uipc_usrreq.c revision 247667
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	RDM
54 *	distinguish datagram size limits from flow control limits in SEQPACKET
55 *	rethink name space problems
56 *	need a proper out-of-band
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/uipc_usrreq.c 247667 2013-03-02 21:11:30Z pjd $");
61
62#include "opt_ddb.h"
63
64#include <sys/param.h>
65#include <sys/capability.h>
66#include <sys/domain.h>
67#include <sys/fcntl.h>
68#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
69#include <sys/eventhandler.h>
70#include <sys/file.h>
71#include <sys/filedesc.h>
72#include <sys/kernel.h>
73#include <sys/lock.h>
74#include <sys/mbuf.h>
75#include <sys/mount.h>
76#include <sys/mutex.h>
77#include <sys/namei.h>
78#include <sys/proc.h>
79#include <sys/protosw.h>
80#include <sys/queue.h>
81#include <sys/resourcevar.h>
82#include <sys/rwlock.h>
83#include <sys/socket.h>
84#include <sys/socketvar.h>
85#include <sys/signalvar.h>
86#include <sys/stat.h>
87#include <sys/sx.h>
88#include <sys/sysctl.h>
89#include <sys/systm.h>
90#include <sys/taskqueue.h>
91#include <sys/un.h>
92#include <sys/unpcb.h>
93#include <sys/vnode.h>
94
95#include <net/vnet.h>
96
97#ifdef DDB
98#include <ddb/ddb.h>
99#endif
100
101#include <security/mac/mac_framework.h>
102
103#include <vm/uma.h>
104
105/*
106 * Locking key:
107 * (l)	Locked using list lock
108 * (g)	Locked using linkage lock
109 */
110
111static uma_zone_t	unp_zone;
112static unp_gen_t	unp_gencnt;	/* (l) */
113static u_int		unp_count;	/* (l) Count of local sockets. */
114static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
115static int		unp_rights;	/* (g) File descriptors in flight. */
116static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
117static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
118static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
119
120struct unp_defer {
121	SLIST_ENTRY(unp_defer) ud_link;
122	struct file *ud_fp;
123};
124static SLIST_HEAD(, unp_defer) unp_defers;
125static int unp_defers_count;
126
127static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
128
129/*
130 * Garbage collection of cyclic file descriptor/socket references occurs
131 * asynchronously in a taskqueue context in order to avoid recursion and
132 * reentrance in the UNIX domain socket, file descriptor, and socket layer
133 * code.  See unp_gc() for a full description.
134 */
135static struct timeout_task unp_gc_task;
136
137/*
138 * The close of unix domain sockets attached as SCM_RIGHTS is
139 * postponed to the taskqueue, to avoid arbitrary recursion depth.
140 * The attached sockets might have another sockets attached.
141 */
142static struct task	unp_defer_task;
143
144/*
145 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
146 * stream sockets, although the total for sender and receiver is actually
147 * only PIPSIZ.
148 *
149 * Datagram sockets really use the sendspace as the maximum datagram size,
150 * and don't really want to reserve the sendspace.  Their recvspace should be
151 * large enough for at least one max-size datagram plus address.
152 */
153#ifndef PIPSIZ
154#define	PIPSIZ	8192
155#endif
156static u_long	unpst_sendspace = PIPSIZ;
157static u_long	unpst_recvspace = PIPSIZ;
158static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
159static u_long	unpdg_recvspace = 4*1024;
160static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
161static u_long	unpsp_recvspace = PIPSIZ;
162
163static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
164static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
165    "SOCK_STREAM");
166static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
167static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
168    "SOCK_SEQPACKET");
169
170SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
171	   &unpst_sendspace, 0, "Default stream send space.");
172SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
173	   &unpst_recvspace, 0, "Default stream receive space.");
174SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
175	   &unpdg_sendspace, 0, "Default datagram send space.");
176SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
177	   &unpdg_recvspace, 0, "Default datagram receive space.");
178SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
179	   &unpsp_sendspace, 0, "Default seqpacket send space.");
180SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
181	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
182SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
183    "File descriptors in flight.");
184SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
185    &unp_defers_count, 0,
186    "File descriptors deferred to taskqueue for close.");
187
188/*
189 * Locking and synchronization:
190 *
191 * Three types of locks exit in the local domain socket implementation: a
192 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
193 * global locks, the list lock protects the socket count, global generation
194 * number, and stream/datagram global lists.  The linkage lock protects the
195 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
196 * held exclusively over the acquisition of multiple unpcb locks to prevent
197 * deadlock.
198 *
199 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
200 * allocated in pru_attach() and freed in pru_detach().  The validity of that
201 * pointer is an invariant, so no lock is required to dereference the so_pcb
202 * pointer if a valid socket reference is held by the caller.  In practice,
203 * this is always true during operations performed on a socket.  Each unpcb
204 * has a back-pointer to its socket, unp_socket, which will be stable under
205 * the same circumstances.
206 *
207 * This pointer may only be safely dereferenced as long as a valid reference
208 * to the unpcb is held.  Typically, this reference will be from the socket,
209 * or from another unpcb when the referring unpcb's lock is held (in order
210 * that the reference not be invalidated during use).  For example, to follow
211 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
212 * as unp_socket remains valid as long as the reference to unp_conn is valid.
213 *
214 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
215 * atomic reads without the lock may be performed "lockless", but more
216 * complex reads and read-modify-writes require the mutex to be held.  No
217 * lock order is defined between unpcb locks -- multiple unpcb locks may be
218 * acquired at the same time only when holding the linkage rwlock
219 * exclusively, which prevents deadlocks.
220 *
221 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
222 * protocols, bind() is a non-atomic operation, and connect() requires
223 * potential sleeping in the protocol, due to potentially waiting on local or
224 * distributed file systems.  We try to separate "lookup" operations, which
225 * may sleep, and the IPC operations themselves, which typically can occur
226 * with relative atomicity as locks can be held over the entire operation.
227 *
228 * Another tricky issue is simultaneous multi-threaded or multi-process
229 * access to a single UNIX domain socket.  These are handled by the flags
230 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
231 * binding, both of which involve dropping UNIX domain socket locks in order
232 * to perform namei() and other file system operations.
233 */
234static struct rwlock	unp_link_rwlock;
235static struct mtx	unp_list_lock;
236static struct mtx	unp_defers_lock;
237
238#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
239					    "unp_link_rwlock")
240
241#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
242					    RA_LOCKED)
243#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
244					    RA_UNLOCKED)
245
246#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
247#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
248#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
249#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
250#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
251					    RA_WLOCKED)
252
253#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
254					    "unp_list_lock", NULL, MTX_DEF)
255#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
256#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
257
258#define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
259					    "unp_defer", NULL, MTX_DEF)
260#define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
261#define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
262
263#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
264					    "unp_mtx", "unp_mtx",	\
265					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
266#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
267#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
268#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
269#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
270
271static int	uipc_connect2(struct socket *, struct socket *);
272static int	uipc_ctloutput(struct socket *, struct sockopt *);
273static int	unp_connect(struct socket *, struct sockaddr *,
274		    struct thread *);
275static int	unp_connectat(int, struct socket *, struct sockaddr *,
276		    struct thread *);
277static int	unp_connect2(struct socket *so, struct socket *so2, int);
278static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
279static void	unp_dispose(struct mbuf *);
280static void	unp_shutdown(struct unpcb *);
281static void	unp_drop(struct unpcb *, int);
282static void	unp_gc(__unused void *, int);
283static void	unp_scan(struct mbuf *, void (*)(struct file *));
284static void	unp_discard(struct file *);
285static void	unp_freerights(struct filedescent *, int);
286static void	unp_init(void);
287static int	unp_internalize(struct mbuf **, struct thread *);
288static void	unp_internalize_fp(struct file *);
289static int	unp_externalize(struct mbuf *, struct mbuf **);
290static int	unp_externalize_fp(struct file *);
291static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
292static void	unp_process_defers(void * __unused, int);
293
294/*
295 * Definitions of protocols supported in the LOCAL domain.
296 */
297static struct domain localdomain;
298static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
299static struct pr_usrreqs uipc_usrreqs_seqpacket;
300static struct protosw localsw[] = {
301{
302	.pr_type =		SOCK_STREAM,
303	.pr_domain =		&localdomain,
304	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
305	.pr_ctloutput =		&uipc_ctloutput,
306	.pr_usrreqs =		&uipc_usrreqs_stream
307},
308{
309	.pr_type =		SOCK_DGRAM,
310	.pr_domain =		&localdomain,
311	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
312	.pr_ctloutput =		&uipc_ctloutput,
313	.pr_usrreqs =		&uipc_usrreqs_dgram
314},
315{
316	.pr_type =		SOCK_SEQPACKET,
317	.pr_domain =		&localdomain,
318
319	/*
320	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
321	 * due to our use of sbappendaddr.  A new sbappend variants is needed
322	 * that supports both atomic record writes and control data.
323	 */
324	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
325				    PR_RIGHTS,
326	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
327},
328};
329
330static struct domain localdomain = {
331	.dom_family =		AF_LOCAL,
332	.dom_name =		"local",
333	.dom_init =		unp_init,
334	.dom_externalize =	unp_externalize,
335	.dom_dispose =		unp_dispose,
336	.dom_protosw =		localsw,
337	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
338};
339DOMAIN_SET(local);
340
341static void
342uipc_abort(struct socket *so)
343{
344	struct unpcb *unp, *unp2;
345
346	unp = sotounpcb(so);
347	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
348
349	UNP_LINK_WLOCK();
350	UNP_PCB_LOCK(unp);
351	unp2 = unp->unp_conn;
352	if (unp2 != NULL) {
353		UNP_PCB_LOCK(unp2);
354		unp_drop(unp2, ECONNABORTED);
355		UNP_PCB_UNLOCK(unp2);
356	}
357	UNP_PCB_UNLOCK(unp);
358	UNP_LINK_WUNLOCK();
359}
360
361static int
362uipc_accept(struct socket *so, struct sockaddr **nam)
363{
364	struct unpcb *unp, *unp2;
365	const struct sockaddr *sa;
366
367	/*
368	 * Pass back name of connected socket, if it was bound and we are
369	 * still connected (our peer may have closed already!).
370	 */
371	unp = sotounpcb(so);
372	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
373
374	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
375	UNP_LINK_RLOCK();
376	unp2 = unp->unp_conn;
377	if (unp2 != NULL && unp2->unp_addr != NULL) {
378		UNP_PCB_LOCK(unp2);
379		sa = (struct sockaddr *) unp2->unp_addr;
380		bcopy(sa, *nam, sa->sa_len);
381		UNP_PCB_UNLOCK(unp2);
382	} else {
383		sa = &sun_noname;
384		bcopy(sa, *nam, sa->sa_len);
385	}
386	UNP_LINK_RUNLOCK();
387	return (0);
388}
389
390static int
391uipc_attach(struct socket *so, int proto, struct thread *td)
392{
393	u_long sendspace, recvspace;
394	struct unpcb *unp;
395	int error;
396
397	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
398	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
399		switch (so->so_type) {
400		case SOCK_STREAM:
401			sendspace = unpst_sendspace;
402			recvspace = unpst_recvspace;
403			break;
404
405		case SOCK_DGRAM:
406			sendspace = unpdg_sendspace;
407			recvspace = unpdg_recvspace;
408			break;
409
410		case SOCK_SEQPACKET:
411			sendspace = unpsp_sendspace;
412			recvspace = unpsp_recvspace;
413			break;
414
415		default:
416			panic("uipc_attach");
417		}
418		error = soreserve(so, sendspace, recvspace);
419		if (error)
420			return (error);
421	}
422	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
423	if (unp == NULL)
424		return (ENOBUFS);
425	LIST_INIT(&unp->unp_refs);
426	UNP_PCB_LOCK_INIT(unp);
427	unp->unp_socket = so;
428	so->so_pcb = unp;
429	unp->unp_refcount = 1;
430
431	UNP_LIST_LOCK();
432	unp->unp_gencnt = ++unp_gencnt;
433	unp_count++;
434	switch (so->so_type) {
435	case SOCK_STREAM:
436		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
437		break;
438
439	case SOCK_DGRAM:
440		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
441		break;
442
443	case SOCK_SEQPACKET:
444		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
445		break;
446
447	default:
448		panic("uipc_attach");
449	}
450	UNP_LIST_UNLOCK();
451
452	return (0);
453}
454
455static int
456uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
457{
458	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
459	struct vattr vattr;
460	int error, namelen;
461	struct nameidata nd;
462	struct unpcb *unp;
463	struct vnode *vp;
464	struct mount *mp;
465	char *buf;
466
467	unp = sotounpcb(so);
468	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
469
470	if (soun->sun_len > sizeof(struct sockaddr_un))
471		return (EINVAL);
472	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
473	if (namelen <= 0)
474		return (EINVAL);
475
476	/*
477	 * We don't allow simultaneous bind() calls on a single UNIX domain
478	 * socket, so flag in-progress operations, and return an error if an
479	 * operation is already in progress.
480	 *
481	 * Historically, we have not allowed a socket to be rebound, so this
482	 * also returns an error.  Not allowing re-binding simplifies the
483	 * implementation and avoids a great many possible failure modes.
484	 */
485	UNP_PCB_LOCK(unp);
486	if (unp->unp_vnode != NULL) {
487		UNP_PCB_UNLOCK(unp);
488		return (EINVAL);
489	}
490	if (unp->unp_flags & UNP_BINDING) {
491		UNP_PCB_UNLOCK(unp);
492		return (EALREADY);
493	}
494	unp->unp_flags |= UNP_BINDING;
495	UNP_PCB_UNLOCK(unp);
496
497	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
498	bcopy(soun->sun_path, buf, namelen);
499	buf[namelen] = 0;
500
501restart:
502	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME,
503	    UIO_SYSSPACE, buf, fd, CAP_BINDAT, td);
504/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
505	error = namei(&nd);
506	if (error)
507		goto error;
508	vp = nd.ni_vp;
509	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
510		NDFREE(&nd, NDF_ONLY_PNBUF);
511		if (nd.ni_dvp == vp)
512			vrele(nd.ni_dvp);
513		else
514			vput(nd.ni_dvp);
515		if (vp != NULL) {
516			vrele(vp);
517			error = EADDRINUSE;
518			goto error;
519		}
520		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
521		if (error)
522			goto error;
523		goto restart;
524	}
525	VATTR_NULL(&vattr);
526	vattr.va_type = VSOCK;
527	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
528#ifdef MAC
529	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
530	    &vattr);
531#endif
532	if (error == 0)
533		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
534	NDFREE(&nd, NDF_ONLY_PNBUF);
535	vput(nd.ni_dvp);
536	if (error) {
537		vn_finished_write(mp);
538		goto error;
539	}
540	vp = nd.ni_vp;
541	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
542	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
543
544	UNP_LINK_WLOCK();
545	UNP_PCB_LOCK(unp);
546	VOP_UNP_BIND(vp, unp->unp_socket);
547	unp->unp_vnode = vp;
548	unp->unp_addr = soun;
549	unp->unp_flags &= ~UNP_BINDING;
550	UNP_PCB_UNLOCK(unp);
551	UNP_LINK_WUNLOCK();
552	VOP_UNLOCK(vp, 0);
553	vn_finished_write(mp);
554	free(buf, M_TEMP);
555	return (0);
556
557error:
558	UNP_PCB_LOCK(unp);
559	unp->unp_flags &= ~UNP_BINDING;
560	UNP_PCB_UNLOCK(unp);
561	free(buf, M_TEMP);
562	return (error);
563}
564
565static int
566uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
567{
568
569	return (uipc_bindat(AT_FDCWD, so, nam, td));
570}
571
572static int
573uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
574{
575	int error;
576
577	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
578	UNP_LINK_WLOCK();
579	error = unp_connect(so, nam, td);
580	UNP_LINK_WUNLOCK();
581	return (error);
582}
583
584static int
585uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
586    struct thread *td)
587{
588	int error;
589
590	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
591	UNP_LINK_WLOCK();
592	error = unp_connectat(fd, so, nam, td);
593	UNP_LINK_WUNLOCK();
594	return (error);
595}
596
597static void
598uipc_close(struct socket *so)
599{
600	struct unpcb *unp, *unp2;
601
602	unp = sotounpcb(so);
603	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
604
605	UNP_LINK_WLOCK();
606	UNP_PCB_LOCK(unp);
607	unp2 = unp->unp_conn;
608	if (unp2 != NULL) {
609		UNP_PCB_LOCK(unp2);
610		unp_disconnect(unp, unp2);
611		UNP_PCB_UNLOCK(unp2);
612	}
613	UNP_PCB_UNLOCK(unp);
614	UNP_LINK_WUNLOCK();
615}
616
617static int
618uipc_connect2(struct socket *so1, struct socket *so2)
619{
620	struct unpcb *unp, *unp2;
621	int error;
622
623	UNP_LINK_WLOCK();
624	unp = so1->so_pcb;
625	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
626	UNP_PCB_LOCK(unp);
627	unp2 = so2->so_pcb;
628	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
629	UNP_PCB_LOCK(unp2);
630	error = unp_connect2(so1, so2, PRU_CONNECT2);
631	UNP_PCB_UNLOCK(unp2);
632	UNP_PCB_UNLOCK(unp);
633	UNP_LINK_WUNLOCK();
634	return (error);
635}
636
637static void
638uipc_detach(struct socket *so)
639{
640	struct unpcb *unp, *unp2;
641	struct sockaddr_un *saved_unp_addr;
642	struct vnode *vp;
643	int freeunp, local_unp_rights;
644
645	unp = sotounpcb(so);
646	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
647
648	UNP_LINK_WLOCK();
649	UNP_LIST_LOCK();
650	UNP_PCB_LOCK(unp);
651	LIST_REMOVE(unp, unp_link);
652	unp->unp_gencnt = ++unp_gencnt;
653	--unp_count;
654	UNP_LIST_UNLOCK();
655
656	/*
657	 * XXXRW: Should assert vp->v_socket == so.
658	 */
659	if ((vp = unp->unp_vnode) != NULL) {
660		VOP_UNP_DETACH(vp);
661		unp->unp_vnode = NULL;
662	}
663	unp2 = unp->unp_conn;
664	if (unp2 != NULL) {
665		UNP_PCB_LOCK(unp2);
666		unp_disconnect(unp, unp2);
667		UNP_PCB_UNLOCK(unp2);
668	}
669
670	/*
671	 * We hold the linkage lock exclusively, so it's OK to acquire
672	 * multiple pcb locks at a time.
673	 */
674	while (!LIST_EMPTY(&unp->unp_refs)) {
675		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
676
677		UNP_PCB_LOCK(ref);
678		unp_drop(ref, ECONNRESET);
679		UNP_PCB_UNLOCK(ref);
680	}
681	local_unp_rights = unp_rights;
682	UNP_LINK_WUNLOCK();
683	unp->unp_socket->so_pcb = NULL;
684	saved_unp_addr = unp->unp_addr;
685	unp->unp_addr = NULL;
686	unp->unp_refcount--;
687	freeunp = (unp->unp_refcount == 0);
688	if (saved_unp_addr != NULL)
689		free(saved_unp_addr, M_SONAME);
690	if (freeunp) {
691		UNP_PCB_LOCK_DESTROY(unp);
692		uma_zfree(unp_zone, unp);
693	} else
694		UNP_PCB_UNLOCK(unp);
695	if (vp)
696		vrele(vp);
697	if (local_unp_rights)
698		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
699}
700
701static int
702uipc_disconnect(struct socket *so)
703{
704	struct unpcb *unp, *unp2;
705
706	unp = sotounpcb(so);
707	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
708
709	UNP_LINK_WLOCK();
710	UNP_PCB_LOCK(unp);
711	unp2 = unp->unp_conn;
712	if (unp2 != NULL) {
713		UNP_PCB_LOCK(unp2);
714		unp_disconnect(unp, unp2);
715		UNP_PCB_UNLOCK(unp2);
716	}
717	UNP_PCB_UNLOCK(unp);
718	UNP_LINK_WUNLOCK();
719	return (0);
720}
721
722static int
723uipc_listen(struct socket *so, int backlog, struct thread *td)
724{
725	struct unpcb *unp;
726	int error;
727
728	unp = sotounpcb(so);
729	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
730
731	UNP_PCB_LOCK(unp);
732	if (unp->unp_vnode == NULL) {
733		UNP_PCB_UNLOCK(unp);
734		return (EINVAL);
735	}
736
737	SOCK_LOCK(so);
738	error = solisten_proto_check(so);
739	if (error == 0) {
740		cru2x(td->td_ucred, &unp->unp_peercred);
741		unp->unp_flags |= UNP_HAVEPCCACHED;
742		solisten_proto(so, backlog);
743	}
744	SOCK_UNLOCK(so);
745	UNP_PCB_UNLOCK(unp);
746	return (error);
747}
748
749static int
750uipc_peeraddr(struct socket *so, struct sockaddr **nam)
751{
752	struct unpcb *unp, *unp2;
753	const struct sockaddr *sa;
754
755	unp = sotounpcb(so);
756	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
757
758	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
759	UNP_LINK_RLOCK();
760	/*
761	 * XXX: It seems that this test always fails even when connection is
762	 * established.  So, this else clause is added as workaround to
763	 * return PF_LOCAL sockaddr.
764	 */
765	unp2 = unp->unp_conn;
766	if (unp2 != NULL) {
767		UNP_PCB_LOCK(unp2);
768		if (unp2->unp_addr != NULL)
769			sa = (struct sockaddr *) unp2->unp_addr;
770		else
771			sa = &sun_noname;
772		bcopy(sa, *nam, sa->sa_len);
773		UNP_PCB_UNLOCK(unp2);
774	} else {
775		sa = &sun_noname;
776		bcopy(sa, *nam, sa->sa_len);
777	}
778	UNP_LINK_RUNLOCK();
779	return (0);
780}
781
782static int
783uipc_rcvd(struct socket *so, int flags)
784{
785	struct unpcb *unp, *unp2;
786	struct socket *so2;
787	u_int mbcnt, sbcc;
788	u_long newhiwat;
789
790	unp = sotounpcb(so);
791	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
792
793	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
794		panic("uipc_rcvd socktype %d", so->so_type);
795
796	/*
797	 * Adjust backpressure on sender and wakeup any waiting to write.
798	 *
799	 * The unp lock is acquired to maintain the validity of the unp_conn
800	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
801	 * static as long as we don't permit unp2 to disconnect from unp,
802	 * which is prevented by the lock on unp.  We cache values from
803	 * so_rcv to avoid holding the so_rcv lock over the entire
804	 * transaction on the remote so_snd.
805	 */
806	SOCKBUF_LOCK(&so->so_rcv);
807	mbcnt = so->so_rcv.sb_mbcnt;
808	sbcc = so->so_rcv.sb_cc;
809	SOCKBUF_UNLOCK(&so->so_rcv);
810	UNP_PCB_LOCK(unp);
811	unp2 = unp->unp_conn;
812	if (unp2 == NULL) {
813		UNP_PCB_UNLOCK(unp);
814		return (0);
815	}
816	so2 = unp2->unp_socket;
817	SOCKBUF_LOCK(&so2->so_snd);
818	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
819	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
820	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
821	    newhiwat, RLIM_INFINITY);
822	sowwakeup_locked(so2);
823	unp->unp_mbcnt = mbcnt;
824	unp->unp_cc = sbcc;
825	UNP_PCB_UNLOCK(unp);
826	return (0);
827}
828
829static int
830uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
831    struct mbuf *control, struct thread *td)
832{
833	struct unpcb *unp, *unp2;
834	struct socket *so2;
835	u_int mbcnt_delta, sbcc;
836	u_int newhiwat;
837	int error = 0;
838
839	unp = sotounpcb(so);
840	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
841
842	if (flags & PRUS_OOB) {
843		error = EOPNOTSUPP;
844		goto release;
845	}
846	if (control != NULL && (error = unp_internalize(&control, td)))
847		goto release;
848	if ((nam != NULL) || (flags & PRUS_EOF))
849		UNP_LINK_WLOCK();
850	else
851		UNP_LINK_RLOCK();
852	switch (so->so_type) {
853	case SOCK_DGRAM:
854	{
855		const struct sockaddr *from;
856
857		unp2 = unp->unp_conn;
858		if (nam != NULL) {
859			UNP_LINK_WLOCK_ASSERT();
860			if (unp2 != NULL) {
861				error = EISCONN;
862				break;
863			}
864			error = unp_connect(so, nam, td);
865			if (error)
866				break;
867			unp2 = unp->unp_conn;
868		}
869
870		/*
871		 * Because connect() and send() are non-atomic in a sendto()
872		 * with a target address, it's possible that the socket will
873		 * have disconnected before the send() can run.  In that case
874		 * return the slightly counter-intuitive but otherwise
875		 * correct error that the socket is not connected.
876		 */
877		if (unp2 == NULL) {
878			error = ENOTCONN;
879			break;
880		}
881		/* Lockless read. */
882		if (unp2->unp_flags & UNP_WANTCRED)
883			control = unp_addsockcred(td, control);
884		UNP_PCB_LOCK(unp);
885		if (unp->unp_addr != NULL)
886			from = (struct sockaddr *)unp->unp_addr;
887		else
888			from = &sun_noname;
889		so2 = unp2->unp_socket;
890		SOCKBUF_LOCK(&so2->so_rcv);
891		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
892			sorwakeup_locked(so2);
893			m = NULL;
894			control = NULL;
895		} else {
896			SOCKBUF_UNLOCK(&so2->so_rcv);
897			error = ENOBUFS;
898		}
899		if (nam != NULL) {
900			UNP_LINK_WLOCK_ASSERT();
901			UNP_PCB_LOCK(unp2);
902			unp_disconnect(unp, unp2);
903			UNP_PCB_UNLOCK(unp2);
904		}
905		UNP_PCB_UNLOCK(unp);
906		break;
907	}
908
909	case SOCK_SEQPACKET:
910	case SOCK_STREAM:
911		if ((so->so_state & SS_ISCONNECTED) == 0) {
912			if (nam != NULL) {
913				UNP_LINK_WLOCK_ASSERT();
914				error = unp_connect(so, nam, td);
915				if (error)
916					break;	/* XXX */
917			} else {
918				error = ENOTCONN;
919				break;
920			}
921		}
922
923		/* Lockless read. */
924		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
925			error = EPIPE;
926			break;
927		}
928
929		/*
930		 * Because connect() and send() are non-atomic in a sendto()
931		 * with a target address, it's possible that the socket will
932		 * have disconnected before the send() can run.  In that case
933		 * return the slightly counter-intuitive but otherwise
934		 * correct error that the socket is not connected.
935		 *
936		 * Locking here must be done carefully: the linkage lock
937		 * prevents interconnections between unpcbs from changing, so
938		 * we can traverse from unp to unp2 without acquiring unp's
939		 * lock.  Socket buffer locks follow unpcb locks, so we can
940		 * acquire both remote and lock socket buffer locks.
941		 */
942		unp2 = unp->unp_conn;
943		if (unp2 == NULL) {
944			error = ENOTCONN;
945			break;
946		}
947		so2 = unp2->unp_socket;
948		UNP_PCB_LOCK(unp2);
949		SOCKBUF_LOCK(&so2->so_rcv);
950		if (unp2->unp_flags & UNP_WANTCRED) {
951			/*
952			 * Credentials are passed only once on SOCK_STREAM
953			 * and SOCK_SEQPACKET.
954			 */
955			unp2->unp_flags &= ~UNP_WANTCRED;
956			control = unp_addsockcred(td, control);
957		}
958		/*
959		 * Send to paired receive port, and then reduce send buffer
960		 * hiwater marks to maintain backpressure.  Wake up readers.
961		 */
962		switch (so->so_type) {
963		case SOCK_STREAM:
964			if (control != NULL) {
965				if (sbappendcontrol_locked(&so2->so_rcv, m,
966				    control))
967					control = NULL;
968			} else
969				sbappend_locked(&so2->so_rcv, m);
970			break;
971
972		case SOCK_SEQPACKET: {
973			const struct sockaddr *from;
974
975			from = &sun_noname;
976			if (sbappendaddr_locked(&so2->so_rcv, from, m,
977			    control))
978				control = NULL;
979			break;
980			}
981		}
982
983		/*
984		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
985		 * datagram size and back-pressure for SOCK_SEQPACKET, which
986		 * can lead to undesired return of EMSGSIZE on send instead
987		 * of more desirable blocking.
988		 */
989		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
990		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
991		sbcc = so2->so_rcv.sb_cc;
992		sorwakeup_locked(so2);
993
994		SOCKBUF_LOCK(&so->so_snd);
995		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
996			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
997		else
998			newhiwat = 0;
999		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
1000		    newhiwat, RLIM_INFINITY);
1001		so->so_snd.sb_mbmax -= mbcnt_delta;
1002		SOCKBUF_UNLOCK(&so->so_snd);
1003		unp2->unp_cc = sbcc;
1004		UNP_PCB_UNLOCK(unp2);
1005		m = NULL;
1006		break;
1007
1008	default:
1009		panic("uipc_send unknown socktype");
1010	}
1011
1012	/*
1013	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1014	 */
1015	if (flags & PRUS_EOF) {
1016		UNP_PCB_LOCK(unp);
1017		socantsendmore(so);
1018		unp_shutdown(unp);
1019		UNP_PCB_UNLOCK(unp);
1020	}
1021
1022	if ((nam != NULL) || (flags & PRUS_EOF))
1023		UNP_LINK_WUNLOCK();
1024	else
1025		UNP_LINK_RUNLOCK();
1026
1027	if (control != NULL && error != 0)
1028		unp_dispose(control);
1029
1030release:
1031	if (control != NULL)
1032		m_freem(control);
1033	if (m != NULL)
1034		m_freem(m);
1035	return (error);
1036}
1037
1038static int
1039uipc_sense(struct socket *so, struct stat *sb)
1040{
1041	struct unpcb *unp, *unp2;
1042	struct socket *so2;
1043
1044	unp = sotounpcb(so);
1045	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1046
1047	sb->st_blksize = so->so_snd.sb_hiwat;
1048	UNP_LINK_RLOCK();
1049	UNP_PCB_LOCK(unp);
1050	unp2 = unp->unp_conn;
1051	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1052	    unp2 != NULL) {
1053		so2 = unp2->unp_socket;
1054		sb->st_blksize += so2->so_rcv.sb_cc;
1055	}
1056	sb->st_dev = NODEV;
1057	if (unp->unp_ino == 0)
1058		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1059	sb->st_ino = unp->unp_ino;
1060	UNP_PCB_UNLOCK(unp);
1061	UNP_LINK_RUNLOCK();
1062	return (0);
1063}
1064
1065static int
1066uipc_shutdown(struct socket *so)
1067{
1068	struct unpcb *unp;
1069
1070	unp = sotounpcb(so);
1071	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1072
1073	UNP_LINK_WLOCK();
1074	UNP_PCB_LOCK(unp);
1075	socantsendmore(so);
1076	unp_shutdown(unp);
1077	UNP_PCB_UNLOCK(unp);
1078	UNP_LINK_WUNLOCK();
1079	return (0);
1080}
1081
1082static int
1083uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1084{
1085	struct unpcb *unp;
1086	const struct sockaddr *sa;
1087
1088	unp = sotounpcb(so);
1089	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1090
1091	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1092	UNP_PCB_LOCK(unp);
1093	if (unp->unp_addr != NULL)
1094		sa = (struct sockaddr *) unp->unp_addr;
1095	else
1096		sa = &sun_noname;
1097	bcopy(sa, *nam, sa->sa_len);
1098	UNP_PCB_UNLOCK(unp);
1099	return (0);
1100}
1101
1102static struct pr_usrreqs uipc_usrreqs_dgram = {
1103	.pru_abort = 		uipc_abort,
1104	.pru_accept =		uipc_accept,
1105	.pru_attach =		uipc_attach,
1106	.pru_bind =		uipc_bind,
1107	.pru_bindat =		uipc_bindat,
1108	.pru_connect =		uipc_connect,
1109	.pru_connectat =	uipc_connectat,
1110	.pru_connect2 =		uipc_connect2,
1111	.pru_detach =		uipc_detach,
1112	.pru_disconnect =	uipc_disconnect,
1113	.pru_listen =		uipc_listen,
1114	.pru_peeraddr =		uipc_peeraddr,
1115	.pru_rcvd =		uipc_rcvd,
1116	.pru_send =		uipc_send,
1117	.pru_sense =		uipc_sense,
1118	.pru_shutdown =		uipc_shutdown,
1119	.pru_sockaddr =		uipc_sockaddr,
1120	.pru_soreceive =	soreceive_dgram,
1121	.pru_close =		uipc_close,
1122};
1123
1124static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1125	.pru_abort =		uipc_abort,
1126	.pru_accept =		uipc_accept,
1127	.pru_attach =		uipc_attach,
1128	.pru_bind =		uipc_bind,
1129	.pru_bindat =		uipc_bindat,
1130	.pru_connect =		uipc_connect,
1131	.pru_connectat =	uipc_connectat,
1132	.pru_connect2 =		uipc_connect2,
1133	.pru_detach =		uipc_detach,
1134	.pru_disconnect =	uipc_disconnect,
1135	.pru_listen =		uipc_listen,
1136	.pru_peeraddr =		uipc_peeraddr,
1137	.pru_rcvd =		uipc_rcvd,
1138	.pru_send =		uipc_send,
1139	.pru_sense =		uipc_sense,
1140	.pru_shutdown =		uipc_shutdown,
1141	.pru_sockaddr =		uipc_sockaddr,
1142	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1143	.pru_close =		uipc_close,
1144};
1145
1146static struct pr_usrreqs uipc_usrreqs_stream = {
1147	.pru_abort = 		uipc_abort,
1148	.pru_accept =		uipc_accept,
1149	.pru_attach =		uipc_attach,
1150	.pru_bind =		uipc_bind,
1151	.pru_bindat =		uipc_bindat,
1152	.pru_connect =		uipc_connect,
1153	.pru_connectat =	uipc_connectat,
1154	.pru_connect2 =		uipc_connect2,
1155	.pru_detach =		uipc_detach,
1156	.pru_disconnect =	uipc_disconnect,
1157	.pru_listen =		uipc_listen,
1158	.pru_peeraddr =		uipc_peeraddr,
1159	.pru_rcvd =		uipc_rcvd,
1160	.pru_send =		uipc_send,
1161	.pru_sense =		uipc_sense,
1162	.pru_shutdown =		uipc_shutdown,
1163	.pru_sockaddr =		uipc_sockaddr,
1164	.pru_soreceive =	soreceive_generic,
1165	.pru_close =		uipc_close,
1166};
1167
1168static int
1169uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1170{
1171	struct unpcb *unp;
1172	struct xucred xu;
1173	int error, optval;
1174
1175	if (sopt->sopt_level != 0)
1176		return (EINVAL);
1177
1178	unp = sotounpcb(so);
1179	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1180	error = 0;
1181	switch (sopt->sopt_dir) {
1182	case SOPT_GET:
1183		switch (sopt->sopt_name) {
1184		case LOCAL_PEERCRED:
1185			UNP_PCB_LOCK(unp);
1186			if (unp->unp_flags & UNP_HAVEPC)
1187				xu = unp->unp_peercred;
1188			else {
1189				if (so->so_type == SOCK_STREAM)
1190					error = ENOTCONN;
1191				else
1192					error = EINVAL;
1193			}
1194			UNP_PCB_UNLOCK(unp);
1195			if (error == 0)
1196				error = sooptcopyout(sopt, &xu, sizeof(xu));
1197			break;
1198
1199		case LOCAL_CREDS:
1200			/* Unlocked read. */
1201			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1202			error = sooptcopyout(sopt, &optval, sizeof(optval));
1203			break;
1204
1205		case LOCAL_CONNWAIT:
1206			/* Unlocked read. */
1207			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1208			error = sooptcopyout(sopt, &optval, sizeof(optval));
1209			break;
1210
1211		default:
1212			error = EOPNOTSUPP;
1213			break;
1214		}
1215		break;
1216
1217	case SOPT_SET:
1218		switch (sopt->sopt_name) {
1219		case LOCAL_CREDS:
1220		case LOCAL_CONNWAIT:
1221			error = sooptcopyin(sopt, &optval, sizeof(optval),
1222					    sizeof(optval));
1223			if (error)
1224				break;
1225
1226#define	OPTSET(bit) do {						\
1227	UNP_PCB_LOCK(unp);						\
1228	if (optval)							\
1229		unp->unp_flags |= bit;					\
1230	else								\
1231		unp->unp_flags &= ~bit;					\
1232	UNP_PCB_UNLOCK(unp);						\
1233} while (0)
1234
1235			switch (sopt->sopt_name) {
1236			case LOCAL_CREDS:
1237				OPTSET(UNP_WANTCRED);
1238				break;
1239
1240			case LOCAL_CONNWAIT:
1241				OPTSET(UNP_CONNWAIT);
1242				break;
1243
1244			default:
1245				break;
1246			}
1247			break;
1248#undef	OPTSET
1249		default:
1250			error = ENOPROTOOPT;
1251			break;
1252		}
1253		break;
1254
1255	default:
1256		error = EOPNOTSUPP;
1257		break;
1258	}
1259	return (error);
1260}
1261
1262static int
1263unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1264{
1265
1266	return (unp_connectat(AT_FDCWD, so, nam, td));
1267}
1268
1269static int
1270unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1271    struct thread *td)
1272{
1273	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1274	struct vnode *vp;
1275	struct socket *so2, *so3;
1276	struct unpcb *unp, *unp2, *unp3;
1277	int error, len;
1278	struct nameidata nd;
1279	char buf[SOCK_MAXADDRLEN];
1280	struct sockaddr *sa;
1281
1282	UNP_LINK_WLOCK_ASSERT();
1283
1284	unp = sotounpcb(so);
1285	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1286
1287	if (nam->sa_len > sizeof(struct sockaddr_un))
1288		return (EINVAL);
1289	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1290	if (len <= 0)
1291		return (EINVAL);
1292	bcopy(soun->sun_path, buf, len);
1293	buf[len] = 0;
1294
1295	UNP_PCB_LOCK(unp);
1296	if (unp->unp_flags & UNP_CONNECTING) {
1297		UNP_PCB_UNLOCK(unp);
1298		return (EALREADY);
1299	}
1300	UNP_LINK_WUNLOCK();
1301	unp->unp_flags |= UNP_CONNECTING;
1302	UNP_PCB_UNLOCK(unp);
1303
1304	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1305	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1306	    UIO_SYSSPACE, buf, fd, CAP_CONNECTAT, td);
1307	error = namei(&nd);
1308	if (error)
1309		vp = NULL;
1310	else
1311		vp = nd.ni_vp;
1312	ASSERT_VOP_LOCKED(vp, "unp_connect");
1313	NDFREE(&nd, NDF_ONLY_PNBUF);
1314	if (error)
1315		goto bad;
1316
1317	if (vp->v_type != VSOCK) {
1318		error = ENOTSOCK;
1319		goto bad;
1320	}
1321#ifdef MAC
1322	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1323	if (error)
1324		goto bad;
1325#endif
1326	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1327	if (error)
1328		goto bad;
1329
1330	unp = sotounpcb(so);
1331	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1332
1333	/*
1334	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1335	 * and to protect simultaneous locking of multiple pcbs.
1336	 */
1337	UNP_LINK_WLOCK();
1338	VOP_UNP_CONNECT(vp, &so2);
1339	if (so2 == NULL) {
1340		error = ECONNREFUSED;
1341		goto bad2;
1342	}
1343	if (so->so_type != so2->so_type) {
1344		error = EPROTOTYPE;
1345		goto bad2;
1346	}
1347	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1348		if (so2->so_options & SO_ACCEPTCONN) {
1349			CURVNET_SET(so2->so_vnet);
1350			so3 = sonewconn(so2, 0);
1351			CURVNET_RESTORE();
1352		} else
1353			so3 = NULL;
1354		if (so3 == NULL) {
1355			error = ECONNREFUSED;
1356			goto bad2;
1357		}
1358		unp = sotounpcb(so);
1359		unp2 = sotounpcb(so2);
1360		unp3 = sotounpcb(so3);
1361		UNP_PCB_LOCK(unp);
1362		UNP_PCB_LOCK(unp2);
1363		UNP_PCB_LOCK(unp3);
1364		if (unp2->unp_addr != NULL) {
1365			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1366			unp3->unp_addr = (struct sockaddr_un *) sa;
1367			sa = NULL;
1368		}
1369
1370		/*
1371		 * The connecter's (client's) credentials are copied from its
1372		 * process structure at the time of connect() (which is now).
1373		 */
1374		cru2x(td->td_ucred, &unp3->unp_peercred);
1375		unp3->unp_flags |= UNP_HAVEPC;
1376
1377		/*
1378		 * The receiver's (server's) credentials are copied from the
1379		 * unp_peercred member of socket on which the former called
1380		 * listen(); uipc_listen() cached that process's credentials
1381		 * at that time so we can use them now.
1382		 */
1383		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1384		    ("unp_connect: listener without cached peercred"));
1385		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1386		    sizeof(unp->unp_peercred));
1387		unp->unp_flags |= UNP_HAVEPC;
1388		if (unp2->unp_flags & UNP_WANTCRED)
1389			unp3->unp_flags |= UNP_WANTCRED;
1390		UNP_PCB_UNLOCK(unp3);
1391		UNP_PCB_UNLOCK(unp2);
1392		UNP_PCB_UNLOCK(unp);
1393#ifdef MAC
1394		mac_socketpeer_set_from_socket(so, so3);
1395		mac_socketpeer_set_from_socket(so3, so);
1396#endif
1397
1398		so2 = so3;
1399	}
1400	unp = sotounpcb(so);
1401	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1402	unp2 = sotounpcb(so2);
1403	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1404	UNP_PCB_LOCK(unp);
1405	UNP_PCB_LOCK(unp2);
1406	error = unp_connect2(so, so2, PRU_CONNECT);
1407	UNP_PCB_UNLOCK(unp2);
1408	UNP_PCB_UNLOCK(unp);
1409bad2:
1410	UNP_LINK_WUNLOCK();
1411bad:
1412	if (vp != NULL)
1413		vput(vp);
1414	free(sa, M_SONAME);
1415	UNP_LINK_WLOCK();
1416	UNP_PCB_LOCK(unp);
1417	unp->unp_flags &= ~UNP_CONNECTING;
1418	UNP_PCB_UNLOCK(unp);
1419	return (error);
1420}
1421
1422static int
1423unp_connect2(struct socket *so, struct socket *so2, int req)
1424{
1425	struct unpcb *unp;
1426	struct unpcb *unp2;
1427
1428	unp = sotounpcb(so);
1429	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1430	unp2 = sotounpcb(so2);
1431	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1432
1433	UNP_LINK_WLOCK_ASSERT();
1434	UNP_PCB_LOCK_ASSERT(unp);
1435	UNP_PCB_LOCK_ASSERT(unp2);
1436
1437	if (so2->so_type != so->so_type)
1438		return (EPROTOTYPE);
1439	unp->unp_conn = unp2;
1440
1441	switch (so->so_type) {
1442	case SOCK_DGRAM:
1443		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1444		soisconnected(so);
1445		break;
1446
1447	case SOCK_STREAM:
1448	case SOCK_SEQPACKET:
1449		unp2->unp_conn = unp;
1450		if (req == PRU_CONNECT &&
1451		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1452			soisconnecting(so);
1453		else
1454			soisconnected(so);
1455		soisconnected(so2);
1456		break;
1457
1458	default:
1459		panic("unp_connect2");
1460	}
1461	return (0);
1462}
1463
1464static void
1465unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1466{
1467	struct socket *so;
1468
1469	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1470
1471	UNP_LINK_WLOCK_ASSERT();
1472	UNP_PCB_LOCK_ASSERT(unp);
1473	UNP_PCB_LOCK_ASSERT(unp2);
1474
1475	unp->unp_conn = NULL;
1476	switch (unp->unp_socket->so_type) {
1477	case SOCK_DGRAM:
1478		LIST_REMOVE(unp, unp_reflink);
1479		so = unp->unp_socket;
1480		SOCK_LOCK(so);
1481		so->so_state &= ~SS_ISCONNECTED;
1482		SOCK_UNLOCK(so);
1483		break;
1484
1485	case SOCK_STREAM:
1486	case SOCK_SEQPACKET:
1487		soisdisconnected(unp->unp_socket);
1488		unp2->unp_conn = NULL;
1489		soisdisconnected(unp2->unp_socket);
1490		break;
1491	}
1492}
1493
1494/*
1495 * unp_pcblist() walks the global list of struct unpcb's to generate a
1496 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1497 * sequentially, validating the generation number on each to see if it has
1498 * been detached.  All of this is necessary because copyout() may sleep on
1499 * disk I/O.
1500 */
1501static int
1502unp_pcblist(SYSCTL_HANDLER_ARGS)
1503{
1504	int error, i, n;
1505	int freeunp;
1506	struct unpcb *unp, **unp_list;
1507	unp_gen_t gencnt;
1508	struct xunpgen *xug;
1509	struct unp_head *head;
1510	struct xunpcb *xu;
1511
1512	switch ((intptr_t)arg1) {
1513	case SOCK_STREAM:
1514		head = &unp_shead;
1515		break;
1516
1517	case SOCK_DGRAM:
1518		head = &unp_dhead;
1519		break;
1520
1521	case SOCK_SEQPACKET:
1522		head = &unp_sphead;
1523		break;
1524
1525	default:
1526		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1527	}
1528
1529	/*
1530	 * The process of preparing the PCB list is too time-consuming and
1531	 * resource-intensive to repeat twice on every request.
1532	 */
1533	if (req->oldptr == NULL) {
1534		n = unp_count;
1535		req->oldidx = 2 * (sizeof *xug)
1536			+ (n + n/8) * sizeof(struct xunpcb);
1537		return (0);
1538	}
1539
1540	if (req->newptr != NULL)
1541		return (EPERM);
1542
1543	/*
1544	 * OK, now we're committed to doing something.
1545	 */
1546	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1547	UNP_LIST_LOCK();
1548	gencnt = unp_gencnt;
1549	n = unp_count;
1550	UNP_LIST_UNLOCK();
1551
1552	xug->xug_len = sizeof *xug;
1553	xug->xug_count = n;
1554	xug->xug_gen = gencnt;
1555	xug->xug_sogen = so_gencnt;
1556	error = SYSCTL_OUT(req, xug, sizeof *xug);
1557	if (error) {
1558		free(xug, M_TEMP);
1559		return (error);
1560	}
1561
1562	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1563
1564	UNP_LIST_LOCK();
1565	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1566	     unp = LIST_NEXT(unp, unp_link)) {
1567		UNP_PCB_LOCK(unp);
1568		if (unp->unp_gencnt <= gencnt) {
1569			if (cr_cansee(req->td->td_ucred,
1570			    unp->unp_socket->so_cred)) {
1571				UNP_PCB_UNLOCK(unp);
1572				continue;
1573			}
1574			unp_list[i++] = unp;
1575			unp->unp_refcount++;
1576		}
1577		UNP_PCB_UNLOCK(unp);
1578	}
1579	UNP_LIST_UNLOCK();
1580	n = i;			/* In case we lost some during malloc. */
1581
1582	error = 0;
1583	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1584	for (i = 0; i < n; i++) {
1585		unp = unp_list[i];
1586		UNP_PCB_LOCK(unp);
1587		unp->unp_refcount--;
1588	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1589			xu->xu_len = sizeof *xu;
1590			xu->xu_unpp = unp;
1591			/*
1592			 * XXX - need more locking here to protect against
1593			 * connect/disconnect races for SMP.
1594			 */
1595			if (unp->unp_addr != NULL)
1596				bcopy(unp->unp_addr, &xu->xu_addr,
1597				      unp->unp_addr->sun_len);
1598			if (unp->unp_conn != NULL &&
1599			    unp->unp_conn->unp_addr != NULL)
1600				bcopy(unp->unp_conn->unp_addr,
1601				      &xu->xu_caddr,
1602				      unp->unp_conn->unp_addr->sun_len);
1603			bcopy(unp, &xu->xu_unp, sizeof *unp);
1604			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1605			UNP_PCB_UNLOCK(unp);
1606			error = SYSCTL_OUT(req, xu, sizeof *xu);
1607		} else {
1608			freeunp = (unp->unp_refcount == 0);
1609			UNP_PCB_UNLOCK(unp);
1610			if (freeunp) {
1611				UNP_PCB_LOCK_DESTROY(unp);
1612				uma_zfree(unp_zone, unp);
1613			}
1614		}
1615	}
1616	free(xu, M_TEMP);
1617	if (!error) {
1618		/*
1619		 * Give the user an updated idea of our state.  If the
1620		 * generation differs from what we told her before, she knows
1621		 * that something happened while we were processing this
1622		 * request, and it might be necessary to retry.
1623		 */
1624		xug->xug_gen = unp_gencnt;
1625		xug->xug_sogen = so_gencnt;
1626		xug->xug_count = unp_count;
1627		error = SYSCTL_OUT(req, xug, sizeof *xug);
1628	}
1629	free(unp_list, M_TEMP);
1630	free(xug, M_TEMP);
1631	return (error);
1632}
1633
1634SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1635    (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1636    "List of active local datagram sockets");
1637SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1638    (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1639    "List of active local stream sockets");
1640SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1641    CTLTYPE_OPAQUE | CTLFLAG_RD,
1642    (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1643    "List of active local seqpacket sockets");
1644
1645static void
1646unp_shutdown(struct unpcb *unp)
1647{
1648	struct unpcb *unp2;
1649	struct socket *so;
1650
1651	UNP_LINK_WLOCK_ASSERT();
1652	UNP_PCB_LOCK_ASSERT(unp);
1653
1654	unp2 = unp->unp_conn;
1655	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1656	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1657		so = unp2->unp_socket;
1658		if (so != NULL)
1659			socantrcvmore(so);
1660	}
1661}
1662
1663static void
1664unp_drop(struct unpcb *unp, int errno)
1665{
1666	struct socket *so = unp->unp_socket;
1667	struct unpcb *unp2;
1668
1669	UNP_LINK_WLOCK_ASSERT();
1670	UNP_PCB_LOCK_ASSERT(unp);
1671
1672	so->so_error = errno;
1673	unp2 = unp->unp_conn;
1674	if (unp2 == NULL)
1675		return;
1676	UNP_PCB_LOCK(unp2);
1677	unp_disconnect(unp, unp2);
1678	UNP_PCB_UNLOCK(unp2);
1679}
1680
1681static void
1682unp_freerights(struct filedescent *fde, int fdcount)
1683{
1684	struct file *fp;
1685	int i;
1686
1687	for (i = 0; i < fdcount; i++, fde++) {
1688		fp = fde->fde_file;
1689		bzero(fde, sizeof(*fde));
1690		unp_discard(fp);
1691	}
1692}
1693
1694static int
1695unp_externalize(struct mbuf *control, struct mbuf **controlp)
1696{
1697	struct thread *td = curthread;		/* XXX */
1698	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1699	int i;
1700	int *fdp;
1701	struct filedesc *fdesc = td->td_proc->p_fd;
1702	struct filedescent *fde, *fdep;
1703	void *data;
1704	socklen_t clen = control->m_len, datalen;
1705	int error, newfds;
1706	int f;
1707	u_int newlen;
1708
1709	UNP_LINK_UNLOCK_ASSERT();
1710
1711	error = 0;
1712	if (controlp != NULL) /* controlp == NULL => free control messages */
1713		*controlp = NULL;
1714	while (cm != NULL) {
1715		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1716			error = EINVAL;
1717			break;
1718		}
1719		data = CMSG_DATA(cm);
1720		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1721		if (cm->cmsg_level == SOL_SOCKET
1722		    && cm->cmsg_type == SCM_RIGHTS) {
1723			newfds = datalen / sizeof(*fdep);
1724			fdep = data;
1725
1726			/* If we're not outputting the descriptors free them. */
1727			if (error || controlp == NULL) {
1728				unp_freerights(fdep, newfds);
1729				goto next;
1730			}
1731			FILEDESC_XLOCK(fdesc);
1732			/* if the new FD's will not fit free them.  */
1733			if (!fdavail(td, newfds)) {
1734				FILEDESC_XUNLOCK(fdesc);
1735				error = EMSGSIZE;
1736				unp_freerights(fdep, newfds);
1737				goto next;
1738			}
1739
1740			/*
1741			 * Now change each pointer to an fd in the global
1742			 * table to an integer that is the index to the local
1743			 * fd table entry that we set up to point to the
1744			 * global one we are transferring.
1745			 */
1746			newlen = newfds * sizeof(int);
1747			*controlp = sbcreatecontrol(NULL, newlen,
1748			    SCM_RIGHTS, SOL_SOCKET);
1749			if (*controlp == NULL) {
1750				FILEDESC_XUNLOCK(fdesc);
1751				error = E2BIG;
1752				unp_freerights(fdep, newfds);
1753				goto next;
1754			}
1755
1756			fdp = (int *)
1757			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1758			for (i = 0; i < newfds; i++, fdep++, fdp++) {
1759				if (fdalloc(td, 0, &f))
1760					panic("unp_externalize fdalloc failed");
1761				fde = &fdesc->fd_ofiles[f];
1762				fde->fde_file = fdep->fde_file;
1763				filecaps_copy(&fdep->fde_caps, &fde->fde_caps);
1764				unp_externalize_fp(fde->fde_file);
1765				*fdp = f;
1766			}
1767			FILEDESC_XUNLOCK(fdesc);
1768		} else {
1769			/* We can just copy anything else across. */
1770			if (error || controlp == NULL)
1771				goto next;
1772			*controlp = sbcreatecontrol(NULL, datalen,
1773			    cm->cmsg_type, cm->cmsg_level);
1774			if (*controlp == NULL) {
1775				error = ENOBUFS;
1776				goto next;
1777			}
1778			bcopy(data,
1779			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1780			    datalen);
1781		}
1782		controlp = &(*controlp)->m_next;
1783
1784next:
1785		if (CMSG_SPACE(datalen) < clen) {
1786			clen -= CMSG_SPACE(datalen);
1787			cm = (struct cmsghdr *)
1788			    ((caddr_t)cm + CMSG_SPACE(datalen));
1789		} else {
1790			clen = 0;
1791			cm = NULL;
1792		}
1793	}
1794
1795	m_freem(control);
1796	return (error);
1797}
1798
1799static void
1800unp_zone_change(void *tag)
1801{
1802
1803	uma_zone_set_max(unp_zone, maxsockets);
1804}
1805
1806static void
1807unp_init(void)
1808{
1809
1810#ifdef VIMAGE
1811	if (!IS_DEFAULT_VNET(curvnet))
1812		return;
1813#endif
1814	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1815	    NULL, NULL, UMA_ALIGN_PTR, 0);
1816	if (unp_zone == NULL)
1817		panic("unp_init");
1818	uma_zone_set_max(unp_zone, maxsockets);
1819	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1820	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1821	    NULL, EVENTHANDLER_PRI_ANY);
1822	LIST_INIT(&unp_dhead);
1823	LIST_INIT(&unp_shead);
1824	LIST_INIT(&unp_sphead);
1825	SLIST_INIT(&unp_defers);
1826	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1827	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1828	UNP_LINK_LOCK_INIT();
1829	UNP_LIST_LOCK_INIT();
1830	UNP_DEFERRED_LOCK_INIT();
1831}
1832
1833static int
1834unp_internalize(struct mbuf **controlp, struct thread *td)
1835{
1836	struct mbuf *control = *controlp;
1837	struct proc *p = td->td_proc;
1838	struct filedesc *fdesc = p->p_fd;
1839	struct bintime *bt;
1840	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1841	struct cmsgcred *cmcred;
1842	struct filedescent *fde, *fdep;
1843	struct file *fp;
1844	struct timeval *tv;
1845	int i, fd, *fdp;
1846	void *data;
1847	socklen_t clen = control->m_len, datalen;
1848	int error, oldfds;
1849	u_int newlen;
1850
1851	UNP_LINK_UNLOCK_ASSERT();
1852
1853	error = 0;
1854	*controlp = NULL;
1855	while (cm != NULL) {
1856		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1857		    || cm->cmsg_len > clen) {
1858			error = EINVAL;
1859			goto out;
1860		}
1861		data = CMSG_DATA(cm);
1862		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1863
1864		switch (cm->cmsg_type) {
1865		/*
1866		 * Fill in credential information.
1867		 */
1868		case SCM_CREDS:
1869			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1870			    SCM_CREDS, SOL_SOCKET);
1871			if (*controlp == NULL) {
1872				error = ENOBUFS;
1873				goto out;
1874			}
1875			cmcred = (struct cmsgcred *)
1876			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1877			cmcred->cmcred_pid = p->p_pid;
1878			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1879			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1880			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1881			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1882			    CMGROUP_MAX);
1883			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1884				cmcred->cmcred_groups[i] =
1885				    td->td_ucred->cr_groups[i];
1886			break;
1887
1888		case SCM_RIGHTS:
1889			oldfds = datalen / sizeof (int);
1890			/*
1891			 * Check that all the FDs passed in refer to legal
1892			 * files.  If not, reject the entire operation.
1893			 */
1894			fdp = data;
1895			FILEDESC_SLOCK(fdesc);
1896			for (i = 0; i < oldfds; i++) {
1897				fd = *fdp++;
1898				if (fget_locked(fdesc, fd) == NULL) {
1899					FILEDESC_SUNLOCK(fdesc);
1900					error = EBADF;
1901					goto out;
1902				}
1903				fp = fdesc->fd_ofiles[fd].fde_file;
1904				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1905					FILEDESC_SUNLOCK(fdesc);
1906					error = EOPNOTSUPP;
1907					goto out;
1908				}
1909
1910			}
1911
1912			/*
1913			 * Now replace the integer FDs with pointers to the
1914			 * file structure and capability rights.
1915			 */
1916			newlen = oldfds * sizeof(*fdep);
1917			*controlp = sbcreatecontrol(NULL, newlen,
1918			    SCM_RIGHTS, SOL_SOCKET);
1919			if (*controlp == NULL) {
1920				FILEDESC_SUNLOCK(fdesc);
1921				error = E2BIG;
1922				goto out;
1923			}
1924			fdp = data;
1925			fdep = (struct filedescent *)
1926			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1927			for (i = 0; i < oldfds; i++, fdep++, fdp++) {
1928				fde = &fdesc->fd_ofiles[*fdp];
1929				fdep->fde_file = fde->fde_file;
1930				filecaps_copy(&fde->fde_caps, &fdep->fde_caps);
1931				unp_internalize_fp(fdep->fde_file);
1932			}
1933			FILEDESC_SUNLOCK(fdesc);
1934			break;
1935
1936		case SCM_TIMESTAMP:
1937			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1938			    SCM_TIMESTAMP, SOL_SOCKET);
1939			if (*controlp == NULL) {
1940				error = ENOBUFS;
1941				goto out;
1942			}
1943			tv = (struct timeval *)
1944			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1945			microtime(tv);
1946			break;
1947
1948		case SCM_BINTIME:
1949			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
1950			    SCM_BINTIME, SOL_SOCKET);
1951			if (*controlp == NULL) {
1952				error = ENOBUFS;
1953				goto out;
1954			}
1955			bt = (struct bintime *)
1956			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1957			bintime(bt);
1958			break;
1959
1960		default:
1961			error = EINVAL;
1962			goto out;
1963		}
1964
1965		controlp = &(*controlp)->m_next;
1966		if (CMSG_SPACE(datalen) < clen) {
1967			clen -= CMSG_SPACE(datalen);
1968			cm = (struct cmsghdr *)
1969			    ((caddr_t)cm + CMSG_SPACE(datalen));
1970		} else {
1971			clen = 0;
1972			cm = NULL;
1973		}
1974	}
1975
1976out:
1977	m_freem(control);
1978	return (error);
1979}
1980
1981static struct mbuf *
1982unp_addsockcred(struct thread *td, struct mbuf *control)
1983{
1984	struct mbuf *m, *n, *n_prev;
1985	struct sockcred *sc;
1986	const struct cmsghdr *cm;
1987	int ngroups;
1988	int i;
1989
1990	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1991	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1992	if (m == NULL)
1993		return (control);
1994
1995	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1996	sc->sc_uid = td->td_ucred->cr_ruid;
1997	sc->sc_euid = td->td_ucred->cr_uid;
1998	sc->sc_gid = td->td_ucred->cr_rgid;
1999	sc->sc_egid = td->td_ucred->cr_gid;
2000	sc->sc_ngroups = ngroups;
2001	for (i = 0; i < sc->sc_ngroups; i++)
2002		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2003
2004	/*
2005	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2006	 * created SCM_CREDS control message (struct sockcred) has another
2007	 * format.
2008	 */
2009	if (control != NULL)
2010		for (n = control, n_prev = NULL; n != NULL;) {
2011			cm = mtod(n, struct cmsghdr *);
2012    			if (cm->cmsg_level == SOL_SOCKET &&
2013			    cm->cmsg_type == SCM_CREDS) {
2014    				if (n_prev == NULL)
2015					control = n->m_next;
2016				else
2017					n_prev->m_next = n->m_next;
2018				n = m_free(n);
2019			} else {
2020				n_prev = n;
2021				n = n->m_next;
2022			}
2023		}
2024
2025	/* Prepend it to the head. */
2026	m->m_next = control;
2027	return (m);
2028}
2029
2030static struct unpcb *
2031fptounp(struct file *fp)
2032{
2033	struct socket *so;
2034
2035	if (fp->f_type != DTYPE_SOCKET)
2036		return (NULL);
2037	if ((so = fp->f_data) == NULL)
2038		return (NULL);
2039	if (so->so_proto->pr_domain != &localdomain)
2040		return (NULL);
2041	return sotounpcb(so);
2042}
2043
2044static void
2045unp_discard(struct file *fp)
2046{
2047	struct unp_defer *dr;
2048
2049	if (unp_externalize_fp(fp)) {
2050		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2051		dr->ud_fp = fp;
2052		UNP_DEFERRED_LOCK();
2053		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2054		UNP_DEFERRED_UNLOCK();
2055		atomic_add_int(&unp_defers_count, 1);
2056		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2057	} else
2058		(void) closef(fp, (struct thread *)NULL);
2059}
2060
2061static void
2062unp_process_defers(void *arg __unused, int pending)
2063{
2064	struct unp_defer *dr;
2065	SLIST_HEAD(, unp_defer) drl;
2066	int count;
2067
2068	SLIST_INIT(&drl);
2069	for (;;) {
2070		UNP_DEFERRED_LOCK();
2071		if (SLIST_FIRST(&unp_defers) == NULL) {
2072			UNP_DEFERRED_UNLOCK();
2073			break;
2074		}
2075		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2076		UNP_DEFERRED_UNLOCK();
2077		count = 0;
2078		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2079			SLIST_REMOVE_HEAD(&drl, ud_link);
2080			closef(dr->ud_fp, NULL);
2081			free(dr, M_TEMP);
2082			count++;
2083		}
2084		atomic_add_int(&unp_defers_count, -count);
2085	}
2086}
2087
2088static void
2089unp_internalize_fp(struct file *fp)
2090{
2091	struct unpcb *unp;
2092
2093	UNP_LINK_WLOCK();
2094	if ((unp = fptounp(fp)) != NULL) {
2095		unp->unp_file = fp;
2096		unp->unp_msgcount++;
2097	}
2098	fhold(fp);
2099	unp_rights++;
2100	UNP_LINK_WUNLOCK();
2101}
2102
2103static int
2104unp_externalize_fp(struct file *fp)
2105{
2106	struct unpcb *unp;
2107	int ret;
2108
2109	UNP_LINK_WLOCK();
2110	if ((unp = fptounp(fp)) != NULL) {
2111		unp->unp_msgcount--;
2112		ret = 1;
2113	} else
2114		ret = 0;
2115	unp_rights--;
2116	UNP_LINK_WUNLOCK();
2117	return (ret);
2118}
2119
2120/*
2121 * unp_defer indicates whether additional work has been defered for a future
2122 * pass through unp_gc().  It is thread local and does not require explicit
2123 * synchronization.
2124 */
2125static int	unp_marked;
2126static int	unp_unreachable;
2127
2128static void
2129unp_accessable(struct file *fp)
2130{
2131	struct unpcb *unp;
2132
2133	if ((unp = fptounp(fp)) == NULL)
2134		return;
2135	if (unp->unp_gcflag & UNPGC_REF)
2136		return;
2137	unp->unp_gcflag &= ~UNPGC_DEAD;
2138	unp->unp_gcflag |= UNPGC_REF;
2139	unp_marked++;
2140}
2141
2142static void
2143unp_gc_process(struct unpcb *unp)
2144{
2145	struct socket *soa;
2146	struct socket *so;
2147	struct file *fp;
2148
2149	/* Already processed. */
2150	if (unp->unp_gcflag & UNPGC_SCANNED)
2151		return;
2152	fp = unp->unp_file;
2153
2154	/*
2155	 * Check for a socket potentially in a cycle.  It must be in a
2156	 * queue as indicated by msgcount, and this must equal the file
2157	 * reference count.  Note that when msgcount is 0 the file is NULL.
2158	 */
2159	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2160	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2161		unp->unp_gcflag |= UNPGC_DEAD;
2162		unp_unreachable++;
2163		return;
2164	}
2165
2166	/*
2167	 * Mark all sockets we reference with RIGHTS.
2168	 */
2169	so = unp->unp_socket;
2170	SOCKBUF_LOCK(&so->so_rcv);
2171	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2172	SOCKBUF_UNLOCK(&so->so_rcv);
2173
2174	/*
2175	 * Mark all sockets in our accept queue.
2176	 */
2177	ACCEPT_LOCK();
2178	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2179		SOCKBUF_LOCK(&soa->so_rcv);
2180		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2181		SOCKBUF_UNLOCK(&soa->so_rcv);
2182	}
2183	ACCEPT_UNLOCK();
2184	unp->unp_gcflag |= UNPGC_SCANNED;
2185}
2186
2187static int unp_recycled;
2188SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2189    "Number of unreachable sockets claimed by the garbage collector.");
2190
2191static int unp_taskcount;
2192SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2193    "Number of times the garbage collector has run.");
2194
2195static void
2196unp_gc(__unused void *arg, int pending)
2197{
2198	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2199				    NULL };
2200	struct unp_head **head;
2201	struct file *f, **unref;
2202	struct unpcb *unp;
2203	int i, total;
2204
2205	unp_taskcount++;
2206	UNP_LIST_LOCK();
2207	/*
2208	 * First clear all gc flags from previous runs.
2209	 */
2210	for (head = heads; *head != NULL; head++)
2211		LIST_FOREACH(unp, *head, unp_link)
2212			unp->unp_gcflag = 0;
2213
2214	/*
2215	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2216	 * is reachable all of the sockets it references are reachable.
2217	 * Stop the scan once we do a complete loop without discovering
2218	 * a new reachable socket.
2219	 */
2220	do {
2221		unp_unreachable = 0;
2222		unp_marked = 0;
2223		for (head = heads; *head != NULL; head++)
2224			LIST_FOREACH(unp, *head, unp_link)
2225				unp_gc_process(unp);
2226	} while (unp_marked);
2227	UNP_LIST_UNLOCK();
2228	if (unp_unreachable == 0)
2229		return;
2230
2231	/*
2232	 * Allocate space for a local list of dead unpcbs.
2233	 */
2234	unref = malloc(unp_unreachable * sizeof(struct file *),
2235	    M_TEMP, M_WAITOK);
2236
2237	/*
2238	 * Iterate looking for sockets which have been specifically marked
2239	 * as as unreachable and store them locally.
2240	 */
2241	UNP_LINK_RLOCK();
2242	UNP_LIST_LOCK();
2243	for (total = 0, head = heads; *head != NULL; head++)
2244		LIST_FOREACH(unp, *head, unp_link)
2245			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2246				f = unp->unp_file;
2247				if (unp->unp_msgcount == 0 || f == NULL ||
2248				    f->f_count != unp->unp_msgcount)
2249					continue;
2250				unref[total++] = f;
2251				fhold(f);
2252				KASSERT(total <= unp_unreachable,
2253				    ("unp_gc: incorrect unreachable count."));
2254			}
2255	UNP_LIST_UNLOCK();
2256	UNP_LINK_RUNLOCK();
2257
2258	/*
2259	 * Now flush all sockets, free'ing rights.  This will free the
2260	 * struct files associated with these sockets but leave each socket
2261	 * with one remaining ref.
2262	 */
2263	for (i = 0; i < total; i++) {
2264		struct socket *so;
2265
2266		so = unref[i]->f_data;
2267		CURVNET_SET(so->so_vnet);
2268		sorflush(so);
2269		CURVNET_RESTORE();
2270	}
2271
2272	/*
2273	 * And finally release the sockets so they can be reclaimed.
2274	 */
2275	for (i = 0; i < total; i++)
2276		fdrop(unref[i], NULL);
2277	unp_recycled += total;
2278	free(unref, M_TEMP);
2279}
2280
2281static void
2282unp_dispose(struct mbuf *m)
2283{
2284
2285	if (m)
2286		unp_scan(m, unp_discard);
2287}
2288
2289static void
2290unp_scan(struct mbuf *m0, void (*op)(struct file *))
2291{
2292	struct mbuf *m;
2293	struct filedescent *fdep;
2294	struct cmsghdr *cm;
2295	void *data;
2296	int i;
2297	socklen_t clen, datalen;
2298	int qfds;
2299
2300	while (m0 != NULL) {
2301		for (m = m0; m; m = m->m_next) {
2302			if (m->m_type != MT_CONTROL)
2303				continue;
2304
2305			cm = mtod(m, struct cmsghdr *);
2306			clen = m->m_len;
2307
2308			while (cm != NULL) {
2309				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2310					break;
2311
2312				data = CMSG_DATA(cm);
2313				datalen = (caddr_t)cm + cm->cmsg_len
2314				    - (caddr_t)data;
2315
2316				if (cm->cmsg_level == SOL_SOCKET &&
2317				    cm->cmsg_type == SCM_RIGHTS) {
2318					qfds = datalen / sizeof(*fdep);
2319					fdep = data;
2320					for (i = 0; i < qfds; i++, fdep++)
2321						(*op)(fdep->fde_file);
2322				}
2323
2324				if (CMSG_SPACE(datalen) < clen) {
2325					clen -= CMSG_SPACE(datalen);
2326					cm = (struct cmsghdr *)
2327					    ((caddr_t)cm + CMSG_SPACE(datalen));
2328				} else {
2329					clen = 0;
2330					cm = NULL;
2331				}
2332			}
2333		}
2334		m0 = m0->m_act;
2335	}
2336}
2337
2338/*
2339 * A helper function called by VFS before socket-type vnode reclamation.
2340 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2341 * use count.
2342 */
2343void
2344vfs_unp_reclaim(struct vnode *vp)
2345{
2346	struct socket *so;
2347	struct unpcb *unp;
2348	int active;
2349
2350	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2351	KASSERT(vp->v_type == VSOCK,
2352	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2353
2354	active = 0;
2355	UNP_LINK_WLOCK();
2356	VOP_UNP_CONNECT(vp, &so);
2357	if (so == NULL)
2358		goto done;
2359	unp = sotounpcb(so);
2360	if (unp == NULL)
2361		goto done;
2362	UNP_PCB_LOCK(unp);
2363	if (unp->unp_vnode == vp) {
2364		VOP_UNP_DETACH(vp);
2365		unp->unp_vnode = NULL;
2366		active = 1;
2367	}
2368	UNP_PCB_UNLOCK(unp);
2369done:
2370	UNP_LINK_WUNLOCK();
2371	if (active)
2372		vunref(vp);
2373}
2374
2375#ifdef DDB
2376static void
2377db_print_indent(int indent)
2378{
2379	int i;
2380
2381	for (i = 0; i < indent; i++)
2382		db_printf(" ");
2383}
2384
2385static void
2386db_print_unpflags(int unp_flags)
2387{
2388	int comma;
2389
2390	comma = 0;
2391	if (unp_flags & UNP_HAVEPC) {
2392		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2393		comma = 1;
2394	}
2395	if (unp_flags & UNP_HAVEPCCACHED) {
2396		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2397		comma = 1;
2398	}
2399	if (unp_flags & UNP_WANTCRED) {
2400		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2401		comma = 1;
2402	}
2403	if (unp_flags & UNP_CONNWAIT) {
2404		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2405		comma = 1;
2406	}
2407	if (unp_flags & UNP_CONNECTING) {
2408		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2409		comma = 1;
2410	}
2411	if (unp_flags & UNP_BINDING) {
2412		db_printf("%sUNP_BINDING", comma ? ", " : "");
2413		comma = 1;
2414	}
2415}
2416
2417static void
2418db_print_xucred(int indent, struct xucred *xu)
2419{
2420	int comma, i;
2421
2422	db_print_indent(indent);
2423	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2424	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2425	db_print_indent(indent);
2426	db_printf("cr_groups: ");
2427	comma = 0;
2428	for (i = 0; i < xu->cr_ngroups; i++) {
2429		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2430		comma = 1;
2431	}
2432	db_printf("\n");
2433}
2434
2435static void
2436db_print_unprefs(int indent, struct unp_head *uh)
2437{
2438	struct unpcb *unp;
2439	int counter;
2440
2441	counter = 0;
2442	LIST_FOREACH(unp, uh, unp_reflink) {
2443		if (counter % 4 == 0)
2444			db_print_indent(indent);
2445		db_printf("%p  ", unp);
2446		if (counter % 4 == 3)
2447			db_printf("\n");
2448		counter++;
2449	}
2450	if (counter != 0 && counter % 4 != 0)
2451		db_printf("\n");
2452}
2453
2454DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2455{
2456	struct unpcb *unp;
2457
2458        if (!have_addr) {
2459                db_printf("usage: show unpcb <addr>\n");
2460                return;
2461        }
2462        unp = (struct unpcb *)addr;
2463
2464	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2465	    unp->unp_vnode);
2466
2467	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2468	    unp->unp_conn);
2469
2470	db_printf("unp_refs:\n");
2471	db_print_unprefs(2, &unp->unp_refs);
2472
2473	/* XXXRW: Would be nice to print the full address, if any. */
2474	db_printf("unp_addr: %p\n", unp->unp_addr);
2475
2476	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2477	    unp->unp_cc, unp->unp_mbcnt,
2478	    (unsigned long long)unp->unp_gencnt);
2479
2480	db_printf("unp_flags: %x (", unp->unp_flags);
2481	db_print_unpflags(unp->unp_flags);
2482	db_printf(")\n");
2483
2484	db_printf("unp_peercred:\n");
2485	db_print_xucred(2, &unp->unp_peercred);
2486
2487	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2488}
2489#endif
2490