vfs_cluster.c revision 112367
1/*-
2 * Copyright (c) 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Modifications/enhancements:
5 * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
36 * $FreeBSD: head/sys/kern/vfs_cluster.c 112367 2003-03-18 08:45:25Z phk $
37 */
38
39#include "opt_debug_cluster.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/proc.h>
45#include <sys/bio.h>
46#include <sys/buf.h>
47#include <sys/vnode.h>
48#include <sys/malloc.h>
49#include <sys/mount.h>
50#include <sys/resourcevar.h>
51#include <sys/vmmeter.h>
52#include <vm/vm.h>
53#include <vm/vm_object.h>
54#include <vm/vm_page.h>
55#include <sys/sysctl.h>
56
57#if defined(CLUSTERDEBUG)
58static int	rcluster= 0;
59SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0,
60    "Debug VFS clustering code");
61#endif
62
63static MALLOC_DEFINE(M_SEGMENT, "cluster_save buffer", "cluster_save buffer");
64
65static struct cluster_save *
66	cluster_collectbufs(struct vnode *vp, struct buf *last_bp);
67static struct buf *
68	cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn,
69			 daddr_t blkno, long size, int run, struct buf *fbp);
70
71static int write_behind = 1;
72SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0,
73    "Cluster write-behind; 0: disable, 1: enable, 2: backed off");
74
75static int read_max = 8;
76SYSCTL_INT(_vfs, OID_AUTO, read_max, CTLFLAG_RW, &read_max, 0,
77    "Cluster read-ahead max block count");
78
79/* Page expended to mark partially backed buffers */
80extern vm_page_t	bogus_page;
81
82/*
83 * Number of physical bufs (pbufs) this subsystem is allowed.
84 * Manipulated by vm_pager.c
85 */
86extern int cluster_pbuf_freecnt;
87
88/*
89 * Read data to a buf, including read-ahead if we find this to be beneficial.
90 * cluster_read replaces bread.
91 */
92int
93cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp)
94	struct vnode *vp;
95	u_quad_t filesize;
96	daddr_t lblkno;
97	long size;
98	struct ucred *cred;
99	long totread;
100	int seqcount;
101	struct buf **bpp;
102{
103	struct buf *bp, *rbp, *reqbp;
104	daddr_t blkno, origblkno;
105	int maxra, racluster;
106	int error, ncontig;
107	int i;
108
109	error = 0;
110
111	/*
112	 * Try to limit the amount of read-ahead by a few
113	 * ad-hoc parameters.  This needs work!!!
114	 */
115	racluster = vp->v_mount->mnt_iosize_max / size;
116	maxra = seqcount;
117	maxra = min(read_max, maxra);
118	maxra = min(nbuf/8, maxra);
119	if (((u_quad_t)(lblkno + maxra + 1) * size) > filesize)
120		maxra = (filesize / size) - lblkno;
121
122	/*
123	 * get the requested block
124	 */
125	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0, 0);
126	origblkno = lblkno;
127
128	/*
129	 * if it is in the cache, then check to see if the reads have been
130	 * sequential.  If they have, then try some read-ahead, otherwise
131	 * back-off on prospective read-aheads.
132	 */
133	if (bp->b_flags & B_CACHE) {
134		if (!seqcount) {
135			return 0;
136		} else if ((bp->b_flags & B_RAM) == 0) {
137			return 0;
138		} else {
139			int s;
140			bp->b_flags &= ~B_RAM;
141			/*
142			 * We do the spl here so that there is no window
143			 * between the incore and the b_usecount increment
144			 * below.  We opt to keep the spl out of the loop
145			 * for efficiency.
146			 */
147			s = splbio();
148			VI_LOCK(vp);
149			for (i = 1; i < maxra; i++) {
150				/*
151				 * Stop if the buffer does not exist or it
152				 * is invalid (about to go away?)
153				 */
154				rbp = gbincore(vp, lblkno+i);
155				if (rbp == NULL || (rbp->b_flags & B_INVAL))
156					break;
157
158				/*
159				 * Set another read-ahead mark so we know
160				 * to check again.
161				 */
162				if (((i % racluster) == (racluster - 1)) ||
163					(i == (maxra - 1)))
164					rbp->b_flags |= B_RAM;
165			}
166			VI_UNLOCK(vp);
167			splx(s);
168			if (i >= maxra) {
169				return 0;
170			}
171			lblkno += i;
172		}
173		reqbp = bp = NULL;
174	/*
175	 * If it isn't in the cache, then get a chunk from
176	 * disk if sequential, otherwise just get the block.
177	 */
178	} else {
179		off_t firstread = bp->b_offset;
180		int nblks;
181
182		KASSERT(bp->b_offset != NOOFFSET,
183		    ("cluster_read: no buffer offset"));
184
185		ncontig = 0;
186
187		/*
188		 * Compute the total number of blocks that we should read
189		 * synchronously.
190		 */
191		if (firstread + totread > filesize)
192			totread = filesize - firstread;
193		nblks = howmany(totread, size);
194		if (nblks > racluster)
195			nblks = racluster;
196
197		/*
198		 * Now compute the number of contiguous blocks.
199		 */
200		if (nblks > 1) {
201	    		error = VOP_BMAP(vp, lblkno, NULL,
202				&blkno, &ncontig, NULL);
203			/*
204			 * If this failed to map just do the original block.
205			 */
206			if (error || blkno == -1)
207				ncontig = 0;
208		}
209
210		/*
211		 * If we have contiguous data available do a cluster
212		 * otherwise just read the requested block.
213		 */
214		if (ncontig) {
215			/* Account for our first block. */
216			ncontig = min(ncontig + 1, nblks);
217			if (ncontig < nblks)
218				nblks = ncontig;
219			bp = cluster_rbuild(vp, filesize, lblkno,
220				blkno, size, nblks, bp);
221			lblkno += (bp->b_bufsize / size);
222		} else {
223			bp->b_flags |= B_RAM;
224			bp->b_iocmd = BIO_READ;
225			lblkno += 1;
226		}
227	}
228
229	/*
230	 * handle the synchronous read so that it is available ASAP.
231	 */
232	if (bp) {
233		if ((bp->b_flags & B_CLUSTER) == 0) {
234			vfs_busy_pages(bp, 0);
235		}
236		bp->b_flags &= ~B_INVAL;
237		bp->b_ioflags &= ~BIO_ERROR;
238		if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL)
239			BUF_KERNPROC(bp);
240		error = VOP_STRATEGY(vp, bp);
241		curproc->p_stats->p_ru.ru_inblock++;
242		if (error)
243			return (error);
244	}
245
246	/*
247	 * If we have been doing sequential I/O, then do some read-ahead.
248	 */
249	while (lblkno < (origblkno + maxra)) {
250		error = VOP_BMAP(vp, lblkno, NULL, &blkno, &ncontig, NULL);
251		if (error)
252			break;
253
254		if (blkno == -1)
255			break;
256
257		/*
258		 * We could throttle ncontig here by maxra but we might as
259		 * well read the data if it is contiguous.  We're throttled
260		 * by racluster anyway.
261		 */
262		if (ncontig) {
263			ncontig = min(ncontig + 1, racluster);
264			rbp = cluster_rbuild(vp, filesize, lblkno, blkno,
265				size, ncontig, NULL);
266			lblkno += (rbp->b_bufsize / size);
267		} else {
268			rbp = getblk(vp, lblkno, size, 0, 0, 0);
269			rbp->b_flags |= B_ASYNC | B_RAM;
270			rbp->b_iocmd = BIO_READ;
271			rbp->b_blkno = blkno;
272			lblkno += 1;
273		}
274		if (rbp->b_flags & B_CACHE) {
275			rbp->b_flags &= ~B_ASYNC;
276			bqrelse(rbp);
277			continue;
278		}
279		if ((rbp->b_flags & B_CLUSTER) == 0) {
280			vfs_busy_pages(rbp, 0);
281		}
282		rbp->b_flags &= ~B_INVAL;
283		rbp->b_ioflags &= ~BIO_ERROR;
284		if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL)
285			BUF_KERNPROC(rbp);
286		(void) VOP_STRATEGY(vp, rbp);
287		curproc->p_stats->p_ru.ru_inblock++;
288	}
289
290	if (reqbp)
291		return (bufwait(reqbp));
292	else
293		return (error);
294}
295
296/*
297 * If blocks are contiguous on disk, use this to provide clustered
298 * read ahead.  We will read as many blocks as possible sequentially
299 * and then parcel them up into logical blocks in the buffer hash table.
300 */
301static struct buf *
302cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp)
303	struct vnode *vp;
304	u_quad_t filesize;
305	daddr_t lbn;
306	daddr_t blkno;
307	long size;
308	int run;
309	struct buf *fbp;
310{
311	struct buf *bp, *tbp;
312	daddr_t bn;
313	int i, inc, j;
314
315	GIANT_REQUIRED;
316
317	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
318	    ("cluster_rbuild: size %ld != filesize %ld\n",
319	    size, vp->v_mount->mnt_stat.f_iosize));
320
321	/*
322	 * avoid a division
323	 */
324	while ((u_quad_t) size * (lbn + run) > filesize) {
325		--run;
326	}
327
328	if (fbp) {
329		tbp = fbp;
330		tbp->b_iocmd = BIO_READ;
331	} else {
332		tbp = getblk(vp, lbn, size, 0, 0, 0);
333		if (tbp->b_flags & B_CACHE)
334			return tbp;
335		tbp->b_flags |= B_ASYNC | B_RAM;
336		tbp->b_iocmd = BIO_READ;
337	}
338
339	tbp->b_blkno = blkno;
340	if( (tbp->b_flags & B_MALLOC) ||
341		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
342		return tbp;
343
344	bp = trypbuf(&cluster_pbuf_freecnt);
345	if (bp == 0)
346		return tbp;
347
348	/*
349	 * We are synthesizing a buffer out of vm_page_t's, but
350	 * if the block size is not page aligned then the starting
351	 * address may not be either.  Inherit the b_data offset
352	 * from the original buffer.
353	 */
354	bp->b_data = (char *)((vm_offset_t)bp->b_data |
355	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
356	bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO;
357	bp->b_iocmd = BIO_READ;
358	bp->b_iodone = cluster_callback;
359	bp->b_blkno = blkno;
360	bp->b_lblkno = lbn;
361	bp->b_offset = tbp->b_offset;
362	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
363	pbgetvp(vp, bp);
364
365	TAILQ_INIT(&bp->b_cluster.cluster_head);
366
367	bp->b_bcount = 0;
368	bp->b_bufsize = 0;
369	bp->b_npages = 0;
370
371	inc = btodb(size);
372	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
373		if (i != 0) {
374			if ((bp->b_npages * PAGE_SIZE) +
375			    round_page(size) > vp->v_mount->mnt_iosize_max) {
376				break;
377			}
378
379			tbp = getblk(vp, lbn + i, size, 0, 0, GB_LOCK_NOWAIT);
380
381			/* Don't wait around for locked bufs. */
382			if (tbp == NULL)
383				break;
384
385			/*
386			 * Stop scanning if the buffer is fully valid
387			 * (marked B_CACHE), or locked (may be doing a
388			 * background write), or if the buffer is not
389			 * VMIO backed.  The clustering code can only deal
390			 * with VMIO-backed buffers.
391			 */
392			if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
393				(tbp->b_flags & B_VMIO) == 0) {
394				bqrelse(tbp);
395				break;
396			}
397
398			/*
399			 * The buffer must be completely invalid in order to
400			 * take part in the cluster.  If it is partially valid
401			 * then we stop.
402			 */
403			for (j = 0;j < tbp->b_npages; j++) {
404				if (tbp->b_pages[j]->valid)
405					break;
406			}
407			if (j != tbp->b_npages) {
408				bqrelse(tbp);
409				break;
410			}
411
412			/*
413			 * Set a read-ahead mark as appropriate
414			 */
415			if ((fbp && (i == 1)) || (i == (run - 1)))
416				tbp->b_flags |= B_RAM;
417
418			/*
419			 * Set the buffer up for an async read (XXX should
420			 * we do this only if we do not wind up brelse()ing?).
421			 * Set the block number if it isn't set, otherwise
422			 * if it is make sure it matches the block number we
423			 * expect.
424			 */
425			tbp->b_flags |= B_ASYNC;
426			tbp->b_iocmd = BIO_READ;
427			if (tbp->b_blkno == tbp->b_lblkno) {
428				tbp->b_blkno = bn;
429			} else if (tbp->b_blkno != bn) {
430				brelse(tbp);
431				break;
432			}
433		}
434		/*
435		 * XXX fbp from caller may not be B_ASYNC, but we are going
436		 * to biodone() it in cluster_callback() anyway
437		 */
438		BUF_KERNPROC(tbp);
439		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
440			tbp, b_cluster.cluster_entry);
441		vm_page_lock_queues();
442		for (j = 0; j < tbp->b_npages; j += 1) {
443			vm_page_t m;
444			m = tbp->b_pages[j];
445			vm_page_io_start(m);
446			vm_object_pip_add(m->object, 1);
447			if ((bp->b_npages == 0) ||
448				(bp->b_pages[bp->b_npages-1] != m)) {
449				bp->b_pages[bp->b_npages] = m;
450				bp->b_npages++;
451			}
452			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
453				tbp->b_pages[j] = bogus_page;
454		}
455		vm_page_unlock_queues();
456		/*
457		 * XXX shouldn't this be += size for both, like in
458		 * cluster_wbuild()?
459		 *
460		 * Don't inherit tbp->b_bufsize as it may be larger due to
461		 * a non-page-aligned size.  Instead just aggregate using
462		 * 'size'.
463		 */
464		if (tbp->b_bcount != size)
465			printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
466		if (tbp->b_bufsize != size)
467			printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
468		bp->b_bcount += size;
469		bp->b_bufsize += size;
470	}
471
472	/*
473	 * Fully valid pages in the cluster are already good and do not need
474	 * to be re-read from disk.  Replace the page with bogus_page
475	 */
476	for (j = 0; j < bp->b_npages; j++) {
477		if ((bp->b_pages[j]->valid & VM_PAGE_BITS_ALL) ==
478		    VM_PAGE_BITS_ALL) {
479			bp->b_pages[j] = bogus_page;
480		}
481	}
482	if (bp->b_bufsize > bp->b_kvasize)
483		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
484		    bp->b_bufsize, bp->b_kvasize);
485	bp->b_kvasize = bp->b_bufsize;
486
487	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
488		(vm_page_t *)bp->b_pages, bp->b_npages);
489	return (bp);
490}
491
492/*
493 * Cleanup after a clustered read or write.
494 * This is complicated by the fact that any of the buffers might have
495 * extra memory (if there were no empty buffer headers at allocbuf time)
496 * that we will need to shift around.
497 */
498void
499cluster_callback(bp)
500	struct buf *bp;
501{
502	struct buf *nbp, *tbp;
503	int error = 0;
504
505	GIANT_REQUIRED;
506
507	/*
508	 * Must propogate errors to all the components.
509	 */
510	if (bp->b_ioflags & BIO_ERROR)
511		error = bp->b_error;
512
513	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
514	/*
515	 * Move memory from the large cluster buffer into the component
516	 * buffers and mark IO as done on these.
517	 */
518	for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
519		tbp; tbp = nbp) {
520		nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
521		if (error) {
522			tbp->b_ioflags |= BIO_ERROR;
523			tbp->b_error = error;
524		} else {
525			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
526			tbp->b_flags &= ~B_INVAL;
527			tbp->b_ioflags &= ~BIO_ERROR;
528			/*
529			 * XXX the bdwrite()/bqrelse() issued during
530			 * cluster building clears B_RELBUF (see bqrelse()
531			 * comment).  If direct I/O was specified, we have
532			 * to restore it here to allow the buffer and VM
533			 * to be freed.
534			 */
535			if (tbp->b_flags & B_DIRECT)
536				tbp->b_flags |= B_RELBUF;
537		}
538		bufdone(tbp);
539	}
540	relpbuf(bp, &cluster_pbuf_freecnt);
541}
542
543/*
544 *	cluster_wbuild_wb:
545 *
546 *	Implement modified write build for cluster.
547 *
548 *		write_behind = 0	write behind disabled
549 *		write_behind = 1	write behind normal (default)
550 *		write_behind = 2	write behind backed-off
551 */
552
553static __inline int
554cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len)
555{
556	int r = 0;
557
558	switch(write_behind) {
559	case 2:
560		if (start_lbn < len)
561			break;
562		start_lbn -= len;
563		/* FALLTHROUGH */
564	case 1:
565		r = cluster_wbuild(vp, size, start_lbn, len);
566		/* FALLTHROUGH */
567	default:
568		/* FALLTHROUGH */
569		break;
570	}
571	return(r);
572}
573
574/*
575 * Do clustered write for FFS.
576 *
577 * Three cases:
578 *	1. Write is not sequential (write asynchronously)
579 *	Write is sequential:
580 *	2.	beginning of cluster - begin cluster
581 *	3.	middle of a cluster - add to cluster
582 *	4.	end of a cluster - asynchronously write cluster
583 */
584void
585cluster_write(bp, filesize, seqcount)
586	struct buf *bp;
587	u_quad_t filesize;
588	int seqcount;
589{
590	struct vnode *vp;
591	daddr_t lbn;
592	int maxclen, cursize;
593	int lblocksize;
594	int async;
595
596	vp = bp->b_vp;
597	if (vp->v_type == VREG) {
598		async = vp->v_mount->mnt_flag & MNT_ASYNC;
599		lblocksize = vp->v_mount->mnt_stat.f_iosize;
600	} else {
601		async = 0;
602		lblocksize = bp->b_bufsize;
603	}
604	lbn = bp->b_lblkno;
605	KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
606
607	/* Initialize vnode to beginning of file. */
608	if (lbn == 0)
609		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
610
611	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
612	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
613		maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
614		if (vp->v_clen != 0) {
615			/*
616			 * Next block is not sequential.
617			 *
618			 * If we are not writing at end of file, the process
619			 * seeked to another point in the file since its last
620			 * write, or we have reached our maximum cluster size,
621			 * then push the previous cluster. Otherwise try
622			 * reallocating to make it sequential.
623			 *
624			 * Change to algorithm: only push previous cluster if
625			 * it was sequential from the point of view of the
626			 * seqcount heuristic, otherwise leave the buffer
627			 * intact so we can potentially optimize the I/O
628			 * later on in the buf_daemon or update daemon
629			 * flush.
630			 */
631			cursize = vp->v_lastw - vp->v_cstart + 1;
632			if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
633			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
634				if (!async && seqcount > 0) {
635					cluster_wbuild_wb(vp, lblocksize,
636						vp->v_cstart, cursize);
637				}
638			} else {
639				struct buf **bpp, **endbp;
640				struct cluster_save *buflist;
641
642				buflist = cluster_collectbufs(vp, bp);
643				endbp = &buflist->bs_children
644				    [buflist->bs_nchildren - 1];
645				if (VOP_REALLOCBLKS(vp, buflist)) {
646					/*
647					 * Failed, push the previous cluster
648					 * if *really* writing sequentially
649					 * in the logical file (seqcount > 1),
650					 * otherwise delay it in the hopes that
651					 * the low level disk driver can
652					 * optimize the write ordering.
653					 */
654					for (bpp = buflist->bs_children;
655					     bpp < endbp; bpp++)
656						brelse(*bpp);
657					free(buflist, M_SEGMENT);
658					if (seqcount > 1) {
659						cluster_wbuild_wb(vp,
660						    lblocksize, vp->v_cstart,
661						    cursize);
662					}
663				} else {
664					/*
665					 * Succeeded, keep building cluster.
666					 */
667					for (bpp = buflist->bs_children;
668					     bpp <= endbp; bpp++)
669						bdwrite(*bpp);
670					free(buflist, M_SEGMENT);
671					vp->v_lastw = lbn;
672					vp->v_lasta = bp->b_blkno;
673					return;
674				}
675			}
676		}
677		/*
678		 * Consider beginning a cluster. If at end of file, make
679		 * cluster as large as possible, otherwise find size of
680		 * existing cluster.
681		 */
682		if ((vp->v_type == VREG) &&
683			((u_quad_t) bp->b_offset + lblocksize) != filesize &&
684		    (bp->b_blkno == bp->b_lblkno) &&
685		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
686		     bp->b_blkno == -1)) {
687			bawrite(bp);
688			vp->v_clen = 0;
689			vp->v_lasta = bp->b_blkno;
690			vp->v_cstart = lbn + 1;
691			vp->v_lastw = lbn;
692			return;
693		}
694		vp->v_clen = maxclen;
695		if (!async && maxclen == 0) {	/* I/O not contiguous */
696			vp->v_cstart = lbn + 1;
697			bawrite(bp);
698		} else {	/* Wait for rest of cluster */
699			vp->v_cstart = lbn;
700			bdwrite(bp);
701		}
702	} else if (lbn == vp->v_cstart + vp->v_clen) {
703		/*
704		 * At end of cluster, write it out if seqcount tells us we
705		 * are operating sequentially, otherwise let the buf or
706		 * update daemon handle it.
707		 */
708		bdwrite(bp);
709		if (seqcount > 1)
710			cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1);
711		vp->v_clen = 0;
712		vp->v_cstart = lbn + 1;
713	} else if (vm_page_count_severe()) {
714		/*
715		 * We are low on memory, get it going NOW
716		 */
717		bawrite(bp);
718	} else {
719		/*
720		 * In the middle of a cluster, so just delay the I/O for now.
721		 */
722		bdwrite(bp);
723	}
724	vp->v_lastw = lbn;
725	vp->v_lasta = bp->b_blkno;
726}
727
728
729/*
730 * This is an awful lot like cluster_rbuild...wish they could be combined.
731 * The last lbn argument is the current block on which I/O is being
732 * performed.  Check to see that it doesn't fall in the middle of
733 * the current block (if last_bp == NULL).
734 */
735int
736cluster_wbuild(vp, size, start_lbn, len)
737	struct vnode *vp;
738	long size;
739	daddr_t start_lbn;
740	int len;
741{
742	struct buf *bp, *tbp;
743	int i, j, s;
744	int totalwritten = 0;
745	int dbsize = btodb(size);
746
747	GIANT_REQUIRED;
748
749	while (len > 0) {
750		s = splbio();
751		/*
752		 * If the buffer is not delayed-write (i.e. dirty), or it
753		 * is delayed-write but either locked or inval, it cannot
754		 * partake in the clustered write.
755		 */
756		VI_LOCK(vp);
757		if ((tbp = gbincore(vp, start_lbn)) == NULL) {
758			VI_UNLOCK(vp);
759			++start_lbn;
760			--len;
761			splx(s);
762			continue;
763		}
764		if (BUF_LOCK(tbp,
765		    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, VI_MTX(vp))) {
766			++start_lbn;
767			--len;
768			splx(s);
769			continue;
770		}
771		if ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) !=
772		    B_DELWRI) {
773			BUF_UNLOCK(tbp);
774			++start_lbn;
775			--len;
776			splx(s);
777			continue;
778		}
779		bremfree(tbp);
780		tbp->b_flags &= ~B_DONE;
781		splx(s);
782
783		/*
784		 * Extra memory in the buffer, punt on this buffer.
785		 * XXX we could handle this in most cases, but we would
786		 * have to push the extra memory down to after our max
787		 * possible cluster size and then potentially pull it back
788		 * up if the cluster was terminated prematurely--too much
789		 * hassle.
790		 */
791		if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) !=
792		     (B_CLUSTEROK | B_VMIO)) ||
793		  (tbp->b_bcount != tbp->b_bufsize) ||
794		  (tbp->b_bcount != size) ||
795		  (len == 1) ||
796		  ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
797			totalwritten += tbp->b_bufsize;
798			bawrite(tbp);
799			++start_lbn;
800			--len;
801			continue;
802		}
803
804		/*
805		 * We got a pbuf to make the cluster in.
806		 * so initialise it.
807		 */
808		TAILQ_INIT(&bp->b_cluster.cluster_head);
809		bp->b_bcount = 0;
810		bp->b_magic = tbp->b_magic;
811		bp->b_op = tbp->b_op;
812		bp->b_bufsize = 0;
813		bp->b_npages = 0;
814		if (tbp->b_wcred != NOCRED)
815			bp->b_wcred = crhold(tbp->b_wcred);
816
817		bp->b_blkno = tbp->b_blkno;
818		bp->b_lblkno = tbp->b_lblkno;
819		bp->b_offset = tbp->b_offset;
820
821		/*
822		 * We are synthesizing a buffer out of vm_page_t's, but
823		 * if the block size is not page aligned then the starting
824		 * address may not be either.  Inherit the b_data offset
825		 * from the original buffer.
826		 */
827		bp->b_data = (char *)((vm_offset_t)bp->b_data |
828		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
829		bp->b_flags |= B_CLUSTER |
830				(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT | B_NOWDRAIN));
831		bp->b_iodone = cluster_callback;
832		pbgetvp(vp, bp);
833		/*
834		 * From this location in the file, scan forward to see
835		 * if there are buffers with adjacent data that need to
836		 * be written as well.
837		 */
838		for (i = 0; i < len; ++i, ++start_lbn) {
839			if (i != 0) { /* If not the first buffer */
840				s = splbio();
841				/*
842				 * If the adjacent data is not even in core it
843				 * can't need to be written.
844				 */
845				VI_LOCK(vp);
846				if ((tbp = gbincore(vp, start_lbn)) == NULL) {
847					VI_UNLOCK(vp);
848					splx(s);
849					break;
850				}
851
852				/*
853				 * If it IS in core, but has different
854				 * characteristics, or is locked (which
855				 * means it could be undergoing a background
856				 * I/O or be in a weird state), then don't
857				 * cluster with it.
858				 */
859				if (BUF_LOCK(tbp,
860				    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK,
861				    VI_MTX(vp))) {
862					splx(s);
863					break;
864				}
865
866				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
867				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
868				    != (B_DELWRI | B_CLUSTEROK |
869				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
870				    (tbp->b_flags & B_LOCKED) ||
871				    tbp->b_wcred != bp->b_wcred) {
872					BUF_UNLOCK(tbp);
873					splx(s);
874					break;
875				}
876
877				/*
878				 * Check that the combined cluster
879				 * would make sense with regard to pages
880				 * and would not be too large
881				 */
882				if ((tbp->b_bcount != size) ||
883				  ((bp->b_blkno + (dbsize * i)) !=
884				    tbp->b_blkno) ||
885				  ((tbp->b_npages + bp->b_npages) >
886				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
887					BUF_UNLOCK(tbp);
888					splx(s);
889					break;
890				}
891				/*
892				 * Ok, it's passed all the tests,
893				 * so remove it from the free list
894				 * and mark it busy. We will use it.
895				 */
896				bremfree(tbp);
897				tbp->b_flags &= ~B_DONE;
898				splx(s);
899			} /* end of code for non-first buffers only */
900			/* check for latent dependencies to be handled */
901			if ((LIST_FIRST(&tbp->b_dep)) != NULL)
902				buf_start(tbp);
903			/*
904			 * If the IO is via the VM then we do some
905			 * special VM hackery (yuck).  Since the buffer's
906			 * block size may not be page-aligned it is possible
907			 * for a page to be shared between two buffers.  We
908			 * have to get rid of the duplication when building
909			 * the cluster.
910			 */
911			if (tbp->b_flags & B_VMIO) {
912				vm_page_t m;
913
914				if (i != 0) { /* if not first buffer */
915					for (j = 0; j < tbp->b_npages; j += 1) {
916						m = tbp->b_pages[j];
917						if (m->flags & PG_BUSY) {
918							bqrelse(tbp);
919							goto finishcluster;
920						}
921					}
922				}
923				vm_page_lock_queues();
924				for (j = 0; j < tbp->b_npages; j += 1) {
925					m = tbp->b_pages[j];
926					vm_page_io_start(m);
927					vm_object_pip_add(m->object, 1);
928					if ((bp->b_npages == 0) ||
929					  (bp->b_pages[bp->b_npages - 1] != m)) {
930						bp->b_pages[bp->b_npages] = m;
931						bp->b_npages++;
932					}
933				}
934				vm_page_unlock_queues();
935			}
936			bp->b_bcount += size;
937			bp->b_bufsize += size;
938
939			s = splbio();
940			bundirty(tbp);
941			tbp->b_flags &= ~B_DONE;
942			tbp->b_ioflags &= ~BIO_ERROR;
943			tbp->b_flags |= B_ASYNC;
944			tbp->b_iocmd = BIO_WRITE;
945			reassignbuf(tbp, tbp->b_vp);	/* put on clean list */
946			VI_LOCK(tbp->b_vp);
947			++tbp->b_vp->v_numoutput;
948			VI_UNLOCK(tbp->b_vp);
949			splx(s);
950			BUF_KERNPROC(tbp);
951			TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
952				tbp, b_cluster.cluster_entry);
953		}
954	finishcluster:
955		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
956			(vm_page_t *) bp->b_pages, bp->b_npages);
957		if (bp->b_bufsize > bp->b_kvasize)
958			panic(
959			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
960			    bp->b_bufsize, bp->b_kvasize);
961		bp->b_kvasize = bp->b_bufsize;
962		totalwritten += bp->b_bufsize;
963		bp->b_dirtyoff = 0;
964		bp->b_dirtyend = bp->b_bufsize;
965		bawrite(bp);
966
967		len -= i;
968	}
969	return totalwritten;
970}
971
972/*
973 * Collect together all the buffers in a cluster.
974 * Plus add one additional buffer.
975 */
976static struct cluster_save *
977cluster_collectbufs(vp, last_bp)
978	struct vnode *vp;
979	struct buf *last_bp;
980{
981	struct cluster_save *buflist;
982	struct buf *bp;
983	daddr_t lbn;
984	int i, len;
985
986	len = vp->v_lastw - vp->v_cstart + 1;
987	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
988	    M_SEGMENT, M_WAITOK);
989	buflist->bs_nchildren = 0;
990	buflist->bs_children = (struct buf **) (buflist + 1);
991	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
992		(void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp);
993		buflist->bs_children[i] = bp;
994		if (bp->b_blkno == bp->b_lblkno)
995			VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
996				NULL, NULL);
997	}
998	buflist->bs_children[i] = bp = last_bp;
999	if (bp->b_blkno == bp->b_lblkno)
1000		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
1001			NULL, NULL);
1002	buflist->bs_nchildren = i + 1;
1003	return (buflist);
1004}
1005