vfs_cluster.c revision 117879
1/*-
2 * Copyright (c) 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Modifications/enhancements:
5 * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: head/sys/kern/vfs_cluster.c 117879 2003-07-22 10:36:36Z phk $");
40
41#include "opt_debug_cluster.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/proc.h>
47#include <sys/bio.h>
48#include <sys/buf.h>
49#include <sys/vnode.h>
50#include <sys/malloc.h>
51#include <sys/mount.h>
52#include <sys/resourcevar.h>
53#include <sys/vmmeter.h>
54#include <vm/vm.h>
55#include <vm/vm_object.h>
56#include <vm/vm_page.h>
57#include <sys/sysctl.h>
58
59#if defined(CLUSTERDEBUG)
60static int	rcluster= 0;
61SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0,
62    "Debug VFS clustering code");
63#endif
64
65static MALLOC_DEFINE(M_SEGMENT, "cluster_save buffer", "cluster_save buffer");
66
67static struct cluster_save *
68	cluster_collectbufs(struct vnode *vp, struct buf *last_bp);
69static struct buf *
70	cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn,
71			 daddr_t blkno, long size, int run, struct buf *fbp);
72
73static int write_behind = 1;
74SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0,
75    "Cluster write-behind; 0: disable, 1: enable, 2: backed off");
76
77static int read_max = 8;
78SYSCTL_INT(_vfs, OID_AUTO, read_max, CTLFLAG_RW, &read_max, 0,
79    "Cluster read-ahead max block count");
80
81/* Page expended to mark partially backed buffers */
82extern vm_page_t	bogus_page;
83
84/*
85 * Number of physical bufs (pbufs) this subsystem is allowed.
86 * Manipulated by vm_pager.c
87 */
88extern int cluster_pbuf_freecnt;
89
90/*
91 * Read data to a buf, including read-ahead if we find this to be beneficial.
92 * cluster_read replaces bread.
93 */
94int
95cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp)
96	struct vnode *vp;
97	u_quad_t filesize;
98	daddr_t lblkno;
99	long size;
100	struct ucred *cred;
101	long totread;
102	int seqcount;
103	struct buf **bpp;
104{
105	struct buf *bp, *rbp, *reqbp;
106	daddr_t blkno, origblkno;
107	int maxra, racluster;
108	int error, ncontig;
109	int i;
110
111	error = 0;
112
113	/*
114	 * Try to limit the amount of read-ahead by a few
115	 * ad-hoc parameters.  This needs work!!!
116	 */
117	racluster = vp->v_mount->mnt_iosize_max / size;
118	maxra = seqcount;
119	maxra = min(read_max, maxra);
120	maxra = min(nbuf/8, maxra);
121	if (((u_quad_t)(lblkno + maxra + 1) * size) > filesize)
122		maxra = (filesize / size) - lblkno;
123
124	/*
125	 * get the requested block
126	 */
127	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0, 0);
128	origblkno = lblkno;
129
130	/*
131	 * if it is in the cache, then check to see if the reads have been
132	 * sequential.  If they have, then try some read-ahead, otherwise
133	 * back-off on prospective read-aheads.
134	 */
135	if (bp->b_flags & B_CACHE) {
136		if (!seqcount) {
137			return 0;
138		} else if ((bp->b_flags & B_RAM) == 0) {
139			return 0;
140		} else {
141			int s;
142			bp->b_flags &= ~B_RAM;
143			/*
144			 * We do the spl here so that there is no window
145			 * between the incore and the b_usecount increment
146			 * below.  We opt to keep the spl out of the loop
147			 * for efficiency.
148			 */
149			s = splbio();
150			VI_LOCK(vp);
151			for (i = 1; i < maxra; i++) {
152				/*
153				 * Stop if the buffer does not exist or it
154				 * is invalid (about to go away?)
155				 */
156				rbp = gbincore(vp, lblkno+i);
157				if (rbp == NULL || (rbp->b_flags & B_INVAL))
158					break;
159
160				/*
161				 * Set another read-ahead mark so we know
162				 * to check again.
163				 */
164				if (((i % racluster) == (racluster - 1)) ||
165					(i == (maxra - 1)))
166					rbp->b_flags |= B_RAM;
167			}
168			VI_UNLOCK(vp);
169			splx(s);
170			if (i >= maxra) {
171				return 0;
172			}
173			lblkno += i;
174		}
175		reqbp = bp = NULL;
176	/*
177	 * If it isn't in the cache, then get a chunk from
178	 * disk if sequential, otherwise just get the block.
179	 */
180	} else {
181		off_t firstread = bp->b_offset;
182		int nblks;
183
184		KASSERT(bp->b_offset != NOOFFSET,
185		    ("cluster_read: no buffer offset"));
186
187		ncontig = 0;
188
189		/*
190		 * Compute the total number of blocks that we should read
191		 * synchronously.
192		 */
193		if (firstread + totread > filesize)
194			totread = filesize - firstread;
195		nblks = howmany(totread, size);
196		if (nblks > racluster)
197			nblks = racluster;
198
199		/*
200		 * Now compute the number of contiguous blocks.
201		 */
202		if (nblks > 1) {
203	    		error = VOP_BMAP(vp, lblkno, NULL,
204				&blkno, &ncontig, NULL);
205			/*
206			 * If this failed to map just do the original block.
207			 */
208			if (error || blkno == -1)
209				ncontig = 0;
210		}
211
212		/*
213		 * If we have contiguous data available do a cluster
214		 * otherwise just read the requested block.
215		 */
216		if (ncontig) {
217			/* Account for our first block. */
218			ncontig = min(ncontig + 1, nblks);
219			if (ncontig < nblks)
220				nblks = ncontig;
221			bp = cluster_rbuild(vp, filesize, lblkno,
222				blkno, size, nblks, bp);
223			lblkno += (bp->b_bufsize / size);
224		} else {
225			bp->b_flags |= B_RAM;
226			bp->b_iocmd = BIO_READ;
227			lblkno += 1;
228		}
229	}
230
231	/*
232	 * handle the synchronous read so that it is available ASAP.
233	 */
234	if (bp) {
235		if ((bp->b_flags & B_CLUSTER) == 0) {
236			vfs_busy_pages(bp, 0);
237		}
238		bp->b_flags &= ~B_INVAL;
239		bp->b_ioflags &= ~BIO_ERROR;
240		if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL)
241			BUF_KERNPROC(bp);
242		error = VOP_STRATEGY(vp, bp);
243		curproc->p_stats->p_ru.ru_inblock++;
244		if (error)
245			return (error);
246	}
247
248	/*
249	 * If we have been doing sequential I/O, then do some read-ahead.
250	 */
251	while (lblkno < (origblkno + maxra)) {
252		error = VOP_BMAP(vp, lblkno, NULL, &blkno, &ncontig, NULL);
253		if (error)
254			break;
255
256		if (blkno == -1)
257			break;
258
259		/*
260		 * We could throttle ncontig here by maxra but we might as
261		 * well read the data if it is contiguous.  We're throttled
262		 * by racluster anyway.
263		 */
264		if (ncontig) {
265			ncontig = min(ncontig + 1, racluster);
266			rbp = cluster_rbuild(vp, filesize, lblkno, blkno,
267				size, ncontig, NULL);
268			lblkno += (rbp->b_bufsize / size);
269			if (rbp->b_flags & B_DELWRI) {
270				bqrelse(rbp);
271				continue;
272			}
273		} else {
274			rbp = getblk(vp, lblkno, size, 0, 0, 0);
275			lblkno += 1;
276			if (rbp->b_flags & B_DELWRI) {
277				bqrelse(rbp);
278				continue;
279			}
280			rbp->b_flags |= B_ASYNC | B_RAM;
281			rbp->b_iocmd = BIO_READ;
282			rbp->b_blkno = blkno;
283		}
284		if (rbp->b_flags & B_CACHE) {
285			rbp->b_flags &= ~B_ASYNC;
286			bqrelse(rbp);
287			continue;
288		}
289		if ((rbp->b_flags & B_CLUSTER) == 0) {
290			vfs_busy_pages(rbp, 0);
291		}
292		rbp->b_flags &= ~B_INVAL;
293		rbp->b_ioflags &= ~BIO_ERROR;
294		if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL)
295			BUF_KERNPROC(rbp);
296		(void) VOP_STRATEGY(vp, rbp);
297		curproc->p_stats->p_ru.ru_inblock++;
298	}
299
300	if (reqbp)
301		return (bufwait(reqbp));
302	else
303		return (error);
304}
305
306/*
307 * If blocks are contiguous on disk, use this to provide clustered
308 * read ahead.  We will read as many blocks as possible sequentially
309 * and then parcel them up into logical blocks in the buffer hash table.
310 */
311static struct buf *
312cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp)
313	struct vnode *vp;
314	u_quad_t filesize;
315	daddr_t lbn;
316	daddr_t blkno;
317	long size;
318	int run;
319	struct buf *fbp;
320{
321	struct buf *bp, *tbp;
322	daddr_t bn;
323	int i, inc, j;
324
325	GIANT_REQUIRED;
326
327	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
328	    ("cluster_rbuild: size %ld != filesize %ld\n",
329	    size, vp->v_mount->mnt_stat.f_iosize));
330
331	/*
332	 * avoid a division
333	 */
334	while ((u_quad_t) size * (lbn + run) > filesize) {
335		--run;
336	}
337
338	if (fbp) {
339		tbp = fbp;
340		tbp->b_iocmd = BIO_READ;
341	} else {
342		tbp = getblk(vp, lbn, size, 0, 0, 0);
343		if (tbp->b_flags & B_CACHE)
344			return tbp;
345		tbp->b_flags |= B_ASYNC | B_RAM;
346		tbp->b_iocmd = BIO_READ;
347	}
348
349	tbp->b_blkno = blkno;
350	if( (tbp->b_flags & B_MALLOC) ||
351		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
352		return tbp;
353
354	bp = trypbuf(&cluster_pbuf_freecnt);
355	if (bp == 0)
356		return tbp;
357
358	/*
359	 * We are synthesizing a buffer out of vm_page_t's, but
360	 * if the block size is not page aligned then the starting
361	 * address may not be either.  Inherit the b_data offset
362	 * from the original buffer.
363	 */
364	bp->b_data = (char *)((vm_offset_t)bp->b_data |
365	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
366	bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO;
367	bp->b_iocmd = BIO_READ;
368	bp->b_iodone = cluster_callback;
369	bp->b_blkno = blkno;
370	bp->b_lblkno = lbn;
371	bp->b_offset = tbp->b_offset;
372	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
373	pbgetvp(vp, bp);
374
375	TAILQ_INIT(&bp->b_cluster.cluster_head);
376
377	bp->b_bcount = 0;
378	bp->b_bufsize = 0;
379	bp->b_npages = 0;
380
381	inc = btodb(size);
382	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
383		if (i != 0) {
384			if ((bp->b_npages * PAGE_SIZE) +
385			    round_page(size) > vp->v_mount->mnt_iosize_max) {
386				break;
387			}
388
389			tbp = getblk(vp, lbn + i, size, 0, 0, GB_LOCK_NOWAIT);
390
391			/* Don't wait around for locked bufs. */
392			if (tbp == NULL)
393				break;
394
395			/*
396			 * Stop scanning if the buffer is fully valid
397			 * (marked B_CACHE), or locked (may be doing a
398			 * background write), or if the buffer is not
399			 * VMIO backed.  The clustering code can only deal
400			 * with VMIO-backed buffers.
401			 */
402			if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
403				(tbp->b_flags & B_VMIO) == 0) {
404				bqrelse(tbp);
405				break;
406			}
407
408			/*
409			 * The buffer must be completely invalid in order to
410			 * take part in the cluster.  If it is partially valid
411			 * then we stop.
412			 */
413			for (j = 0;j < tbp->b_npages; j++) {
414				if (tbp->b_pages[j]->valid)
415					break;
416			}
417			if (j != tbp->b_npages) {
418				bqrelse(tbp);
419				break;
420			}
421
422			/*
423			 * Set a read-ahead mark as appropriate
424			 */
425			if ((fbp && (i == 1)) || (i == (run - 1)))
426				tbp->b_flags |= B_RAM;
427
428			/*
429			 * Set the buffer up for an async read (XXX should
430			 * we do this only if we do not wind up brelse()ing?).
431			 * Set the block number if it isn't set, otherwise
432			 * if it is make sure it matches the block number we
433			 * expect.
434			 */
435			tbp->b_flags |= B_ASYNC;
436			tbp->b_iocmd = BIO_READ;
437			if (tbp->b_blkno == tbp->b_lblkno) {
438				tbp->b_blkno = bn;
439			} else if (tbp->b_blkno != bn) {
440				brelse(tbp);
441				break;
442			}
443		}
444		/*
445		 * XXX fbp from caller may not be B_ASYNC, but we are going
446		 * to biodone() it in cluster_callback() anyway
447		 */
448		BUF_KERNPROC(tbp);
449		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
450			tbp, b_cluster.cluster_entry);
451		if (tbp->b_object != NULL)
452			VM_OBJECT_LOCK(tbp->b_object);
453		vm_page_lock_queues();
454		for (j = 0; j < tbp->b_npages; j += 1) {
455			vm_page_t m;
456			m = tbp->b_pages[j];
457			vm_page_io_start(m);
458			vm_object_pip_add(m->object, 1);
459			if ((bp->b_npages == 0) ||
460				(bp->b_pages[bp->b_npages-1] != m)) {
461				bp->b_pages[bp->b_npages] = m;
462				bp->b_npages++;
463			}
464			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
465				tbp->b_pages[j] = bogus_page;
466		}
467		vm_page_unlock_queues();
468		if (tbp->b_object != NULL)
469			VM_OBJECT_UNLOCK(tbp->b_object);
470		/*
471		 * XXX shouldn't this be += size for both, like in
472		 * cluster_wbuild()?
473		 *
474		 * Don't inherit tbp->b_bufsize as it may be larger due to
475		 * a non-page-aligned size.  Instead just aggregate using
476		 * 'size'.
477		 */
478		if (tbp->b_bcount != size)
479			printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
480		if (tbp->b_bufsize != size)
481			printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
482		bp->b_bcount += size;
483		bp->b_bufsize += size;
484	}
485
486	/*
487	 * Fully valid pages in the cluster are already good and do not need
488	 * to be re-read from disk.  Replace the page with bogus_page
489	 */
490	for (j = 0; j < bp->b_npages; j++) {
491		if ((bp->b_pages[j]->valid & VM_PAGE_BITS_ALL) ==
492		    VM_PAGE_BITS_ALL) {
493			bp->b_pages[j] = bogus_page;
494		}
495	}
496	if (bp->b_bufsize > bp->b_kvasize)
497		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
498		    bp->b_bufsize, bp->b_kvasize);
499	bp->b_kvasize = bp->b_bufsize;
500
501	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
502		(vm_page_t *)bp->b_pages, bp->b_npages);
503	return (bp);
504}
505
506/*
507 * Cleanup after a clustered read or write.
508 * This is complicated by the fact that any of the buffers might have
509 * extra memory (if there were no empty buffer headers at allocbuf time)
510 * that we will need to shift around.
511 */
512void
513cluster_callback(bp)
514	struct buf *bp;
515{
516	struct buf *nbp, *tbp;
517	int error = 0;
518
519	GIANT_REQUIRED;
520
521	/*
522	 * Must propogate errors to all the components.
523	 */
524	if (bp->b_ioflags & BIO_ERROR)
525		error = bp->b_error;
526
527	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
528	/*
529	 * Move memory from the large cluster buffer into the component
530	 * buffers and mark IO as done on these.
531	 */
532	for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
533		tbp; tbp = nbp) {
534		nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
535		if (error) {
536			tbp->b_ioflags |= BIO_ERROR;
537			tbp->b_error = error;
538		} else {
539			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
540			tbp->b_flags &= ~B_INVAL;
541			tbp->b_ioflags &= ~BIO_ERROR;
542			/*
543			 * XXX the bdwrite()/bqrelse() issued during
544			 * cluster building clears B_RELBUF (see bqrelse()
545			 * comment).  If direct I/O was specified, we have
546			 * to restore it here to allow the buffer and VM
547			 * to be freed.
548			 */
549			if (tbp->b_flags & B_DIRECT)
550				tbp->b_flags |= B_RELBUF;
551		}
552		bufdone(tbp);
553	}
554	relpbuf(bp, &cluster_pbuf_freecnt);
555}
556
557/*
558 *	cluster_wbuild_wb:
559 *
560 *	Implement modified write build for cluster.
561 *
562 *		write_behind = 0	write behind disabled
563 *		write_behind = 1	write behind normal (default)
564 *		write_behind = 2	write behind backed-off
565 */
566
567static __inline int
568cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len)
569{
570	int r = 0;
571
572	switch(write_behind) {
573	case 2:
574		if (start_lbn < len)
575			break;
576		start_lbn -= len;
577		/* FALLTHROUGH */
578	case 1:
579		r = cluster_wbuild(vp, size, start_lbn, len);
580		/* FALLTHROUGH */
581	default:
582		/* FALLTHROUGH */
583		break;
584	}
585	return(r);
586}
587
588/*
589 * Do clustered write for FFS.
590 *
591 * Three cases:
592 *	1. Write is not sequential (write asynchronously)
593 *	Write is sequential:
594 *	2.	beginning of cluster - begin cluster
595 *	3.	middle of a cluster - add to cluster
596 *	4.	end of a cluster - asynchronously write cluster
597 */
598void
599cluster_write(bp, filesize, seqcount)
600	struct buf *bp;
601	u_quad_t filesize;
602	int seqcount;
603{
604	struct vnode *vp;
605	daddr_t lbn;
606	int maxclen, cursize;
607	int lblocksize;
608	int async;
609
610	vp = bp->b_vp;
611	if (vp->v_type == VREG) {
612		async = vp->v_mount->mnt_flag & MNT_ASYNC;
613		lblocksize = vp->v_mount->mnt_stat.f_iosize;
614	} else {
615		async = 0;
616		lblocksize = bp->b_bufsize;
617	}
618	lbn = bp->b_lblkno;
619	KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
620
621	/* Initialize vnode to beginning of file. */
622	if (lbn == 0)
623		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
624
625	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
626	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
627		maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
628		if (vp->v_clen != 0) {
629			/*
630			 * Next block is not sequential.
631			 *
632			 * If we are not writing at end of file, the process
633			 * seeked to another point in the file since its last
634			 * write, or we have reached our maximum cluster size,
635			 * then push the previous cluster. Otherwise try
636			 * reallocating to make it sequential.
637			 *
638			 * Change to algorithm: only push previous cluster if
639			 * it was sequential from the point of view of the
640			 * seqcount heuristic, otherwise leave the buffer
641			 * intact so we can potentially optimize the I/O
642			 * later on in the buf_daemon or update daemon
643			 * flush.
644			 */
645			cursize = vp->v_lastw - vp->v_cstart + 1;
646			if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
647			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
648				if (!async && seqcount > 0) {
649					cluster_wbuild_wb(vp, lblocksize,
650						vp->v_cstart, cursize);
651				}
652			} else {
653				struct buf **bpp, **endbp;
654				struct cluster_save *buflist;
655
656				buflist = cluster_collectbufs(vp, bp);
657				endbp = &buflist->bs_children
658				    [buflist->bs_nchildren - 1];
659				if (VOP_REALLOCBLKS(vp, buflist)) {
660					/*
661					 * Failed, push the previous cluster
662					 * if *really* writing sequentially
663					 * in the logical file (seqcount > 1),
664					 * otherwise delay it in the hopes that
665					 * the low level disk driver can
666					 * optimize the write ordering.
667					 */
668					for (bpp = buflist->bs_children;
669					     bpp < endbp; bpp++)
670						brelse(*bpp);
671					free(buflist, M_SEGMENT);
672					if (seqcount > 1) {
673						cluster_wbuild_wb(vp,
674						    lblocksize, vp->v_cstart,
675						    cursize);
676					}
677				} else {
678					/*
679					 * Succeeded, keep building cluster.
680					 */
681					for (bpp = buflist->bs_children;
682					     bpp <= endbp; bpp++)
683						bdwrite(*bpp);
684					free(buflist, M_SEGMENT);
685					vp->v_lastw = lbn;
686					vp->v_lasta = bp->b_blkno;
687					return;
688				}
689			}
690		}
691		/*
692		 * Consider beginning a cluster. If at end of file, make
693		 * cluster as large as possible, otherwise find size of
694		 * existing cluster.
695		 */
696		if ((vp->v_type == VREG) &&
697			((u_quad_t) bp->b_offset + lblocksize) != filesize &&
698		    (bp->b_blkno == bp->b_lblkno) &&
699		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
700		     bp->b_blkno == -1)) {
701			bawrite(bp);
702			vp->v_clen = 0;
703			vp->v_lasta = bp->b_blkno;
704			vp->v_cstart = lbn + 1;
705			vp->v_lastw = lbn;
706			return;
707		}
708		vp->v_clen = maxclen;
709		if (!async && maxclen == 0) {	/* I/O not contiguous */
710			vp->v_cstart = lbn + 1;
711			bawrite(bp);
712		} else {	/* Wait for rest of cluster */
713			vp->v_cstart = lbn;
714			bdwrite(bp);
715		}
716	} else if (lbn == vp->v_cstart + vp->v_clen) {
717		/*
718		 * At end of cluster, write it out if seqcount tells us we
719		 * are operating sequentially, otherwise let the buf or
720		 * update daemon handle it.
721		 */
722		bdwrite(bp);
723		if (seqcount > 1)
724			cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1);
725		vp->v_clen = 0;
726		vp->v_cstart = lbn + 1;
727	} else if (vm_page_count_severe()) {
728		/*
729		 * We are low on memory, get it going NOW
730		 */
731		bawrite(bp);
732	} else {
733		/*
734		 * In the middle of a cluster, so just delay the I/O for now.
735		 */
736		bdwrite(bp);
737	}
738	vp->v_lastw = lbn;
739	vp->v_lasta = bp->b_blkno;
740}
741
742
743/*
744 * This is an awful lot like cluster_rbuild...wish they could be combined.
745 * The last lbn argument is the current block on which I/O is being
746 * performed.  Check to see that it doesn't fall in the middle of
747 * the current block (if last_bp == NULL).
748 */
749int
750cluster_wbuild(vp, size, start_lbn, len)
751	struct vnode *vp;
752	long size;
753	daddr_t start_lbn;
754	int len;
755{
756	struct buf *bp, *tbp;
757	int i, j, s;
758	int totalwritten = 0;
759	int dbsize = btodb(size);
760
761	GIANT_REQUIRED;
762
763	while (len > 0) {
764		s = splbio();
765		/*
766		 * If the buffer is not delayed-write (i.e. dirty), or it
767		 * is delayed-write but either locked or inval, it cannot
768		 * partake in the clustered write.
769		 */
770		VI_LOCK(vp);
771		if ((tbp = gbincore(vp, start_lbn)) == NULL) {
772			VI_UNLOCK(vp);
773			++start_lbn;
774			--len;
775			splx(s);
776			continue;
777		}
778		if (BUF_LOCK(tbp,
779		    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, VI_MTX(vp))) {
780			++start_lbn;
781			--len;
782			splx(s);
783			continue;
784		}
785		if ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) !=
786		    B_DELWRI) {
787			BUF_UNLOCK(tbp);
788			++start_lbn;
789			--len;
790			splx(s);
791			continue;
792		}
793		bremfree(tbp);
794		tbp->b_flags &= ~B_DONE;
795		splx(s);
796
797		/*
798		 * Extra memory in the buffer, punt on this buffer.
799		 * XXX we could handle this in most cases, but we would
800		 * have to push the extra memory down to after our max
801		 * possible cluster size and then potentially pull it back
802		 * up if the cluster was terminated prematurely--too much
803		 * hassle.
804		 */
805		if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) !=
806		     (B_CLUSTEROK | B_VMIO)) ||
807		  (tbp->b_bcount != tbp->b_bufsize) ||
808		  (tbp->b_bcount != size) ||
809		  (len == 1) ||
810		  ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
811			totalwritten += tbp->b_bufsize;
812			bawrite(tbp);
813			++start_lbn;
814			--len;
815			continue;
816		}
817
818		/*
819		 * We got a pbuf to make the cluster in.
820		 * so initialise it.
821		 */
822		TAILQ_INIT(&bp->b_cluster.cluster_head);
823		bp->b_bcount = 0;
824		bp->b_magic = tbp->b_magic;
825		bp->b_op = tbp->b_op;
826		bp->b_bufsize = 0;
827		bp->b_npages = 0;
828		if (tbp->b_wcred != NOCRED)
829			bp->b_wcred = crhold(tbp->b_wcred);
830
831		bp->b_blkno = tbp->b_blkno;
832		bp->b_lblkno = tbp->b_lblkno;
833		bp->b_offset = tbp->b_offset;
834
835		/*
836		 * We are synthesizing a buffer out of vm_page_t's, but
837		 * if the block size is not page aligned then the starting
838		 * address may not be either.  Inherit the b_data offset
839		 * from the original buffer.
840		 */
841		bp->b_data = (char *)((vm_offset_t)bp->b_data |
842		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
843		bp->b_flags |= B_CLUSTER |
844				(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT));
845		bp->b_iodone = cluster_callback;
846		pbgetvp(vp, bp);
847		/*
848		 * From this location in the file, scan forward to see
849		 * if there are buffers with adjacent data that need to
850		 * be written as well.
851		 */
852		for (i = 0; i < len; ++i, ++start_lbn) {
853			if (i != 0) { /* If not the first buffer */
854				s = splbio();
855				/*
856				 * If the adjacent data is not even in core it
857				 * can't need to be written.
858				 */
859				VI_LOCK(vp);
860				if ((tbp = gbincore(vp, start_lbn)) == NULL) {
861					VI_UNLOCK(vp);
862					splx(s);
863					break;
864				}
865
866				/*
867				 * If it IS in core, but has different
868				 * characteristics, or is locked (which
869				 * means it could be undergoing a background
870				 * I/O or be in a weird state), then don't
871				 * cluster with it.
872				 */
873				if (BUF_LOCK(tbp,
874				    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK,
875				    VI_MTX(vp))) {
876					splx(s);
877					break;
878				}
879
880				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
881				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
882				    != (B_DELWRI | B_CLUSTEROK |
883				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
884				    (tbp->b_flags & B_LOCKED) ||
885				    tbp->b_wcred != bp->b_wcred) {
886					BUF_UNLOCK(tbp);
887					splx(s);
888					break;
889				}
890
891				/*
892				 * Check that the combined cluster
893				 * would make sense with regard to pages
894				 * and would not be too large
895				 */
896				if ((tbp->b_bcount != size) ||
897				  ((bp->b_blkno + (dbsize * i)) !=
898				    tbp->b_blkno) ||
899				  ((tbp->b_npages + bp->b_npages) >
900				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
901					BUF_UNLOCK(tbp);
902					splx(s);
903					break;
904				}
905				/*
906				 * Ok, it's passed all the tests,
907				 * so remove it from the free list
908				 * and mark it busy. We will use it.
909				 */
910				bremfree(tbp);
911				tbp->b_flags &= ~B_DONE;
912				splx(s);
913			} /* end of code for non-first buffers only */
914			/* check for latent dependencies to be handled */
915			if ((LIST_FIRST(&tbp->b_dep)) != NULL) {
916				tbp->b_iocmd = BIO_WRITE;
917				buf_start(tbp);
918			}
919			/*
920			 * If the IO is via the VM then we do some
921			 * special VM hackery (yuck).  Since the buffer's
922			 * block size may not be page-aligned it is possible
923			 * for a page to be shared between two buffers.  We
924			 * have to get rid of the duplication when building
925			 * the cluster.
926			 */
927			if (tbp->b_flags & B_VMIO) {
928				vm_page_t m;
929
930				if (i != 0) { /* if not first buffer */
931					for (j = 0; j < tbp->b_npages; j += 1) {
932						m = tbp->b_pages[j];
933						if (m->flags & PG_BUSY) {
934							bqrelse(tbp);
935							goto finishcluster;
936						}
937					}
938				}
939				if (tbp->b_object != NULL)
940					VM_OBJECT_LOCK(tbp->b_object);
941				vm_page_lock_queues();
942				for (j = 0; j < tbp->b_npages; j += 1) {
943					m = tbp->b_pages[j];
944					vm_page_io_start(m);
945					vm_object_pip_add(m->object, 1);
946					if ((bp->b_npages == 0) ||
947					  (bp->b_pages[bp->b_npages - 1] != m)) {
948						bp->b_pages[bp->b_npages] = m;
949						bp->b_npages++;
950					}
951				}
952				vm_page_unlock_queues();
953				if (tbp->b_object != NULL)
954					VM_OBJECT_UNLOCK(tbp->b_object);
955			}
956			bp->b_bcount += size;
957			bp->b_bufsize += size;
958
959			s = splbio();
960			bundirty(tbp);
961			tbp->b_flags &= ~B_DONE;
962			tbp->b_ioflags &= ~BIO_ERROR;
963			tbp->b_flags |= B_ASYNC;
964			tbp->b_iocmd = BIO_WRITE;
965			reassignbuf(tbp, tbp->b_vp);	/* put on clean list */
966			VI_LOCK(tbp->b_vp);
967			++tbp->b_vp->v_numoutput;
968			VI_UNLOCK(tbp->b_vp);
969			splx(s);
970			BUF_KERNPROC(tbp);
971			TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
972				tbp, b_cluster.cluster_entry);
973		}
974	finishcluster:
975		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
976			(vm_page_t *) bp->b_pages, bp->b_npages);
977		if (bp->b_bufsize > bp->b_kvasize)
978			panic(
979			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
980			    bp->b_bufsize, bp->b_kvasize);
981		bp->b_kvasize = bp->b_bufsize;
982		totalwritten += bp->b_bufsize;
983		bp->b_dirtyoff = 0;
984		bp->b_dirtyend = bp->b_bufsize;
985		bawrite(bp);
986
987		len -= i;
988	}
989	return totalwritten;
990}
991
992/*
993 * Collect together all the buffers in a cluster.
994 * Plus add one additional buffer.
995 */
996static struct cluster_save *
997cluster_collectbufs(vp, last_bp)
998	struct vnode *vp;
999	struct buf *last_bp;
1000{
1001	struct cluster_save *buflist;
1002	struct buf *bp;
1003	daddr_t lbn;
1004	int i, len;
1005
1006	len = vp->v_lastw - vp->v_cstart + 1;
1007	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
1008	    M_SEGMENT, M_WAITOK);
1009	buflist->bs_nchildren = 0;
1010	buflist->bs_children = (struct buf **) (buflist + 1);
1011	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
1012		(void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp);
1013		buflist->bs_children[i] = bp;
1014		if (bp->b_blkno == bp->b_lblkno)
1015			VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
1016				NULL, NULL);
1017	}
1018	buflist->bs_children[i] = bp = last_bp;
1019	if (bp->b_blkno == bp->b_lblkno)
1020		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
1021			NULL, NULL);
1022	buflist->bs_nchildren = i + 1;
1023	return (buflist);
1024}
1025