++;
1553	}
1554	simple_unlock(&mntvnode_slock);
1555	if (busy)
1556		return (EBUSY);
1557	return (0);
1558}
1559
1560/*
1561 * Disassociate the underlying file system from a vnode.
1562 */
1563static void
1564vclean(vp, flags, p)
1565	struct vnode *vp;
1566	int flags;
1567	struct proc *p;
1568{
1569	int active;
1570	vm_object_t obj;
1571
1572	/*
1573	 * Check to see if the vnode is in use. If so we have to reference it
1574	 * before we clean it out so that its count cannot fall to zero and
1575	 * generate a race against ourselves to recycle it.
1576	 */
1577	if ((active = vp->v_usecount))
1578		vp->v_usecount++;
1579
1580	/*
1581	 * Prevent the vnode from being recycled or brought into use while we
1582	 * clean it out.
1583	 */
1584	if (vp->v_flag & VXLOCK)
1585		panic("vclean: deadlock");
1586	vp->v_flag |= VXLOCK;
1587	/*
1588	 * Even if the count is zero, the VOP_INACTIVE routine may still
1589	 * have the object locked while it cleans it out. The VOP_LOCK
1590	 * ensures that the VOP_INACTIVE routine is done with its work.
1591	 * For active vnodes, it ensures that no other activity can
1592	 * occur while the underlying object is being cleaned out.
1593	 */
1594	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1595
1596	/*
1597	 * Clean out any buffers associated with the vnode.
1598	 */
1599	vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0);
1600	if ((obj = vp->v_object) != NULL) {
1601		if (obj->ref_count == 0) {
1602			/*
1603			 * This is a normal way of shutting down the object/vnode
1604			 * association.
1605			 */
1606			vm_object_terminate(obj);
1607		} else {
1608			/*
1609			 * Woe to the process that tries to page now :-).
1610			 */
1611			vm_pager_deallocate(obj);
1612		}
1613	}
1614
1615	/*
1616	 * If purging an active vnode, it must be closed and
1617	 * deactivated before being reclaimed. Note that the
1618	 * VOP_INACTIVE will unlock the vnode.
1619	 */
1620	if (active) {
1621		if (flags & DOCLOSE)
1622			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1623		VOP_INACTIVE(vp, p);
1624	} else {
1625		/*
1626		 * Any other processes trying to obtain this lock must first
1627		 * wait for VXLOCK to clear, then call the new lock operation.
1628		 */
1629		VOP_UNLOCK(vp, 0, p);
1630	}
1631	/*
1632	 * Reclaim the vnode.
1633	 */
1634	if (VOP_RECLAIM(vp, p))
1635		panic("vclean: cannot reclaim");
1636
1637	if (active)
1638		vrele(vp);
1639
1640	cache_purge(vp);
1641	if (vp->v_vnlock) {
1642#if 0 /* This is the only place we have LK_DRAINED in the entire kernel ??? */
1643#ifdef DIAGNOSTIC
1644		if ((vp->v_vnlock->lk_flags & LK_DRAINED) == 0)
1645			vprint("vclean: lock not drained", vp);
1646#endif
1647#endif
1648		FREE(vp->v_vnlock, M_VNODE);
1649		vp->v_vnlock = NULL;
1650	}
1651
1652	if (VSHOULDFREE(vp))
1653		vfree(vp);
1654
1655	/*
1656	 * Done with purge, notify sleepers of the grim news.
1657	 */
1658	vp->v_op = dead_vnodeop_p;
1659	vn_pollgone(vp);
1660	vp->v_tag = VT_NON;
1661	vp->v_flag &= ~VXLOCK;
1662	if (vp->v_flag & VXWANT) {
1663		vp->v_flag &= ~VXWANT;
1664		wakeup((caddr_t) vp);
1665	}
1666}
1667
1668/*
1669 * Eliminate all activity associated with the requested vnode
1670 * and with all vnodes aliased to the requested vnode.
1671 */
1672int
1673vop_revoke(ap)
1674	struct vop_revoke_args /* {
1675		struct vnode *a_vp;
1676		int a_flags;
1677	} */ *ap;
1678{
1679	struct vnode *vp, *vq;
1680	struct proc *p = curproc;	/* XXX */
1681
1682	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1683
1684	vp = ap->a_vp;
1685	simple_lock(&vp->v_interlock);
1686
1687	if (vp->v_flag & VALIASED) {
1688		/*
1689		 * If a vgone (or vclean) is already in progress,
1690		 * wait until it is done and return.
1691		 */
1692		if (vp->v_flag & VXLOCK) {
1693			vp->v_flag |= VXWANT;
1694			simple_unlock(&vp->v_interlock);
1695			tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1696			return (0);
1697		}
1698		/*
1699		 * Ensure that vp will not be vgone'd while we
1700		 * are eliminating its aliases.
1701		 */
1702		vp->v_flag |= VXLOCK;
1703		simple_unlock(&vp->v_interlock);
1704		while (vp->v_flag & VALIASED) {
1705			simple_lock(&spechash_slock);
1706			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
1707				if (vq->v_rdev != vp->v_rdev ||
1708				    vq->v_type != vp->v_type || vp == vq)
1709					continue;
1710				simple_unlock(&spechash_slock);
1711				vgone(vq);
1712				break;
1713			}
1714			if (vq == NULLVP) {
1715				simple_unlock(&spechash_slock);
1716			}
1717		}
1718		/*
1719		 * Remove the lock so that vgone below will
1720		 * really eliminate the vnode after which time
1721		 * vgone will awaken any sleepers.
1722		 */
1723		simple_lock(&vp->v_interlock);
1724		vp->v_flag &= ~VXLOCK;
1725		if (vp->v_flag & VXWANT) {
1726			vp->v_flag &= ~VXWANT;
1727			wakeup(vp);
1728		}
1729	}
1730	vgonel(vp, p);
1731	return (0);
1732}
1733
1734/*
1735 * Recycle an unused vnode to the front of the free list.
1736 * Release the passed interlock if the vnode will be recycled.
1737 */
1738int
1739vrecycle(vp, inter_lkp, p)
1740	struct vnode *vp;
1741	struct simplelock *inter_lkp;
1742	struct proc *p;
1743{
1744
1745	simple_lock(&vp->v_interlock);
1746	if (vp->v_usecount == 0) {
1747		if (inter_lkp) {
1748			simple_unlock(inter_lkp);
1749		}
1750		vgonel(vp, p);
1751		return (1);
1752	}
1753	simple_unlock(&vp->v_interlock);
1754	return (0);
1755}
1756
1757/*
1758 * Eliminate all activity associated with a vnode
1759 * in preparation for reuse.
1760 */
1761void
1762vgone(vp)
1763	register struct vnode *vp;
1764{
1765	struct proc *p = curproc;	/* XXX */
1766
1767	simple_lock(&vp->v_interlock);
1768	vgonel(vp, p);
1769}
1770
1771/*
1772 * vgone, with the vp interlock held.
1773 */
1774static void
1775vgonel(vp, p)
1776	struct vnode *vp;
1777	struct proc *p;
1778{
1779	int s;
1780	struct vnode *vq;
1781	struct vnode *vx;
1782
1783	/*
1784	 * If a vgone (or vclean) is already in progress,
1785	 * wait until it is done and return.
1786	 */
1787	if (vp->v_flag & VXLOCK) {
1788		vp->v_flag |= VXWANT;
1789		simple_unlock(&vp->v_interlock);
1790		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1791		return;
1792	}
1793
1794	/*
1795	 * Clean out the filesystem specific data.
1796	 */
1797	vclean(vp, DOCLOSE, p);
1798	simple_lock(&vp->v_interlock);
1799
1800	/*
1801	 * Delete from old mount point vnode list, if on one.
1802	 */
1803	if (vp->v_mount != NULL)
1804		insmntque(vp, (struct mount *)0);
1805	/*
1806	 * If special device, remove it from special device alias list
1807	 * if it is on one.
1808	 */
1809	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specinfo != 0) {
1810		simple_lock(&spechash_slock);
1811		if (*vp->v_hashchain == vp) {
1812			*vp->v_hashchain = vp->v_specnext;
1813		} else {
1814			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
1815				if (vq->v_specnext != vp)
1816					continue;
1817				vq->v_specnext = vp->v_specnext;
1818				break;
1819			}
1820			if (vq == NULL)
1821				panic("missing bdev");
1822		}
1823		if (vp->v_flag & VALIASED) {
1824			vx = NULL;
1825			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
1826				if (vq->v_rdev != vp->v_rdev ||
1827				    vq->v_type != vp->v_type)
1828					continue;
1829				if (vx)
1830					break;
1831				vx = vq;
1832			}
1833			if (vx == NULL)
1834				panic("missing alias");
1835			if (vq == NULL)
1836				vx->v_flag &= ~VALIASED;
1837			vp->v_flag &= ~VALIASED;
1838		}
1839		simple_unlock(&spechash_slock);
1840		FREE(vp->v_specinfo, M_VNODE);
1841		vp->v_specinfo = NULL;
1842	}
1843
1844	/*
1845	 * If it is on the freelist and not already at the head,
1846	 * move it to the head of the list. The test of the back
1847	 * pointer and the reference count of zero is because
1848	 * it will be removed from the free list by getnewvnode,
1849	 * but will not have its reference count incremented until
1850	 * after calling vgone. If the reference count were
1851	 * incremented first, vgone would (incorrectly) try to
1852	 * close the previous instance of the underlying object.
1853	 */
1854	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1855		s = splbio();
1856		simple_lock(&vnode_free_list_slock);
1857		if (vp->v_flag & VFREE) {
1858			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1859		} else if (vp->v_flag & VTBFREE) {
1860			TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
1861			vp->v_flag &= ~VTBFREE;
1862			freevnodes++;
1863		} else
1864			freevnodes++;
1865		vp->v_flag |= VFREE;
1866		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1867		simple_unlock(&vnode_free_list_slock);
1868		splx(s);
1869	}
1870
1871	vp->v_type = VBAD;
1872	simple_unlock(&vp->v_interlock);
1873}
1874
1875/*
1876 * Lookup a vnode by device number.
1877 */
1878int
1879vfinddev(dev, type, vpp)
1880	dev_t dev;
1881	enum vtype type;
1882	struct vnode **vpp;
1883{
1884	register struct vnode *vp;
1885	int rc = 0;
1886
1887	simple_lock(&spechash_slock);
1888	for (vp = speclisth[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
1889		if (dev != vp->v_rdev || type != vp->v_type)
1890			continue;
1891		*vpp = vp;
1892		rc = 1;
1893		break;
1894	}
1895	simple_unlock(&spechash_slock);
1896	return (rc);
1897}
1898
1899/*
1900 * Calculate the total number of references to a special device.
1901 */
1902int
1903vcount(vp)
1904	register struct vnode *vp;
1905{
1906	struct vnode *vq, *vnext;
1907	int count;
1908
1909loop:
1910	if ((vp->v_flag & VALIASED) == 0)
1911		return (vp->v_usecount);
1912	simple_lock(&spechash_slock);
1913	for (count = 0, vq = *vp->v_hashchain; vq; vq = vnext) {
1914		vnext = vq->v_specnext;
1915		if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type)
1916			continue;
1917		/*
1918		 * Alias, but not in use, so flush it out.
1919		 */
1920		if (vq->v_usecount == 0 && vq != vp) {
1921			simple_unlock(&spechash_slock);
1922			vgone(vq);
1923			goto loop;
1924		}
1925		count += vq->v_usecount;
1926	}
1927	simple_unlock(&spechash_slock);
1928	return (count);
1929}
1930/*
1931 * Print out a description of a vnode.
1932 */
1933static char *typename[] =
1934{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1935
1936void
1937vprint(label, vp)
1938	char *label;
1939	register struct vnode *vp;
1940{
1941	char buf[96];
1942
1943	if (label != NULL)
1944		printf("%s: %p: ", label, (void *)vp);
1945	else
1946		printf("%p: ", (void *)vp);
1947	printf("type %s, usecount %d, writecount %d, refcount %d,",
1948	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1949	    vp->v_holdcnt);
1950	buf[0] = '\0';
1951	if (vp->v_flag & VROOT)
1952		strcat(buf, "|VROOT");
1953	if (vp->v_flag & VTEXT)
1954		strcat(buf, "|VTEXT");
1955	if (vp->v_flag & VSYSTEM)
1956		strcat(buf, "|VSYSTEM");
1957	if (vp->v_flag & VXLOCK)
1958		strcat(buf, "|VXLOCK");
1959	if (vp->v_flag & VXWANT)
1960		strcat(buf, "|VXWANT");
1961	if (vp->v_flag & VBWAIT)
1962		strcat(buf, "|VBWAIT");
1963	if (vp->v_flag & VALIASED)
1964		strcat(buf, "|VALIASED");
1965	if (vp->v_flag & VDOOMED)
1966		strcat(buf, "|VDOOMED");
1967	if (vp->v_flag & VFREE)
1968		strcat(buf, "|VFREE");
1969	if (vp->v_flag & VOBJBUF)
1970		strcat(buf, "|VOBJBUF");
1971	if (buf[0] != '\0')
1972		printf(" flags (%s)", &buf[1]);
1973	if (vp->v_data == NULL) {
1974		printf("\n");
1975	} else {
1976		printf("\n\t");
1977		VOP_PRINT(vp);
1978	}
1979}
1980
1981#ifdef DDB
1982#include <ddb/ddb.h>
1983/*
1984 * List all of the locked vnodes in the system.
1985 * Called when debugging the kernel.
1986 */
1987DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1988{
1989	struct proc *p = curproc;	/* XXX */
1990	struct mount *mp, *nmp;
1991	struct vnode *vp;
1992
1993	printf("Locked vnodes\n");
1994	simple_lock(&mountlist_slock);
1995	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
1996		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
1997			nmp = mp->mnt_list.cqe_next;
1998			continue;
1999		}
2000		for (vp = mp->mnt_vnodelist.lh_first;
2001		     vp != NULL;
2002		     vp = vp->v_mntvnodes.le_next) {
2003			if (VOP_ISLOCKED(vp))
2004				vprint((char *)0, vp);
2005		}
2006		simple_lock(&mountlist_slock);
2007		nmp = mp->mnt_list.cqe_next;
2008		vfs_unbusy(mp, p);
2009	}
2010	simple_unlock(&mountlist_slock);
2011}
2012#endif
2013
2014/*
2015 * Top level filesystem related information gathering.
2016 */
2017static int	sysctl_ovfs_conf __P(SYSCTL_HANDLER_ARGS);
2018
2019static int
2020vfs_sysctl SYSCTL_HANDLER_ARGS
2021{
2022	int *name = (int *)arg1 - 1;	/* XXX */
2023	u_int namelen = arg2 + 1;	/* XXX */
2024	struct vfsconf *vfsp;
2025
2026#if 1 || defined(COMPAT_PRELITE2)
2027	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2028	if (namelen == 1)
2029		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2030#endif
2031
2032#ifdef notyet
2033	/* all sysctl names at this level are at least name and field */
2034	if (namelen < 2)
2035		return (ENOTDIR);		/* overloaded */
2036	if (name[0] != VFS_GENERIC) {
2037		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2038			if (vfsp->vfc_typenum == name[0])
2039				break;
2040		if (vfsp == NULL)
2041			return (EOPNOTSUPP);
2042		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2043		    oldp, oldlenp, newp, newlen, p));
2044	}
2045#endif
2046	switch (name[1]) {
2047	case VFS_MAXTYPENUM:
2048		if (namelen != 2)
2049			return (ENOTDIR);
2050		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2051	case VFS_CONF:
2052		if (namelen != 3)
2053			return (ENOTDIR);	/* overloaded */
2054		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2055			if (vfsp->vfc_typenum == name[2])
2056				break;
2057		if (vfsp == NULL)
2058			return (EOPNOTSUPP);
2059		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2060	}
2061	return (EOPNOTSUPP);
2062}
2063
2064SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2065	"Generic filesystem");
2066
2067#if 1 || defined(COMPAT_PRELITE2)
2068
2069static int
2070sysctl_ovfs_conf SYSCTL_HANDLER_ARGS
2071{
2072	int error;
2073	struct vfsconf *vfsp;
2074	struct ovfsconf ovfs;
2075
2076	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2077		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2078		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2079		ovfs.vfc_index = vfsp->vfc_typenum;
2080		ovfs.vfc_refcount = vfsp->vfc_refcount;
2081		ovfs.vfc_flags = vfsp->vfc_flags;
2082		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2083		if (error)
2084			return error;
2085	}
2086	return 0;
2087}
2088
2089#endif /* 1 || COMPAT_PRELITE2 */
2090
2091#if 0
2092#define KINFO_VNODESLOP	10
2093/*
2094 * Dump vnode list (via sysctl).
2095 * Copyout address of vnode followed by vnode.
2096 */
2097/* ARGSUSED */
2098static int
2099sysctl_vnode SYSCTL_HANDLER_ARGS
2100{
2101	struct proc *p = curproc;	/* XXX */
2102	struct mount *mp, *nmp;
2103	struct vnode *nvp, *vp;
2104	int error;
2105
2106#define VPTRSZ	sizeof (struct vnode *)
2107#define VNODESZ	sizeof (struct vnode)
2108
2109	req->lock = 0;
2110	if (!req->oldptr) /* Make an estimate */
2111		return (SYSCTL_OUT(req, 0,
2112			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2113
2114	simple_lock(&mountlist_slock);
2115	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
2116		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2117			nmp = mp->mnt_list.cqe_next;
2118			continue;
2119		}
2120again:
2121		simple_lock(&mntvnode_slock);
2122		for (vp = mp->mnt_vnodelist.lh_first;
2123		     vp != NULL;
2124		     vp = nvp) {
2125			/*
2126			 * Check that the vp is still associated with
2127			 * this filesystem.  RACE: could have been
2128			 * recycled onto the same filesystem.
2129			 */
2130			if (vp->v_mount != mp) {
2131				simple_unlock(&mntvnode_slock);
2132				goto again;
2133			}
2134			nvp = vp->v_mntvnodes.le_next;
2135			simple_unlock(&mntvnode_slock);
2136			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2137			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2138				return (error);
2139			simple_lock(&mntvnode_slock);
2140		}
2141		simple_unlock(&mntvnode_slock);
2142		simple_lock(&mountlist_slock);
2143		nmp = mp->mnt_list.cqe_next;
2144		vfs_unbusy(mp, p);
2145	}
2146	simple_unlock(&mountlist_slock);
2147
2148	return (0);
2149}
2150#endif
2151
2152/*
2153 * XXX
2154 * Exporting the vnode list on large systems causes them to crash.
2155 * Exporting the vnode list on medium systems causes sysctl to coredump.
2156 */
2157#if 0
2158SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2159	0, 0, sysctl_vnode, "S,vnode", "");
2160#endif
2161
2162/*
2163 * Check to see if a filesystem is mounted on a block device.
2164 */
2165int
2166vfs_mountedon(vp)
2167	struct vnode *vp;
2168{
2169	struct vnode *vq;
2170	int error = 0;
2171
2172	if (vp->v_specmountpoint != NULL)
2173		return (EBUSY);
2174	if (vp->v_flag & VALIASED) {
2175		simple_lock(&spechash_slock);
2176		for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2177			if (vq->v_rdev != vp->v_rdev ||
2178			    vq->v_type != vp->v_type)
2179				continue;
2180			if (vq->v_specmountpoint != NULL) {
2181				error = EBUSY;
2182				break;
2183			}
2184		}
2185		simple_unlock(&spechash_slock);
2186	}
2187	return (error);
2188}
2189
2190/*
2191 * Unmount all filesystems. The list is traversed in reverse order
2192 * of mounting to avoid dependencies.
2193 */
2194void
2195vfs_unmountall()
2196{
2197	struct mount *mp, *nmp;
2198	struct proc *p;
2199	int error;
2200
2201	if (curproc != NULL)
2202		p = curproc;
2203	else
2204		p = initproc;	/* XXX XXX should this be proc0? */
2205	/*
2206	 * Since this only runs when rebooting, it is not interlocked.
2207	 */
2208	for (mp = mountlist.cqh_last; mp != (void *)&mountlist; mp = nmp) {
2209		nmp = mp->mnt_list.cqe_prev;
2210		error = dounmount(mp, MNT_FORCE, p);
2211		if (error) {
2212			printf("unmount of %s failed (",
2213			    mp->mnt_stat.f_mntonname);
2214			if (error == EBUSY)
2215				printf("BUSY)\n");
2216			else
2217				printf("%d)\n", error);
2218		}
2219	}
2220}
2221
2222/*
2223 * Build hash lists of net addresses and hang them off the mount point.
2224 * Called by ufs_mount() to set up the lists of export addresses.
2225 */
2226static int
2227vfs_hang_addrlist(mp, nep, argp)
2228	struct mount *mp;
2229	struct netexport *nep;
2230	struct export_args *argp;
2231{
2232	register struct netcred *np;
2233	register struct radix_node_head *rnh;
2234	register int i;
2235	struct radix_node *rn;
2236	struct sockaddr *saddr, *smask = 0;
2237	struct domain *dom;
2238	int error;
2239
2240	if (argp->ex_addrlen == 0) {
2241		if (mp->mnt_flag & MNT_DEFEXPORTED)
2242			return (EPERM);
2243		np = &nep->ne_defexported;
2244		np->netc_exflags = argp->ex_flags;
2245		np->netc_anon = argp->ex_anon;
2246		np->netc_anon.cr_ref = 1;
2247		mp->mnt_flag |= MNT_DEFEXPORTED;
2248		return (0);
2249	}
2250	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2251	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2252	bzero((caddr_t) np, i);
2253	saddr = (struct sockaddr *) (np + 1);
2254	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2255		goto out;
2256	if (saddr->sa_len > argp->ex_addrlen)
2257		saddr->sa_len = argp->ex_addrlen;
2258	if (argp->ex_masklen) {
2259		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2260		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2261		if (error)
2262			goto out;
2263		if (smask->sa_len > argp->ex_masklen)
2264			smask->sa_len = argp->ex_masklen;
2265	}
2266	i = saddr->sa_family;
2267	if ((rnh = nep->ne_rtable[i]) == 0) {
2268		/*
2269		 * Seems silly to initialize every AF when most are not used,
2270		 * do so on demand here
2271		 */
2272		for (dom = domains; dom; dom = dom->dom_next)
2273			if (dom->dom_family == i && dom->dom_rtattach) {
2274				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2275				    dom->dom_rtoffset);
2276				break;
2277			}
2278		if ((rnh = nep->ne_rtable[i]) == 0) {
2279			error = ENOBUFS;
2280			goto out;
2281		}
2282	}
2283	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2284	    np->netc_rnodes);
2285	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2286		error = EPERM;
2287		goto out;
2288	}
2289	np->netc_exflags = argp->ex_flags;
2290	np->netc_anon = argp->ex_anon;
2291	np->netc_anon.cr_ref = 1;
2292	return (0);
2293out:
2294	free(np, M_NETADDR);
2295	return (error);
2296}
2297
2298/* ARGSUSED */
2299static int
2300vfs_free_netcred(rn, w)
2301	struct radix_node *rn;
2302	void *w;
2303{
2304	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2305
2306	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2307	free((caddr_t) rn, M_NETADDR);
2308	return (0);
2309}
2310
2311/*
2312 * Free the net address hash lists that are hanging off the mount points.
2313 */
2314static void
2315vfs_free_addrlist(nep)
2316	struct netexport *nep;
2317{
2318	register int i;
2319	register struct radix_node_head *rnh;
2320
2321	for (i = 0; i <= AF_MAX; i++)
2322		if ((rnh = nep->ne_rtable[i])) {
2323			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2324			    (caddr_t) rnh);
2325			free((caddr_t) rnh, M_RTABLE);
2326			nep->ne_rtable[i] = 0;
2327		}
2328}
2329
2330int
2331vfs_export(mp, nep, argp)
2332	struct mount *mp;
2333	struct netexport *nep;
2334	struct export_args *argp;
2335{
2336	int error;
2337
2338	if (argp->ex_flags & MNT_DELEXPORT) {
2339		if (mp->mnt_flag & MNT_EXPUBLIC) {
2340			vfs_setpublicfs(NULL, NULL, NULL);
2341			mp->mnt_flag &= ~MNT_EXPUBLIC;
2342		}
2343		vfs_free_addrlist(nep);
2344		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2345	}
2346	if (argp->ex_flags & MNT_EXPORTED) {
2347		if (argp->ex_flags & MNT_EXPUBLIC) {
2348			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2349				return (error);
2350			mp->mnt_flag |= MNT_EXPUBLIC;
2351		}
2352		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2353			return (error);
2354		mp->mnt_flag |= MNT_EXPORTED;
2355	}
2356	return (0);
2357}
2358
2359
2360/*
2361 * Set the publicly exported filesystem (WebNFS). Currently, only
2362 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2363 */
2364int
2365vfs_setpublicfs(mp, nep, argp)
2366	struct mount *mp;
2367	struct netexport *nep;
2368	struct export_args *argp;
2369{
2370	int error;
2371	struct vnode *rvp;
2372	char *cp;
2373
2374	/*
2375	 * mp == NULL -> invalidate the current info, the FS is
2376	 * no longer exported. May be called from either vfs_export
2377	 * or unmount, so check if it hasn't already been done.
2378	 */
2379	if (mp == NULL) {
2380		if (nfs_pub.np_valid) {
2381			nfs_pub.np_valid = 0;
2382			if (nfs_pub.np_index != NULL) {
2383				FREE(nfs_pub.np_index, M_TEMP);
2384				nfs_pub.np_index = NULL;
2385			}
2386		}
2387		return (0);
2388	}
2389
2390	/*
2391	 * Only one allowed at a time.
2392	 */
2393	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2394		return (EBUSY);
2395
2396	/*
2397	 * Get real filehandle for root of exported FS.
2398	 */
2399	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2400	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2401
2402	if ((error = VFS_ROOT(mp, &rvp)))
2403		return (error);
2404
2405	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2406		return (error);
2407
2408	vput(rvp);
2409
2410	/*
2411	 * If an indexfile was specified, pull it in.
2412	 */
2413	if (argp->ex_indexfile != NULL) {
2414		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2415		    M_WAITOK);
2416		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2417		    MAXNAMLEN, (size_t *)0);
2418		if (!error) {
2419			/*
2420			 * Check for illegal filenames.
2421			 */
2422			for (cp = nfs_pub.np_index; *cp; cp++) {
2423				if (*cp == '/') {
2424					error = EINVAL;
2425					break;
2426				}
2427			}
2428		}
2429		if (error) {
2430			FREE(nfs_pub.np_index, M_TEMP);
2431			return (error);
2432		}
2433	}
2434
2435	nfs_pub.np_mount = mp;
2436	nfs_pub.np_valid = 1;
2437	return (0);
2438}
2439
2440struct netcred *
2441vfs_export_lookup(mp, nep, nam)
2442	register struct mount *mp;
2443	struct netexport *nep;
2444	struct sockaddr *nam;
2445{
2446	register struct netcred *np;
2447	register struct radix_node_head *rnh;
2448	struct sockaddr *saddr;
2449
2450	np = NULL;
2451	if (mp->mnt_flag & MNT_EXPORTED) {
2452		/*
2453		 * Lookup in the export list first.
2454		 */
2455		if (nam != NULL) {
2456			saddr = nam;
2457			rnh = nep->ne_rtable[saddr->sa_family];
2458			if (rnh != NULL) {
2459				np = (struct netcred *)
2460					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2461							      rnh);
2462				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2463					np = NULL;
2464			}
2465		}
2466		/*
2467		 * If no address match, use the default if it exists.
2468		 */
2469		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2470			np = &nep->ne_defexported;
2471	}
2472	return (np);
2473}
2474
2475/*
2476 * perform msync on all vnodes under a mount point
2477 * the mount point must be locked.
2478 */
2479void
2480vfs_msync(struct mount *mp, int flags) {
2481	struct vnode *vp, *nvp;
2482	struct vm_object *obj;
2483	int anyio, tries;
2484
2485	tries = 5;
2486loop:
2487	anyio = 0;
2488	for (vp = mp->mnt_vnodelist.lh_first; vp != NULL; vp = nvp) {
2489
2490		nvp = vp->v_mntvnodes.le_next;
2491
2492		if (vp->v_mount != mp) {
2493			goto loop;
2494		}
2495
2496		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2497			continue;
2498
2499		if (flags != MNT_WAIT) {
2500			obj = vp->v_object;
2501			if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2502				continue;
2503			if (VOP_ISLOCKED(vp))
2504				continue;
2505		}
2506
2507		simple_lock(&vp->v_interlock);
2508		if (vp->v_object &&
2509		   (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
2510			if (!vget(vp,
2511				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2512				if (vp->v_object) {
2513					vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : 0);
2514					anyio = 1;
2515				}
2516				vput(vp);
2517			}
2518		} else {
2519			simple_unlock(&vp->v_interlock);
2520		}
2521	}
2522	if (anyio && (--tries > 0))
2523		goto loop;
2524}
2525
2526/*
2527 * Create the VM object needed for VMIO and mmap support.  This
2528 * is done for all VREG files in the system.  Some filesystems might
2529 * afford the additional metadata buffering capability of the
2530 * VMIO code by making the device node be VMIO mode also.
2531 *
2532 * vp must be locked when vfs_object_create is called.
2533 */
2534int
2535vfs_object_create(vp, p, cred)
2536	struct vnode *vp;
2537	struct proc *p;
2538	struct ucred *cred;
2539{
2540	struct vattr vat;
2541	vm_object_t object;
2542	int error = 0;
2543
2544	if ((vp->v_type != VREG) && (vp->v_type != VBLK))
2545		return 0;
2546
2547retry:
2548	if ((object = vp->v_object) == NULL) {
2549		if (vp->v_type == VREG) {
2550			if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
2551				goto retn;
2552			object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
2553		} else if (major(vp->v_rdev) < nblkdev &&
2554		    bdevsw[major(vp->v_rdev)] != NULL) {
2555			/*
2556			 * This simply allocates the biggest object possible
2557			 * for a VBLK vnode.  This should be fixed, but doesn't
2558			 * cause any problems (yet).
2559			 */
2560			object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
2561		} else {
2562			goto retn;
2563		}
2564		/*
2565		 * Dereference the reference we just created.  This assumes
2566		 * that the object is associated with the vp.
2567		 */
2568		object->ref_count--;
2569		vp->v_usecount--;
2570	} else {
2571		if (object->flags & OBJ_DEAD) {
2572			VOP_UNLOCK(vp, 0, p);
2573			tsleep(object, PVM, "vodead", 0);
2574			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
2575			goto retry;
2576		}
2577	}
2578
2579	KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
2580	vp->v_flag |= VOBJBUF;
2581
2582retn:
2583	return error;
2584}
2585
2586static void
2587vfree(vp)
2588	struct vnode *vp;
2589{
2590	int s;
2591
2592	s = splbio();
2593	simple_lock(&vnode_free_list_slock);
2594	if (vp->v_flag & VTBFREE) {
2595		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2596		vp->v_flag &= ~VTBFREE;
2597	}
2598	if (vp->v_flag & VAGE) {
2599		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2600	} else {
2601		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2602	}
2603	freevnodes++;
2604	simple_unlock(&vnode_free_list_slock);
2605	vp->v_flag &= ~VAGE;
2606	vp->v_flag |= VFREE;
2607	splx(s);
2608}
2609
2610void
2611vbusy(vp)
2612	struct vnode *vp;
2613{
2614	int s;
2615
2616	s = splbio();
2617	simple_lock(&vnode_free_list_slock);
2618	if (vp->v_flag & VTBFREE) {
2619		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2620		vp->v_flag &= ~VTBFREE;
2621	} else {
2622		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2623		freevnodes--;
2624	}
2625	simple_unlock(&vnode_free_list_slock);
2626	vp->v_flag &= ~(VFREE|VAGE);
2627	splx(s);
2628}
2629
2630/*
2631 * Record a process's interest in events which might happen to
2632 * a vnode.  Because poll uses the historic select-style interface
2633 * internally, this routine serves as both the ``check for any
2634 * pending events'' and the ``record my interest in future events''
2635 * functions.  (These are done together, while the lock is held,
2636 * to avoid race conditions.)
2637 */
2638int
2639vn_pollrecord(vp, p, events)
2640	struct vnode *vp;
2641	struct proc *p;
2642	short events;
2643{
2644	simple_lock(&vp->v_pollinfo.vpi_lock);
2645	if (vp->v_pollinfo.vpi_revents & events) {
2646		/*
2647		 * This leaves events we are not interested
2648		 * in available for the other process which
2649		 * which presumably had requested them
2650		 * (otherwise they would never have been
2651		 * recorded).
2652		 */
2653		events &= vp->v_pollinfo.vpi_revents;
2654		vp->v_pollinfo.vpi_revents &= ~events;
2655
2656		simple_unlock(&vp->v_pollinfo.vpi_lock);
2657		return events;
2658	}
2659	vp->v_pollinfo.vpi_events |= events;
2660	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2661	simple_unlock(&vp->v_pollinfo.vpi_lock);
2662	return 0;
2663}
2664
2665/*
2666 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2667 * it is possible for us to miss an event due to race conditions, but
2668 * that condition is expected to be rare, so for the moment it is the
2669 * preferred interface.
2670 */
2671void
2672vn_pollevent(vp, events)
2673	struct vnode *vp;
2674	short events;
2675{
2676	simple_lock(&vp->v_pollinfo.vpi_lock);
2677	if (vp->v_pollinfo.vpi_events & events) {
2678		/*
2679		 * We clear vpi_events so that we don't
2680		 * call selwakeup() twice if two events are
2681		 * posted before the polling process(es) is
2682		 * awakened.  This also ensures that we take at
2683		 * most one selwakeup() if the polling process
2684		 * is no longer interested.  However, it does
2685		 * mean that only one event can be noticed at
2686		 * a time.  (Perhaps we should only clear those
2687		 * event bits which we note?) XXX
2688		 */
2689		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2690		vp->v_pollinfo.vpi_revents |= events;
2691		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2692	}
2693	simple_unlock(&vp->v_pollinfo.vpi_lock);
2694}
2695
2696/*
2697 * Wake up anyone polling on vp because it is being revoked.
2698 * This depends on dead_poll() returning POLLHUP for correct
2699 * behavior.
2700 */
2701void
2702vn_pollgone(vp)
2703	struct vnode *vp;
2704{
2705	simple_lock(&vp->v_pollinfo.vpi_lock);
2706	if (vp->v_pollinfo.vpi_events) {
2707		vp->v_pollinfo.vpi_events = 0;
2708		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2709	}
2710	simple_unlock(&vp->v_pollinfo.vpi_lock);
2711}
2712
2713
2714
2715/*
2716 * Routine to create and manage a filesystem syncer vnode.
2717 */
2718#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2719static int	sync_fsync __P((struct  vop_fsync_args *));
2720static int	sync_inactive __P((struct  vop_inactive_args *));
2721static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2722#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2723#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2724static int	sync_print __P((struct vop_print_args *));
2725#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2726
2727static vop_t **sync_vnodeop_p;
2728static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2729	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2730	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2731	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2732	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2733	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2734	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2735	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2736	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2737	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2738	{ NULL, NULL }
2739};
2740static struct vnodeopv_desc sync_vnodeop_opv_desc =
2741	{ &sync_vnodeop_p, sync_vnodeop_entries };
2742
2743VNODEOP_SET(sync_vnodeop_opv_desc);
2744
2745/*
2746 * Create a new filesystem syncer vnode for the specified mount point.
2747 */
2748int
2749vfs_allocate_syncvnode(mp)
2750	struct mount *mp;
2751{
2752	struct vnode *vp;
2753	static long start, incr, next;
2754	int error;
2755
2756	/* Allocate a new vnode */
2757	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2758		mp->mnt_syncer = NULL;
2759		return (error);
2760	}
2761	vp->v_type = VNON;
2762	/*
2763	 * Place the vnode onto the syncer worklist. We attempt to
2764	 * scatter them about on the list so that they will go off
2765	 * at evenly distributed times even if all the filesystems
2766	 * are mounted at once.
2767	 */
2768	next += incr;
2769	if (next == 0 || next > syncer_maxdelay) {
2770		start /= 2;
2771		incr /= 2;
2772		if (start == 0) {
2773			start = syncer_maxdelay / 2;
2774			incr = syncer_maxdelay;
2775		}
2776		next = start;
2777	}
2778	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2779	mp->mnt_syncer = vp;
2780	return (0);
2781}
2782
2783/*
2784 * Do a lazy sync of the filesystem.
2785 */
2786static int
2787sync_fsync(ap)
2788	struct vop_fsync_args /* {
2789		struct vnode *a_vp;
2790		struct ucred *a_cred;
2791		int a_waitfor;
2792		struct proc *a_p;
2793	} */ *ap;
2794{
2795	struct vnode *syncvp = ap->a_vp;
2796	struct mount *mp = syncvp->v_mount;
2797	struct proc *p = ap->a_p;
2798	int asyncflag;
2799
2800	/*
2801	 * We only need to do something if this is a lazy evaluation.
2802	 */
2803	if (ap->a_waitfor != MNT_LAZY)
2804		return (0);
2805
2806	/*
2807	 * Move ourselves to the back of the sync list.
2808	 */
2809	vn_syncer_add_to_worklist(syncvp, syncdelay);
2810
2811	/*
2812	 * Walk the list of vnodes pushing all that are dirty and
2813	 * not already on the sync list.
2814	 */
2815	simple_lock(&mountlist_slock);
2816	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2817		simple_unlock(&mountlist_slock);
2818		return (0);
2819	}
2820	asyncflag = mp->mnt_flag & MNT_ASYNC;
2821	mp->mnt_flag &= ~MNT_ASYNC;
2822	vfs_msync(mp, MNT_NOWAIT);
2823	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2824	if (asyncflag)
2825		mp->mnt_flag |= MNT_ASYNC;
2826	vfs_unbusy(mp, p);
2827	return (0);
2828}
2829
2830/*
2831 * The syncer vnode is no referenced.
2832 */
2833static int
2834sync_inactive(ap)
2835	struct vop_inactive_args /* {
2836		struct vnode *a_vp;
2837		struct proc *a_p;
2838	} */ *ap;
2839{
2840
2841	vgone(ap->a_vp);
2842	return (0);
2843}
2844
2845/*
2846 * The syncer vnode is no longer needed and is being decommissioned.
2847 *
2848 * Modifications to the worklist must be protected at splbio().
2849 */
2850static int
2851sync_reclaim(ap)
2852	struct vop_reclaim_args /* {
2853		struct vnode *a_vp;
2854	} */ *ap;
2855{
2856	struct vnode *vp = ap->a_vp;
2857	int s;
2858
2859	s = splbio();
2860	vp->v_mount->mnt_syncer = NULL;
2861	if (vp->v_flag & VONWORKLST) {
2862		LIST_REMOVE(vp, v_synclist);
2863		vp->v_flag &= ~VONWORKLST;
2864	}
2865	splx(s);
2866
2867	return (0);
2868}
2869
2870/*
2871 * Print out a syncer vnode.
2872 */
2873static int
2874sync_print(ap)
2875	struct vop_print_args /* {
2876		struct vnode *a_vp;
2877	} */ *ap;
2878{
2879	struct vnode *vp = ap->a_vp;
2880
2881	printf("syncer vnode");
2882	if (vp->v_vnlock != NULL)
2883		lockmgr_printinfo(vp->v_vnlock);
2884	printf("\n");
2885	return (0);
2886}
2887