vfs_cluster.c revision 219699
1/*-
2 * Copyright (c) 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Modifications/enhancements:
5 * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/kern/vfs_cluster.c 219699 2011-03-16 16:22:59Z ivoras $");
36
37#include "opt_debug_cluster.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/proc.h>
43#include <sys/bio.h>
44#include <sys/buf.h>
45#include <sys/vnode.h>
46#include <sys/malloc.h>
47#include <sys/mount.h>
48#include <sys/resourcevar.h>
49#include <sys/vmmeter.h>
50#include <vm/vm.h>
51#include <vm/vm_object.h>
52#include <vm/vm_page.h>
53#include <sys/sysctl.h>
54
55#if defined(CLUSTERDEBUG)
56static int	rcluster= 0;
57SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0,
58    "Debug VFS clustering code");
59#endif
60
61static MALLOC_DEFINE(M_SEGMENT, "cl_savebuf", "cluster_save buffer");
62
63static struct cluster_save *
64	cluster_collectbufs(struct vnode *vp, struct buf *last_bp);
65static struct buf *
66	cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn,
67			 daddr_t blkno, long size, int run, struct buf *fbp);
68static void cluster_callback(struct buf *);
69
70static int write_behind = 1;
71SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0,
72    "Cluster write-behind; 0: disable, 1: enable, 2: backed off");
73
74static int read_max = 64;
75SYSCTL_INT(_vfs, OID_AUTO, read_max, CTLFLAG_RW, &read_max, 0,
76    "Cluster read-ahead max block count");
77
78/* Page expended to mark partially backed buffers */
79extern vm_page_t	bogus_page;
80
81/*
82 * Read data to a buf, including read-ahead if we find this to be beneficial.
83 * cluster_read replaces bread.
84 */
85int
86cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp)
87	struct vnode *vp;
88	u_quad_t filesize;
89	daddr_t lblkno;
90	long size;
91	struct ucred *cred;
92	long totread;
93	int seqcount;
94	struct buf **bpp;
95{
96	struct buf *bp, *rbp, *reqbp;
97	struct bufobj *bo;
98	daddr_t blkno, origblkno;
99	int maxra, racluster;
100	int error, ncontig;
101	int i;
102
103	error = 0;
104	bo = &vp->v_bufobj;
105
106	/*
107	 * Try to limit the amount of read-ahead by a few
108	 * ad-hoc parameters.  This needs work!!!
109	 */
110	racluster = vp->v_mount->mnt_iosize_max / size;
111	maxra = seqcount;
112	maxra = min(read_max, maxra);
113	maxra = min(nbuf/8, maxra);
114	if (((u_quad_t)(lblkno + maxra + 1) * size) > filesize)
115		maxra = (filesize / size) - lblkno;
116
117	/*
118	 * get the requested block
119	 */
120	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0, 0);
121	origblkno = lblkno;
122
123	/*
124	 * if it is in the cache, then check to see if the reads have been
125	 * sequential.  If they have, then try some read-ahead, otherwise
126	 * back-off on prospective read-aheads.
127	 */
128	if (bp->b_flags & B_CACHE) {
129		if (!seqcount) {
130			return 0;
131		} else if ((bp->b_flags & B_RAM) == 0) {
132			return 0;
133		} else {
134			bp->b_flags &= ~B_RAM;
135			BO_LOCK(bo);
136			for (i = 1; i < maxra; i++) {
137				/*
138				 * Stop if the buffer does not exist or it
139				 * is invalid (about to go away?)
140				 */
141				rbp = gbincore(&vp->v_bufobj, lblkno+i);
142				if (rbp == NULL || (rbp->b_flags & B_INVAL))
143					break;
144
145				/*
146				 * Set another read-ahead mark so we know
147				 * to check again. (If we can lock the
148				 * buffer without waiting)
149				 */
150				if ((((i % racluster) == (racluster - 1)) ||
151				    (i == (maxra - 1)))
152				    && (0 == BUF_LOCK(rbp,
153					LK_EXCLUSIVE | LK_NOWAIT, NULL))) {
154					rbp->b_flags |= B_RAM;
155					BUF_UNLOCK(rbp);
156				}
157			}
158			BO_UNLOCK(bo);
159			if (i >= maxra) {
160				return 0;
161			}
162			lblkno += i;
163		}
164		reqbp = bp = NULL;
165	/*
166	 * If it isn't in the cache, then get a chunk from
167	 * disk if sequential, otherwise just get the block.
168	 */
169	} else {
170		off_t firstread = bp->b_offset;
171		int nblks;
172
173		KASSERT(bp->b_offset != NOOFFSET,
174		    ("cluster_read: no buffer offset"));
175
176		ncontig = 0;
177
178		/*
179		 * Compute the total number of blocks that we should read
180		 * synchronously.
181		 */
182		if (firstread + totread > filesize)
183			totread = filesize - firstread;
184		nblks = howmany(totread, size);
185		if (nblks > racluster)
186			nblks = racluster;
187
188		/*
189		 * Now compute the number of contiguous blocks.
190		 */
191		if (nblks > 1) {
192	    		error = VOP_BMAP(vp, lblkno, NULL,
193				&blkno, &ncontig, NULL);
194			/*
195			 * If this failed to map just do the original block.
196			 */
197			if (error || blkno == -1)
198				ncontig = 0;
199		}
200
201		/*
202		 * If we have contiguous data available do a cluster
203		 * otherwise just read the requested block.
204		 */
205		if (ncontig) {
206			/* Account for our first block. */
207			ncontig = min(ncontig + 1, nblks);
208			if (ncontig < nblks)
209				nblks = ncontig;
210			bp = cluster_rbuild(vp, filesize, lblkno,
211				blkno, size, nblks, bp);
212			lblkno += (bp->b_bufsize / size);
213		} else {
214			bp->b_flags |= B_RAM;
215			bp->b_iocmd = BIO_READ;
216			lblkno += 1;
217		}
218	}
219
220	/*
221	 * handle the synchronous read so that it is available ASAP.
222	 */
223	if (bp) {
224		if ((bp->b_flags & B_CLUSTER) == 0) {
225			vfs_busy_pages(bp, 0);
226		}
227		bp->b_flags &= ~B_INVAL;
228		bp->b_ioflags &= ~BIO_ERROR;
229		if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL)
230			BUF_KERNPROC(bp);
231		bp->b_iooffset = dbtob(bp->b_blkno);
232		bstrategy(bp);
233		curthread->td_ru.ru_inblock++;
234	}
235
236	/*
237	 * If we have been doing sequential I/O, then do some read-ahead.
238	 */
239	while (lblkno < (origblkno + maxra)) {
240		error = VOP_BMAP(vp, lblkno, NULL, &blkno, &ncontig, NULL);
241		if (error)
242			break;
243
244		if (blkno == -1)
245			break;
246
247		/*
248		 * We could throttle ncontig here by maxra but we might as
249		 * well read the data if it is contiguous.  We're throttled
250		 * by racluster anyway.
251		 */
252		if (ncontig) {
253			ncontig = min(ncontig + 1, racluster);
254			rbp = cluster_rbuild(vp, filesize, lblkno, blkno,
255				size, ncontig, NULL);
256			lblkno += (rbp->b_bufsize / size);
257			if (rbp->b_flags & B_DELWRI) {
258				bqrelse(rbp);
259				continue;
260			}
261		} else {
262			rbp = getblk(vp, lblkno, size, 0, 0, 0);
263			lblkno += 1;
264			if (rbp->b_flags & B_DELWRI) {
265				bqrelse(rbp);
266				continue;
267			}
268			rbp->b_flags |= B_ASYNC | B_RAM;
269			rbp->b_iocmd = BIO_READ;
270			rbp->b_blkno = blkno;
271		}
272		if (rbp->b_flags & B_CACHE) {
273			rbp->b_flags &= ~B_ASYNC;
274			bqrelse(rbp);
275			continue;
276		}
277		if ((rbp->b_flags & B_CLUSTER) == 0) {
278			vfs_busy_pages(rbp, 0);
279		}
280		rbp->b_flags &= ~B_INVAL;
281		rbp->b_ioflags &= ~BIO_ERROR;
282		if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL)
283			BUF_KERNPROC(rbp);
284		rbp->b_iooffset = dbtob(rbp->b_blkno);
285		bstrategy(rbp);
286		curthread->td_ru.ru_inblock++;
287	}
288
289	if (reqbp)
290		return (bufwait(reqbp));
291	else
292		return (error);
293}
294
295/*
296 * If blocks are contiguous on disk, use this to provide clustered
297 * read ahead.  We will read as many blocks as possible sequentially
298 * and then parcel them up into logical blocks in the buffer hash table.
299 */
300static struct buf *
301cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp)
302	struct vnode *vp;
303	u_quad_t filesize;
304	daddr_t lbn;
305	daddr_t blkno;
306	long size;
307	int run;
308	struct buf *fbp;
309{
310	struct bufobj *bo;
311	struct buf *bp, *tbp;
312	daddr_t bn;
313	off_t off;
314	long tinc, tsize;
315	int i, inc, j, toff;
316
317	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
318	    ("cluster_rbuild: size %ld != filesize %jd\n",
319	    size, (intmax_t)vp->v_mount->mnt_stat.f_iosize));
320
321	/*
322	 * avoid a division
323	 */
324	while ((u_quad_t) size * (lbn + run) > filesize) {
325		--run;
326	}
327
328	if (fbp) {
329		tbp = fbp;
330		tbp->b_iocmd = BIO_READ;
331	} else {
332		tbp = getblk(vp, lbn, size, 0, 0, 0);
333		if (tbp->b_flags & B_CACHE)
334			return tbp;
335		tbp->b_flags |= B_ASYNC | B_RAM;
336		tbp->b_iocmd = BIO_READ;
337	}
338	tbp->b_blkno = blkno;
339	if( (tbp->b_flags & B_MALLOC) ||
340		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
341		return tbp;
342
343	bp = trypbuf(&cluster_pbuf_freecnt);
344	if (bp == 0)
345		return tbp;
346
347	/*
348	 * We are synthesizing a buffer out of vm_page_t's, but
349	 * if the block size is not page aligned then the starting
350	 * address may not be either.  Inherit the b_data offset
351	 * from the original buffer.
352	 */
353	bp->b_data = (char *)((vm_offset_t)bp->b_data |
354	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
355	bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO;
356	bp->b_iocmd = BIO_READ;
357	bp->b_iodone = cluster_callback;
358	bp->b_blkno = blkno;
359	bp->b_lblkno = lbn;
360	bp->b_offset = tbp->b_offset;
361	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
362	pbgetvp(vp, bp);
363
364	TAILQ_INIT(&bp->b_cluster.cluster_head);
365
366	bp->b_bcount = 0;
367	bp->b_bufsize = 0;
368	bp->b_npages = 0;
369
370	inc = btodb(size);
371	bo = &vp->v_bufobj;
372	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
373		if (i != 0) {
374			if ((bp->b_npages * PAGE_SIZE) +
375			    round_page(size) > vp->v_mount->mnt_iosize_max) {
376				break;
377			}
378
379			tbp = getblk(vp, lbn + i, size, 0, 0, GB_LOCK_NOWAIT);
380
381			/* Don't wait around for locked bufs. */
382			if (tbp == NULL)
383				break;
384
385			/*
386			 * Stop scanning if the buffer is fully valid
387			 * (marked B_CACHE), or locked (may be doing a
388			 * background write), or if the buffer is not
389			 * VMIO backed.  The clustering code can only deal
390			 * with VMIO-backed buffers.
391			 */
392			BO_LOCK(bo);
393			if ((tbp->b_vflags & BV_BKGRDINPROG) ||
394			    (tbp->b_flags & B_CACHE) ||
395			    (tbp->b_flags & B_VMIO) == 0) {
396				BO_UNLOCK(bo);
397				bqrelse(tbp);
398				break;
399			}
400			BO_UNLOCK(bo);
401
402			/*
403			 * The buffer must be completely invalid in order to
404			 * take part in the cluster.  If it is partially valid
405			 * then we stop.
406			 */
407			off = tbp->b_offset;
408			tsize = size;
409			VM_OBJECT_LOCK(tbp->b_bufobj->bo_object);
410			for (j = 0; tsize > 0; j++) {
411				toff = off & PAGE_MASK;
412				tinc = tsize;
413				if (toff + tinc > PAGE_SIZE)
414					tinc = PAGE_SIZE - toff;
415				VM_OBJECT_LOCK_ASSERT(tbp->b_pages[j]->object,
416				    MA_OWNED);
417				if ((tbp->b_pages[j]->valid &
418				    vm_page_bits(toff, tinc)) != 0)
419					break;
420				off += tinc;
421				tsize -= tinc;
422			}
423			VM_OBJECT_UNLOCK(tbp->b_bufobj->bo_object);
424			if (tsize > 0) {
425				bqrelse(tbp);
426				break;
427			}
428
429			/*
430			 * Set a read-ahead mark as appropriate
431			 */
432			if ((fbp && (i == 1)) || (i == (run - 1)))
433				tbp->b_flags |= B_RAM;
434
435			/*
436			 * Set the buffer up for an async read (XXX should
437			 * we do this only if we do not wind up brelse()ing?).
438			 * Set the block number if it isn't set, otherwise
439			 * if it is make sure it matches the block number we
440			 * expect.
441			 */
442			tbp->b_flags |= B_ASYNC;
443			tbp->b_iocmd = BIO_READ;
444			if (tbp->b_blkno == tbp->b_lblkno) {
445				tbp->b_blkno = bn;
446			} else if (tbp->b_blkno != bn) {
447				brelse(tbp);
448				break;
449			}
450		}
451		/*
452		 * XXX fbp from caller may not be B_ASYNC, but we are going
453		 * to biodone() it in cluster_callback() anyway
454		 */
455		BUF_KERNPROC(tbp);
456		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
457			tbp, b_cluster.cluster_entry);
458		VM_OBJECT_LOCK(tbp->b_bufobj->bo_object);
459		for (j = 0; j < tbp->b_npages; j += 1) {
460			vm_page_t m;
461			m = tbp->b_pages[j];
462			vm_page_io_start(m);
463			vm_object_pip_add(m->object, 1);
464			if ((bp->b_npages == 0) ||
465				(bp->b_pages[bp->b_npages-1] != m)) {
466				bp->b_pages[bp->b_npages] = m;
467				bp->b_npages++;
468			}
469			if (m->valid == VM_PAGE_BITS_ALL)
470				tbp->b_pages[j] = bogus_page;
471		}
472		VM_OBJECT_UNLOCK(tbp->b_bufobj->bo_object);
473		/*
474		 * Don't inherit tbp->b_bufsize as it may be larger due to
475		 * a non-page-aligned size.  Instead just aggregate using
476		 * 'size'.
477		 */
478		if (tbp->b_bcount != size)
479			printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
480		if (tbp->b_bufsize != size)
481			printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
482		bp->b_bcount += size;
483		bp->b_bufsize += size;
484	}
485
486	/*
487	 * Fully valid pages in the cluster are already good and do not need
488	 * to be re-read from disk.  Replace the page with bogus_page
489	 */
490	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
491	for (j = 0; j < bp->b_npages; j++) {
492		VM_OBJECT_LOCK_ASSERT(bp->b_pages[j]->object, MA_OWNED);
493		if (bp->b_pages[j]->valid == VM_PAGE_BITS_ALL)
494			bp->b_pages[j] = bogus_page;
495	}
496	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
497	if (bp->b_bufsize > bp->b_kvasize)
498		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
499		    bp->b_bufsize, bp->b_kvasize);
500	bp->b_kvasize = bp->b_bufsize;
501
502	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
503		(vm_page_t *)bp->b_pages, bp->b_npages);
504	return (bp);
505}
506
507/*
508 * Cleanup after a clustered read or write.
509 * This is complicated by the fact that any of the buffers might have
510 * extra memory (if there were no empty buffer headers at allocbuf time)
511 * that we will need to shift around.
512 */
513static void
514cluster_callback(bp)
515	struct buf *bp;
516{
517	struct buf *nbp, *tbp;
518	int error = 0;
519
520	/*
521	 * Must propogate errors to all the components.
522	 */
523	if (bp->b_ioflags & BIO_ERROR)
524		error = bp->b_error;
525
526	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
527	/*
528	 * Move memory from the large cluster buffer into the component
529	 * buffers and mark IO as done on these.
530	 */
531	for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
532		tbp; tbp = nbp) {
533		nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
534		if (error) {
535			tbp->b_ioflags |= BIO_ERROR;
536			tbp->b_error = error;
537		} else {
538			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
539			tbp->b_flags &= ~B_INVAL;
540			tbp->b_ioflags &= ~BIO_ERROR;
541			/*
542			 * XXX the bdwrite()/bqrelse() issued during
543			 * cluster building clears B_RELBUF (see bqrelse()
544			 * comment).  If direct I/O was specified, we have
545			 * to restore it here to allow the buffer and VM
546			 * to be freed.
547			 */
548			if (tbp->b_flags & B_DIRECT)
549				tbp->b_flags |= B_RELBUF;
550		}
551		bufdone(tbp);
552	}
553	pbrelvp(bp);
554	relpbuf(bp, &cluster_pbuf_freecnt);
555}
556
557/*
558 *	cluster_wbuild_wb:
559 *
560 *	Implement modified write build for cluster.
561 *
562 *		write_behind = 0	write behind disabled
563 *		write_behind = 1	write behind normal (default)
564 *		write_behind = 2	write behind backed-off
565 */
566
567static __inline int
568cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len)
569{
570	int r = 0;
571
572	switch(write_behind) {
573	case 2:
574		if (start_lbn < len)
575			break;
576		start_lbn -= len;
577		/* FALLTHROUGH */
578	case 1:
579		r = cluster_wbuild(vp, size, start_lbn, len);
580		/* FALLTHROUGH */
581	default:
582		/* FALLTHROUGH */
583		break;
584	}
585	return(r);
586}
587
588/*
589 * Do clustered write for FFS.
590 *
591 * Three cases:
592 *	1. Write is not sequential (write asynchronously)
593 *	Write is sequential:
594 *	2.	beginning of cluster - begin cluster
595 *	3.	middle of a cluster - add to cluster
596 *	4.	end of a cluster - asynchronously write cluster
597 */
598void
599cluster_write(struct vnode *vp, struct buf *bp, u_quad_t filesize, int seqcount)
600{
601	daddr_t lbn;
602	int maxclen, cursize;
603	int lblocksize;
604	int async;
605
606	if (vp->v_type == VREG) {
607		async = vp->v_mount->mnt_kern_flag & MNTK_ASYNC;
608		lblocksize = vp->v_mount->mnt_stat.f_iosize;
609	} else {
610		async = 0;
611		lblocksize = bp->b_bufsize;
612	}
613	lbn = bp->b_lblkno;
614	KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
615
616	/* Initialize vnode to beginning of file. */
617	if (lbn == 0)
618		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
619
620	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
621	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
622		maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
623		if (vp->v_clen != 0) {
624			/*
625			 * Next block is not sequential.
626			 *
627			 * If we are not writing at end of file, the process
628			 * seeked to another point in the file since its last
629			 * write, or we have reached our maximum cluster size,
630			 * then push the previous cluster. Otherwise try
631			 * reallocating to make it sequential.
632			 *
633			 * Change to algorithm: only push previous cluster if
634			 * it was sequential from the point of view of the
635			 * seqcount heuristic, otherwise leave the buffer
636			 * intact so we can potentially optimize the I/O
637			 * later on in the buf_daemon or update daemon
638			 * flush.
639			 */
640			cursize = vp->v_lastw - vp->v_cstart + 1;
641			if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
642			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
643				if (!async && seqcount > 0) {
644					cluster_wbuild_wb(vp, lblocksize,
645						vp->v_cstart, cursize);
646				}
647			} else {
648				struct buf **bpp, **endbp;
649				struct cluster_save *buflist;
650
651				buflist = cluster_collectbufs(vp, bp);
652				endbp = &buflist->bs_children
653				    [buflist->bs_nchildren - 1];
654				if (VOP_REALLOCBLKS(vp, buflist)) {
655					/*
656					 * Failed, push the previous cluster
657					 * if *really* writing sequentially
658					 * in the logical file (seqcount > 1),
659					 * otherwise delay it in the hopes that
660					 * the low level disk driver can
661					 * optimize the write ordering.
662					 */
663					for (bpp = buflist->bs_children;
664					     bpp < endbp; bpp++)
665						brelse(*bpp);
666					free(buflist, M_SEGMENT);
667					if (seqcount > 1) {
668						cluster_wbuild_wb(vp,
669						    lblocksize, vp->v_cstart,
670						    cursize);
671					}
672				} else {
673					/*
674					 * Succeeded, keep building cluster.
675					 */
676					for (bpp = buflist->bs_children;
677					     bpp <= endbp; bpp++)
678						bdwrite(*bpp);
679					free(buflist, M_SEGMENT);
680					vp->v_lastw = lbn;
681					vp->v_lasta = bp->b_blkno;
682					return;
683				}
684			}
685		}
686		/*
687		 * Consider beginning a cluster. If at end of file, make
688		 * cluster as large as possible, otherwise find size of
689		 * existing cluster.
690		 */
691		if ((vp->v_type == VREG) &&
692			((u_quad_t) bp->b_offset + lblocksize) != filesize &&
693		    (bp->b_blkno == bp->b_lblkno) &&
694		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
695		     bp->b_blkno == -1)) {
696			bawrite(bp);
697			vp->v_clen = 0;
698			vp->v_lasta = bp->b_blkno;
699			vp->v_cstart = lbn + 1;
700			vp->v_lastw = lbn;
701			return;
702		}
703		vp->v_clen = maxclen;
704		if (!async && maxclen == 0) {	/* I/O not contiguous */
705			vp->v_cstart = lbn + 1;
706			bawrite(bp);
707		} else {	/* Wait for rest of cluster */
708			vp->v_cstart = lbn;
709			bdwrite(bp);
710		}
711	} else if (lbn == vp->v_cstart + vp->v_clen) {
712		/*
713		 * At end of cluster, write it out if seqcount tells us we
714		 * are operating sequentially, otherwise let the buf or
715		 * update daemon handle it.
716		 */
717		bdwrite(bp);
718		if (seqcount > 1)
719			cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1);
720		vp->v_clen = 0;
721		vp->v_cstart = lbn + 1;
722	} else if (vm_page_count_severe()) {
723		/*
724		 * We are low on memory, get it going NOW
725		 */
726		bawrite(bp);
727	} else {
728		/*
729		 * In the middle of a cluster, so just delay the I/O for now.
730		 */
731		bdwrite(bp);
732	}
733	vp->v_lastw = lbn;
734	vp->v_lasta = bp->b_blkno;
735}
736
737
738/*
739 * This is an awful lot like cluster_rbuild...wish they could be combined.
740 * The last lbn argument is the current block on which I/O is being
741 * performed.  Check to see that it doesn't fall in the middle of
742 * the current block (if last_bp == NULL).
743 */
744int
745cluster_wbuild(vp, size, start_lbn, len)
746	struct vnode *vp;
747	long size;
748	daddr_t start_lbn;
749	int len;
750{
751	struct buf *bp, *tbp;
752	struct bufobj *bo;
753	int i, j;
754	int totalwritten = 0;
755	int dbsize = btodb(size);
756
757	bo = &vp->v_bufobj;
758	while (len > 0) {
759		/*
760		 * If the buffer is not delayed-write (i.e. dirty), or it
761		 * is delayed-write but either locked or inval, it cannot
762		 * partake in the clustered write.
763		 */
764		BO_LOCK(bo);
765		if ((tbp = gbincore(&vp->v_bufobj, start_lbn)) == NULL ||
766		    (tbp->b_vflags & BV_BKGRDINPROG)) {
767			BO_UNLOCK(bo);
768			++start_lbn;
769			--len;
770			continue;
771		}
772		if (BUF_LOCK(tbp,
773		    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, BO_MTX(bo))) {
774			++start_lbn;
775			--len;
776			continue;
777		}
778		if ((tbp->b_flags & (B_INVAL | B_DELWRI)) != B_DELWRI) {
779			BUF_UNLOCK(tbp);
780			++start_lbn;
781			--len;
782			continue;
783		}
784		if (tbp->b_pin_count >  0) {
785			BUF_UNLOCK(tbp);
786			++start_lbn;
787			--len;
788			continue;
789		}
790		bremfree(tbp);
791		tbp->b_flags &= ~B_DONE;
792
793		/*
794		 * Extra memory in the buffer, punt on this buffer.
795		 * XXX we could handle this in most cases, but we would
796		 * have to push the extra memory down to after our max
797		 * possible cluster size and then potentially pull it back
798		 * up if the cluster was terminated prematurely--too much
799		 * hassle.
800		 */
801		if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) !=
802		     (B_CLUSTEROK | B_VMIO)) ||
803		  (tbp->b_bcount != tbp->b_bufsize) ||
804		  (tbp->b_bcount != size) ||
805		  (len == 1) ||
806		  ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
807			totalwritten += tbp->b_bufsize;
808			bawrite(tbp);
809			++start_lbn;
810			--len;
811			continue;
812		}
813
814		/*
815		 * We got a pbuf to make the cluster in.
816		 * so initialise it.
817		 */
818		TAILQ_INIT(&bp->b_cluster.cluster_head);
819		bp->b_bcount = 0;
820		bp->b_bufsize = 0;
821		bp->b_npages = 0;
822		if (tbp->b_wcred != NOCRED)
823			bp->b_wcred = crhold(tbp->b_wcred);
824
825		bp->b_blkno = tbp->b_blkno;
826		bp->b_lblkno = tbp->b_lblkno;
827		bp->b_offset = tbp->b_offset;
828
829		/*
830		 * We are synthesizing a buffer out of vm_page_t's, but
831		 * if the block size is not page aligned then the starting
832		 * address may not be either.  Inherit the b_data offset
833		 * from the original buffer.
834		 */
835		bp->b_data = (char *)((vm_offset_t)bp->b_data |
836		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
837		bp->b_flags |= B_CLUSTER |
838				(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT));
839		bp->b_iodone = cluster_callback;
840		pbgetvp(vp, bp);
841		/*
842		 * From this location in the file, scan forward to see
843		 * if there are buffers with adjacent data that need to
844		 * be written as well.
845		 */
846		for (i = 0; i < len; ++i, ++start_lbn) {
847			if (i != 0) { /* If not the first buffer */
848				/*
849				 * If the adjacent data is not even in core it
850				 * can't need to be written.
851				 */
852				BO_LOCK(bo);
853				if ((tbp = gbincore(bo, start_lbn)) == NULL ||
854				    (tbp->b_vflags & BV_BKGRDINPROG)) {
855					BO_UNLOCK(bo);
856					break;
857				}
858
859				/*
860				 * If it IS in core, but has different
861				 * characteristics, or is locked (which
862				 * means it could be undergoing a background
863				 * I/O or be in a weird state), then don't
864				 * cluster with it.
865				 */
866				if (BUF_LOCK(tbp,
867				    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK,
868				    BO_MTX(bo)))
869					break;
870
871				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
872				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
873				    != (B_DELWRI | B_CLUSTEROK |
874				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
875				    tbp->b_wcred != bp->b_wcred) {
876					BUF_UNLOCK(tbp);
877					break;
878				}
879
880				/*
881				 * Check that the combined cluster
882				 * would make sense with regard to pages
883				 * and would not be too large
884				 */
885				if ((tbp->b_bcount != size) ||
886				  ((bp->b_blkno + (dbsize * i)) !=
887				    tbp->b_blkno) ||
888				  ((tbp->b_npages + bp->b_npages) >
889				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
890					BUF_UNLOCK(tbp);
891					break;
892				}
893
894				/*
895				 * Do not pull in pinned buffers.
896				 */
897				if (tbp->b_pin_count > 0) {
898					BUF_UNLOCK(tbp);
899					break;
900				}
901
902				/*
903				 * Ok, it's passed all the tests,
904				 * so remove it from the free list
905				 * and mark it busy. We will use it.
906				 */
907				bremfree(tbp);
908				tbp->b_flags &= ~B_DONE;
909			} /* end of code for non-first buffers only */
910			/*
911			 * If the IO is via the VM then we do some
912			 * special VM hackery (yuck).  Since the buffer's
913			 * block size may not be page-aligned it is possible
914			 * for a page to be shared between two buffers.  We
915			 * have to get rid of the duplication when building
916			 * the cluster.
917			 */
918			if (tbp->b_flags & B_VMIO) {
919				vm_page_t m;
920
921				VM_OBJECT_LOCK(tbp->b_bufobj->bo_object);
922				if (i != 0) { /* if not first buffer */
923					for (j = 0; j < tbp->b_npages; j += 1) {
924						m = tbp->b_pages[j];
925						if (m->oflags & VPO_BUSY) {
926							VM_OBJECT_UNLOCK(
927							    tbp->b_object);
928							bqrelse(tbp);
929							goto finishcluster;
930						}
931					}
932				}
933				for (j = 0; j < tbp->b_npages; j += 1) {
934					m = tbp->b_pages[j];
935					vm_page_io_start(m);
936					vm_object_pip_add(m->object, 1);
937					if ((bp->b_npages == 0) ||
938					  (bp->b_pages[bp->b_npages - 1] != m)) {
939						bp->b_pages[bp->b_npages] = m;
940						bp->b_npages++;
941					}
942				}
943				VM_OBJECT_UNLOCK(tbp->b_bufobj->bo_object);
944			}
945			bp->b_bcount += size;
946			bp->b_bufsize += size;
947			bundirty(tbp);
948			tbp->b_flags &= ~B_DONE;
949			tbp->b_ioflags &= ~BIO_ERROR;
950			tbp->b_flags |= B_ASYNC;
951			tbp->b_iocmd = BIO_WRITE;
952			reassignbuf(tbp);		/* put on clean list */
953			bufobj_wref(tbp->b_bufobj);
954			BUF_KERNPROC(tbp);
955			TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
956				tbp, b_cluster.cluster_entry);
957		}
958	finishcluster:
959		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
960			(vm_page_t *) bp->b_pages, bp->b_npages);
961		if (bp->b_bufsize > bp->b_kvasize)
962			panic(
963			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
964			    bp->b_bufsize, bp->b_kvasize);
965		bp->b_kvasize = bp->b_bufsize;
966		totalwritten += bp->b_bufsize;
967		bp->b_dirtyoff = 0;
968		bp->b_dirtyend = bp->b_bufsize;
969		bawrite(bp);
970
971		len -= i;
972	}
973	return totalwritten;
974}
975
976/*
977 * Collect together all the buffers in a cluster.
978 * Plus add one additional buffer.
979 */
980static struct cluster_save *
981cluster_collectbufs(vp, last_bp)
982	struct vnode *vp;
983	struct buf *last_bp;
984{
985	struct cluster_save *buflist;
986	struct buf *bp;
987	daddr_t lbn;
988	int i, len;
989
990	len = vp->v_lastw - vp->v_cstart + 1;
991	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
992	    M_SEGMENT, M_WAITOK);
993	buflist->bs_nchildren = 0;
994	buflist->bs_children = (struct buf **) (buflist + 1);
995	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
996		(void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp);
997		buflist->bs_children[i] = bp;
998		if (bp->b_blkno == bp->b_lblkno)
999			VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1000				NULL, NULL);
1001	}
1002	buflist->bs_children[i] = bp = last_bp;
1003	if (bp->b_blkno == bp->b_lblkno)
1004		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1005	buflist->bs_nchildren = i + 1;
1006	return (buflist);
1007}
1008