uipc_usrreq.c revision 251374
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	RDM
54 *	distinguish datagram size limits from flow control limits in SEQPACKET
55 *	rethink name space problems
56 *	need a proper out-of-band
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/uipc_usrreq.c 251374 2013-06-04 11:19:08Z glebius $");
61
62#include "opt_ddb.h"
63
64#include <sys/param.h>
65#include <sys/capability.h>
66#include <sys/domain.h>
67#include <sys/fcntl.h>
68#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
69#include <sys/eventhandler.h>
70#include <sys/file.h>
71#include <sys/filedesc.h>
72#include <sys/kernel.h>
73#include <sys/lock.h>
74#include <sys/mbuf.h>
75#include <sys/mount.h>
76#include <sys/mutex.h>
77#include <sys/namei.h>
78#include <sys/proc.h>
79#include <sys/protosw.h>
80#include <sys/queue.h>
81#include <sys/resourcevar.h>
82#include <sys/rwlock.h>
83#include <sys/socket.h>
84#include <sys/socketvar.h>
85#include <sys/signalvar.h>
86#include <sys/stat.h>
87#include <sys/sx.h>
88#include <sys/sysctl.h>
89#include <sys/systm.h>
90#include <sys/taskqueue.h>
91#include <sys/un.h>
92#include <sys/unpcb.h>
93#include <sys/vnode.h>
94
95#include <net/vnet.h>
96
97#ifdef DDB
98#include <ddb/ddb.h>
99#endif
100
101#include <security/mac/mac_framework.h>
102
103#include <vm/uma.h>
104
105MALLOC_DECLARE(M_FILECAPS);
106
107/*
108 * Locking key:
109 * (l)	Locked using list lock
110 * (g)	Locked using linkage lock
111 */
112
113static uma_zone_t	unp_zone;
114static unp_gen_t	unp_gencnt;	/* (l) */
115static u_int		unp_count;	/* (l) Count of local sockets. */
116static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
117static int		unp_rights;	/* (g) File descriptors in flight. */
118static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
119static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
120static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
121
122struct unp_defer {
123	SLIST_ENTRY(unp_defer) ud_link;
124	struct file *ud_fp;
125};
126static SLIST_HEAD(, unp_defer) unp_defers;
127static int unp_defers_count;
128
129static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
130
131/*
132 * Garbage collection of cyclic file descriptor/socket references occurs
133 * asynchronously in a taskqueue context in order to avoid recursion and
134 * reentrance in the UNIX domain socket, file descriptor, and socket layer
135 * code.  See unp_gc() for a full description.
136 */
137static struct timeout_task unp_gc_task;
138
139/*
140 * The close of unix domain sockets attached as SCM_RIGHTS is
141 * postponed to the taskqueue, to avoid arbitrary recursion depth.
142 * The attached sockets might have another sockets attached.
143 */
144static struct task	unp_defer_task;
145
146/*
147 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
148 * stream sockets, although the total for sender and receiver is actually
149 * only PIPSIZ.
150 *
151 * Datagram sockets really use the sendspace as the maximum datagram size,
152 * and don't really want to reserve the sendspace.  Their recvspace should be
153 * large enough for at least one max-size datagram plus address.
154 */
155#ifndef PIPSIZ
156#define	PIPSIZ	8192
157#endif
158static u_long	unpst_sendspace = PIPSIZ;
159static u_long	unpst_recvspace = PIPSIZ;
160static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
161static u_long	unpdg_recvspace = 4*1024;
162static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
163static u_long	unpsp_recvspace = PIPSIZ;
164
165static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
166static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
167    "SOCK_STREAM");
168static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
169static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
170    "SOCK_SEQPACKET");
171
172SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
173	   &unpst_sendspace, 0, "Default stream send space.");
174SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
175	   &unpst_recvspace, 0, "Default stream receive space.");
176SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
177	   &unpdg_sendspace, 0, "Default datagram send space.");
178SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
179	   &unpdg_recvspace, 0, "Default datagram receive space.");
180SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
181	   &unpsp_sendspace, 0, "Default seqpacket send space.");
182SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
183	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
184SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
185    "File descriptors in flight.");
186SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
187    &unp_defers_count, 0,
188    "File descriptors deferred to taskqueue for close.");
189
190/*
191 * Locking and synchronization:
192 *
193 * Three types of locks exit in the local domain socket implementation: a
194 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
195 * global locks, the list lock protects the socket count, global generation
196 * number, and stream/datagram global lists.  The linkage lock protects the
197 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
198 * held exclusively over the acquisition of multiple unpcb locks to prevent
199 * deadlock.
200 *
201 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
202 * allocated in pru_attach() and freed in pru_detach().  The validity of that
203 * pointer is an invariant, so no lock is required to dereference the so_pcb
204 * pointer if a valid socket reference is held by the caller.  In practice,
205 * this is always true during operations performed on a socket.  Each unpcb
206 * has a back-pointer to its socket, unp_socket, which will be stable under
207 * the same circumstances.
208 *
209 * This pointer may only be safely dereferenced as long as a valid reference
210 * to the unpcb is held.  Typically, this reference will be from the socket,
211 * or from another unpcb when the referring unpcb's lock is held (in order
212 * that the reference not be invalidated during use).  For example, to follow
213 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
214 * as unp_socket remains valid as long as the reference to unp_conn is valid.
215 *
216 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
217 * atomic reads without the lock may be performed "lockless", but more
218 * complex reads and read-modify-writes require the mutex to be held.  No
219 * lock order is defined between unpcb locks -- multiple unpcb locks may be
220 * acquired at the same time only when holding the linkage rwlock
221 * exclusively, which prevents deadlocks.
222 *
223 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
224 * protocols, bind() is a non-atomic operation, and connect() requires
225 * potential sleeping in the protocol, due to potentially waiting on local or
226 * distributed file systems.  We try to separate "lookup" operations, which
227 * may sleep, and the IPC operations themselves, which typically can occur
228 * with relative atomicity as locks can be held over the entire operation.
229 *
230 * Another tricky issue is simultaneous multi-threaded or multi-process
231 * access to a single UNIX domain socket.  These are handled by the flags
232 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
233 * binding, both of which involve dropping UNIX domain socket locks in order
234 * to perform namei() and other file system operations.
235 */
236static struct rwlock	unp_link_rwlock;
237static struct mtx	unp_list_lock;
238static struct mtx	unp_defers_lock;
239
240#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
241					    "unp_link_rwlock")
242
243#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
244					    RA_LOCKED)
245#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
246					    RA_UNLOCKED)
247
248#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
249#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
250#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
251#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
252#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
253					    RA_WLOCKED)
254
255#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
256					    "unp_list_lock", NULL, MTX_DEF)
257#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
258#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
259
260#define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
261					    "unp_defer", NULL, MTX_DEF)
262#define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
263#define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
264
265#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
266					    "unp_mtx", "unp_mtx",	\
267					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
268#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
269#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
270#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
271#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
272
273static int	uipc_connect2(struct socket *, struct socket *);
274static int	uipc_ctloutput(struct socket *, struct sockopt *);
275static int	unp_connect(struct socket *, struct sockaddr *,
276		    struct thread *);
277static int	unp_connectat(int, struct socket *, struct sockaddr *,
278		    struct thread *);
279static int	unp_connect2(struct socket *so, struct socket *so2, int);
280static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
281static void	unp_dispose(struct mbuf *);
282static void	unp_shutdown(struct unpcb *);
283static void	unp_drop(struct unpcb *, int);
284static void	unp_gc(__unused void *, int);
285static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
286static void	unp_discard(struct file *);
287static void	unp_freerights(struct filedescent **, int);
288static void	unp_init(void);
289static int	unp_internalize(struct mbuf **, struct thread *);
290static void	unp_internalize_fp(struct file *);
291static int	unp_externalize(struct mbuf *, struct mbuf **, int);
292static int	unp_externalize_fp(struct file *);
293static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
294static void	unp_process_defers(void * __unused, int);
295
296/*
297 * Definitions of protocols supported in the LOCAL domain.
298 */
299static struct domain localdomain;
300static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
301static struct pr_usrreqs uipc_usrreqs_seqpacket;
302static struct protosw localsw[] = {
303{
304	.pr_type =		SOCK_STREAM,
305	.pr_domain =		&localdomain,
306	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
307	.pr_ctloutput =		&uipc_ctloutput,
308	.pr_usrreqs =		&uipc_usrreqs_stream
309},
310{
311	.pr_type =		SOCK_DGRAM,
312	.pr_domain =		&localdomain,
313	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
314	.pr_ctloutput =		&uipc_ctloutput,
315	.pr_usrreqs =		&uipc_usrreqs_dgram
316},
317{
318	.pr_type =		SOCK_SEQPACKET,
319	.pr_domain =		&localdomain,
320
321	/*
322	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
323	 * due to our use of sbappendaddr.  A new sbappend variants is needed
324	 * that supports both atomic record writes and control data.
325	 */
326	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
327				    PR_RIGHTS,
328	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
329},
330};
331
332static struct domain localdomain = {
333	.dom_family =		AF_LOCAL,
334	.dom_name =		"local",
335	.dom_init =		unp_init,
336	.dom_externalize =	unp_externalize,
337	.dom_dispose =		unp_dispose,
338	.dom_protosw =		localsw,
339	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
340};
341DOMAIN_SET(local);
342
343static void
344uipc_abort(struct socket *so)
345{
346	struct unpcb *unp, *unp2;
347
348	unp = sotounpcb(so);
349	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
350
351	UNP_LINK_WLOCK();
352	UNP_PCB_LOCK(unp);
353	unp2 = unp->unp_conn;
354	if (unp2 != NULL) {
355		UNP_PCB_LOCK(unp2);
356		unp_drop(unp2, ECONNABORTED);
357		UNP_PCB_UNLOCK(unp2);
358	}
359	UNP_PCB_UNLOCK(unp);
360	UNP_LINK_WUNLOCK();
361}
362
363static int
364uipc_accept(struct socket *so, struct sockaddr **nam)
365{
366	struct unpcb *unp, *unp2;
367	const struct sockaddr *sa;
368
369	/*
370	 * Pass back name of connected socket, if it was bound and we are
371	 * still connected (our peer may have closed already!).
372	 */
373	unp = sotounpcb(so);
374	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
375
376	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
377	UNP_LINK_RLOCK();
378	unp2 = unp->unp_conn;
379	if (unp2 != NULL && unp2->unp_addr != NULL) {
380		UNP_PCB_LOCK(unp2);
381		sa = (struct sockaddr *) unp2->unp_addr;
382		bcopy(sa, *nam, sa->sa_len);
383		UNP_PCB_UNLOCK(unp2);
384	} else {
385		sa = &sun_noname;
386		bcopy(sa, *nam, sa->sa_len);
387	}
388	UNP_LINK_RUNLOCK();
389	return (0);
390}
391
392static int
393uipc_attach(struct socket *so, int proto, struct thread *td)
394{
395	u_long sendspace, recvspace;
396	struct unpcb *unp;
397	int error;
398
399	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
400	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
401		switch (so->so_type) {
402		case SOCK_STREAM:
403			sendspace = unpst_sendspace;
404			recvspace = unpst_recvspace;
405			break;
406
407		case SOCK_DGRAM:
408			sendspace = unpdg_sendspace;
409			recvspace = unpdg_recvspace;
410			break;
411
412		case SOCK_SEQPACKET:
413			sendspace = unpsp_sendspace;
414			recvspace = unpsp_recvspace;
415			break;
416
417		default:
418			panic("uipc_attach");
419		}
420		error = soreserve(so, sendspace, recvspace);
421		if (error)
422			return (error);
423	}
424	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
425	if (unp == NULL)
426		return (ENOBUFS);
427	LIST_INIT(&unp->unp_refs);
428	UNP_PCB_LOCK_INIT(unp);
429	unp->unp_socket = so;
430	so->so_pcb = unp;
431	unp->unp_refcount = 1;
432
433	UNP_LIST_LOCK();
434	unp->unp_gencnt = ++unp_gencnt;
435	unp_count++;
436	switch (so->so_type) {
437	case SOCK_STREAM:
438		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
439		break;
440
441	case SOCK_DGRAM:
442		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
443		break;
444
445	case SOCK_SEQPACKET:
446		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
447		break;
448
449	default:
450		panic("uipc_attach");
451	}
452	UNP_LIST_UNLOCK();
453
454	return (0);
455}
456
457static int
458uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
459{
460	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
461	struct vattr vattr;
462	int error, namelen;
463	struct nameidata nd;
464	struct unpcb *unp;
465	struct vnode *vp;
466	struct mount *mp;
467	char *buf;
468
469	unp = sotounpcb(so);
470	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
471
472	if (soun->sun_len > sizeof(struct sockaddr_un))
473		return (EINVAL);
474	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
475	if (namelen <= 0)
476		return (EINVAL);
477
478	/*
479	 * We don't allow simultaneous bind() calls on a single UNIX domain
480	 * socket, so flag in-progress operations, and return an error if an
481	 * operation is already in progress.
482	 *
483	 * Historically, we have not allowed a socket to be rebound, so this
484	 * also returns an error.  Not allowing re-binding simplifies the
485	 * implementation and avoids a great many possible failure modes.
486	 */
487	UNP_PCB_LOCK(unp);
488	if (unp->unp_vnode != NULL) {
489		UNP_PCB_UNLOCK(unp);
490		return (EINVAL);
491	}
492	if (unp->unp_flags & UNP_BINDING) {
493		UNP_PCB_UNLOCK(unp);
494		return (EALREADY);
495	}
496	unp->unp_flags |= UNP_BINDING;
497	UNP_PCB_UNLOCK(unp);
498
499	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
500	bcopy(soun->sun_path, buf, namelen);
501	buf[namelen] = 0;
502
503restart:
504	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME,
505	    UIO_SYSSPACE, buf, fd, CAP_BINDAT, td);
506/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
507	error = namei(&nd);
508	if (error)
509		goto error;
510	vp = nd.ni_vp;
511	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
512		NDFREE(&nd, NDF_ONLY_PNBUF);
513		if (nd.ni_dvp == vp)
514			vrele(nd.ni_dvp);
515		else
516			vput(nd.ni_dvp);
517		if (vp != NULL) {
518			vrele(vp);
519			error = EADDRINUSE;
520			goto error;
521		}
522		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
523		if (error)
524			goto error;
525		goto restart;
526	}
527	VATTR_NULL(&vattr);
528	vattr.va_type = VSOCK;
529	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
530#ifdef MAC
531	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
532	    &vattr);
533#endif
534	if (error == 0)
535		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
536	NDFREE(&nd, NDF_ONLY_PNBUF);
537	vput(nd.ni_dvp);
538	if (error) {
539		vn_finished_write(mp);
540		goto error;
541	}
542	vp = nd.ni_vp;
543	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
544	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
545
546	UNP_LINK_WLOCK();
547	UNP_PCB_LOCK(unp);
548	VOP_UNP_BIND(vp, unp->unp_socket);
549	unp->unp_vnode = vp;
550	unp->unp_addr = soun;
551	unp->unp_flags &= ~UNP_BINDING;
552	UNP_PCB_UNLOCK(unp);
553	UNP_LINK_WUNLOCK();
554	VOP_UNLOCK(vp, 0);
555	vn_finished_write(mp);
556	free(buf, M_TEMP);
557	return (0);
558
559error:
560	UNP_PCB_LOCK(unp);
561	unp->unp_flags &= ~UNP_BINDING;
562	UNP_PCB_UNLOCK(unp);
563	free(buf, M_TEMP);
564	return (error);
565}
566
567static int
568uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
569{
570
571	return (uipc_bindat(AT_FDCWD, so, nam, td));
572}
573
574static int
575uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
576{
577	int error;
578
579	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
580	UNP_LINK_WLOCK();
581	error = unp_connect(so, nam, td);
582	UNP_LINK_WUNLOCK();
583	return (error);
584}
585
586static int
587uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
588    struct thread *td)
589{
590	int error;
591
592	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
593	UNP_LINK_WLOCK();
594	error = unp_connectat(fd, so, nam, td);
595	UNP_LINK_WUNLOCK();
596	return (error);
597}
598
599static void
600uipc_close(struct socket *so)
601{
602	struct unpcb *unp, *unp2;
603
604	unp = sotounpcb(so);
605	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
606
607	UNP_LINK_WLOCK();
608	UNP_PCB_LOCK(unp);
609	unp2 = unp->unp_conn;
610	if (unp2 != NULL) {
611		UNP_PCB_LOCK(unp2);
612		unp_disconnect(unp, unp2);
613		UNP_PCB_UNLOCK(unp2);
614	}
615	UNP_PCB_UNLOCK(unp);
616	UNP_LINK_WUNLOCK();
617}
618
619static int
620uipc_connect2(struct socket *so1, struct socket *so2)
621{
622	struct unpcb *unp, *unp2;
623	int error;
624
625	UNP_LINK_WLOCK();
626	unp = so1->so_pcb;
627	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
628	UNP_PCB_LOCK(unp);
629	unp2 = so2->so_pcb;
630	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
631	UNP_PCB_LOCK(unp2);
632	error = unp_connect2(so1, so2, PRU_CONNECT2);
633	UNP_PCB_UNLOCK(unp2);
634	UNP_PCB_UNLOCK(unp);
635	UNP_LINK_WUNLOCK();
636	return (error);
637}
638
639static void
640uipc_detach(struct socket *so)
641{
642	struct unpcb *unp, *unp2;
643	struct sockaddr_un *saved_unp_addr;
644	struct vnode *vp;
645	int freeunp, local_unp_rights;
646
647	unp = sotounpcb(so);
648	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
649
650	UNP_LINK_WLOCK();
651	UNP_LIST_LOCK();
652	UNP_PCB_LOCK(unp);
653	LIST_REMOVE(unp, unp_link);
654	unp->unp_gencnt = ++unp_gencnt;
655	--unp_count;
656	UNP_LIST_UNLOCK();
657
658	/*
659	 * XXXRW: Should assert vp->v_socket == so.
660	 */
661	if ((vp = unp->unp_vnode) != NULL) {
662		VOP_UNP_DETACH(vp);
663		unp->unp_vnode = NULL;
664	}
665	unp2 = unp->unp_conn;
666	if (unp2 != NULL) {
667		UNP_PCB_LOCK(unp2);
668		unp_disconnect(unp, unp2);
669		UNP_PCB_UNLOCK(unp2);
670	}
671
672	/*
673	 * We hold the linkage lock exclusively, so it's OK to acquire
674	 * multiple pcb locks at a time.
675	 */
676	while (!LIST_EMPTY(&unp->unp_refs)) {
677		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
678
679		UNP_PCB_LOCK(ref);
680		unp_drop(ref, ECONNRESET);
681		UNP_PCB_UNLOCK(ref);
682	}
683	local_unp_rights = unp_rights;
684	UNP_LINK_WUNLOCK();
685	unp->unp_socket->so_pcb = NULL;
686	saved_unp_addr = unp->unp_addr;
687	unp->unp_addr = NULL;
688	unp->unp_refcount--;
689	freeunp = (unp->unp_refcount == 0);
690	if (saved_unp_addr != NULL)
691		free(saved_unp_addr, M_SONAME);
692	if (freeunp) {
693		UNP_PCB_LOCK_DESTROY(unp);
694		uma_zfree(unp_zone, unp);
695	} else
696		UNP_PCB_UNLOCK(unp);
697	if (vp)
698		vrele(vp);
699	if (local_unp_rights)
700		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
701}
702
703static int
704uipc_disconnect(struct socket *so)
705{
706	struct unpcb *unp, *unp2;
707
708	unp = sotounpcb(so);
709	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
710
711	UNP_LINK_WLOCK();
712	UNP_PCB_LOCK(unp);
713	unp2 = unp->unp_conn;
714	if (unp2 != NULL) {
715		UNP_PCB_LOCK(unp2);
716		unp_disconnect(unp, unp2);
717		UNP_PCB_UNLOCK(unp2);
718	}
719	UNP_PCB_UNLOCK(unp);
720	UNP_LINK_WUNLOCK();
721	return (0);
722}
723
724static int
725uipc_listen(struct socket *so, int backlog, struct thread *td)
726{
727	struct unpcb *unp;
728	int error;
729
730	unp = sotounpcb(so);
731	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
732
733	UNP_PCB_LOCK(unp);
734	if (unp->unp_vnode == NULL) {
735		UNP_PCB_UNLOCK(unp);
736		return (EINVAL);
737	}
738
739	SOCK_LOCK(so);
740	error = solisten_proto_check(so);
741	if (error == 0) {
742		cru2x(td->td_ucred, &unp->unp_peercred);
743		unp->unp_flags |= UNP_HAVEPCCACHED;
744		solisten_proto(so, backlog);
745	}
746	SOCK_UNLOCK(so);
747	UNP_PCB_UNLOCK(unp);
748	return (error);
749}
750
751static int
752uipc_peeraddr(struct socket *so, struct sockaddr **nam)
753{
754	struct unpcb *unp, *unp2;
755	const struct sockaddr *sa;
756
757	unp = sotounpcb(so);
758	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
759
760	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
761	UNP_LINK_RLOCK();
762	/*
763	 * XXX: It seems that this test always fails even when connection is
764	 * established.  So, this else clause is added as workaround to
765	 * return PF_LOCAL sockaddr.
766	 */
767	unp2 = unp->unp_conn;
768	if (unp2 != NULL) {
769		UNP_PCB_LOCK(unp2);
770		if (unp2->unp_addr != NULL)
771			sa = (struct sockaddr *) unp2->unp_addr;
772		else
773			sa = &sun_noname;
774		bcopy(sa, *nam, sa->sa_len);
775		UNP_PCB_UNLOCK(unp2);
776	} else {
777		sa = &sun_noname;
778		bcopy(sa, *nam, sa->sa_len);
779	}
780	UNP_LINK_RUNLOCK();
781	return (0);
782}
783
784static int
785uipc_rcvd(struct socket *so, int flags)
786{
787	struct unpcb *unp, *unp2;
788	struct socket *so2;
789	u_int mbcnt, sbcc;
790	u_long newhiwat;
791
792	unp = sotounpcb(so);
793	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
794
795	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
796		panic("uipc_rcvd socktype %d", so->so_type);
797
798	/*
799	 * Adjust backpressure on sender and wakeup any waiting to write.
800	 *
801	 * The unp lock is acquired to maintain the validity of the unp_conn
802	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
803	 * static as long as we don't permit unp2 to disconnect from unp,
804	 * which is prevented by the lock on unp.  We cache values from
805	 * so_rcv to avoid holding the so_rcv lock over the entire
806	 * transaction on the remote so_snd.
807	 */
808	SOCKBUF_LOCK(&so->so_rcv);
809	mbcnt = so->so_rcv.sb_mbcnt;
810	sbcc = so->so_rcv.sb_cc;
811	SOCKBUF_UNLOCK(&so->so_rcv);
812	UNP_PCB_LOCK(unp);
813	unp2 = unp->unp_conn;
814	if (unp2 == NULL) {
815		UNP_PCB_UNLOCK(unp);
816		return (0);
817	}
818	so2 = unp2->unp_socket;
819	SOCKBUF_LOCK(&so2->so_snd);
820	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
821	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
822	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
823	    newhiwat, RLIM_INFINITY);
824	sowwakeup_locked(so2);
825	unp->unp_mbcnt = mbcnt;
826	unp->unp_cc = sbcc;
827	UNP_PCB_UNLOCK(unp);
828	return (0);
829}
830
831static int
832uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
833    struct mbuf *control, struct thread *td)
834{
835	struct unpcb *unp, *unp2;
836	struct socket *so2;
837	u_int mbcnt_delta, sbcc;
838	u_int newhiwat;
839	int error = 0;
840
841	unp = sotounpcb(so);
842	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
843
844	if (flags & PRUS_OOB) {
845		error = EOPNOTSUPP;
846		goto release;
847	}
848	if (control != NULL && (error = unp_internalize(&control, td)))
849		goto release;
850	if ((nam != NULL) || (flags & PRUS_EOF))
851		UNP_LINK_WLOCK();
852	else
853		UNP_LINK_RLOCK();
854	switch (so->so_type) {
855	case SOCK_DGRAM:
856	{
857		const struct sockaddr *from;
858
859		unp2 = unp->unp_conn;
860		if (nam != NULL) {
861			UNP_LINK_WLOCK_ASSERT();
862			if (unp2 != NULL) {
863				error = EISCONN;
864				break;
865			}
866			error = unp_connect(so, nam, td);
867			if (error)
868				break;
869			unp2 = unp->unp_conn;
870		}
871
872		/*
873		 * Because connect() and send() are non-atomic in a sendto()
874		 * with a target address, it's possible that the socket will
875		 * have disconnected before the send() can run.  In that case
876		 * return the slightly counter-intuitive but otherwise
877		 * correct error that the socket is not connected.
878		 */
879		if (unp2 == NULL) {
880			error = ENOTCONN;
881			break;
882		}
883		/* Lockless read. */
884		if (unp2->unp_flags & UNP_WANTCRED)
885			control = unp_addsockcred(td, control);
886		UNP_PCB_LOCK(unp);
887		if (unp->unp_addr != NULL)
888			from = (struct sockaddr *)unp->unp_addr;
889		else
890			from = &sun_noname;
891		so2 = unp2->unp_socket;
892		SOCKBUF_LOCK(&so2->so_rcv);
893		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
894			sorwakeup_locked(so2);
895			m = NULL;
896			control = NULL;
897		} else {
898			SOCKBUF_UNLOCK(&so2->so_rcv);
899			error = ENOBUFS;
900		}
901		if (nam != NULL) {
902			UNP_LINK_WLOCK_ASSERT();
903			UNP_PCB_LOCK(unp2);
904			unp_disconnect(unp, unp2);
905			UNP_PCB_UNLOCK(unp2);
906		}
907		UNP_PCB_UNLOCK(unp);
908		break;
909	}
910
911	case SOCK_SEQPACKET:
912	case SOCK_STREAM:
913		if ((so->so_state & SS_ISCONNECTED) == 0) {
914			if (nam != NULL) {
915				UNP_LINK_WLOCK_ASSERT();
916				error = unp_connect(so, nam, td);
917				if (error)
918					break;	/* XXX */
919			} else {
920				error = ENOTCONN;
921				break;
922			}
923		}
924
925		/* Lockless read. */
926		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
927			error = EPIPE;
928			break;
929		}
930
931		/*
932		 * Because connect() and send() are non-atomic in a sendto()
933		 * with a target address, it's possible that the socket will
934		 * have disconnected before the send() can run.  In that case
935		 * return the slightly counter-intuitive but otherwise
936		 * correct error that the socket is not connected.
937		 *
938		 * Locking here must be done carefully: the linkage lock
939		 * prevents interconnections between unpcbs from changing, so
940		 * we can traverse from unp to unp2 without acquiring unp's
941		 * lock.  Socket buffer locks follow unpcb locks, so we can
942		 * acquire both remote and lock socket buffer locks.
943		 */
944		unp2 = unp->unp_conn;
945		if (unp2 == NULL) {
946			error = ENOTCONN;
947			break;
948		}
949		so2 = unp2->unp_socket;
950		UNP_PCB_LOCK(unp2);
951		SOCKBUF_LOCK(&so2->so_rcv);
952		if (unp2->unp_flags & UNP_WANTCRED) {
953			/*
954			 * Credentials are passed only once on SOCK_STREAM
955			 * and SOCK_SEQPACKET.
956			 */
957			unp2->unp_flags &= ~UNP_WANTCRED;
958			control = unp_addsockcred(td, control);
959		}
960		/*
961		 * Send to paired receive port, and then reduce send buffer
962		 * hiwater marks to maintain backpressure.  Wake up readers.
963		 */
964		switch (so->so_type) {
965		case SOCK_STREAM:
966			if (control != NULL) {
967				if (sbappendcontrol_locked(&so2->so_rcv, m,
968				    control))
969					control = NULL;
970			} else
971				sbappend_locked(&so2->so_rcv, m);
972			break;
973
974		case SOCK_SEQPACKET: {
975			const struct sockaddr *from;
976
977			from = &sun_noname;
978			if (sbappendaddr_locked(&so2->so_rcv, from, m,
979			    control))
980				control = NULL;
981			break;
982			}
983		}
984
985		/*
986		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
987		 * datagram size and back-pressure for SOCK_SEQPACKET, which
988		 * can lead to undesired return of EMSGSIZE on send instead
989		 * of more desirable blocking.
990		 */
991		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
992		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
993		sbcc = so2->so_rcv.sb_cc;
994		sorwakeup_locked(so2);
995
996		SOCKBUF_LOCK(&so->so_snd);
997		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
998			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
999		else
1000			newhiwat = 0;
1001		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
1002		    newhiwat, RLIM_INFINITY);
1003		so->so_snd.sb_mbmax -= mbcnt_delta;
1004		SOCKBUF_UNLOCK(&so->so_snd);
1005		unp2->unp_cc = sbcc;
1006		UNP_PCB_UNLOCK(unp2);
1007		m = NULL;
1008		break;
1009
1010	default:
1011		panic("uipc_send unknown socktype");
1012	}
1013
1014	/*
1015	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1016	 */
1017	if (flags & PRUS_EOF) {
1018		UNP_PCB_LOCK(unp);
1019		socantsendmore(so);
1020		unp_shutdown(unp);
1021		UNP_PCB_UNLOCK(unp);
1022	}
1023
1024	if ((nam != NULL) || (flags & PRUS_EOF))
1025		UNP_LINK_WUNLOCK();
1026	else
1027		UNP_LINK_RUNLOCK();
1028
1029	if (control != NULL && error != 0)
1030		unp_dispose(control);
1031
1032release:
1033	if (control != NULL)
1034		m_freem(control);
1035	if (m != NULL)
1036		m_freem(m);
1037	return (error);
1038}
1039
1040static int
1041uipc_sense(struct socket *so, struct stat *sb)
1042{
1043	struct unpcb *unp, *unp2;
1044	struct socket *so2;
1045
1046	unp = sotounpcb(so);
1047	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1048
1049	sb->st_blksize = so->so_snd.sb_hiwat;
1050	UNP_LINK_RLOCK();
1051	UNP_PCB_LOCK(unp);
1052	unp2 = unp->unp_conn;
1053	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1054	    unp2 != NULL) {
1055		so2 = unp2->unp_socket;
1056		sb->st_blksize += so2->so_rcv.sb_cc;
1057	}
1058	sb->st_dev = NODEV;
1059	if (unp->unp_ino == 0)
1060		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1061	sb->st_ino = unp->unp_ino;
1062	UNP_PCB_UNLOCK(unp);
1063	UNP_LINK_RUNLOCK();
1064	return (0);
1065}
1066
1067static int
1068uipc_shutdown(struct socket *so)
1069{
1070	struct unpcb *unp;
1071
1072	unp = sotounpcb(so);
1073	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1074
1075	UNP_LINK_WLOCK();
1076	UNP_PCB_LOCK(unp);
1077	socantsendmore(so);
1078	unp_shutdown(unp);
1079	UNP_PCB_UNLOCK(unp);
1080	UNP_LINK_WUNLOCK();
1081	return (0);
1082}
1083
1084static int
1085uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1086{
1087	struct unpcb *unp;
1088	const struct sockaddr *sa;
1089
1090	unp = sotounpcb(so);
1091	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1092
1093	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1094	UNP_PCB_LOCK(unp);
1095	if (unp->unp_addr != NULL)
1096		sa = (struct sockaddr *) unp->unp_addr;
1097	else
1098		sa = &sun_noname;
1099	bcopy(sa, *nam, sa->sa_len);
1100	UNP_PCB_UNLOCK(unp);
1101	return (0);
1102}
1103
1104static struct pr_usrreqs uipc_usrreqs_dgram = {
1105	.pru_abort = 		uipc_abort,
1106	.pru_accept =		uipc_accept,
1107	.pru_attach =		uipc_attach,
1108	.pru_bind =		uipc_bind,
1109	.pru_bindat =		uipc_bindat,
1110	.pru_connect =		uipc_connect,
1111	.pru_connectat =	uipc_connectat,
1112	.pru_connect2 =		uipc_connect2,
1113	.pru_detach =		uipc_detach,
1114	.pru_disconnect =	uipc_disconnect,
1115	.pru_listen =		uipc_listen,
1116	.pru_peeraddr =		uipc_peeraddr,
1117	.pru_rcvd =		uipc_rcvd,
1118	.pru_send =		uipc_send,
1119	.pru_sense =		uipc_sense,
1120	.pru_shutdown =		uipc_shutdown,
1121	.pru_sockaddr =		uipc_sockaddr,
1122	.pru_soreceive =	soreceive_dgram,
1123	.pru_close =		uipc_close,
1124};
1125
1126static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1127	.pru_abort =		uipc_abort,
1128	.pru_accept =		uipc_accept,
1129	.pru_attach =		uipc_attach,
1130	.pru_bind =		uipc_bind,
1131	.pru_bindat =		uipc_bindat,
1132	.pru_connect =		uipc_connect,
1133	.pru_connectat =	uipc_connectat,
1134	.pru_connect2 =		uipc_connect2,
1135	.pru_detach =		uipc_detach,
1136	.pru_disconnect =	uipc_disconnect,
1137	.pru_listen =		uipc_listen,
1138	.pru_peeraddr =		uipc_peeraddr,
1139	.pru_rcvd =		uipc_rcvd,
1140	.pru_send =		uipc_send,
1141	.pru_sense =		uipc_sense,
1142	.pru_shutdown =		uipc_shutdown,
1143	.pru_sockaddr =		uipc_sockaddr,
1144	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1145	.pru_close =		uipc_close,
1146};
1147
1148static struct pr_usrreqs uipc_usrreqs_stream = {
1149	.pru_abort = 		uipc_abort,
1150	.pru_accept =		uipc_accept,
1151	.pru_attach =		uipc_attach,
1152	.pru_bind =		uipc_bind,
1153	.pru_bindat =		uipc_bindat,
1154	.pru_connect =		uipc_connect,
1155	.pru_connectat =	uipc_connectat,
1156	.pru_connect2 =		uipc_connect2,
1157	.pru_detach =		uipc_detach,
1158	.pru_disconnect =	uipc_disconnect,
1159	.pru_listen =		uipc_listen,
1160	.pru_peeraddr =		uipc_peeraddr,
1161	.pru_rcvd =		uipc_rcvd,
1162	.pru_send =		uipc_send,
1163	.pru_sense =		uipc_sense,
1164	.pru_shutdown =		uipc_shutdown,
1165	.pru_sockaddr =		uipc_sockaddr,
1166	.pru_soreceive =	soreceive_generic,
1167	.pru_close =		uipc_close,
1168};
1169
1170static int
1171uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1172{
1173	struct unpcb *unp;
1174	struct xucred xu;
1175	int error, optval;
1176
1177	if (sopt->sopt_level != 0)
1178		return (EINVAL);
1179
1180	unp = sotounpcb(so);
1181	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1182	error = 0;
1183	switch (sopt->sopt_dir) {
1184	case SOPT_GET:
1185		switch (sopt->sopt_name) {
1186		case LOCAL_PEERCRED:
1187			UNP_PCB_LOCK(unp);
1188			if (unp->unp_flags & UNP_HAVEPC)
1189				xu = unp->unp_peercred;
1190			else {
1191				if (so->so_type == SOCK_STREAM)
1192					error = ENOTCONN;
1193				else
1194					error = EINVAL;
1195			}
1196			UNP_PCB_UNLOCK(unp);
1197			if (error == 0)
1198				error = sooptcopyout(sopt, &xu, sizeof(xu));
1199			break;
1200
1201		case LOCAL_CREDS:
1202			/* Unlocked read. */
1203			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1204			error = sooptcopyout(sopt, &optval, sizeof(optval));
1205			break;
1206
1207		case LOCAL_CONNWAIT:
1208			/* Unlocked read. */
1209			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1210			error = sooptcopyout(sopt, &optval, sizeof(optval));
1211			break;
1212
1213		default:
1214			error = EOPNOTSUPP;
1215			break;
1216		}
1217		break;
1218
1219	case SOPT_SET:
1220		switch (sopt->sopt_name) {
1221		case LOCAL_CREDS:
1222		case LOCAL_CONNWAIT:
1223			error = sooptcopyin(sopt, &optval, sizeof(optval),
1224					    sizeof(optval));
1225			if (error)
1226				break;
1227
1228#define	OPTSET(bit) do {						\
1229	UNP_PCB_LOCK(unp);						\
1230	if (optval)							\
1231		unp->unp_flags |= bit;					\
1232	else								\
1233		unp->unp_flags &= ~bit;					\
1234	UNP_PCB_UNLOCK(unp);						\
1235} while (0)
1236
1237			switch (sopt->sopt_name) {
1238			case LOCAL_CREDS:
1239				OPTSET(UNP_WANTCRED);
1240				break;
1241
1242			case LOCAL_CONNWAIT:
1243				OPTSET(UNP_CONNWAIT);
1244				break;
1245
1246			default:
1247				break;
1248			}
1249			break;
1250#undef	OPTSET
1251		default:
1252			error = ENOPROTOOPT;
1253			break;
1254		}
1255		break;
1256
1257	default:
1258		error = EOPNOTSUPP;
1259		break;
1260	}
1261	return (error);
1262}
1263
1264static int
1265unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1266{
1267
1268	return (unp_connectat(AT_FDCWD, so, nam, td));
1269}
1270
1271static int
1272unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1273    struct thread *td)
1274{
1275	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1276	struct vnode *vp;
1277	struct socket *so2, *so3;
1278	struct unpcb *unp, *unp2, *unp3;
1279	int error, len;
1280	struct nameidata nd;
1281	char buf[SOCK_MAXADDRLEN];
1282	struct sockaddr *sa;
1283
1284	UNP_LINK_WLOCK_ASSERT();
1285
1286	unp = sotounpcb(so);
1287	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1288
1289	if (nam->sa_len > sizeof(struct sockaddr_un))
1290		return (EINVAL);
1291	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1292	if (len <= 0)
1293		return (EINVAL);
1294	bcopy(soun->sun_path, buf, len);
1295	buf[len] = 0;
1296
1297	UNP_PCB_LOCK(unp);
1298	if (unp->unp_flags & UNP_CONNECTING) {
1299		UNP_PCB_UNLOCK(unp);
1300		return (EALREADY);
1301	}
1302	UNP_LINK_WUNLOCK();
1303	unp->unp_flags |= UNP_CONNECTING;
1304	UNP_PCB_UNLOCK(unp);
1305
1306	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1307	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1308	    UIO_SYSSPACE, buf, fd, CAP_CONNECTAT, td);
1309	error = namei(&nd);
1310	if (error)
1311		vp = NULL;
1312	else
1313		vp = nd.ni_vp;
1314	ASSERT_VOP_LOCKED(vp, "unp_connect");
1315	NDFREE(&nd, NDF_ONLY_PNBUF);
1316	if (error)
1317		goto bad;
1318
1319	if (vp->v_type != VSOCK) {
1320		error = ENOTSOCK;
1321		goto bad;
1322	}
1323#ifdef MAC
1324	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1325	if (error)
1326		goto bad;
1327#endif
1328	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1329	if (error)
1330		goto bad;
1331
1332	unp = sotounpcb(so);
1333	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1334
1335	/*
1336	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1337	 * and to protect simultaneous locking of multiple pcbs.
1338	 */
1339	UNP_LINK_WLOCK();
1340	VOP_UNP_CONNECT(vp, &so2);
1341	if (so2 == NULL) {
1342		error = ECONNREFUSED;
1343		goto bad2;
1344	}
1345	if (so->so_type != so2->so_type) {
1346		error = EPROTOTYPE;
1347		goto bad2;
1348	}
1349	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1350		if (so2->so_options & SO_ACCEPTCONN) {
1351			CURVNET_SET(so2->so_vnet);
1352			so3 = sonewconn(so2, 0);
1353			CURVNET_RESTORE();
1354		} else
1355			so3 = NULL;
1356		if (so3 == NULL) {
1357			error = ECONNREFUSED;
1358			goto bad2;
1359		}
1360		unp = sotounpcb(so);
1361		unp2 = sotounpcb(so2);
1362		unp3 = sotounpcb(so3);
1363		UNP_PCB_LOCK(unp);
1364		UNP_PCB_LOCK(unp2);
1365		UNP_PCB_LOCK(unp3);
1366		if (unp2->unp_addr != NULL) {
1367			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1368			unp3->unp_addr = (struct sockaddr_un *) sa;
1369			sa = NULL;
1370		}
1371
1372		/*
1373		 * The connector's (client's) credentials are copied from its
1374		 * process structure at the time of connect() (which is now).
1375		 */
1376		cru2x(td->td_ucred, &unp3->unp_peercred);
1377		unp3->unp_flags |= UNP_HAVEPC;
1378
1379		/*
1380		 * The receiver's (server's) credentials are copied from the
1381		 * unp_peercred member of socket on which the former called
1382		 * listen(); uipc_listen() cached that process's credentials
1383		 * at that time so we can use them now.
1384		 */
1385		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1386		    ("unp_connect: listener without cached peercred"));
1387		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1388		    sizeof(unp->unp_peercred));
1389		unp->unp_flags |= UNP_HAVEPC;
1390		if (unp2->unp_flags & UNP_WANTCRED)
1391			unp3->unp_flags |= UNP_WANTCRED;
1392		UNP_PCB_UNLOCK(unp3);
1393		UNP_PCB_UNLOCK(unp2);
1394		UNP_PCB_UNLOCK(unp);
1395#ifdef MAC
1396		mac_socketpeer_set_from_socket(so, so3);
1397		mac_socketpeer_set_from_socket(so3, so);
1398#endif
1399
1400		so2 = so3;
1401	}
1402	unp = sotounpcb(so);
1403	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1404	unp2 = sotounpcb(so2);
1405	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1406	UNP_PCB_LOCK(unp);
1407	UNP_PCB_LOCK(unp2);
1408	error = unp_connect2(so, so2, PRU_CONNECT);
1409	UNP_PCB_UNLOCK(unp2);
1410	UNP_PCB_UNLOCK(unp);
1411bad2:
1412	UNP_LINK_WUNLOCK();
1413bad:
1414	if (vp != NULL)
1415		vput(vp);
1416	free(sa, M_SONAME);
1417	UNP_LINK_WLOCK();
1418	UNP_PCB_LOCK(unp);
1419	unp->unp_flags &= ~UNP_CONNECTING;
1420	UNP_PCB_UNLOCK(unp);
1421	return (error);
1422}
1423
1424static int
1425unp_connect2(struct socket *so, struct socket *so2, int req)
1426{
1427	struct unpcb *unp;
1428	struct unpcb *unp2;
1429
1430	unp = sotounpcb(so);
1431	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1432	unp2 = sotounpcb(so2);
1433	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1434
1435	UNP_LINK_WLOCK_ASSERT();
1436	UNP_PCB_LOCK_ASSERT(unp);
1437	UNP_PCB_LOCK_ASSERT(unp2);
1438
1439	if (so2->so_type != so->so_type)
1440		return (EPROTOTYPE);
1441	unp->unp_conn = unp2;
1442
1443	switch (so->so_type) {
1444	case SOCK_DGRAM:
1445		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1446		soisconnected(so);
1447		break;
1448
1449	case SOCK_STREAM:
1450	case SOCK_SEQPACKET:
1451		unp2->unp_conn = unp;
1452		if (req == PRU_CONNECT &&
1453		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1454			soisconnecting(so);
1455		else
1456			soisconnected(so);
1457		soisconnected(so2);
1458		break;
1459
1460	default:
1461		panic("unp_connect2");
1462	}
1463	return (0);
1464}
1465
1466static void
1467unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1468{
1469	struct socket *so;
1470
1471	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1472
1473	UNP_LINK_WLOCK_ASSERT();
1474	UNP_PCB_LOCK_ASSERT(unp);
1475	UNP_PCB_LOCK_ASSERT(unp2);
1476
1477	unp->unp_conn = NULL;
1478	switch (unp->unp_socket->so_type) {
1479	case SOCK_DGRAM:
1480		LIST_REMOVE(unp, unp_reflink);
1481		so = unp->unp_socket;
1482		SOCK_LOCK(so);
1483		so->so_state &= ~SS_ISCONNECTED;
1484		SOCK_UNLOCK(so);
1485		break;
1486
1487	case SOCK_STREAM:
1488	case SOCK_SEQPACKET:
1489		soisdisconnected(unp->unp_socket);
1490		unp2->unp_conn = NULL;
1491		soisdisconnected(unp2->unp_socket);
1492		break;
1493	}
1494}
1495
1496/*
1497 * unp_pcblist() walks the global list of struct unpcb's to generate a
1498 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1499 * sequentially, validating the generation number on each to see if it has
1500 * been detached.  All of this is necessary because copyout() may sleep on
1501 * disk I/O.
1502 */
1503static int
1504unp_pcblist(SYSCTL_HANDLER_ARGS)
1505{
1506	int error, i, n;
1507	int freeunp;
1508	struct unpcb *unp, **unp_list;
1509	unp_gen_t gencnt;
1510	struct xunpgen *xug;
1511	struct unp_head *head;
1512	struct xunpcb *xu;
1513
1514	switch ((intptr_t)arg1) {
1515	case SOCK_STREAM:
1516		head = &unp_shead;
1517		break;
1518
1519	case SOCK_DGRAM:
1520		head = &unp_dhead;
1521		break;
1522
1523	case SOCK_SEQPACKET:
1524		head = &unp_sphead;
1525		break;
1526
1527	default:
1528		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1529	}
1530
1531	/*
1532	 * The process of preparing the PCB list is too time-consuming and
1533	 * resource-intensive to repeat twice on every request.
1534	 */
1535	if (req->oldptr == NULL) {
1536		n = unp_count;
1537		req->oldidx = 2 * (sizeof *xug)
1538			+ (n + n/8) * sizeof(struct xunpcb);
1539		return (0);
1540	}
1541
1542	if (req->newptr != NULL)
1543		return (EPERM);
1544
1545	/*
1546	 * OK, now we're committed to doing something.
1547	 */
1548	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1549	UNP_LIST_LOCK();
1550	gencnt = unp_gencnt;
1551	n = unp_count;
1552	UNP_LIST_UNLOCK();
1553
1554	xug->xug_len = sizeof *xug;
1555	xug->xug_count = n;
1556	xug->xug_gen = gencnt;
1557	xug->xug_sogen = so_gencnt;
1558	error = SYSCTL_OUT(req, xug, sizeof *xug);
1559	if (error) {
1560		free(xug, M_TEMP);
1561		return (error);
1562	}
1563
1564	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1565
1566	UNP_LIST_LOCK();
1567	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1568	     unp = LIST_NEXT(unp, unp_link)) {
1569		UNP_PCB_LOCK(unp);
1570		if (unp->unp_gencnt <= gencnt) {
1571			if (cr_cansee(req->td->td_ucred,
1572			    unp->unp_socket->so_cred)) {
1573				UNP_PCB_UNLOCK(unp);
1574				continue;
1575			}
1576			unp_list[i++] = unp;
1577			unp->unp_refcount++;
1578		}
1579		UNP_PCB_UNLOCK(unp);
1580	}
1581	UNP_LIST_UNLOCK();
1582	n = i;			/* In case we lost some during malloc. */
1583
1584	error = 0;
1585	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1586	for (i = 0; i < n; i++) {
1587		unp = unp_list[i];
1588		UNP_PCB_LOCK(unp);
1589		unp->unp_refcount--;
1590	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1591			xu->xu_len = sizeof *xu;
1592			xu->xu_unpp = unp;
1593			/*
1594			 * XXX - need more locking here to protect against
1595			 * connect/disconnect races for SMP.
1596			 */
1597			if (unp->unp_addr != NULL)
1598				bcopy(unp->unp_addr, &xu->xu_addr,
1599				      unp->unp_addr->sun_len);
1600			if (unp->unp_conn != NULL &&
1601			    unp->unp_conn->unp_addr != NULL)
1602				bcopy(unp->unp_conn->unp_addr,
1603				      &xu->xu_caddr,
1604				      unp->unp_conn->unp_addr->sun_len);
1605			bcopy(unp, &xu->xu_unp, sizeof *unp);
1606			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1607			UNP_PCB_UNLOCK(unp);
1608			error = SYSCTL_OUT(req, xu, sizeof *xu);
1609		} else {
1610			freeunp = (unp->unp_refcount == 0);
1611			UNP_PCB_UNLOCK(unp);
1612			if (freeunp) {
1613				UNP_PCB_LOCK_DESTROY(unp);
1614				uma_zfree(unp_zone, unp);
1615			}
1616		}
1617	}
1618	free(xu, M_TEMP);
1619	if (!error) {
1620		/*
1621		 * Give the user an updated idea of our state.  If the
1622		 * generation differs from what we told her before, she knows
1623		 * that something happened while we were processing this
1624		 * request, and it might be necessary to retry.
1625		 */
1626		xug->xug_gen = unp_gencnt;
1627		xug->xug_sogen = so_gencnt;
1628		xug->xug_count = unp_count;
1629		error = SYSCTL_OUT(req, xug, sizeof *xug);
1630	}
1631	free(unp_list, M_TEMP);
1632	free(xug, M_TEMP);
1633	return (error);
1634}
1635
1636SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1637    (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1638    "List of active local datagram sockets");
1639SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1640    (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1641    "List of active local stream sockets");
1642SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1643    CTLTYPE_OPAQUE | CTLFLAG_RD,
1644    (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1645    "List of active local seqpacket sockets");
1646
1647static void
1648unp_shutdown(struct unpcb *unp)
1649{
1650	struct unpcb *unp2;
1651	struct socket *so;
1652
1653	UNP_LINK_WLOCK_ASSERT();
1654	UNP_PCB_LOCK_ASSERT(unp);
1655
1656	unp2 = unp->unp_conn;
1657	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1658	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1659		so = unp2->unp_socket;
1660		if (so != NULL)
1661			socantrcvmore(so);
1662	}
1663}
1664
1665static void
1666unp_drop(struct unpcb *unp, int errno)
1667{
1668	struct socket *so = unp->unp_socket;
1669	struct unpcb *unp2;
1670
1671	UNP_LINK_WLOCK_ASSERT();
1672	UNP_PCB_LOCK_ASSERT(unp);
1673
1674	so->so_error = errno;
1675	unp2 = unp->unp_conn;
1676	if (unp2 == NULL)
1677		return;
1678	UNP_PCB_LOCK(unp2);
1679	unp_disconnect(unp, unp2);
1680	UNP_PCB_UNLOCK(unp2);
1681}
1682
1683static void
1684unp_freerights(struct filedescent **fdep, int fdcount)
1685{
1686	struct file *fp;
1687	int i;
1688
1689	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1690
1691	for (i = 0; i < fdcount; i++) {
1692		fp = fdep[i]->fde_file;
1693		filecaps_free(&fdep[i]->fde_caps);
1694		unp_discard(fp);
1695	}
1696	free(fdep[0], M_FILECAPS);
1697}
1698
1699static int
1700unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1701{
1702	struct thread *td = curthread;		/* XXX */
1703	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1704	int i;
1705	int *fdp;
1706	struct filedesc *fdesc = td->td_proc->p_fd;
1707	struct filedescent *fde, **fdep;
1708	void *data;
1709	socklen_t clen = control->m_len, datalen;
1710	int error, newfds;
1711	u_int newlen;
1712
1713	UNP_LINK_UNLOCK_ASSERT();
1714
1715	error = 0;
1716	if (controlp != NULL) /* controlp == NULL => free control messages */
1717		*controlp = NULL;
1718	while (cm != NULL) {
1719		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1720			error = EINVAL;
1721			break;
1722		}
1723		data = CMSG_DATA(cm);
1724		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1725		if (cm->cmsg_level == SOL_SOCKET
1726		    && cm->cmsg_type == SCM_RIGHTS) {
1727			newfds = datalen / sizeof(*fdep);
1728			if (newfds == 0)
1729				goto next;
1730			fdep = data;
1731
1732			/* If we're not outputting the descriptors free them. */
1733			if (error || controlp == NULL) {
1734				unp_freerights(fdep, newfds);
1735				goto next;
1736			}
1737			FILEDESC_XLOCK(fdesc);
1738
1739			/*
1740			 * Now change each pointer to an fd in the global
1741			 * table to an integer that is the index to the local
1742			 * fd table entry that we set up to point to the
1743			 * global one we are transferring.
1744			 */
1745			newlen = newfds * sizeof(int);
1746			*controlp = sbcreatecontrol(NULL, newlen,
1747			    SCM_RIGHTS, SOL_SOCKET);
1748			if (*controlp == NULL) {
1749				FILEDESC_XUNLOCK(fdesc);
1750				error = E2BIG;
1751				unp_freerights(fdep, newfds);
1752				goto next;
1753			}
1754
1755			fdp = (int *)
1756			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1757			if (fdallocn(td, 0, fdp, newfds) != 0) {
1758				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1759				error = EMSGSIZE;
1760				unp_freerights(fdep, newfds);
1761				m_freem(*controlp);
1762				*controlp = NULL;
1763				goto next;
1764			}
1765			for (i = 0; i < newfds; i++, fdp++) {
1766				fde = &fdesc->fd_ofiles[*fdp];
1767				fde->fde_file = fdep[0]->fde_file;
1768				filecaps_move(&fdep[0]->fde_caps,
1769				    &fde->fde_caps);
1770				if ((flags & MSG_CMSG_CLOEXEC) != 0)
1771					fde->fde_flags |= UF_EXCLOSE;
1772				unp_externalize_fp(fde->fde_file);
1773			}
1774			FILEDESC_XUNLOCK(fdesc);
1775			free(fdep[0], M_FILECAPS);
1776		} else {
1777			/* We can just copy anything else across. */
1778			if (error || controlp == NULL)
1779				goto next;
1780			*controlp = sbcreatecontrol(NULL, datalen,
1781			    cm->cmsg_type, cm->cmsg_level);
1782			if (*controlp == NULL) {
1783				error = ENOBUFS;
1784				goto next;
1785			}
1786			bcopy(data,
1787			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1788			    datalen);
1789		}
1790		controlp = &(*controlp)->m_next;
1791
1792next:
1793		if (CMSG_SPACE(datalen) < clen) {
1794			clen -= CMSG_SPACE(datalen);
1795			cm = (struct cmsghdr *)
1796			    ((caddr_t)cm + CMSG_SPACE(datalen));
1797		} else {
1798			clen = 0;
1799			cm = NULL;
1800		}
1801	}
1802
1803	m_freem(control);
1804	return (error);
1805}
1806
1807static void
1808unp_zone_change(void *tag)
1809{
1810
1811	uma_zone_set_max(unp_zone, maxsockets);
1812}
1813
1814static void
1815unp_init(void)
1816{
1817
1818#ifdef VIMAGE
1819	if (!IS_DEFAULT_VNET(curvnet))
1820		return;
1821#endif
1822	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1823	    NULL, NULL, UMA_ALIGN_PTR, 0);
1824	if (unp_zone == NULL)
1825		panic("unp_init");
1826	uma_zone_set_max(unp_zone, maxsockets);
1827	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1828	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1829	    NULL, EVENTHANDLER_PRI_ANY);
1830	LIST_INIT(&unp_dhead);
1831	LIST_INIT(&unp_shead);
1832	LIST_INIT(&unp_sphead);
1833	SLIST_INIT(&unp_defers);
1834	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1835	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1836	UNP_LINK_LOCK_INIT();
1837	UNP_LIST_LOCK_INIT();
1838	UNP_DEFERRED_LOCK_INIT();
1839}
1840
1841static int
1842unp_internalize(struct mbuf **controlp, struct thread *td)
1843{
1844	struct mbuf *control = *controlp;
1845	struct proc *p = td->td_proc;
1846	struct filedesc *fdesc = p->p_fd;
1847	struct bintime *bt;
1848	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1849	struct cmsgcred *cmcred;
1850	struct filedescent *fde, **fdep, *fdev;
1851	struct file *fp;
1852	struct timeval *tv;
1853	int i, fd, *fdp;
1854	void *data;
1855	socklen_t clen = control->m_len, datalen;
1856	int error, oldfds;
1857	u_int newlen;
1858
1859	UNP_LINK_UNLOCK_ASSERT();
1860
1861	error = 0;
1862	*controlp = NULL;
1863	while (cm != NULL) {
1864		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1865		    || cm->cmsg_len > clen) {
1866			error = EINVAL;
1867			goto out;
1868		}
1869		data = CMSG_DATA(cm);
1870		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1871
1872		switch (cm->cmsg_type) {
1873		/*
1874		 * Fill in credential information.
1875		 */
1876		case SCM_CREDS:
1877			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1878			    SCM_CREDS, SOL_SOCKET);
1879			if (*controlp == NULL) {
1880				error = ENOBUFS;
1881				goto out;
1882			}
1883			cmcred = (struct cmsgcred *)
1884			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1885			cmcred->cmcred_pid = p->p_pid;
1886			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1887			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1888			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1889			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1890			    CMGROUP_MAX);
1891			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1892				cmcred->cmcred_groups[i] =
1893				    td->td_ucred->cr_groups[i];
1894			break;
1895
1896		case SCM_RIGHTS:
1897			oldfds = datalen / sizeof (int);
1898			if (oldfds == 0)
1899				break;
1900			/*
1901			 * Check that all the FDs passed in refer to legal
1902			 * files.  If not, reject the entire operation.
1903			 */
1904			fdp = data;
1905			FILEDESC_SLOCK(fdesc);
1906			for (i = 0; i < oldfds; i++) {
1907				fd = *fdp++;
1908				if (fget_locked(fdesc, fd) == NULL) {
1909					FILEDESC_SUNLOCK(fdesc);
1910					error = EBADF;
1911					goto out;
1912				}
1913				fp = fdesc->fd_ofiles[fd].fde_file;
1914				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1915					FILEDESC_SUNLOCK(fdesc);
1916					error = EOPNOTSUPP;
1917					goto out;
1918				}
1919
1920			}
1921
1922			/*
1923			 * Now replace the integer FDs with pointers to the
1924			 * file structure and capability rights.
1925			 */
1926			newlen = oldfds * sizeof(fdep[0]);
1927			*controlp = sbcreatecontrol(NULL, newlen,
1928			    SCM_RIGHTS, SOL_SOCKET);
1929			if (*controlp == NULL) {
1930				FILEDESC_SUNLOCK(fdesc);
1931				error = E2BIG;
1932				goto out;
1933			}
1934			fdp = data;
1935			fdep = (struct filedescent **)
1936			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1937			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1938			    M_WAITOK);
1939			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1940				fde = &fdesc->fd_ofiles[*fdp];
1941				fdep[i] = fdev;
1942				fdep[i]->fde_file = fde->fde_file;
1943				filecaps_copy(&fde->fde_caps,
1944				    &fdep[i]->fde_caps);
1945				unp_internalize_fp(fdep[i]->fde_file);
1946			}
1947			FILEDESC_SUNLOCK(fdesc);
1948			break;
1949
1950		case SCM_TIMESTAMP:
1951			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1952			    SCM_TIMESTAMP, SOL_SOCKET);
1953			if (*controlp == NULL) {
1954				error = ENOBUFS;
1955				goto out;
1956			}
1957			tv = (struct timeval *)
1958			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1959			microtime(tv);
1960			break;
1961
1962		case SCM_BINTIME:
1963			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
1964			    SCM_BINTIME, SOL_SOCKET);
1965			if (*controlp == NULL) {
1966				error = ENOBUFS;
1967				goto out;
1968			}
1969			bt = (struct bintime *)
1970			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1971			bintime(bt);
1972			break;
1973
1974		default:
1975			error = EINVAL;
1976			goto out;
1977		}
1978
1979		controlp = &(*controlp)->m_next;
1980		if (CMSG_SPACE(datalen) < clen) {
1981			clen -= CMSG_SPACE(datalen);
1982			cm = (struct cmsghdr *)
1983			    ((caddr_t)cm + CMSG_SPACE(datalen));
1984		} else {
1985			clen = 0;
1986			cm = NULL;
1987		}
1988	}
1989
1990out:
1991	m_freem(control);
1992	return (error);
1993}
1994
1995static struct mbuf *
1996unp_addsockcred(struct thread *td, struct mbuf *control)
1997{
1998	struct mbuf *m, *n, *n_prev;
1999	struct sockcred *sc;
2000	const struct cmsghdr *cm;
2001	int ngroups;
2002	int i;
2003
2004	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2005	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2006	if (m == NULL)
2007		return (control);
2008
2009	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2010	sc->sc_uid = td->td_ucred->cr_ruid;
2011	sc->sc_euid = td->td_ucred->cr_uid;
2012	sc->sc_gid = td->td_ucred->cr_rgid;
2013	sc->sc_egid = td->td_ucred->cr_gid;
2014	sc->sc_ngroups = ngroups;
2015	for (i = 0; i < sc->sc_ngroups; i++)
2016		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2017
2018	/*
2019	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2020	 * created SCM_CREDS control message (struct sockcred) has another
2021	 * format.
2022	 */
2023	if (control != NULL)
2024		for (n = control, n_prev = NULL; n != NULL;) {
2025			cm = mtod(n, struct cmsghdr *);
2026    			if (cm->cmsg_level == SOL_SOCKET &&
2027			    cm->cmsg_type == SCM_CREDS) {
2028    				if (n_prev == NULL)
2029					control = n->m_next;
2030				else
2031					n_prev->m_next = n->m_next;
2032				n = m_free(n);
2033			} else {
2034				n_prev = n;
2035				n = n->m_next;
2036			}
2037		}
2038
2039	/* Prepend it to the head. */
2040	m->m_next = control;
2041	return (m);
2042}
2043
2044static struct unpcb *
2045fptounp(struct file *fp)
2046{
2047	struct socket *so;
2048
2049	if (fp->f_type != DTYPE_SOCKET)
2050		return (NULL);
2051	if ((so = fp->f_data) == NULL)
2052		return (NULL);
2053	if (so->so_proto->pr_domain != &localdomain)
2054		return (NULL);
2055	return sotounpcb(so);
2056}
2057
2058static void
2059unp_discard(struct file *fp)
2060{
2061	struct unp_defer *dr;
2062
2063	if (unp_externalize_fp(fp)) {
2064		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2065		dr->ud_fp = fp;
2066		UNP_DEFERRED_LOCK();
2067		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2068		UNP_DEFERRED_UNLOCK();
2069		atomic_add_int(&unp_defers_count, 1);
2070		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2071	} else
2072		(void) closef(fp, (struct thread *)NULL);
2073}
2074
2075static void
2076unp_process_defers(void *arg __unused, int pending)
2077{
2078	struct unp_defer *dr;
2079	SLIST_HEAD(, unp_defer) drl;
2080	int count;
2081
2082	SLIST_INIT(&drl);
2083	for (;;) {
2084		UNP_DEFERRED_LOCK();
2085		if (SLIST_FIRST(&unp_defers) == NULL) {
2086			UNP_DEFERRED_UNLOCK();
2087			break;
2088		}
2089		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2090		UNP_DEFERRED_UNLOCK();
2091		count = 0;
2092		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2093			SLIST_REMOVE_HEAD(&drl, ud_link);
2094			closef(dr->ud_fp, NULL);
2095			free(dr, M_TEMP);
2096			count++;
2097		}
2098		atomic_add_int(&unp_defers_count, -count);
2099	}
2100}
2101
2102static void
2103unp_internalize_fp(struct file *fp)
2104{
2105	struct unpcb *unp;
2106
2107	UNP_LINK_WLOCK();
2108	if ((unp = fptounp(fp)) != NULL) {
2109		unp->unp_file = fp;
2110		unp->unp_msgcount++;
2111	}
2112	fhold(fp);
2113	unp_rights++;
2114	UNP_LINK_WUNLOCK();
2115}
2116
2117static int
2118unp_externalize_fp(struct file *fp)
2119{
2120	struct unpcb *unp;
2121	int ret;
2122
2123	UNP_LINK_WLOCK();
2124	if ((unp = fptounp(fp)) != NULL) {
2125		unp->unp_msgcount--;
2126		ret = 1;
2127	} else
2128		ret = 0;
2129	unp_rights--;
2130	UNP_LINK_WUNLOCK();
2131	return (ret);
2132}
2133
2134/*
2135 * unp_defer indicates whether additional work has been defered for a future
2136 * pass through unp_gc().  It is thread local and does not require explicit
2137 * synchronization.
2138 */
2139static int	unp_marked;
2140static int	unp_unreachable;
2141
2142static void
2143unp_accessable(struct filedescent **fdep, int fdcount)
2144{
2145	struct unpcb *unp;
2146	struct file *fp;
2147	int i;
2148
2149	for (i = 0; i < fdcount; i++) {
2150		fp = fdep[i]->fde_file;
2151		if ((unp = fptounp(fp)) == NULL)
2152			continue;
2153		if (unp->unp_gcflag & UNPGC_REF)
2154			continue;
2155		unp->unp_gcflag &= ~UNPGC_DEAD;
2156		unp->unp_gcflag |= UNPGC_REF;
2157		unp_marked++;
2158	}
2159}
2160
2161static void
2162unp_gc_process(struct unpcb *unp)
2163{
2164	struct socket *soa;
2165	struct socket *so;
2166	struct file *fp;
2167
2168	/* Already processed. */
2169	if (unp->unp_gcflag & UNPGC_SCANNED)
2170		return;
2171	fp = unp->unp_file;
2172
2173	/*
2174	 * Check for a socket potentially in a cycle.  It must be in a
2175	 * queue as indicated by msgcount, and this must equal the file
2176	 * reference count.  Note that when msgcount is 0 the file is NULL.
2177	 */
2178	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2179	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2180		unp->unp_gcflag |= UNPGC_DEAD;
2181		unp_unreachable++;
2182		return;
2183	}
2184
2185	/*
2186	 * Mark all sockets we reference with RIGHTS.
2187	 */
2188	so = unp->unp_socket;
2189	SOCKBUF_LOCK(&so->so_rcv);
2190	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2191	SOCKBUF_UNLOCK(&so->so_rcv);
2192
2193	/*
2194	 * Mark all sockets in our accept queue.
2195	 */
2196	ACCEPT_LOCK();
2197	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2198		SOCKBUF_LOCK(&soa->so_rcv);
2199		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2200		SOCKBUF_UNLOCK(&soa->so_rcv);
2201	}
2202	ACCEPT_UNLOCK();
2203	unp->unp_gcflag |= UNPGC_SCANNED;
2204}
2205
2206static int unp_recycled;
2207SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2208    "Number of unreachable sockets claimed by the garbage collector.");
2209
2210static int unp_taskcount;
2211SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2212    "Number of times the garbage collector has run.");
2213
2214static void
2215unp_gc(__unused void *arg, int pending)
2216{
2217	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2218				    NULL };
2219	struct unp_head **head;
2220	struct file *f, **unref;
2221	struct unpcb *unp;
2222	int i, total;
2223
2224	unp_taskcount++;
2225	UNP_LIST_LOCK();
2226	/*
2227	 * First clear all gc flags from previous runs.
2228	 */
2229	for (head = heads; *head != NULL; head++)
2230		LIST_FOREACH(unp, *head, unp_link)
2231			unp->unp_gcflag = 0;
2232
2233	/*
2234	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2235	 * is reachable all of the sockets it references are reachable.
2236	 * Stop the scan once we do a complete loop without discovering
2237	 * a new reachable socket.
2238	 */
2239	do {
2240		unp_unreachable = 0;
2241		unp_marked = 0;
2242		for (head = heads; *head != NULL; head++)
2243			LIST_FOREACH(unp, *head, unp_link)
2244				unp_gc_process(unp);
2245	} while (unp_marked);
2246	UNP_LIST_UNLOCK();
2247	if (unp_unreachable == 0)
2248		return;
2249
2250	/*
2251	 * Allocate space for a local list of dead unpcbs.
2252	 */
2253	unref = malloc(unp_unreachable * sizeof(struct file *),
2254	    M_TEMP, M_WAITOK);
2255
2256	/*
2257	 * Iterate looking for sockets which have been specifically marked
2258	 * as as unreachable and store them locally.
2259	 */
2260	UNP_LINK_RLOCK();
2261	UNP_LIST_LOCK();
2262	for (total = 0, head = heads; *head != NULL; head++)
2263		LIST_FOREACH(unp, *head, unp_link)
2264			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2265				f = unp->unp_file;
2266				if (unp->unp_msgcount == 0 || f == NULL ||
2267				    f->f_count != unp->unp_msgcount)
2268					continue;
2269				unref[total++] = f;
2270				fhold(f);
2271				KASSERT(total <= unp_unreachable,
2272				    ("unp_gc: incorrect unreachable count."));
2273			}
2274	UNP_LIST_UNLOCK();
2275	UNP_LINK_RUNLOCK();
2276
2277	/*
2278	 * Now flush all sockets, free'ing rights.  This will free the
2279	 * struct files associated with these sockets but leave each socket
2280	 * with one remaining ref.
2281	 */
2282	for (i = 0; i < total; i++) {
2283		struct socket *so;
2284
2285		so = unref[i]->f_data;
2286		CURVNET_SET(so->so_vnet);
2287		sorflush(so);
2288		CURVNET_RESTORE();
2289	}
2290
2291	/*
2292	 * And finally release the sockets so they can be reclaimed.
2293	 */
2294	for (i = 0; i < total; i++)
2295		fdrop(unref[i], NULL);
2296	unp_recycled += total;
2297	free(unref, M_TEMP);
2298}
2299
2300static void
2301unp_dispose(struct mbuf *m)
2302{
2303
2304	if (m)
2305		unp_scan(m, unp_freerights);
2306}
2307
2308static void
2309unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2310{
2311	struct mbuf *m;
2312	struct cmsghdr *cm;
2313	void *data;
2314	socklen_t clen, datalen;
2315
2316	while (m0 != NULL) {
2317		for (m = m0; m; m = m->m_next) {
2318			if (m->m_type != MT_CONTROL)
2319				continue;
2320
2321			cm = mtod(m, struct cmsghdr *);
2322			clen = m->m_len;
2323
2324			while (cm != NULL) {
2325				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2326					break;
2327
2328				data = CMSG_DATA(cm);
2329				datalen = (caddr_t)cm + cm->cmsg_len
2330				    - (caddr_t)data;
2331
2332				if (cm->cmsg_level == SOL_SOCKET &&
2333				    cm->cmsg_type == SCM_RIGHTS) {
2334					(*op)(data, datalen /
2335					    sizeof(struct filedescent *));
2336				}
2337
2338				if (CMSG_SPACE(datalen) < clen) {
2339					clen -= CMSG_SPACE(datalen);
2340					cm = (struct cmsghdr *)
2341					    ((caddr_t)cm + CMSG_SPACE(datalen));
2342				} else {
2343					clen = 0;
2344					cm = NULL;
2345				}
2346			}
2347		}
2348		m0 = m0->m_act;
2349	}
2350}
2351
2352/*
2353 * A helper function called by VFS before socket-type vnode reclamation.
2354 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2355 * use count.
2356 */
2357void
2358vfs_unp_reclaim(struct vnode *vp)
2359{
2360	struct socket *so;
2361	struct unpcb *unp;
2362	int active;
2363
2364	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2365	KASSERT(vp->v_type == VSOCK,
2366	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2367
2368	active = 0;
2369	UNP_LINK_WLOCK();
2370	VOP_UNP_CONNECT(vp, &so);
2371	if (so == NULL)
2372		goto done;
2373	unp = sotounpcb(so);
2374	if (unp == NULL)
2375		goto done;
2376	UNP_PCB_LOCK(unp);
2377	if (unp->unp_vnode == vp) {
2378		VOP_UNP_DETACH(vp);
2379		unp->unp_vnode = NULL;
2380		active = 1;
2381	}
2382	UNP_PCB_UNLOCK(unp);
2383done:
2384	UNP_LINK_WUNLOCK();
2385	if (active)
2386		vunref(vp);
2387}
2388
2389#ifdef DDB
2390static void
2391db_print_indent(int indent)
2392{
2393	int i;
2394
2395	for (i = 0; i < indent; i++)
2396		db_printf(" ");
2397}
2398
2399static void
2400db_print_unpflags(int unp_flags)
2401{
2402	int comma;
2403
2404	comma = 0;
2405	if (unp_flags & UNP_HAVEPC) {
2406		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2407		comma = 1;
2408	}
2409	if (unp_flags & UNP_HAVEPCCACHED) {
2410		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2411		comma = 1;
2412	}
2413	if (unp_flags & UNP_WANTCRED) {
2414		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2415		comma = 1;
2416	}
2417	if (unp_flags & UNP_CONNWAIT) {
2418		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2419		comma = 1;
2420	}
2421	if (unp_flags & UNP_CONNECTING) {
2422		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2423		comma = 1;
2424	}
2425	if (unp_flags & UNP_BINDING) {
2426		db_printf("%sUNP_BINDING", comma ? ", " : "");
2427		comma = 1;
2428	}
2429}
2430
2431static void
2432db_print_xucred(int indent, struct xucred *xu)
2433{
2434	int comma, i;
2435
2436	db_print_indent(indent);
2437	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2438	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2439	db_print_indent(indent);
2440	db_printf("cr_groups: ");
2441	comma = 0;
2442	for (i = 0; i < xu->cr_ngroups; i++) {
2443		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2444		comma = 1;
2445	}
2446	db_printf("\n");
2447}
2448
2449static void
2450db_print_unprefs(int indent, struct unp_head *uh)
2451{
2452	struct unpcb *unp;
2453	int counter;
2454
2455	counter = 0;
2456	LIST_FOREACH(unp, uh, unp_reflink) {
2457		if (counter % 4 == 0)
2458			db_print_indent(indent);
2459		db_printf("%p  ", unp);
2460		if (counter % 4 == 3)
2461			db_printf("\n");
2462		counter++;
2463	}
2464	if (counter != 0 && counter % 4 != 0)
2465		db_printf("\n");
2466}
2467
2468DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2469{
2470	struct unpcb *unp;
2471
2472        if (!have_addr) {
2473                db_printf("usage: show unpcb <addr>\n");
2474                return;
2475        }
2476        unp = (struct unpcb *)addr;
2477
2478	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2479	    unp->unp_vnode);
2480
2481	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2482	    unp->unp_conn);
2483
2484	db_printf("unp_refs:\n");
2485	db_print_unprefs(2, &unp->unp_refs);
2486
2487	/* XXXRW: Would be nice to print the full address, if any. */
2488	db_printf("unp_addr: %p\n", unp->unp_addr);
2489
2490	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2491	    unp->unp_cc, unp->unp_mbcnt,
2492	    (unsigned long long)unp->unp_gencnt);
2493
2494	db_printf("unp_flags: %x (", unp->unp_flags);
2495	db_print_unpflags(unp->unp_flags);
2496	db_printf(")\n");
2497
2498	db_printf("unp_peercred:\n");
2499	db_print_xucred(2, &unp->unp_peercred);
2500
2501	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2502}
2503#endif
2504