uipc_usrreq.c revision 243152
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	RDM
54 *	distinguish datagram size limits from flow control limits in SEQPACKET
55 *	rethink name space problems
56 *	need a proper out-of-band
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/uipc_usrreq.c 243152 2012-11-16 14:00:54Z glebius $");
61
62#include "opt_ddb.h"
63
64#include <sys/param.h>
65#include <sys/domain.h>
66#include <sys/fcntl.h>
67#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68#include <sys/eventhandler.h>
69#include <sys/file.h>
70#include <sys/filedesc.h>
71#include <sys/kernel.h>
72#include <sys/lock.h>
73#include <sys/mbuf.h>
74#include <sys/mount.h>
75#include <sys/mutex.h>
76#include <sys/namei.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/queue.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/socket.h>
83#include <sys/socketvar.h>
84#include <sys/signalvar.h>
85#include <sys/stat.h>
86#include <sys/sx.h>
87#include <sys/sysctl.h>
88#include <sys/systm.h>
89#include <sys/taskqueue.h>
90#include <sys/un.h>
91#include <sys/unpcb.h>
92#include <sys/vnode.h>
93
94#include <net/vnet.h>
95
96#ifdef DDB
97#include <ddb/ddb.h>
98#endif
99
100#include <security/mac/mac_framework.h>
101
102#include <vm/uma.h>
103
104/*
105 * Locking key:
106 * (l)	Locked using list lock
107 * (g)	Locked using linkage lock
108 */
109
110static uma_zone_t	unp_zone;
111static unp_gen_t	unp_gencnt;	/* (l) */
112static u_int		unp_count;	/* (l) Count of local sockets. */
113static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114static int		unp_rights;	/* (g) File descriptors in flight. */
115static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118
119struct unp_defer {
120	SLIST_ENTRY(unp_defer) ud_link;
121	struct file *ud_fp;
122};
123static SLIST_HEAD(, unp_defer) unp_defers;
124static int unp_defers_count;
125
126static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127
128/*
129 * Garbage collection of cyclic file descriptor/socket references occurs
130 * asynchronously in a taskqueue context in order to avoid recursion and
131 * reentrance in the UNIX domain socket, file descriptor, and socket layer
132 * code.  See unp_gc() for a full description.
133 */
134static struct task	unp_gc_task;
135
136/*
137 * The close of unix domain sockets attached as SCM_RIGHTS is
138 * postponed to the taskqueue, to avoid arbitrary recursion depth.
139 * The attached sockets might have another sockets attached.
140 */
141static struct task	unp_defer_task;
142
143/*
144 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145 * stream sockets, although the total for sender and receiver is actually
146 * only PIPSIZ.
147 *
148 * Datagram sockets really use the sendspace as the maximum datagram size,
149 * and don't really want to reserve the sendspace.  Their recvspace should be
150 * large enough for at least one max-size datagram plus address.
151 */
152#ifndef PIPSIZ
153#define	PIPSIZ	8192
154#endif
155static u_long	unpst_sendspace = PIPSIZ;
156static u_long	unpst_recvspace = PIPSIZ;
157static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
158static u_long	unpdg_recvspace = 4*1024;
159static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160static u_long	unpsp_recvspace = PIPSIZ;
161
162static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
163static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
164    "SOCK_STREAM");
165static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
166static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
167    "SOCK_SEQPACKET");
168
169SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
170	   &unpst_sendspace, 0, "Default stream send space.");
171SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
172	   &unpst_recvspace, 0, "Default stream receive space.");
173SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
174	   &unpdg_sendspace, 0, "Default datagram send space.");
175SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
176	   &unpdg_recvspace, 0, "Default datagram receive space.");
177SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
178	   &unpsp_sendspace, 0, "Default seqpacket send space.");
179SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
180	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
181SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
182    "File descriptors in flight.");
183SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
184    &unp_defers_count, 0,
185    "File descriptors deferred to taskqueue for close.");
186
187/*
188 * Locking and synchronization:
189 *
190 * Three types of locks exit in the local domain socket implementation: a
191 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
192 * global locks, the list lock protects the socket count, global generation
193 * number, and stream/datagram global lists.  The linkage lock protects the
194 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
195 * held exclusively over the acquisition of multiple unpcb locks to prevent
196 * deadlock.
197 *
198 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
199 * allocated in pru_attach() and freed in pru_detach().  The validity of that
200 * pointer is an invariant, so no lock is required to dereference the so_pcb
201 * pointer if a valid socket reference is held by the caller.  In practice,
202 * this is always true during operations performed on a socket.  Each unpcb
203 * has a back-pointer to its socket, unp_socket, which will be stable under
204 * the same circumstances.
205 *
206 * This pointer may only be safely dereferenced as long as a valid reference
207 * to the unpcb is held.  Typically, this reference will be from the socket,
208 * or from another unpcb when the referring unpcb's lock is held (in order
209 * that the reference not be invalidated during use).  For example, to follow
210 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
211 * as unp_socket remains valid as long as the reference to unp_conn is valid.
212 *
213 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
214 * atomic reads without the lock may be performed "lockless", but more
215 * complex reads and read-modify-writes require the mutex to be held.  No
216 * lock order is defined between unpcb locks -- multiple unpcb locks may be
217 * acquired at the same time only when holding the linkage rwlock
218 * exclusively, which prevents deadlocks.
219 *
220 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
221 * protocols, bind() is a non-atomic operation, and connect() requires
222 * potential sleeping in the protocol, due to potentially waiting on local or
223 * distributed file systems.  We try to separate "lookup" operations, which
224 * may sleep, and the IPC operations themselves, which typically can occur
225 * with relative atomicity as locks can be held over the entire operation.
226 *
227 * Another tricky issue is simultaneous multi-threaded or multi-process
228 * access to a single UNIX domain socket.  These are handled by the flags
229 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
230 * binding, both of which involve dropping UNIX domain socket locks in order
231 * to perform namei() and other file system operations.
232 */
233static struct rwlock	unp_link_rwlock;
234static struct mtx	unp_list_lock;
235static struct mtx	unp_defers_lock;
236
237#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
238					    "unp_link_rwlock")
239
240#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
241					    RA_LOCKED)
242#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
243					    RA_UNLOCKED)
244
245#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
246#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
247#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
248#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
249#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
250					    RA_WLOCKED)
251
252#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
253					    "unp_list_lock", NULL, MTX_DEF)
254#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
255#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
256
257#define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
258					    "unp_defer", NULL, MTX_DEF)
259#define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
260#define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
261
262#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
263					    "unp_mtx", "unp_mtx",	\
264					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
265#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
266#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
267#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
268#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
269
270static int	uipc_connect2(struct socket *, struct socket *);
271static int	uipc_ctloutput(struct socket *, struct sockopt *);
272static int	unp_connect(struct socket *, struct sockaddr *,
273		    struct thread *);
274static int	unp_connect2(struct socket *so, struct socket *so2, int);
275static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
276static void	unp_dispose(struct mbuf *);
277static void	unp_shutdown(struct unpcb *);
278static void	unp_drop(struct unpcb *, int);
279static void	unp_gc(__unused void *, int);
280static void	unp_scan(struct mbuf *, void (*)(struct file *));
281static void	unp_discard(struct file *);
282static void	unp_freerights(struct file **, int);
283static void	unp_init(void);
284static int	unp_internalize(struct mbuf **, struct thread *);
285static void	unp_internalize_fp(struct file *);
286static int	unp_externalize(struct mbuf *, struct mbuf **);
287static int	unp_externalize_fp(struct file *);
288static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
289static void	unp_process_defers(void * __unused, int);
290
291/*
292 * Definitions of protocols supported in the LOCAL domain.
293 */
294static struct domain localdomain;
295static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
296static struct pr_usrreqs uipc_usrreqs_seqpacket;
297static struct protosw localsw[] = {
298{
299	.pr_type =		SOCK_STREAM,
300	.pr_domain =		&localdomain,
301	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
302	.pr_ctloutput =		&uipc_ctloutput,
303	.pr_usrreqs =		&uipc_usrreqs_stream
304},
305{
306	.pr_type =		SOCK_DGRAM,
307	.pr_domain =		&localdomain,
308	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
309	.pr_ctloutput =		&uipc_ctloutput,
310	.pr_usrreqs =		&uipc_usrreqs_dgram
311},
312{
313	.pr_type =		SOCK_SEQPACKET,
314	.pr_domain =		&localdomain,
315
316	/*
317	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
318	 * due to our use of sbappendaddr.  A new sbappend variants is needed
319	 * that supports both atomic record writes and control data.
320	 */
321	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
322				    PR_RIGHTS,
323	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
324},
325};
326
327static struct domain localdomain = {
328	.dom_family =		AF_LOCAL,
329	.dom_name =		"local",
330	.dom_init =		unp_init,
331	.dom_externalize =	unp_externalize,
332	.dom_dispose =		unp_dispose,
333	.dom_protosw =		localsw,
334	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
335};
336DOMAIN_SET(local);
337
338static void
339uipc_abort(struct socket *so)
340{
341	struct unpcb *unp, *unp2;
342
343	unp = sotounpcb(so);
344	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
345
346	UNP_LINK_WLOCK();
347	UNP_PCB_LOCK(unp);
348	unp2 = unp->unp_conn;
349	if (unp2 != NULL) {
350		UNP_PCB_LOCK(unp2);
351		unp_drop(unp2, ECONNABORTED);
352		UNP_PCB_UNLOCK(unp2);
353	}
354	UNP_PCB_UNLOCK(unp);
355	UNP_LINK_WUNLOCK();
356}
357
358static int
359uipc_accept(struct socket *so, struct sockaddr **nam)
360{
361	struct unpcb *unp, *unp2;
362	const struct sockaddr *sa;
363
364	/*
365	 * Pass back name of connected socket, if it was bound and we are
366	 * still connected (our peer may have closed already!).
367	 */
368	unp = sotounpcb(so);
369	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
370
371	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
372	UNP_LINK_RLOCK();
373	unp2 = unp->unp_conn;
374	if (unp2 != NULL && unp2->unp_addr != NULL) {
375		UNP_PCB_LOCK(unp2);
376		sa = (struct sockaddr *) unp2->unp_addr;
377		bcopy(sa, *nam, sa->sa_len);
378		UNP_PCB_UNLOCK(unp2);
379	} else {
380		sa = &sun_noname;
381		bcopy(sa, *nam, sa->sa_len);
382	}
383	UNP_LINK_RUNLOCK();
384	return (0);
385}
386
387static int
388uipc_attach(struct socket *so, int proto, struct thread *td)
389{
390	u_long sendspace, recvspace;
391	struct unpcb *unp;
392	int error;
393
394	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
395	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
396		switch (so->so_type) {
397		case SOCK_STREAM:
398			sendspace = unpst_sendspace;
399			recvspace = unpst_recvspace;
400			break;
401
402		case SOCK_DGRAM:
403			sendspace = unpdg_sendspace;
404			recvspace = unpdg_recvspace;
405			break;
406
407		case SOCK_SEQPACKET:
408			sendspace = unpsp_sendspace;
409			recvspace = unpsp_recvspace;
410			break;
411
412		default:
413			panic("uipc_attach");
414		}
415		error = soreserve(so, sendspace, recvspace);
416		if (error)
417			return (error);
418	}
419	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
420	if (unp == NULL)
421		return (ENOBUFS);
422	LIST_INIT(&unp->unp_refs);
423	UNP_PCB_LOCK_INIT(unp);
424	unp->unp_socket = so;
425	so->so_pcb = unp;
426	unp->unp_refcount = 1;
427
428	UNP_LIST_LOCK();
429	unp->unp_gencnt = ++unp_gencnt;
430	unp_count++;
431	switch (so->so_type) {
432	case SOCK_STREAM:
433		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
434		break;
435
436	case SOCK_DGRAM:
437		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
438		break;
439
440	case SOCK_SEQPACKET:
441		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
442		break;
443
444	default:
445		panic("uipc_attach");
446	}
447	UNP_LIST_UNLOCK();
448
449	return (0);
450}
451
452static int
453uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
454{
455	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
456	struct vattr vattr;
457	int error, namelen;
458	struct nameidata nd;
459	struct unpcb *unp;
460	struct vnode *vp;
461	struct mount *mp;
462	char *buf;
463
464	unp = sotounpcb(so);
465	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
466
467	if (soun->sun_len > sizeof(struct sockaddr_un))
468		return (EINVAL);
469	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
470	if (namelen <= 0)
471		return (EINVAL);
472
473	/*
474	 * We don't allow simultaneous bind() calls on a single UNIX domain
475	 * socket, so flag in-progress operations, and return an error if an
476	 * operation is already in progress.
477	 *
478	 * Historically, we have not allowed a socket to be rebound, so this
479	 * also returns an error.  Not allowing re-binding simplifies the
480	 * implementation and avoids a great many possible failure modes.
481	 */
482	UNP_PCB_LOCK(unp);
483	if (unp->unp_vnode != NULL) {
484		UNP_PCB_UNLOCK(unp);
485		return (EINVAL);
486	}
487	if (unp->unp_flags & UNP_BINDING) {
488		UNP_PCB_UNLOCK(unp);
489		return (EALREADY);
490	}
491	unp->unp_flags |= UNP_BINDING;
492	UNP_PCB_UNLOCK(unp);
493
494	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
495	bcopy(soun->sun_path, buf, namelen);
496	buf[namelen] = 0;
497
498restart:
499	NDINIT(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME,
500	    UIO_SYSSPACE, buf, td);
501/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
502	error = namei(&nd);
503	if (error)
504		goto error;
505	vp = nd.ni_vp;
506	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
507		NDFREE(&nd, NDF_ONLY_PNBUF);
508		if (nd.ni_dvp == vp)
509			vrele(nd.ni_dvp);
510		else
511			vput(nd.ni_dvp);
512		if (vp != NULL) {
513			vrele(vp);
514			error = EADDRINUSE;
515			goto error;
516		}
517		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
518		if (error)
519			goto error;
520		goto restart;
521	}
522	VATTR_NULL(&vattr);
523	vattr.va_type = VSOCK;
524	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
525#ifdef MAC
526	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
527	    &vattr);
528#endif
529	if (error == 0)
530		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
531	NDFREE(&nd, NDF_ONLY_PNBUF);
532	vput(nd.ni_dvp);
533	if (error) {
534		vn_finished_write(mp);
535		goto error;
536	}
537	vp = nd.ni_vp;
538	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
539	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
540
541	UNP_LINK_WLOCK();
542	UNP_PCB_LOCK(unp);
543	VOP_UNP_BIND(vp, unp->unp_socket);
544	unp->unp_vnode = vp;
545	unp->unp_addr = soun;
546	unp->unp_flags &= ~UNP_BINDING;
547	UNP_PCB_UNLOCK(unp);
548	UNP_LINK_WUNLOCK();
549	VOP_UNLOCK(vp, 0);
550	vn_finished_write(mp);
551	free(buf, M_TEMP);
552	return (0);
553
554error:
555	UNP_PCB_LOCK(unp);
556	unp->unp_flags &= ~UNP_BINDING;
557	UNP_PCB_UNLOCK(unp);
558	free(buf, M_TEMP);
559	return (error);
560}
561
562static int
563uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
564{
565	int error;
566
567	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
568	UNP_LINK_WLOCK();
569	error = unp_connect(so, nam, td);
570	UNP_LINK_WUNLOCK();
571	return (error);
572}
573
574static void
575uipc_close(struct socket *so)
576{
577	struct unpcb *unp, *unp2;
578
579	unp = sotounpcb(so);
580	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
581
582	UNP_LINK_WLOCK();
583	UNP_PCB_LOCK(unp);
584	unp2 = unp->unp_conn;
585	if (unp2 != NULL) {
586		UNP_PCB_LOCK(unp2);
587		unp_disconnect(unp, unp2);
588		UNP_PCB_UNLOCK(unp2);
589	}
590	UNP_PCB_UNLOCK(unp);
591	UNP_LINK_WUNLOCK();
592}
593
594static int
595uipc_connect2(struct socket *so1, struct socket *so2)
596{
597	struct unpcb *unp, *unp2;
598	int error;
599
600	UNP_LINK_WLOCK();
601	unp = so1->so_pcb;
602	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
603	UNP_PCB_LOCK(unp);
604	unp2 = so2->so_pcb;
605	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
606	UNP_PCB_LOCK(unp2);
607	error = unp_connect2(so1, so2, PRU_CONNECT2);
608	UNP_PCB_UNLOCK(unp2);
609	UNP_PCB_UNLOCK(unp);
610	UNP_LINK_WUNLOCK();
611	return (error);
612}
613
614static void
615uipc_detach(struct socket *so)
616{
617	struct unpcb *unp, *unp2;
618	struct sockaddr_un *saved_unp_addr;
619	struct vnode *vp;
620	int freeunp, local_unp_rights;
621
622	unp = sotounpcb(so);
623	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
624
625	UNP_LINK_WLOCK();
626	UNP_LIST_LOCK();
627	UNP_PCB_LOCK(unp);
628	LIST_REMOVE(unp, unp_link);
629	unp->unp_gencnt = ++unp_gencnt;
630	--unp_count;
631	UNP_LIST_UNLOCK();
632
633	/*
634	 * XXXRW: Should assert vp->v_socket == so.
635	 */
636	if ((vp = unp->unp_vnode) != NULL) {
637		VOP_UNP_DETACH(vp);
638		unp->unp_vnode = NULL;
639	}
640	unp2 = unp->unp_conn;
641	if (unp2 != NULL) {
642		UNP_PCB_LOCK(unp2);
643		unp_disconnect(unp, unp2);
644		UNP_PCB_UNLOCK(unp2);
645	}
646
647	/*
648	 * We hold the linkage lock exclusively, so it's OK to acquire
649	 * multiple pcb locks at a time.
650	 */
651	while (!LIST_EMPTY(&unp->unp_refs)) {
652		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
653
654		UNP_PCB_LOCK(ref);
655		unp_drop(ref, ECONNRESET);
656		UNP_PCB_UNLOCK(ref);
657	}
658	local_unp_rights = unp_rights;
659	UNP_LINK_WUNLOCK();
660	unp->unp_socket->so_pcb = NULL;
661	saved_unp_addr = unp->unp_addr;
662	unp->unp_addr = NULL;
663	unp->unp_refcount--;
664	freeunp = (unp->unp_refcount == 0);
665	if (saved_unp_addr != NULL)
666		free(saved_unp_addr, M_SONAME);
667	if (freeunp) {
668		UNP_PCB_LOCK_DESTROY(unp);
669		uma_zfree(unp_zone, unp);
670	} else
671		UNP_PCB_UNLOCK(unp);
672	if (vp)
673		vrele(vp);
674	if (local_unp_rights)
675		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
676}
677
678static int
679uipc_disconnect(struct socket *so)
680{
681	struct unpcb *unp, *unp2;
682
683	unp = sotounpcb(so);
684	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
685
686	UNP_LINK_WLOCK();
687	UNP_PCB_LOCK(unp);
688	unp2 = unp->unp_conn;
689	if (unp2 != NULL) {
690		UNP_PCB_LOCK(unp2);
691		unp_disconnect(unp, unp2);
692		UNP_PCB_UNLOCK(unp2);
693	}
694	UNP_PCB_UNLOCK(unp);
695	UNP_LINK_WUNLOCK();
696	return (0);
697}
698
699static int
700uipc_listen(struct socket *so, int backlog, struct thread *td)
701{
702	struct unpcb *unp;
703	int error;
704
705	unp = sotounpcb(so);
706	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
707
708	UNP_PCB_LOCK(unp);
709	if (unp->unp_vnode == NULL) {
710		UNP_PCB_UNLOCK(unp);
711		return (EINVAL);
712	}
713
714	SOCK_LOCK(so);
715	error = solisten_proto_check(so);
716	if (error == 0) {
717		cru2x(td->td_ucred, &unp->unp_peercred);
718		unp->unp_flags |= UNP_HAVEPCCACHED;
719		solisten_proto(so, backlog);
720	}
721	SOCK_UNLOCK(so);
722	UNP_PCB_UNLOCK(unp);
723	return (error);
724}
725
726static int
727uipc_peeraddr(struct socket *so, struct sockaddr **nam)
728{
729	struct unpcb *unp, *unp2;
730	const struct sockaddr *sa;
731
732	unp = sotounpcb(so);
733	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
734
735	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
736	UNP_LINK_RLOCK();
737	/*
738	 * XXX: It seems that this test always fails even when connection is
739	 * established.  So, this else clause is added as workaround to
740	 * return PF_LOCAL sockaddr.
741	 */
742	unp2 = unp->unp_conn;
743	if (unp2 != NULL) {
744		UNP_PCB_LOCK(unp2);
745		if (unp2->unp_addr != NULL)
746			sa = (struct sockaddr *) unp2->unp_addr;
747		else
748			sa = &sun_noname;
749		bcopy(sa, *nam, sa->sa_len);
750		UNP_PCB_UNLOCK(unp2);
751	} else {
752		sa = &sun_noname;
753		bcopy(sa, *nam, sa->sa_len);
754	}
755	UNP_LINK_RUNLOCK();
756	return (0);
757}
758
759static int
760uipc_rcvd(struct socket *so, int flags)
761{
762	struct unpcb *unp, *unp2;
763	struct socket *so2;
764	u_int mbcnt, sbcc;
765	u_long newhiwat;
766
767	unp = sotounpcb(so);
768	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
769
770	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
771		panic("uipc_rcvd socktype %d", so->so_type);
772
773	/*
774	 * Adjust backpressure on sender and wakeup any waiting to write.
775	 *
776	 * The unp lock is acquired to maintain the validity of the unp_conn
777	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
778	 * static as long as we don't permit unp2 to disconnect from unp,
779	 * which is prevented by the lock on unp.  We cache values from
780	 * so_rcv to avoid holding the so_rcv lock over the entire
781	 * transaction on the remote so_snd.
782	 */
783	SOCKBUF_LOCK(&so->so_rcv);
784	mbcnt = so->so_rcv.sb_mbcnt;
785	sbcc = so->so_rcv.sb_cc;
786	SOCKBUF_UNLOCK(&so->so_rcv);
787	UNP_PCB_LOCK(unp);
788	unp2 = unp->unp_conn;
789	if (unp2 == NULL) {
790		UNP_PCB_UNLOCK(unp);
791		return (0);
792	}
793	so2 = unp2->unp_socket;
794	SOCKBUF_LOCK(&so2->so_snd);
795	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
796	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
797	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
798	    newhiwat, RLIM_INFINITY);
799	sowwakeup_locked(so2);
800	unp->unp_mbcnt = mbcnt;
801	unp->unp_cc = sbcc;
802	UNP_PCB_UNLOCK(unp);
803	return (0);
804}
805
806static int
807uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
808    struct mbuf *control, struct thread *td)
809{
810	struct unpcb *unp, *unp2;
811	struct socket *so2;
812	u_int mbcnt_delta, sbcc;
813	u_int newhiwat;
814	int error = 0;
815
816	unp = sotounpcb(so);
817	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
818
819	if (flags & PRUS_OOB) {
820		error = EOPNOTSUPP;
821		goto release;
822	}
823	if (control != NULL && (error = unp_internalize(&control, td)))
824		goto release;
825	if ((nam != NULL) || (flags & PRUS_EOF))
826		UNP_LINK_WLOCK();
827	else
828		UNP_LINK_RLOCK();
829	switch (so->so_type) {
830	case SOCK_DGRAM:
831	{
832		const struct sockaddr *from;
833
834		unp2 = unp->unp_conn;
835		if (nam != NULL) {
836			UNP_LINK_WLOCK_ASSERT();
837			if (unp2 != NULL) {
838				error = EISCONN;
839				break;
840			}
841			error = unp_connect(so, nam, td);
842			if (error)
843				break;
844			unp2 = unp->unp_conn;
845		}
846
847		/*
848		 * Because connect() and send() are non-atomic in a sendto()
849		 * with a target address, it's possible that the socket will
850		 * have disconnected before the send() can run.  In that case
851		 * return the slightly counter-intuitive but otherwise
852		 * correct error that the socket is not connected.
853		 */
854		if (unp2 == NULL) {
855			error = ENOTCONN;
856			break;
857		}
858		/* Lockless read. */
859		if (unp2->unp_flags & UNP_WANTCRED)
860			control = unp_addsockcred(td, control);
861		UNP_PCB_LOCK(unp);
862		if (unp->unp_addr != NULL)
863			from = (struct sockaddr *)unp->unp_addr;
864		else
865			from = &sun_noname;
866		so2 = unp2->unp_socket;
867		SOCKBUF_LOCK(&so2->so_rcv);
868		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
869			sorwakeup_locked(so2);
870			m = NULL;
871			control = NULL;
872		} else {
873			SOCKBUF_UNLOCK(&so2->so_rcv);
874			error = ENOBUFS;
875		}
876		if (nam != NULL) {
877			UNP_LINK_WLOCK_ASSERT();
878			UNP_PCB_LOCK(unp2);
879			unp_disconnect(unp, unp2);
880			UNP_PCB_UNLOCK(unp2);
881		}
882		UNP_PCB_UNLOCK(unp);
883		break;
884	}
885
886	case SOCK_SEQPACKET:
887	case SOCK_STREAM:
888		if ((so->so_state & SS_ISCONNECTED) == 0) {
889			if (nam != NULL) {
890				UNP_LINK_WLOCK_ASSERT();
891				error = unp_connect(so, nam, td);
892				if (error)
893					break;	/* XXX */
894			} else {
895				error = ENOTCONN;
896				break;
897			}
898		}
899
900		/* Lockless read. */
901		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
902			error = EPIPE;
903			break;
904		}
905
906		/*
907		 * Because connect() and send() are non-atomic in a sendto()
908		 * with a target address, it's possible that the socket will
909		 * have disconnected before the send() can run.  In that case
910		 * return the slightly counter-intuitive but otherwise
911		 * correct error that the socket is not connected.
912		 *
913		 * Locking here must be done carefully: the linkage lock
914		 * prevents interconnections between unpcbs from changing, so
915		 * we can traverse from unp to unp2 without acquiring unp's
916		 * lock.  Socket buffer locks follow unpcb locks, so we can
917		 * acquire both remote and lock socket buffer locks.
918		 */
919		unp2 = unp->unp_conn;
920		if (unp2 == NULL) {
921			error = ENOTCONN;
922			break;
923		}
924		so2 = unp2->unp_socket;
925		UNP_PCB_LOCK(unp2);
926		SOCKBUF_LOCK(&so2->so_rcv);
927		if (unp2->unp_flags & UNP_WANTCRED) {
928			/*
929			 * Credentials are passed only once on SOCK_STREAM
930			 * and SOCK_SEQPACKET.
931			 */
932			unp2->unp_flags &= ~UNP_WANTCRED;
933			control = unp_addsockcred(td, control);
934		}
935		/*
936		 * Send to paired receive port, and then reduce send buffer
937		 * hiwater marks to maintain backpressure.  Wake up readers.
938		 */
939		switch (so->so_type) {
940		case SOCK_STREAM:
941			if (control != NULL) {
942				if (sbappendcontrol_locked(&so2->so_rcv, m,
943				    control))
944					control = NULL;
945			} else
946				sbappend_locked(&so2->so_rcv, m);
947			break;
948
949		case SOCK_SEQPACKET: {
950			const struct sockaddr *from;
951
952			from = &sun_noname;
953			if (sbappendaddr_locked(&so2->so_rcv, from, m,
954			    control))
955				control = NULL;
956			break;
957			}
958		}
959
960		/*
961		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
962		 * datagram size and back-pressure for SOCK_SEQPACKET, which
963		 * can lead to undesired return of EMSGSIZE on send instead
964		 * of more desirable blocking.
965		 */
966		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
967		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
968		sbcc = so2->so_rcv.sb_cc;
969		sorwakeup_locked(so2);
970
971		SOCKBUF_LOCK(&so->so_snd);
972		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
973			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
974		else
975			newhiwat = 0;
976		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
977		    newhiwat, RLIM_INFINITY);
978		so->so_snd.sb_mbmax -= mbcnt_delta;
979		SOCKBUF_UNLOCK(&so->so_snd);
980		unp2->unp_cc = sbcc;
981		UNP_PCB_UNLOCK(unp2);
982		m = NULL;
983		break;
984
985	default:
986		panic("uipc_send unknown socktype");
987	}
988
989	/*
990	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
991	 */
992	if (flags & PRUS_EOF) {
993		UNP_PCB_LOCK(unp);
994		socantsendmore(so);
995		unp_shutdown(unp);
996		UNP_PCB_UNLOCK(unp);
997	}
998
999	if ((nam != NULL) || (flags & PRUS_EOF))
1000		UNP_LINK_WUNLOCK();
1001	else
1002		UNP_LINK_RUNLOCK();
1003
1004	if (control != NULL && error != 0)
1005		unp_dispose(control);
1006
1007release:
1008	if (control != NULL)
1009		m_freem(control);
1010	if (m != NULL)
1011		m_freem(m);
1012	return (error);
1013}
1014
1015static int
1016uipc_sense(struct socket *so, struct stat *sb)
1017{
1018	struct unpcb *unp, *unp2;
1019	struct socket *so2;
1020
1021	unp = sotounpcb(so);
1022	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1023
1024	sb->st_blksize = so->so_snd.sb_hiwat;
1025	UNP_LINK_RLOCK();
1026	UNP_PCB_LOCK(unp);
1027	unp2 = unp->unp_conn;
1028	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1029	    unp2 != NULL) {
1030		so2 = unp2->unp_socket;
1031		sb->st_blksize += so2->so_rcv.sb_cc;
1032	}
1033	sb->st_dev = NODEV;
1034	if (unp->unp_ino == 0)
1035		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1036	sb->st_ino = unp->unp_ino;
1037	UNP_PCB_UNLOCK(unp);
1038	UNP_LINK_RUNLOCK();
1039	return (0);
1040}
1041
1042static int
1043uipc_shutdown(struct socket *so)
1044{
1045	struct unpcb *unp;
1046
1047	unp = sotounpcb(so);
1048	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1049
1050	UNP_LINK_WLOCK();
1051	UNP_PCB_LOCK(unp);
1052	socantsendmore(so);
1053	unp_shutdown(unp);
1054	UNP_PCB_UNLOCK(unp);
1055	UNP_LINK_WUNLOCK();
1056	return (0);
1057}
1058
1059static int
1060uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1061{
1062	struct unpcb *unp;
1063	const struct sockaddr *sa;
1064
1065	unp = sotounpcb(so);
1066	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1067
1068	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1069	UNP_PCB_LOCK(unp);
1070	if (unp->unp_addr != NULL)
1071		sa = (struct sockaddr *) unp->unp_addr;
1072	else
1073		sa = &sun_noname;
1074	bcopy(sa, *nam, sa->sa_len);
1075	UNP_PCB_UNLOCK(unp);
1076	return (0);
1077}
1078
1079static struct pr_usrreqs uipc_usrreqs_dgram = {
1080	.pru_abort = 		uipc_abort,
1081	.pru_accept =		uipc_accept,
1082	.pru_attach =		uipc_attach,
1083	.pru_bind =		uipc_bind,
1084	.pru_connect =		uipc_connect,
1085	.pru_connect2 =		uipc_connect2,
1086	.pru_detach =		uipc_detach,
1087	.pru_disconnect =	uipc_disconnect,
1088	.pru_listen =		uipc_listen,
1089	.pru_peeraddr =		uipc_peeraddr,
1090	.pru_rcvd =		uipc_rcvd,
1091	.pru_send =		uipc_send,
1092	.pru_sense =		uipc_sense,
1093	.pru_shutdown =		uipc_shutdown,
1094	.pru_sockaddr =		uipc_sockaddr,
1095	.pru_soreceive =	soreceive_dgram,
1096	.pru_close =		uipc_close,
1097};
1098
1099static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1100	.pru_abort =		uipc_abort,
1101	.pru_accept =		uipc_accept,
1102	.pru_attach =		uipc_attach,
1103	.pru_bind =		uipc_bind,
1104	.pru_connect =		uipc_connect,
1105	.pru_connect2 =		uipc_connect2,
1106	.pru_detach =		uipc_detach,
1107	.pru_disconnect =	uipc_disconnect,
1108	.pru_listen =		uipc_listen,
1109	.pru_peeraddr =		uipc_peeraddr,
1110	.pru_rcvd =		uipc_rcvd,
1111	.pru_send =		uipc_send,
1112	.pru_sense =		uipc_sense,
1113	.pru_shutdown =		uipc_shutdown,
1114	.pru_sockaddr =		uipc_sockaddr,
1115	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1116	.pru_close =		uipc_close,
1117};
1118
1119static struct pr_usrreqs uipc_usrreqs_stream = {
1120	.pru_abort = 		uipc_abort,
1121	.pru_accept =		uipc_accept,
1122	.pru_attach =		uipc_attach,
1123	.pru_bind =		uipc_bind,
1124	.pru_connect =		uipc_connect,
1125	.pru_connect2 =		uipc_connect2,
1126	.pru_detach =		uipc_detach,
1127	.pru_disconnect =	uipc_disconnect,
1128	.pru_listen =		uipc_listen,
1129	.pru_peeraddr =		uipc_peeraddr,
1130	.pru_rcvd =		uipc_rcvd,
1131	.pru_send =		uipc_send,
1132	.pru_sense =		uipc_sense,
1133	.pru_shutdown =		uipc_shutdown,
1134	.pru_sockaddr =		uipc_sockaddr,
1135	.pru_soreceive =	soreceive_generic,
1136	.pru_close =		uipc_close,
1137};
1138
1139static int
1140uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1141{
1142	struct unpcb *unp;
1143	struct xucred xu;
1144	int error, optval;
1145
1146	if (sopt->sopt_level != 0)
1147		return (EINVAL);
1148
1149	unp = sotounpcb(so);
1150	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1151	error = 0;
1152	switch (sopt->sopt_dir) {
1153	case SOPT_GET:
1154		switch (sopt->sopt_name) {
1155		case LOCAL_PEERCRED:
1156			UNP_PCB_LOCK(unp);
1157			if (unp->unp_flags & UNP_HAVEPC)
1158				xu = unp->unp_peercred;
1159			else {
1160				if (so->so_type == SOCK_STREAM)
1161					error = ENOTCONN;
1162				else
1163					error = EINVAL;
1164			}
1165			UNP_PCB_UNLOCK(unp);
1166			if (error == 0)
1167				error = sooptcopyout(sopt, &xu, sizeof(xu));
1168			break;
1169
1170		case LOCAL_CREDS:
1171			/* Unlocked read. */
1172			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1173			error = sooptcopyout(sopt, &optval, sizeof(optval));
1174			break;
1175
1176		case LOCAL_CONNWAIT:
1177			/* Unlocked read. */
1178			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1179			error = sooptcopyout(sopt, &optval, sizeof(optval));
1180			break;
1181
1182		default:
1183			error = EOPNOTSUPP;
1184			break;
1185		}
1186		break;
1187
1188	case SOPT_SET:
1189		switch (sopt->sopt_name) {
1190		case LOCAL_CREDS:
1191		case LOCAL_CONNWAIT:
1192			error = sooptcopyin(sopt, &optval, sizeof(optval),
1193					    sizeof(optval));
1194			if (error)
1195				break;
1196
1197#define	OPTSET(bit) do {						\
1198	UNP_PCB_LOCK(unp);						\
1199	if (optval)							\
1200		unp->unp_flags |= bit;					\
1201	else								\
1202		unp->unp_flags &= ~bit;					\
1203	UNP_PCB_UNLOCK(unp);						\
1204} while (0)
1205
1206			switch (sopt->sopt_name) {
1207			case LOCAL_CREDS:
1208				OPTSET(UNP_WANTCRED);
1209				break;
1210
1211			case LOCAL_CONNWAIT:
1212				OPTSET(UNP_CONNWAIT);
1213				break;
1214
1215			default:
1216				break;
1217			}
1218			break;
1219#undef	OPTSET
1220		default:
1221			error = ENOPROTOOPT;
1222			break;
1223		}
1224		break;
1225
1226	default:
1227		error = EOPNOTSUPP;
1228		break;
1229	}
1230	return (error);
1231}
1232
1233static int
1234unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1235{
1236	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1237	struct vnode *vp;
1238	struct socket *so2, *so3;
1239	struct unpcb *unp, *unp2, *unp3;
1240	int error, len;
1241	struct nameidata nd;
1242	char buf[SOCK_MAXADDRLEN];
1243	struct sockaddr *sa;
1244
1245	UNP_LINK_WLOCK_ASSERT();
1246
1247	unp = sotounpcb(so);
1248	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1249
1250	if (nam->sa_len > sizeof(struct sockaddr_un))
1251		return (EINVAL);
1252	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1253	if (len <= 0)
1254		return (EINVAL);
1255	bcopy(soun->sun_path, buf, len);
1256	buf[len] = 0;
1257
1258	UNP_PCB_LOCK(unp);
1259	if (unp->unp_flags & UNP_CONNECTING) {
1260		UNP_PCB_UNLOCK(unp);
1261		return (EALREADY);
1262	}
1263	UNP_LINK_WUNLOCK();
1264	unp->unp_flags |= UNP_CONNECTING;
1265	UNP_PCB_UNLOCK(unp);
1266
1267	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1268	NDINIT(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1269	    UIO_SYSSPACE, buf, td);
1270	error = namei(&nd);
1271	if (error)
1272		vp = NULL;
1273	else
1274		vp = nd.ni_vp;
1275	ASSERT_VOP_LOCKED(vp, "unp_connect");
1276	NDFREE(&nd, NDF_ONLY_PNBUF);
1277	if (error)
1278		goto bad;
1279
1280	if (vp->v_type != VSOCK) {
1281		error = ENOTSOCK;
1282		goto bad;
1283	}
1284#ifdef MAC
1285	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1286	if (error)
1287		goto bad;
1288#endif
1289	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1290	if (error)
1291		goto bad;
1292
1293	unp = sotounpcb(so);
1294	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1295
1296	/*
1297	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1298	 * and to protect simultaneous locking of multiple pcbs.
1299	 */
1300	UNP_LINK_WLOCK();
1301	VOP_UNP_CONNECT(vp, &so2);
1302	if (so2 == NULL) {
1303		error = ECONNREFUSED;
1304		goto bad2;
1305	}
1306	if (so->so_type != so2->so_type) {
1307		error = EPROTOTYPE;
1308		goto bad2;
1309	}
1310	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1311		if (so2->so_options & SO_ACCEPTCONN) {
1312			CURVNET_SET(so2->so_vnet);
1313			so3 = sonewconn(so2, 0);
1314			CURVNET_RESTORE();
1315		} else
1316			so3 = NULL;
1317		if (so3 == NULL) {
1318			error = ECONNREFUSED;
1319			goto bad2;
1320		}
1321		unp = sotounpcb(so);
1322		unp2 = sotounpcb(so2);
1323		unp3 = sotounpcb(so3);
1324		UNP_PCB_LOCK(unp);
1325		UNP_PCB_LOCK(unp2);
1326		UNP_PCB_LOCK(unp3);
1327		if (unp2->unp_addr != NULL) {
1328			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1329			unp3->unp_addr = (struct sockaddr_un *) sa;
1330			sa = NULL;
1331		}
1332
1333		/*
1334		 * The connecter's (client's) credentials are copied from its
1335		 * process structure at the time of connect() (which is now).
1336		 */
1337		cru2x(td->td_ucred, &unp3->unp_peercred);
1338		unp3->unp_flags |= UNP_HAVEPC;
1339
1340		/*
1341		 * The receiver's (server's) credentials are copied from the
1342		 * unp_peercred member of socket on which the former called
1343		 * listen(); uipc_listen() cached that process's credentials
1344		 * at that time so we can use them now.
1345		 */
1346		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1347		    ("unp_connect: listener without cached peercred"));
1348		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1349		    sizeof(unp->unp_peercred));
1350		unp->unp_flags |= UNP_HAVEPC;
1351		if (unp2->unp_flags & UNP_WANTCRED)
1352			unp3->unp_flags |= UNP_WANTCRED;
1353		UNP_PCB_UNLOCK(unp3);
1354		UNP_PCB_UNLOCK(unp2);
1355		UNP_PCB_UNLOCK(unp);
1356#ifdef MAC
1357		mac_socketpeer_set_from_socket(so, so3);
1358		mac_socketpeer_set_from_socket(so3, so);
1359#endif
1360
1361		so2 = so3;
1362	}
1363	unp = sotounpcb(so);
1364	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1365	unp2 = sotounpcb(so2);
1366	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1367	UNP_PCB_LOCK(unp);
1368	UNP_PCB_LOCK(unp2);
1369	error = unp_connect2(so, so2, PRU_CONNECT);
1370	UNP_PCB_UNLOCK(unp2);
1371	UNP_PCB_UNLOCK(unp);
1372bad2:
1373	UNP_LINK_WUNLOCK();
1374bad:
1375	if (vp != NULL)
1376		vput(vp);
1377	free(sa, M_SONAME);
1378	UNP_LINK_WLOCK();
1379	UNP_PCB_LOCK(unp);
1380	unp->unp_flags &= ~UNP_CONNECTING;
1381	UNP_PCB_UNLOCK(unp);
1382	return (error);
1383}
1384
1385static int
1386unp_connect2(struct socket *so, struct socket *so2, int req)
1387{
1388	struct unpcb *unp;
1389	struct unpcb *unp2;
1390
1391	unp = sotounpcb(so);
1392	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1393	unp2 = sotounpcb(so2);
1394	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1395
1396	UNP_LINK_WLOCK_ASSERT();
1397	UNP_PCB_LOCK_ASSERT(unp);
1398	UNP_PCB_LOCK_ASSERT(unp2);
1399
1400	if (so2->so_type != so->so_type)
1401		return (EPROTOTYPE);
1402	unp->unp_conn = unp2;
1403
1404	switch (so->so_type) {
1405	case SOCK_DGRAM:
1406		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1407		soisconnected(so);
1408		break;
1409
1410	case SOCK_STREAM:
1411	case SOCK_SEQPACKET:
1412		unp2->unp_conn = unp;
1413		if (req == PRU_CONNECT &&
1414		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1415			soisconnecting(so);
1416		else
1417			soisconnected(so);
1418		soisconnected(so2);
1419		break;
1420
1421	default:
1422		panic("unp_connect2");
1423	}
1424	return (0);
1425}
1426
1427static void
1428unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1429{
1430	struct socket *so;
1431
1432	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1433
1434	UNP_LINK_WLOCK_ASSERT();
1435	UNP_PCB_LOCK_ASSERT(unp);
1436	UNP_PCB_LOCK_ASSERT(unp2);
1437
1438	unp->unp_conn = NULL;
1439	switch (unp->unp_socket->so_type) {
1440	case SOCK_DGRAM:
1441		LIST_REMOVE(unp, unp_reflink);
1442		so = unp->unp_socket;
1443		SOCK_LOCK(so);
1444		so->so_state &= ~SS_ISCONNECTED;
1445		SOCK_UNLOCK(so);
1446		break;
1447
1448	case SOCK_STREAM:
1449	case SOCK_SEQPACKET:
1450		soisdisconnected(unp->unp_socket);
1451		unp2->unp_conn = NULL;
1452		soisdisconnected(unp2->unp_socket);
1453		break;
1454	}
1455}
1456
1457/*
1458 * unp_pcblist() walks the global list of struct unpcb's to generate a
1459 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1460 * sequentially, validating the generation number on each to see if it has
1461 * been detached.  All of this is necessary because copyout() may sleep on
1462 * disk I/O.
1463 */
1464static int
1465unp_pcblist(SYSCTL_HANDLER_ARGS)
1466{
1467	int error, i, n;
1468	int freeunp;
1469	struct unpcb *unp, **unp_list;
1470	unp_gen_t gencnt;
1471	struct xunpgen *xug;
1472	struct unp_head *head;
1473	struct xunpcb *xu;
1474
1475	switch ((intptr_t)arg1) {
1476	case SOCK_STREAM:
1477		head = &unp_shead;
1478		break;
1479
1480	case SOCK_DGRAM:
1481		head = &unp_dhead;
1482		break;
1483
1484	case SOCK_SEQPACKET:
1485		head = &unp_sphead;
1486		break;
1487
1488	default:
1489		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1490	}
1491
1492	/*
1493	 * The process of preparing the PCB list is too time-consuming and
1494	 * resource-intensive to repeat twice on every request.
1495	 */
1496	if (req->oldptr == NULL) {
1497		n = unp_count;
1498		req->oldidx = 2 * (sizeof *xug)
1499			+ (n + n/8) * sizeof(struct xunpcb);
1500		return (0);
1501	}
1502
1503	if (req->newptr != NULL)
1504		return (EPERM);
1505
1506	/*
1507	 * OK, now we're committed to doing something.
1508	 */
1509	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1510	UNP_LIST_LOCK();
1511	gencnt = unp_gencnt;
1512	n = unp_count;
1513	UNP_LIST_UNLOCK();
1514
1515	xug->xug_len = sizeof *xug;
1516	xug->xug_count = n;
1517	xug->xug_gen = gencnt;
1518	xug->xug_sogen = so_gencnt;
1519	error = SYSCTL_OUT(req, xug, sizeof *xug);
1520	if (error) {
1521		free(xug, M_TEMP);
1522		return (error);
1523	}
1524
1525	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1526
1527	UNP_LIST_LOCK();
1528	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1529	     unp = LIST_NEXT(unp, unp_link)) {
1530		UNP_PCB_LOCK(unp);
1531		if (unp->unp_gencnt <= gencnt) {
1532			if (cr_cansee(req->td->td_ucred,
1533			    unp->unp_socket->so_cred)) {
1534				UNP_PCB_UNLOCK(unp);
1535				continue;
1536			}
1537			unp_list[i++] = unp;
1538			unp->unp_refcount++;
1539		}
1540		UNP_PCB_UNLOCK(unp);
1541	}
1542	UNP_LIST_UNLOCK();
1543	n = i;			/* In case we lost some during malloc. */
1544
1545	error = 0;
1546	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1547	for (i = 0; i < n; i++) {
1548		unp = unp_list[i];
1549		UNP_PCB_LOCK(unp);
1550		unp->unp_refcount--;
1551	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1552			xu->xu_len = sizeof *xu;
1553			xu->xu_unpp = unp;
1554			/*
1555			 * XXX - need more locking here to protect against
1556			 * connect/disconnect races for SMP.
1557			 */
1558			if (unp->unp_addr != NULL)
1559				bcopy(unp->unp_addr, &xu->xu_addr,
1560				      unp->unp_addr->sun_len);
1561			if (unp->unp_conn != NULL &&
1562			    unp->unp_conn->unp_addr != NULL)
1563				bcopy(unp->unp_conn->unp_addr,
1564				      &xu->xu_caddr,
1565				      unp->unp_conn->unp_addr->sun_len);
1566			bcopy(unp, &xu->xu_unp, sizeof *unp);
1567			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1568			UNP_PCB_UNLOCK(unp);
1569			error = SYSCTL_OUT(req, xu, sizeof *xu);
1570		} else {
1571			freeunp = (unp->unp_refcount == 0);
1572			UNP_PCB_UNLOCK(unp);
1573			if (freeunp) {
1574				UNP_PCB_LOCK_DESTROY(unp);
1575				uma_zfree(unp_zone, unp);
1576			}
1577		}
1578	}
1579	free(xu, M_TEMP);
1580	if (!error) {
1581		/*
1582		 * Give the user an updated idea of our state.  If the
1583		 * generation differs from what we told her before, she knows
1584		 * that something happened while we were processing this
1585		 * request, and it might be necessary to retry.
1586		 */
1587		xug->xug_gen = unp_gencnt;
1588		xug->xug_sogen = so_gencnt;
1589		xug->xug_count = unp_count;
1590		error = SYSCTL_OUT(req, xug, sizeof *xug);
1591	}
1592	free(unp_list, M_TEMP);
1593	free(xug, M_TEMP);
1594	return (error);
1595}
1596
1597SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1598    (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1599    "List of active local datagram sockets");
1600SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1601    (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1602    "List of active local stream sockets");
1603SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1604    CTLTYPE_OPAQUE | CTLFLAG_RD,
1605    (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1606    "List of active local seqpacket sockets");
1607
1608static void
1609unp_shutdown(struct unpcb *unp)
1610{
1611	struct unpcb *unp2;
1612	struct socket *so;
1613
1614	UNP_LINK_WLOCK_ASSERT();
1615	UNP_PCB_LOCK_ASSERT(unp);
1616
1617	unp2 = unp->unp_conn;
1618	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1619	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1620		so = unp2->unp_socket;
1621		if (so != NULL)
1622			socantrcvmore(so);
1623	}
1624}
1625
1626static void
1627unp_drop(struct unpcb *unp, int errno)
1628{
1629	struct socket *so = unp->unp_socket;
1630	struct unpcb *unp2;
1631
1632	UNP_LINK_WLOCK_ASSERT();
1633	UNP_PCB_LOCK_ASSERT(unp);
1634
1635	so->so_error = errno;
1636	unp2 = unp->unp_conn;
1637	if (unp2 == NULL)
1638		return;
1639	UNP_PCB_LOCK(unp2);
1640	unp_disconnect(unp, unp2);
1641	UNP_PCB_UNLOCK(unp2);
1642}
1643
1644static void
1645unp_freerights(struct file **rp, int fdcount)
1646{
1647	int i;
1648	struct file *fp;
1649
1650	for (i = 0; i < fdcount; i++) {
1651		fp = *rp;
1652		*rp++ = NULL;
1653		unp_discard(fp);
1654	}
1655}
1656
1657static int
1658unp_externalize(struct mbuf *control, struct mbuf **controlp)
1659{
1660	struct thread *td = curthread;		/* XXX */
1661	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1662	int i;
1663	int *fdp;
1664	struct file **rp;
1665	struct file *fp;
1666	void *data;
1667	socklen_t clen = control->m_len, datalen;
1668	int error, newfds;
1669	int f;
1670	u_int newlen;
1671
1672	UNP_LINK_UNLOCK_ASSERT();
1673
1674	error = 0;
1675	if (controlp != NULL) /* controlp == NULL => free control messages */
1676		*controlp = NULL;
1677	while (cm != NULL) {
1678		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1679			error = EINVAL;
1680			break;
1681		}
1682		data = CMSG_DATA(cm);
1683		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1684		if (cm->cmsg_level == SOL_SOCKET
1685		    && cm->cmsg_type == SCM_RIGHTS) {
1686			newfds = datalen / sizeof(struct file *);
1687			rp = data;
1688
1689			/* If we're not outputting the descriptors free them. */
1690			if (error || controlp == NULL) {
1691				unp_freerights(rp, newfds);
1692				goto next;
1693			}
1694			FILEDESC_XLOCK(td->td_proc->p_fd);
1695			/* if the new FD's will not fit free them.  */
1696			if (!fdavail(td, newfds)) {
1697				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1698				error = EMSGSIZE;
1699				unp_freerights(rp, newfds);
1700				goto next;
1701			}
1702
1703			/*
1704			 * Now change each pointer to an fd in the global
1705			 * table to an integer that is the index to the local
1706			 * fd table entry that we set up to point to the
1707			 * global one we are transferring.
1708			 */
1709			newlen = newfds * sizeof(int);
1710			*controlp = sbcreatecontrol(NULL, newlen,
1711			    SCM_RIGHTS, SOL_SOCKET);
1712			if (*controlp == NULL) {
1713				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1714				error = E2BIG;
1715				unp_freerights(rp, newfds);
1716				goto next;
1717			}
1718
1719			fdp = (int *)
1720			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1721			for (i = 0; i < newfds; i++) {
1722				if (fdalloc(td, 0, &f))
1723					panic("unp_externalize fdalloc failed");
1724				fp = *rp++;
1725				td->td_proc->p_fd->fd_ofiles[f] = fp;
1726				unp_externalize_fp(fp);
1727				*fdp++ = f;
1728			}
1729			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1730		} else {
1731			/* We can just copy anything else across. */
1732			if (error || controlp == NULL)
1733				goto next;
1734			*controlp = sbcreatecontrol(NULL, datalen,
1735			    cm->cmsg_type, cm->cmsg_level);
1736			if (*controlp == NULL) {
1737				error = ENOBUFS;
1738				goto next;
1739			}
1740			bcopy(data,
1741			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1742			    datalen);
1743		}
1744		controlp = &(*controlp)->m_next;
1745
1746next:
1747		if (CMSG_SPACE(datalen) < clen) {
1748			clen -= CMSG_SPACE(datalen);
1749			cm = (struct cmsghdr *)
1750			    ((caddr_t)cm + CMSG_SPACE(datalen));
1751		} else {
1752			clen = 0;
1753			cm = NULL;
1754		}
1755	}
1756
1757	m_freem(control);
1758	return (error);
1759}
1760
1761static void
1762unp_zone_change(void *tag)
1763{
1764
1765	uma_zone_set_max(unp_zone, maxsockets);
1766}
1767
1768static void
1769unp_init(void)
1770{
1771
1772#ifdef VIMAGE
1773	if (!IS_DEFAULT_VNET(curvnet))
1774		return;
1775#endif
1776	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1777	    NULL, NULL, UMA_ALIGN_PTR, 0);
1778	if (unp_zone == NULL)
1779		panic("unp_init");
1780	uma_zone_set_max(unp_zone, maxsockets);
1781	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1782	    NULL, EVENTHANDLER_PRI_ANY);
1783	LIST_INIT(&unp_dhead);
1784	LIST_INIT(&unp_shead);
1785	LIST_INIT(&unp_sphead);
1786	SLIST_INIT(&unp_defers);
1787	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1788	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1789	UNP_LINK_LOCK_INIT();
1790	UNP_LIST_LOCK_INIT();
1791	UNP_DEFERRED_LOCK_INIT();
1792}
1793
1794static int
1795unp_internalize(struct mbuf **controlp, struct thread *td)
1796{
1797	struct mbuf *control = *controlp;
1798	struct proc *p = td->td_proc;
1799	struct filedesc *fdescp = p->p_fd;
1800	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1801	struct cmsgcred *cmcred;
1802	struct file **rp;
1803	struct file *fp;
1804	struct timeval *tv;
1805	int i, fd, *fdp;
1806	void *data;
1807	socklen_t clen = control->m_len, datalen;
1808	int error, oldfds;
1809	u_int newlen;
1810
1811	UNP_LINK_UNLOCK_ASSERT();
1812
1813	error = 0;
1814	*controlp = NULL;
1815	while (cm != NULL) {
1816		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1817		    || cm->cmsg_len > clen) {
1818			error = EINVAL;
1819			goto out;
1820		}
1821		data = CMSG_DATA(cm);
1822		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1823
1824		switch (cm->cmsg_type) {
1825		/*
1826		 * Fill in credential information.
1827		 */
1828		case SCM_CREDS:
1829			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1830			    SCM_CREDS, SOL_SOCKET);
1831			if (*controlp == NULL) {
1832				error = ENOBUFS;
1833				goto out;
1834			}
1835			cmcred = (struct cmsgcred *)
1836			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1837			cmcred->cmcred_pid = p->p_pid;
1838			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1839			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1840			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1841			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1842			    CMGROUP_MAX);
1843			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1844				cmcred->cmcred_groups[i] =
1845				    td->td_ucred->cr_groups[i];
1846			break;
1847
1848		case SCM_RIGHTS:
1849			oldfds = datalen / sizeof (int);
1850			/*
1851			 * Check that all the FDs passed in refer to legal
1852			 * files.  If not, reject the entire operation.
1853			 */
1854			fdp = data;
1855			FILEDESC_SLOCK(fdescp);
1856			for (i = 0; i < oldfds; i++) {
1857				fd = *fdp++;
1858				if (fd < 0 || fd >= fdescp->fd_nfiles ||
1859				    fdescp->fd_ofiles[fd] == NULL) {
1860					FILEDESC_SUNLOCK(fdescp);
1861					error = EBADF;
1862					goto out;
1863				}
1864				fp = fdescp->fd_ofiles[fd];
1865				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1866					FILEDESC_SUNLOCK(fdescp);
1867					error = EOPNOTSUPP;
1868					goto out;
1869				}
1870
1871			}
1872
1873			/*
1874			 * Now replace the integer FDs with pointers to the
1875			 * associated global file table entry..
1876			 */
1877			newlen = oldfds * sizeof(struct file *);
1878			*controlp = sbcreatecontrol(NULL, newlen,
1879			    SCM_RIGHTS, SOL_SOCKET);
1880			if (*controlp == NULL) {
1881				FILEDESC_SUNLOCK(fdescp);
1882				error = E2BIG;
1883				goto out;
1884			}
1885			fdp = data;
1886			rp = (struct file **)
1887			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1888			for (i = 0; i < oldfds; i++) {
1889				fp = fdescp->fd_ofiles[*fdp++];
1890				*rp++ = fp;
1891				unp_internalize_fp(fp);
1892			}
1893			FILEDESC_SUNLOCK(fdescp);
1894			break;
1895
1896		case SCM_TIMESTAMP:
1897			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1898			    SCM_TIMESTAMP, SOL_SOCKET);
1899			if (*controlp == NULL) {
1900				error = ENOBUFS;
1901				goto out;
1902			}
1903			tv = (struct timeval *)
1904			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1905			microtime(tv);
1906			break;
1907
1908		default:
1909			error = EINVAL;
1910			goto out;
1911		}
1912
1913		controlp = &(*controlp)->m_next;
1914		if (CMSG_SPACE(datalen) < clen) {
1915			clen -= CMSG_SPACE(datalen);
1916			cm = (struct cmsghdr *)
1917			    ((caddr_t)cm + CMSG_SPACE(datalen));
1918		} else {
1919			clen = 0;
1920			cm = NULL;
1921		}
1922	}
1923
1924out:
1925	m_freem(control);
1926	return (error);
1927}
1928
1929static struct mbuf *
1930unp_addsockcred(struct thread *td, struct mbuf *control)
1931{
1932	struct mbuf *m, *n, *n_prev;
1933	struct sockcred *sc;
1934	const struct cmsghdr *cm;
1935	int ngroups;
1936	int i;
1937
1938	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1939	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1940	if (m == NULL)
1941		return (control);
1942
1943	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1944	sc->sc_uid = td->td_ucred->cr_ruid;
1945	sc->sc_euid = td->td_ucred->cr_uid;
1946	sc->sc_gid = td->td_ucred->cr_rgid;
1947	sc->sc_egid = td->td_ucred->cr_gid;
1948	sc->sc_ngroups = ngroups;
1949	for (i = 0; i < sc->sc_ngroups; i++)
1950		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1951
1952	/*
1953	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1954	 * created SCM_CREDS control message (struct sockcred) has another
1955	 * format.
1956	 */
1957	if (control != NULL)
1958		for (n = control, n_prev = NULL; n != NULL;) {
1959			cm = mtod(n, struct cmsghdr *);
1960    			if (cm->cmsg_level == SOL_SOCKET &&
1961			    cm->cmsg_type == SCM_CREDS) {
1962    				if (n_prev == NULL)
1963					control = n->m_next;
1964				else
1965					n_prev->m_next = n->m_next;
1966				n = m_free(n);
1967			} else {
1968				n_prev = n;
1969				n = n->m_next;
1970			}
1971		}
1972
1973	/* Prepend it to the head. */
1974	m->m_next = control;
1975	return (m);
1976}
1977
1978static struct unpcb *
1979fptounp(struct file *fp)
1980{
1981	struct socket *so;
1982
1983	if (fp->f_type != DTYPE_SOCKET)
1984		return (NULL);
1985	if ((so = fp->f_data) == NULL)
1986		return (NULL);
1987	if (so->so_proto->pr_domain != &localdomain)
1988		return (NULL);
1989	return sotounpcb(so);
1990}
1991
1992static void
1993unp_discard(struct file *fp)
1994{
1995	struct unp_defer *dr;
1996
1997	if (unp_externalize_fp(fp)) {
1998		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
1999		dr->ud_fp = fp;
2000		UNP_DEFERRED_LOCK();
2001		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2002		UNP_DEFERRED_UNLOCK();
2003		atomic_add_int(&unp_defers_count, 1);
2004		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2005	} else
2006		(void) closef(fp, (struct thread *)NULL);
2007}
2008
2009static void
2010unp_process_defers(void *arg __unused, int pending)
2011{
2012	struct unp_defer *dr;
2013	SLIST_HEAD(, unp_defer) drl;
2014	int count;
2015
2016	SLIST_INIT(&drl);
2017	for (;;) {
2018		UNP_DEFERRED_LOCK();
2019		if (SLIST_FIRST(&unp_defers) == NULL) {
2020			UNP_DEFERRED_UNLOCK();
2021			break;
2022		}
2023		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2024		UNP_DEFERRED_UNLOCK();
2025		count = 0;
2026		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2027			SLIST_REMOVE_HEAD(&drl, ud_link);
2028			closef(dr->ud_fp, NULL);
2029			free(dr, M_TEMP);
2030			count++;
2031		}
2032		atomic_add_int(&unp_defers_count, -count);
2033	}
2034}
2035
2036static void
2037unp_internalize_fp(struct file *fp)
2038{
2039	struct unpcb *unp;
2040
2041	UNP_LINK_WLOCK();
2042	if ((unp = fptounp(fp)) != NULL) {
2043		unp->unp_file = fp;
2044		unp->unp_msgcount++;
2045	}
2046	fhold(fp);
2047	unp_rights++;
2048	UNP_LINK_WUNLOCK();
2049}
2050
2051static int
2052unp_externalize_fp(struct file *fp)
2053{
2054	struct unpcb *unp;
2055	int ret;
2056
2057	UNP_LINK_WLOCK();
2058	if ((unp = fptounp(fp)) != NULL) {
2059		unp->unp_msgcount--;
2060		ret = 1;
2061	} else
2062		ret = 0;
2063	unp_rights--;
2064	UNP_LINK_WUNLOCK();
2065	return (ret);
2066}
2067
2068/*
2069 * unp_defer indicates whether additional work has been defered for a future
2070 * pass through unp_gc().  It is thread local and does not require explicit
2071 * synchronization.
2072 */
2073static int	unp_marked;
2074static int	unp_unreachable;
2075
2076static void
2077unp_accessable(struct file *fp)
2078{
2079	struct unpcb *unp;
2080
2081	if ((unp = fptounp(fp)) == NULL)
2082		return;
2083	if (unp->unp_gcflag & UNPGC_REF)
2084		return;
2085	unp->unp_gcflag &= ~UNPGC_DEAD;
2086	unp->unp_gcflag |= UNPGC_REF;
2087	unp_marked++;
2088}
2089
2090static void
2091unp_gc_process(struct unpcb *unp)
2092{
2093	struct socket *soa;
2094	struct socket *so;
2095	struct file *fp;
2096
2097	/* Already processed. */
2098	if (unp->unp_gcflag & UNPGC_SCANNED)
2099		return;
2100	fp = unp->unp_file;
2101
2102	/*
2103	 * Check for a socket potentially in a cycle.  It must be in a
2104	 * queue as indicated by msgcount, and this must equal the file
2105	 * reference count.  Note that when msgcount is 0 the file is NULL.
2106	 */
2107	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2108	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2109		unp->unp_gcflag |= UNPGC_DEAD;
2110		unp_unreachable++;
2111		return;
2112	}
2113
2114	/*
2115	 * Mark all sockets we reference with RIGHTS.
2116	 */
2117	so = unp->unp_socket;
2118	SOCKBUF_LOCK(&so->so_rcv);
2119	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2120	SOCKBUF_UNLOCK(&so->so_rcv);
2121
2122	/*
2123	 * Mark all sockets in our accept queue.
2124	 */
2125	ACCEPT_LOCK();
2126	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2127		SOCKBUF_LOCK(&soa->so_rcv);
2128		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2129		SOCKBUF_UNLOCK(&soa->so_rcv);
2130	}
2131	ACCEPT_UNLOCK();
2132	unp->unp_gcflag |= UNPGC_SCANNED;
2133}
2134
2135static int unp_recycled;
2136SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2137    "Number of unreachable sockets claimed by the garbage collector.");
2138
2139static int unp_taskcount;
2140SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2141    "Number of times the garbage collector has run.");
2142
2143static void
2144unp_gc(__unused void *arg, int pending)
2145{
2146	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2147				    NULL };
2148	struct unp_head **head;
2149	struct file *f, **unref;
2150	struct unpcb *unp;
2151	int i, total;
2152
2153	unp_taskcount++;
2154	UNP_LIST_LOCK();
2155	/*
2156	 * First clear all gc flags from previous runs.
2157	 */
2158	for (head = heads; *head != NULL; head++)
2159		LIST_FOREACH(unp, *head, unp_link)
2160			unp->unp_gcflag = 0;
2161
2162	/*
2163	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2164	 * is reachable all of the sockets it references are reachable.
2165	 * Stop the scan once we do a complete loop without discovering
2166	 * a new reachable socket.
2167	 */
2168	do {
2169		unp_unreachable = 0;
2170		unp_marked = 0;
2171		for (head = heads; *head != NULL; head++)
2172			LIST_FOREACH(unp, *head, unp_link)
2173				unp_gc_process(unp);
2174	} while (unp_marked);
2175	UNP_LIST_UNLOCK();
2176	if (unp_unreachable == 0)
2177		return;
2178
2179	/*
2180	 * Allocate space for a local list of dead unpcbs.
2181	 */
2182	unref = malloc(unp_unreachable * sizeof(struct file *),
2183	    M_TEMP, M_WAITOK);
2184
2185	/*
2186	 * Iterate looking for sockets which have been specifically marked
2187	 * as as unreachable and store them locally.
2188	 */
2189	UNP_LINK_RLOCK();
2190	UNP_LIST_LOCK();
2191	for (total = 0, head = heads; *head != NULL; head++)
2192		LIST_FOREACH(unp, *head, unp_link)
2193			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2194				f = unp->unp_file;
2195				if (unp->unp_msgcount == 0 || f == NULL ||
2196				    f->f_count != unp->unp_msgcount)
2197					continue;
2198				unref[total++] = f;
2199				fhold(f);
2200				KASSERT(total <= unp_unreachable,
2201				    ("unp_gc: incorrect unreachable count."));
2202			}
2203	UNP_LIST_UNLOCK();
2204	UNP_LINK_RUNLOCK();
2205
2206	/*
2207	 * Now flush all sockets, free'ing rights.  This will free the
2208	 * struct files associated with these sockets but leave each socket
2209	 * with one remaining ref.
2210	 */
2211	for (i = 0; i < total; i++) {
2212		struct socket *so;
2213
2214		so = unref[i]->f_data;
2215		CURVNET_SET(so->so_vnet);
2216		sorflush(so);
2217		CURVNET_RESTORE();
2218	}
2219
2220	/*
2221	 * And finally release the sockets so they can be reclaimed.
2222	 */
2223	for (i = 0; i < total; i++)
2224		fdrop(unref[i], NULL);
2225	unp_recycled += total;
2226	free(unref, M_TEMP);
2227}
2228
2229static void
2230unp_dispose(struct mbuf *m)
2231{
2232
2233	if (m)
2234		unp_scan(m, unp_discard);
2235}
2236
2237static void
2238unp_scan(struct mbuf *m0, void (*op)(struct file *))
2239{
2240	struct mbuf *m;
2241	struct file **rp;
2242	struct cmsghdr *cm;
2243	void *data;
2244	int i;
2245	socklen_t clen, datalen;
2246	int qfds;
2247
2248	while (m0 != NULL) {
2249		for (m = m0; m; m = m->m_next) {
2250			if (m->m_type != MT_CONTROL)
2251				continue;
2252
2253			cm = mtod(m, struct cmsghdr *);
2254			clen = m->m_len;
2255
2256			while (cm != NULL) {
2257				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2258					break;
2259
2260				data = CMSG_DATA(cm);
2261				datalen = (caddr_t)cm + cm->cmsg_len
2262				    - (caddr_t)data;
2263
2264				if (cm->cmsg_level == SOL_SOCKET &&
2265				    cm->cmsg_type == SCM_RIGHTS) {
2266					qfds = datalen / sizeof (struct file *);
2267					rp = data;
2268					for (i = 0; i < qfds; i++)
2269						(*op)(*rp++);
2270				}
2271
2272				if (CMSG_SPACE(datalen) < clen) {
2273					clen -= CMSG_SPACE(datalen);
2274					cm = (struct cmsghdr *)
2275					    ((caddr_t)cm + CMSG_SPACE(datalen));
2276				} else {
2277					clen = 0;
2278					cm = NULL;
2279				}
2280			}
2281		}
2282		m0 = m0->m_act;
2283	}
2284}
2285
2286/*
2287 * A helper function called by VFS before socket-type vnode reclamation.
2288 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2289 * use count.
2290 */
2291void
2292vfs_unp_reclaim(struct vnode *vp)
2293{
2294	struct socket *so;
2295	struct unpcb *unp;
2296	int active;
2297
2298	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2299	KASSERT(vp->v_type == VSOCK,
2300	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2301
2302	active = 0;
2303	UNP_LINK_WLOCK();
2304	VOP_UNP_CONNECT(vp, &so);
2305	if (so == NULL)
2306		goto done;
2307	unp = sotounpcb(so);
2308	if (unp == NULL)
2309		goto done;
2310	UNP_PCB_LOCK(unp);
2311	if (unp->unp_vnode == vp) {
2312		VOP_UNP_DETACH(vp);
2313		unp->unp_vnode = NULL;
2314		active = 1;
2315	}
2316	UNP_PCB_UNLOCK(unp);
2317done:
2318	UNP_LINK_WUNLOCK();
2319	if (active)
2320		vunref(vp);
2321}
2322
2323#ifdef DDB
2324static void
2325db_print_indent(int indent)
2326{
2327	int i;
2328
2329	for (i = 0; i < indent; i++)
2330		db_printf(" ");
2331}
2332
2333static void
2334db_print_unpflags(int unp_flags)
2335{
2336	int comma;
2337
2338	comma = 0;
2339	if (unp_flags & UNP_HAVEPC) {
2340		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2341		comma = 1;
2342	}
2343	if (unp_flags & UNP_HAVEPCCACHED) {
2344		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2345		comma = 1;
2346	}
2347	if (unp_flags & UNP_WANTCRED) {
2348		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2349		comma = 1;
2350	}
2351	if (unp_flags & UNP_CONNWAIT) {
2352		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2353		comma = 1;
2354	}
2355	if (unp_flags & UNP_CONNECTING) {
2356		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2357		comma = 1;
2358	}
2359	if (unp_flags & UNP_BINDING) {
2360		db_printf("%sUNP_BINDING", comma ? ", " : "");
2361		comma = 1;
2362	}
2363}
2364
2365static void
2366db_print_xucred(int indent, struct xucred *xu)
2367{
2368	int comma, i;
2369
2370	db_print_indent(indent);
2371	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2372	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2373	db_print_indent(indent);
2374	db_printf("cr_groups: ");
2375	comma = 0;
2376	for (i = 0; i < xu->cr_ngroups; i++) {
2377		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2378		comma = 1;
2379	}
2380	db_printf("\n");
2381}
2382
2383static void
2384db_print_unprefs(int indent, struct unp_head *uh)
2385{
2386	struct unpcb *unp;
2387	int counter;
2388
2389	counter = 0;
2390	LIST_FOREACH(unp, uh, unp_reflink) {
2391		if (counter % 4 == 0)
2392			db_print_indent(indent);
2393		db_printf("%p  ", unp);
2394		if (counter % 4 == 3)
2395			db_printf("\n");
2396		counter++;
2397	}
2398	if (counter != 0 && counter % 4 != 0)
2399		db_printf("\n");
2400}
2401
2402DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2403{
2404	struct unpcb *unp;
2405
2406        if (!have_addr) {
2407                db_printf("usage: show unpcb <addr>\n");
2408                return;
2409        }
2410        unp = (struct unpcb *)addr;
2411
2412	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2413	    unp->unp_vnode);
2414
2415	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2416	    unp->unp_conn);
2417
2418	db_printf("unp_refs:\n");
2419	db_print_unprefs(2, &unp->unp_refs);
2420
2421	/* XXXRW: Would be nice to print the full address, if any. */
2422	db_printf("unp_addr: %p\n", unp->unp_addr);
2423
2424	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2425	    unp->unp_cc, unp->unp_mbcnt,
2426	    (unsigned long long)unp->unp_gencnt);
2427
2428	db_printf("unp_flags: %x (", unp->unp_flags);
2429	db_print_unpflags(unp->unp_flags);
2430	db_printf(")\n");
2431
2432	db_printf("unp_peercred:\n");
2433	db_print_xucred(2, &unp->unp_peercred);
2434
2435	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2436}
2437#endif
2438