uipc_usrreq.c revision 232152
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	RDM
54 *	distinguish datagram size limits from flow control limits in SEQPACKET
55 *	rethink name space problems
56 *	need a proper out-of-band
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/uipc_usrreq.c 232152 2012-02-25 10:15:41Z trociny $");
61
62#include "opt_ddb.h"
63
64#include <sys/param.h>
65#include <sys/domain.h>
66#include <sys/fcntl.h>
67#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68#include <sys/eventhandler.h>
69#include <sys/file.h>
70#include <sys/filedesc.h>
71#include <sys/kernel.h>
72#include <sys/lock.h>
73#include <sys/mbuf.h>
74#include <sys/mount.h>
75#include <sys/mutex.h>
76#include <sys/namei.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/queue.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/socket.h>
83#include <sys/socketvar.h>
84#include <sys/signalvar.h>
85#include <sys/stat.h>
86#include <sys/sx.h>
87#include <sys/sysctl.h>
88#include <sys/systm.h>
89#include <sys/taskqueue.h>
90#include <sys/un.h>
91#include <sys/unpcb.h>
92#include <sys/vnode.h>
93
94#include <net/vnet.h>
95
96#ifdef DDB
97#include <ddb/ddb.h>
98#endif
99
100#include <security/mac/mac_framework.h>
101
102#include <vm/uma.h>
103
104/*
105 * Locking key:
106 * (l)	Locked using list lock
107 * (g)	Locked using linkage lock
108 */
109
110static uma_zone_t	unp_zone;
111static unp_gen_t	unp_gencnt;	/* (l) */
112static u_int		unp_count;	/* (l) Count of local sockets. */
113static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114static int		unp_rights;	/* (g) File descriptors in flight. */
115static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118
119struct unp_defer {
120	SLIST_ENTRY(unp_defer) ud_link;
121	struct file *ud_fp;
122};
123static SLIST_HEAD(, unp_defer) unp_defers;
124static int unp_defers_count;
125
126static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127
128/*
129 * Garbage collection of cyclic file descriptor/socket references occurs
130 * asynchronously in a taskqueue context in order to avoid recursion and
131 * reentrance in the UNIX domain socket, file descriptor, and socket layer
132 * code.  See unp_gc() for a full description.
133 */
134static struct task	unp_gc_task;
135
136/*
137 * The close of unix domain sockets attached as SCM_RIGHTS is
138 * postponed to the taskqueue, to avoid arbitrary recursion depth.
139 * The attached sockets might have another sockets attached.
140 */
141static struct task	unp_defer_task;
142
143/*
144 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145 * stream sockets, although the total for sender and receiver is actually
146 * only PIPSIZ.
147 *
148 * Datagram sockets really use the sendspace as the maximum datagram size,
149 * and don't really want to reserve the sendspace.  Their recvspace should be
150 * large enough for at least one max-size datagram plus address.
151 */
152#ifndef PIPSIZ
153#define	PIPSIZ	8192
154#endif
155static u_long	unpst_sendspace = PIPSIZ;
156static u_long	unpst_recvspace = PIPSIZ;
157static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
158static u_long	unpdg_recvspace = 4*1024;
159static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160static u_long	unpsp_recvspace = PIPSIZ;
161
162static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
163static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
164    "SOCK_STREAM");
165static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
166static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
167    "SOCK_SEQPACKET");
168
169SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
170	   &unpst_sendspace, 0, "Default stream send space.");
171SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
172	   &unpst_recvspace, 0, "Default stream receive space.");
173SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
174	   &unpdg_sendspace, 0, "Default datagram send space.");
175SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
176	   &unpdg_recvspace, 0, "Default datagram receive space.");
177SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
178	   &unpsp_sendspace, 0, "Default seqpacket send space.");
179SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
180	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
181SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
182    "File descriptors in flight.");
183SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
184    &unp_defers_count, 0,
185    "File descriptors deferred to taskqueue for close.");
186
187/*
188 * Locking and synchronization:
189 *
190 * Three types of locks exit in the local domain socket implementation: a
191 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
192 * global locks, the list lock protects the socket count, global generation
193 * number, and stream/datagram global lists.  The linkage lock protects the
194 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
195 * held exclusively over the acquisition of multiple unpcb locks to prevent
196 * deadlock.
197 *
198 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
199 * allocated in pru_attach() and freed in pru_detach().  The validity of that
200 * pointer is an invariant, so no lock is required to dereference the so_pcb
201 * pointer if a valid socket reference is held by the caller.  In practice,
202 * this is always true during operations performed on a socket.  Each unpcb
203 * has a back-pointer to its socket, unp_socket, which will be stable under
204 * the same circumstances.
205 *
206 * This pointer may only be safely dereferenced as long as a valid reference
207 * to the unpcb is held.  Typically, this reference will be from the socket,
208 * or from another unpcb when the referring unpcb's lock is held (in order
209 * that the reference not be invalidated during use).  For example, to follow
210 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
211 * as unp_socket remains valid as long as the reference to unp_conn is valid.
212 *
213 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
214 * atomic reads without the lock may be performed "lockless", but more
215 * complex reads and read-modify-writes require the mutex to be held.  No
216 * lock order is defined between unpcb locks -- multiple unpcb locks may be
217 * acquired at the same time only when holding the linkage rwlock
218 * exclusively, which prevents deadlocks.
219 *
220 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
221 * protocols, bind() is a non-atomic operation, and connect() requires
222 * potential sleeping in the protocol, due to potentially waiting on local or
223 * distributed file systems.  We try to separate "lookup" operations, which
224 * may sleep, and the IPC operations themselves, which typically can occur
225 * with relative atomicity as locks can be held over the entire operation.
226 *
227 * Another tricky issue is simultaneous multi-threaded or multi-process
228 * access to a single UNIX domain socket.  These are handled by the flags
229 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
230 * binding, both of which involve dropping UNIX domain socket locks in order
231 * to perform namei() and other file system operations.
232 */
233static struct rwlock	unp_link_rwlock;
234static struct mtx	unp_list_lock;
235static struct mtx	unp_defers_lock;
236
237#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
238					    "unp_link_rwlock")
239
240#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
241					    RA_LOCKED)
242#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
243					    RA_UNLOCKED)
244
245#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
246#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
247#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
248#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
249#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
250					    RA_WLOCKED)
251
252#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
253					    "unp_list_lock", NULL, MTX_DEF)
254#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
255#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
256
257#define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
258					    "unp_defer", NULL, MTX_DEF)
259#define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
260#define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
261
262#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
263					    "unp_mtx", "unp_mtx",	\
264					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
265#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
266#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
267#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
268#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
269
270static int	uipc_connect2(struct socket *, struct socket *);
271static int	uipc_ctloutput(struct socket *, struct sockopt *);
272static int	unp_connect(struct socket *, struct sockaddr *,
273		    struct thread *);
274static int	unp_connect2(struct socket *so, struct socket *so2, int);
275static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
276static void	unp_dispose(struct mbuf *);
277static void	unp_shutdown(struct unpcb *);
278static void	unp_drop(struct unpcb *, int);
279static void	unp_gc(__unused void *, int);
280static void	unp_scan(struct mbuf *, void (*)(struct file *));
281static void	unp_discard(struct file *);
282static void	unp_freerights(struct file **, int);
283static void	unp_init(void);
284static int	unp_internalize(struct mbuf **, struct thread *);
285static void	unp_internalize_fp(struct file *);
286static int	unp_externalize(struct mbuf *, struct mbuf **);
287static int	unp_externalize_fp(struct file *);
288static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
289static void	unp_process_defers(void * __unused, int);
290
291/*
292 * Definitions of protocols supported in the LOCAL domain.
293 */
294static struct domain localdomain;
295static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
296static struct pr_usrreqs uipc_usrreqs_seqpacket;
297static struct protosw localsw[] = {
298{
299	.pr_type =		SOCK_STREAM,
300	.pr_domain =		&localdomain,
301	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
302	.pr_ctloutput =		&uipc_ctloutput,
303	.pr_usrreqs =		&uipc_usrreqs_stream
304},
305{
306	.pr_type =		SOCK_DGRAM,
307	.pr_domain =		&localdomain,
308	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
309	.pr_usrreqs =		&uipc_usrreqs_dgram
310},
311{
312	.pr_type =		SOCK_SEQPACKET,
313	.pr_domain =		&localdomain,
314
315	/*
316	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
317	 * due to our use of sbappendaddr.  A new sbappend variants is needed
318	 * that supports both atomic record writes and control data.
319	 */
320	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
321				    PR_RIGHTS,
322	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
323},
324};
325
326static struct domain localdomain = {
327	.dom_family =		AF_LOCAL,
328	.dom_name =		"local",
329	.dom_init =		unp_init,
330	.dom_externalize =	unp_externalize,
331	.dom_dispose =		unp_dispose,
332	.dom_protosw =		localsw,
333	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
334};
335DOMAIN_SET(local);
336
337static void
338uipc_abort(struct socket *so)
339{
340	struct unpcb *unp, *unp2;
341
342	unp = sotounpcb(so);
343	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
344
345	UNP_LINK_WLOCK();
346	UNP_PCB_LOCK(unp);
347	unp2 = unp->unp_conn;
348	if (unp2 != NULL) {
349		UNP_PCB_LOCK(unp2);
350		unp_drop(unp2, ECONNABORTED);
351		UNP_PCB_UNLOCK(unp2);
352	}
353	UNP_PCB_UNLOCK(unp);
354	UNP_LINK_WUNLOCK();
355}
356
357static int
358uipc_accept(struct socket *so, struct sockaddr **nam)
359{
360	struct unpcb *unp, *unp2;
361	const struct sockaddr *sa;
362
363	/*
364	 * Pass back name of connected socket, if it was bound and we are
365	 * still connected (our peer may have closed already!).
366	 */
367	unp = sotounpcb(so);
368	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
369
370	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
371	UNP_LINK_RLOCK();
372	unp2 = unp->unp_conn;
373	if (unp2 != NULL && unp2->unp_addr != NULL) {
374		UNP_PCB_LOCK(unp2);
375		sa = (struct sockaddr *) unp2->unp_addr;
376		bcopy(sa, *nam, sa->sa_len);
377		UNP_PCB_UNLOCK(unp2);
378	} else {
379		sa = &sun_noname;
380		bcopy(sa, *nam, sa->sa_len);
381	}
382	UNP_LINK_RUNLOCK();
383	return (0);
384}
385
386static int
387uipc_attach(struct socket *so, int proto, struct thread *td)
388{
389	u_long sendspace, recvspace;
390	struct unpcb *unp;
391	int error;
392
393	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
394	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
395		switch (so->so_type) {
396		case SOCK_STREAM:
397			sendspace = unpst_sendspace;
398			recvspace = unpst_recvspace;
399			break;
400
401		case SOCK_DGRAM:
402			sendspace = unpdg_sendspace;
403			recvspace = unpdg_recvspace;
404			break;
405
406		case SOCK_SEQPACKET:
407			sendspace = unpsp_sendspace;
408			recvspace = unpsp_recvspace;
409			break;
410
411		default:
412			panic("uipc_attach");
413		}
414		error = soreserve(so, sendspace, recvspace);
415		if (error)
416			return (error);
417	}
418	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
419	if (unp == NULL)
420		return (ENOBUFS);
421	LIST_INIT(&unp->unp_refs);
422	UNP_PCB_LOCK_INIT(unp);
423	unp->unp_socket = so;
424	so->so_pcb = unp;
425	unp->unp_refcount = 1;
426
427	UNP_LIST_LOCK();
428	unp->unp_gencnt = ++unp_gencnt;
429	unp_count++;
430	switch (so->so_type) {
431	case SOCK_STREAM:
432		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
433		break;
434
435	case SOCK_DGRAM:
436		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
437		break;
438
439	case SOCK_SEQPACKET:
440		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
441		break;
442
443	default:
444		panic("uipc_attach");
445	}
446	UNP_LIST_UNLOCK();
447
448	return (0);
449}
450
451static int
452uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
453{
454	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
455	struct vattr vattr;
456	int error, namelen, vfslocked;
457	struct nameidata nd;
458	struct unpcb *unp;
459	struct vnode *vp;
460	struct mount *mp;
461	char *buf;
462
463	unp = sotounpcb(so);
464	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
465
466	if (soun->sun_len > sizeof(struct sockaddr_un))
467		return (EINVAL);
468	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
469	if (namelen <= 0)
470		return (EINVAL);
471
472	/*
473	 * We don't allow simultaneous bind() calls on a single UNIX domain
474	 * socket, so flag in-progress operations, and return an error if an
475	 * operation is already in progress.
476	 *
477	 * Historically, we have not allowed a socket to be rebound, so this
478	 * also returns an error.  Not allowing re-binding simplifies the
479	 * implementation and avoids a great many possible failure modes.
480	 */
481	UNP_PCB_LOCK(unp);
482	if (unp->unp_vnode != NULL) {
483		UNP_PCB_UNLOCK(unp);
484		return (EINVAL);
485	}
486	if (unp->unp_flags & UNP_BINDING) {
487		UNP_PCB_UNLOCK(unp);
488		return (EALREADY);
489	}
490	unp->unp_flags |= UNP_BINDING;
491	UNP_PCB_UNLOCK(unp);
492
493	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
494	bcopy(soun->sun_path, buf, namelen);
495	buf[namelen] = 0;
496
497restart:
498	vfslocked = 0;
499	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
500	    UIO_SYSSPACE, buf, td);
501/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
502	error = namei(&nd);
503	if (error)
504		goto error;
505	vp = nd.ni_vp;
506	vfslocked = NDHASGIANT(&nd);
507	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
508		NDFREE(&nd, NDF_ONLY_PNBUF);
509		if (nd.ni_dvp == vp)
510			vrele(nd.ni_dvp);
511		else
512			vput(nd.ni_dvp);
513		if (vp != NULL) {
514			vrele(vp);
515			error = EADDRINUSE;
516			goto error;
517		}
518		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
519		if (error)
520			goto error;
521		VFS_UNLOCK_GIANT(vfslocked);
522		goto restart;
523	}
524	VATTR_NULL(&vattr);
525	vattr.va_type = VSOCK;
526	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
527#ifdef MAC
528	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
529	    &vattr);
530#endif
531	if (error == 0)
532		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
533	NDFREE(&nd, NDF_ONLY_PNBUF);
534	vput(nd.ni_dvp);
535	if (error) {
536		vn_finished_write(mp);
537		goto error;
538	}
539	vp = nd.ni_vp;
540	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
541	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
542
543	UNP_LINK_WLOCK();
544	UNP_PCB_LOCK(unp);
545	vp->v_socket = unp->unp_socket;
546	unp->unp_vnode = vp;
547	unp->unp_addr = soun;
548	unp->unp_flags &= ~UNP_BINDING;
549	UNP_PCB_UNLOCK(unp);
550	UNP_LINK_WUNLOCK();
551	VOP_UNLOCK(vp, 0);
552	vn_finished_write(mp);
553	VFS_UNLOCK_GIANT(vfslocked);
554	free(buf, M_TEMP);
555	return (0);
556
557error:
558	VFS_UNLOCK_GIANT(vfslocked);
559	UNP_PCB_LOCK(unp);
560	unp->unp_flags &= ~UNP_BINDING;
561	UNP_PCB_UNLOCK(unp);
562	free(buf, M_TEMP);
563	return (error);
564}
565
566static int
567uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
568{
569	int error;
570
571	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
572	UNP_LINK_WLOCK();
573	error = unp_connect(so, nam, td);
574	UNP_LINK_WUNLOCK();
575	return (error);
576}
577
578static void
579uipc_close(struct socket *so)
580{
581	struct unpcb *unp, *unp2;
582
583	unp = sotounpcb(so);
584	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
585
586	UNP_LINK_WLOCK();
587	UNP_PCB_LOCK(unp);
588	unp2 = unp->unp_conn;
589	if (unp2 != NULL) {
590		UNP_PCB_LOCK(unp2);
591		unp_disconnect(unp, unp2);
592		UNP_PCB_UNLOCK(unp2);
593	}
594	UNP_PCB_UNLOCK(unp);
595	UNP_LINK_WUNLOCK();
596}
597
598static int
599uipc_connect2(struct socket *so1, struct socket *so2)
600{
601	struct unpcb *unp, *unp2;
602	int error;
603
604	UNP_LINK_WLOCK();
605	unp = so1->so_pcb;
606	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
607	UNP_PCB_LOCK(unp);
608	unp2 = so2->so_pcb;
609	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
610	UNP_PCB_LOCK(unp2);
611	error = unp_connect2(so1, so2, PRU_CONNECT2);
612	UNP_PCB_UNLOCK(unp2);
613	UNP_PCB_UNLOCK(unp);
614	UNP_LINK_WUNLOCK();
615	return (error);
616}
617
618static void
619uipc_detach(struct socket *so)
620{
621	struct unpcb *unp, *unp2;
622	struct sockaddr_un *saved_unp_addr;
623	struct vnode *vp;
624	int freeunp, local_unp_rights;
625
626	unp = sotounpcb(so);
627	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
628
629	UNP_LINK_WLOCK();
630	UNP_LIST_LOCK();
631	UNP_PCB_LOCK(unp);
632	LIST_REMOVE(unp, unp_link);
633	unp->unp_gencnt = ++unp_gencnt;
634	--unp_count;
635	UNP_LIST_UNLOCK();
636
637	/*
638	 * XXXRW: Should assert vp->v_socket == so.
639	 */
640	if ((vp = unp->unp_vnode) != NULL) {
641		unp->unp_vnode->v_socket = NULL;
642		unp->unp_vnode = NULL;
643	}
644	unp2 = unp->unp_conn;
645	if (unp2 != NULL) {
646		UNP_PCB_LOCK(unp2);
647		unp_disconnect(unp, unp2);
648		UNP_PCB_UNLOCK(unp2);
649	}
650
651	/*
652	 * We hold the linkage lock exclusively, so it's OK to acquire
653	 * multiple pcb locks at a time.
654	 */
655	while (!LIST_EMPTY(&unp->unp_refs)) {
656		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
657
658		UNP_PCB_LOCK(ref);
659		unp_drop(ref, ECONNRESET);
660		UNP_PCB_UNLOCK(ref);
661	}
662	local_unp_rights = unp_rights;
663	UNP_LINK_WUNLOCK();
664	unp->unp_socket->so_pcb = NULL;
665	saved_unp_addr = unp->unp_addr;
666	unp->unp_addr = NULL;
667	unp->unp_refcount--;
668	freeunp = (unp->unp_refcount == 0);
669	if (saved_unp_addr != NULL)
670		free(saved_unp_addr, M_SONAME);
671	if (freeunp) {
672		UNP_PCB_LOCK_DESTROY(unp);
673		uma_zfree(unp_zone, unp);
674	} else
675		UNP_PCB_UNLOCK(unp);
676	if (vp) {
677		int vfslocked;
678
679		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
680		vrele(vp);
681		VFS_UNLOCK_GIANT(vfslocked);
682	}
683	if (local_unp_rights)
684		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
685}
686
687static int
688uipc_disconnect(struct socket *so)
689{
690	struct unpcb *unp, *unp2;
691
692	unp = sotounpcb(so);
693	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
694
695	UNP_LINK_WLOCK();
696	UNP_PCB_LOCK(unp);
697	unp2 = unp->unp_conn;
698	if (unp2 != NULL) {
699		UNP_PCB_LOCK(unp2);
700		unp_disconnect(unp, unp2);
701		UNP_PCB_UNLOCK(unp2);
702	}
703	UNP_PCB_UNLOCK(unp);
704	UNP_LINK_WUNLOCK();
705	return (0);
706}
707
708static int
709uipc_listen(struct socket *so, int backlog, struct thread *td)
710{
711	struct unpcb *unp;
712	int error;
713
714	unp = sotounpcb(so);
715	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
716
717	UNP_PCB_LOCK(unp);
718	if (unp->unp_vnode == NULL) {
719		UNP_PCB_UNLOCK(unp);
720		return (EINVAL);
721	}
722
723	SOCK_LOCK(so);
724	error = solisten_proto_check(so);
725	if (error == 0) {
726		cru2x(td->td_ucred, &unp->unp_peercred);
727		unp->unp_flags |= UNP_HAVEPCCACHED;
728		solisten_proto(so, backlog);
729	}
730	SOCK_UNLOCK(so);
731	UNP_PCB_UNLOCK(unp);
732	return (error);
733}
734
735static int
736uipc_peeraddr(struct socket *so, struct sockaddr **nam)
737{
738	struct unpcb *unp, *unp2;
739	const struct sockaddr *sa;
740
741	unp = sotounpcb(so);
742	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
743
744	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
745	UNP_LINK_RLOCK();
746	/*
747	 * XXX: It seems that this test always fails even when connection is
748	 * established.  So, this else clause is added as workaround to
749	 * return PF_LOCAL sockaddr.
750	 */
751	unp2 = unp->unp_conn;
752	if (unp2 != NULL) {
753		UNP_PCB_LOCK(unp2);
754		if (unp2->unp_addr != NULL)
755			sa = (struct sockaddr *) unp2->unp_addr;
756		else
757			sa = &sun_noname;
758		bcopy(sa, *nam, sa->sa_len);
759		UNP_PCB_UNLOCK(unp2);
760	} else {
761		sa = &sun_noname;
762		bcopy(sa, *nam, sa->sa_len);
763	}
764	UNP_LINK_RUNLOCK();
765	return (0);
766}
767
768static int
769uipc_rcvd(struct socket *so, int flags)
770{
771	struct unpcb *unp, *unp2;
772	struct socket *so2;
773	u_int mbcnt, sbcc;
774	u_long newhiwat;
775
776	unp = sotounpcb(so);
777	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
778
779	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
780		panic("uipc_rcvd socktype %d", so->so_type);
781
782	/*
783	 * Adjust backpressure on sender and wakeup any waiting to write.
784	 *
785	 * The unp lock is acquired to maintain the validity of the unp_conn
786	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
787	 * static as long as we don't permit unp2 to disconnect from unp,
788	 * which is prevented by the lock on unp.  We cache values from
789	 * so_rcv to avoid holding the so_rcv lock over the entire
790	 * transaction on the remote so_snd.
791	 */
792	SOCKBUF_LOCK(&so->so_rcv);
793	mbcnt = so->so_rcv.sb_mbcnt;
794	sbcc = so->so_rcv.sb_cc;
795	SOCKBUF_UNLOCK(&so->so_rcv);
796	UNP_PCB_LOCK(unp);
797	unp2 = unp->unp_conn;
798	if (unp2 == NULL) {
799		UNP_PCB_UNLOCK(unp);
800		return (0);
801	}
802	so2 = unp2->unp_socket;
803	SOCKBUF_LOCK(&so2->so_snd);
804	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
805	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
806	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
807	    newhiwat, RLIM_INFINITY);
808	sowwakeup_locked(so2);
809	unp->unp_mbcnt = mbcnt;
810	unp->unp_cc = sbcc;
811	UNP_PCB_UNLOCK(unp);
812	return (0);
813}
814
815static int
816uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
817    struct mbuf *control, struct thread *td)
818{
819	struct unpcb *unp, *unp2;
820	struct socket *so2;
821	u_int mbcnt_delta, sbcc;
822	u_int newhiwat;
823	int error = 0;
824
825	unp = sotounpcb(so);
826	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
827
828	if (flags & PRUS_OOB) {
829		error = EOPNOTSUPP;
830		goto release;
831	}
832	if (control != NULL && (error = unp_internalize(&control, td)))
833		goto release;
834	if ((nam != NULL) || (flags & PRUS_EOF))
835		UNP_LINK_WLOCK();
836	else
837		UNP_LINK_RLOCK();
838	switch (so->so_type) {
839	case SOCK_DGRAM:
840	{
841		const struct sockaddr *from;
842
843		unp2 = unp->unp_conn;
844		if (nam != NULL) {
845			UNP_LINK_WLOCK_ASSERT();
846			if (unp2 != NULL) {
847				error = EISCONN;
848				break;
849			}
850			error = unp_connect(so, nam, td);
851			if (error)
852				break;
853			unp2 = unp->unp_conn;
854		}
855
856		/*
857		 * Because connect() and send() are non-atomic in a sendto()
858		 * with a target address, it's possible that the socket will
859		 * have disconnected before the send() can run.  In that case
860		 * return the slightly counter-intuitive but otherwise
861		 * correct error that the socket is not connected.
862		 */
863		if (unp2 == NULL) {
864			error = ENOTCONN;
865			break;
866		}
867		/* Lockless read. */
868		if (unp2->unp_flags & UNP_WANTCRED)
869			control = unp_addsockcred(td, control);
870		UNP_PCB_LOCK(unp);
871		if (unp->unp_addr != NULL)
872			from = (struct sockaddr *)unp->unp_addr;
873		else
874			from = &sun_noname;
875		so2 = unp2->unp_socket;
876		SOCKBUF_LOCK(&so2->so_rcv);
877		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
878			sorwakeup_locked(so2);
879			m = NULL;
880			control = NULL;
881		} else {
882			SOCKBUF_UNLOCK(&so2->so_rcv);
883			error = ENOBUFS;
884		}
885		if (nam != NULL) {
886			UNP_LINK_WLOCK_ASSERT();
887			UNP_PCB_LOCK(unp2);
888			unp_disconnect(unp, unp2);
889			UNP_PCB_UNLOCK(unp2);
890		}
891		UNP_PCB_UNLOCK(unp);
892		break;
893	}
894
895	case SOCK_SEQPACKET:
896	case SOCK_STREAM:
897		if ((so->so_state & SS_ISCONNECTED) == 0) {
898			if (nam != NULL) {
899				UNP_LINK_WLOCK_ASSERT();
900				error = unp_connect(so, nam, td);
901				if (error)
902					break;	/* XXX */
903			} else {
904				error = ENOTCONN;
905				break;
906			}
907		}
908
909		/* Lockless read. */
910		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
911			error = EPIPE;
912			break;
913		}
914
915		/*
916		 * Because connect() and send() are non-atomic in a sendto()
917		 * with a target address, it's possible that the socket will
918		 * have disconnected before the send() can run.  In that case
919		 * return the slightly counter-intuitive but otherwise
920		 * correct error that the socket is not connected.
921		 *
922		 * Locking here must be done carefully: the linkage lock
923		 * prevents interconnections between unpcbs from changing, so
924		 * we can traverse from unp to unp2 without acquiring unp's
925		 * lock.  Socket buffer locks follow unpcb locks, so we can
926		 * acquire both remote and lock socket buffer locks.
927		 */
928		unp2 = unp->unp_conn;
929		if (unp2 == NULL) {
930			error = ENOTCONN;
931			break;
932		}
933		so2 = unp2->unp_socket;
934		UNP_PCB_LOCK(unp2);
935		SOCKBUF_LOCK(&so2->so_rcv);
936		if (unp2->unp_flags & UNP_WANTCRED) {
937			/*
938			 * Credentials are passed only once on SOCK_STREAM.
939			 */
940			unp2->unp_flags &= ~UNP_WANTCRED;
941			control = unp_addsockcred(td, control);
942		}
943		/*
944		 * Send to paired receive port, and then reduce send buffer
945		 * hiwater marks to maintain backpressure.  Wake up readers.
946		 */
947		switch (so->so_type) {
948		case SOCK_STREAM:
949			if (control != NULL) {
950				if (sbappendcontrol_locked(&so2->so_rcv, m,
951				    control))
952					control = NULL;
953			} else
954				sbappend_locked(&so2->so_rcv, m);
955			break;
956
957		case SOCK_SEQPACKET: {
958			const struct sockaddr *from;
959
960			from = &sun_noname;
961			if (sbappendaddr_locked(&so2->so_rcv, from, m,
962			    control))
963				control = NULL;
964			break;
965			}
966		}
967
968		/*
969		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
970		 * datagram size and back-pressure for SOCK_SEQPACKET, which
971		 * can lead to undesired return of EMSGSIZE on send instead
972		 * of more desirable blocking.
973		 */
974		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
975		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
976		sbcc = so2->so_rcv.sb_cc;
977		sorwakeup_locked(so2);
978
979		SOCKBUF_LOCK(&so->so_snd);
980		if ((int)so->so_snd.sb_hiwat >= (int)(sbcc - unp2->unp_cc))
981			newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
982		else
983			newhiwat = 0;
984		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
985		    newhiwat, RLIM_INFINITY);
986		so->so_snd.sb_mbmax -= mbcnt_delta;
987		SOCKBUF_UNLOCK(&so->so_snd);
988		unp2->unp_cc = sbcc;
989		UNP_PCB_UNLOCK(unp2);
990		m = NULL;
991		break;
992
993	default:
994		panic("uipc_send unknown socktype");
995	}
996
997	/*
998	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
999	 */
1000	if (flags & PRUS_EOF) {
1001		UNP_PCB_LOCK(unp);
1002		socantsendmore(so);
1003		unp_shutdown(unp);
1004		UNP_PCB_UNLOCK(unp);
1005	}
1006
1007	if ((nam != NULL) || (flags & PRUS_EOF))
1008		UNP_LINK_WUNLOCK();
1009	else
1010		UNP_LINK_RUNLOCK();
1011
1012	if (control != NULL && error != 0)
1013		unp_dispose(control);
1014
1015release:
1016	if (control != NULL)
1017		m_freem(control);
1018	if (m != NULL)
1019		m_freem(m);
1020	return (error);
1021}
1022
1023static int
1024uipc_sense(struct socket *so, struct stat *sb)
1025{
1026	struct unpcb *unp, *unp2;
1027	struct socket *so2;
1028
1029	unp = sotounpcb(so);
1030	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1031
1032	sb->st_blksize = so->so_snd.sb_hiwat;
1033	UNP_LINK_RLOCK();
1034	UNP_PCB_LOCK(unp);
1035	unp2 = unp->unp_conn;
1036	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1037	    unp2 != NULL) {
1038		so2 = unp2->unp_socket;
1039		sb->st_blksize += so2->so_rcv.sb_cc;
1040	}
1041	sb->st_dev = NODEV;
1042	if (unp->unp_ino == 0)
1043		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1044	sb->st_ino = unp->unp_ino;
1045	UNP_PCB_UNLOCK(unp);
1046	UNP_LINK_RUNLOCK();
1047	return (0);
1048}
1049
1050static int
1051uipc_shutdown(struct socket *so)
1052{
1053	struct unpcb *unp;
1054
1055	unp = sotounpcb(so);
1056	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1057
1058	UNP_LINK_WLOCK();
1059	UNP_PCB_LOCK(unp);
1060	socantsendmore(so);
1061	unp_shutdown(unp);
1062	UNP_PCB_UNLOCK(unp);
1063	UNP_LINK_WUNLOCK();
1064	return (0);
1065}
1066
1067static int
1068uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1069{
1070	struct unpcb *unp;
1071	const struct sockaddr *sa;
1072
1073	unp = sotounpcb(so);
1074	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1075
1076	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1077	UNP_PCB_LOCK(unp);
1078	if (unp->unp_addr != NULL)
1079		sa = (struct sockaddr *) unp->unp_addr;
1080	else
1081		sa = &sun_noname;
1082	bcopy(sa, *nam, sa->sa_len);
1083	UNP_PCB_UNLOCK(unp);
1084	return (0);
1085}
1086
1087static struct pr_usrreqs uipc_usrreqs_dgram = {
1088	.pru_abort = 		uipc_abort,
1089	.pru_accept =		uipc_accept,
1090	.pru_attach =		uipc_attach,
1091	.pru_bind =		uipc_bind,
1092	.pru_connect =		uipc_connect,
1093	.pru_connect2 =		uipc_connect2,
1094	.pru_detach =		uipc_detach,
1095	.pru_disconnect =	uipc_disconnect,
1096	.pru_listen =		uipc_listen,
1097	.pru_peeraddr =		uipc_peeraddr,
1098	.pru_rcvd =		uipc_rcvd,
1099	.pru_send =		uipc_send,
1100	.pru_sense =		uipc_sense,
1101	.pru_shutdown =		uipc_shutdown,
1102	.pru_sockaddr =		uipc_sockaddr,
1103	.pru_soreceive =	soreceive_dgram,
1104	.pru_close =		uipc_close,
1105};
1106
1107static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1108	.pru_abort =		uipc_abort,
1109	.pru_accept =		uipc_accept,
1110	.pru_attach =		uipc_attach,
1111	.pru_bind =		uipc_bind,
1112	.pru_connect =		uipc_connect,
1113	.pru_connect2 =		uipc_connect2,
1114	.pru_detach =		uipc_detach,
1115	.pru_disconnect =	uipc_disconnect,
1116	.pru_listen =		uipc_listen,
1117	.pru_peeraddr =		uipc_peeraddr,
1118	.pru_rcvd =		uipc_rcvd,
1119	.pru_send =		uipc_send,
1120	.pru_sense =		uipc_sense,
1121	.pru_shutdown =		uipc_shutdown,
1122	.pru_sockaddr =		uipc_sockaddr,
1123	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1124	.pru_close =		uipc_close,
1125};
1126
1127static struct pr_usrreqs uipc_usrreqs_stream = {
1128	.pru_abort = 		uipc_abort,
1129	.pru_accept =		uipc_accept,
1130	.pru_attach =		uipc_attach,
1131	.pru_bind =		uipc_bind,
1132	.pru_connect =		uipc_connect,
1133	.pru_connect2 =		uipc_connect2,
1134	.pru_detach =		uipc_detach,
1135	.pru_disconnect =	uipc_disconnect,
1136	.pru_listen =		uipc_listen,
1137	.pru_peeraddr =		uipc_peeraddr,
1138	.pru_rcvd =		uipc_rcvd,
1139	.pru_send =		uipc_send,
1140	.pru_sense =		uipc_sense,
1141	.pru_shutdown =		uipc_shutdown,
1142	.pru_sockaddr =		uipc_sockaddr,
1143	.pru_soreceive =	soreceive_generic,
1144	.pru_close =		uipc_close,
1145};
1146
1147static int
1148uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1149{
1150	struct unpcb *unp;
1151	struct xucred xu;
1152	int error, optval;
1153
1154	if (sopt->sopt_level != 0)
1155		return (EINVAL);
1156
1157	unp = sotounpcb(so);
1158	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1159	error = 0;
1160	switch (sopt->sopt_dir) {
1161	case SOPT_GET:
1162		switch (sopt->sopt_name) {
1163		case LOCAL_PEERCRED:
1164			UNP_PCB_LOCK(unp);
1165			if (unp->unp_flags & UNP_HAVEPC)
1166				xu = unp->unp_peercred;
1167			else {
1168				if (so->so_type == SOCK_STREAM)
1169					error = ENOTCONN;
1170				else
1171					error = EINVAL;
1172			}
1173			UNP_PCB_UNLOCK(unp);
1174			if (error == 0)
1175				error = sooptcopyout(sopt, &xu, sizeof(xu));
1176			break;
1177
1178		case LOCAL_CREDS:
1179			/* Unlocked read. */
1180			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1181			error = sooptcopyout(sopt, &optval, sizeof(optval));
1182			break;
1183
1184		case LOCAL_CONNWAIT:
1185			/* Unlocked read. */
1186			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1187			error = sooptcopyout(sopt, &optval, sizeof(optval));
1188			break;
1189
1190		default:
1191			error = EOPNOTSUPP;
1192			break;
1193		}
1194		break;
1195
1196	case SOPT_SET:
1197		switch (sopt->sopt_name) {
1198		case LOCAL_CREDS:
1199		case LOCAL_CONNWAIT:
1200			error = sooptcopyin(sopt, &optval, sizeof(optval),
1201					    sizeof(optval));
1202			if (error)
1203				break;
1204
1205#define	OPTSET(bit) do {						\
1206	UNP_PCB_LOCK(unp);						\
1207	if (optval)							\
1208		unp->unp_flags |= bit;					\
1209	else								\
1210		unp->unp_flags &= ~bit;					\
1211	UNP_PCB_UNLOCK(unp);						\
1212} while (0)
1213
1214			switch (sopt->sopt_name) {
1215			case LOCAL_CREDS:
1216				OPTSET(UNP_WANTCRED);
1217				break;
1218
1219			case LOCAL_CONNWAIT:
1220				OPTSET(UNP_CONNWAIT);
1221				break;
1222
1223			default:
1224				break;
1225			}
1226			break;
1227#undef	OPTSET
1228		default:
1229			error = ENOPROTOOPT;
1230			break;
1231		}
1232		break;
1233
1234	default:
1235		error = EOPNOTSUPP;
1236		break;
1237	}
1238	return (error);
1239}
1240
1241static int
1242unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1243{
1244	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1245	struct vnode *vp;
1246	struct socket *so2, *so3;
1247	struct unpcb *unp, *unp2, *unp3;
1248	int error, len, vfslocked;
1249	struct nameidata nd;
1250	char buf[SOCK_MAXADDRLEN];
1251	struct sockaddr *sa;
1252
1253	UNP_LINK_WLOCK_ASSERT();
1254
1255	unp = sotounpcb(so);
1256	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1257
1258	if (nam->sa_len > sizeof(struct sockaddr_un))
1259		return (EINVAL);
1260	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1261	if (len <= 0)
1262		return (EINVAL);
1263	bcopy(soun->sun_path, buf, len);
1264	buf[len] = 0;
1265
1266	UNP_PCB_LOCK(unp);
1267	if (unp->unp_flags & UNP_CONNECTING) {
1268		UNP_PCB_UNLOCK(unp);
1269		return (EALREADY);
1270	}
1271	UNP_LINK_WUNLOCK();
1272	unp->unp_flags |= UNP_CONNECTING;
1273	UNP_PCB_UNLOCK(unp);
1274
1275	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1276	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKSHARED | LOCKLEAF,
1277	    UIO_SYSSPACE, buf, td);
1278	error = namei(&nd);
1279	if (error)
1280		vp = NULL;
1281	else
1282		vp = nd.ni_vp;
1283	ASSERT_VOP_LOCKED(vp, "unp_connect");
1284	vfslocked = NDHASGIANT(&nd);
1285	NDFREE(&nd, NDF_ONLY_PNBUF);
1286	if (error)
1287		goto bad;
1288
1289	if (vp->v_type != VSOCK) {
1290		error = ENOTSOCK;
1291		goto bad;
1292	}
1293#ifdef MAC
1294	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1295	if (error)
1296		goto bad;
1297#endif
1298	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1299	if (error)
1300		goto bad;
1301	VFS_UNLOCK_GIANT(vfslocked);
1302
1303	unp = sotounpcb(so);
1304	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1305
1306	/*
1307	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1308	 * and to protect simultaneous locking of multiple pcbs.
1309	 */
1310	UNP_LINK_WLOCK();
1311	so2 = vp->v_socket;
1312	if (so2 == NULL) {
1313		error = ECONNREFUSED;
1314		goto bad2;
1315	}
1316	if (so->so_type != so2->so_type) {
1317		error = EPROTOTYPE;
1318		goto bad2;
1319	}
1320	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1321		if (so2->so_options & SO_ACCEPTCONN) {
1322			CURVNET_SET(so2->so_vnet);
1323			so3 = sonewconn(so2, 0);
1324			CURVNET_RESTORE();
1325		} else
1326			so3 = NULL;
1327		if (so3 == NULL) {
1328			error = ECONNREFUSED;
1329			goto bad2;
1330		}
1331		unp = sotounpcb(so);
1332		unp2 = sotounpcb(so2);
1333		unp3 = sotounpcb(so3);
1334		UNP_PCB_LOCK(unp);
1335		UNP_PCB_LOCK(unp2);
1336		UNP_PCB_LOCK(unp3);
1337		if (unp2->unp_addr != NULL) {
1338			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1339			unp3->unp_addr = (struct sockaddr_un *) sa;
1340			sa = NULL;
1341		}
1342
1343		/*
1344		 * The connecter's (client's) credentials are copied from its
1345		 * process structure at the time of connect() (which is now).
1346		 */
1347		cru2x(td->td_ucred, &unp3->unp_peercred);
1348		unp3->unp_flags |= UNP_HAVEPC;
1349
1350		/*
1351		 * The receiver's (server's) credentials are copied from the
1352		 * unp_peercred member of socket on which the former called
1353		 * listen(); uipc_listen() cached that process's credentials
1354		 * at that time so we can use them now.
1355		 */
1356		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1357		    ("unp_connect: listener without cached peercred"));
1358		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1359		    sizeof(unp->unp_peercred));
1360		unp->unp_flags |= UNP_HAVEPC;
1361		if (unp2->unp_flags & UNP_WANTCRED)
1362			unp3->unp_flags |= UNP_WANTCRED;
1363		UNP_PCB_UNLOCK(unp3);
1364		UNP_PCB_UNLOCK(unp2);
1365		UNP_PCB_UNLOCK(unp);
1366#ifdef MAC
1367		mac_socketpeer_set_from_socket(so, so3);
1368		mac_socketpeer_set_from_socket(so3, so);
1369#endif
1370
1371		so2 = so3;
1372	}
1373	unp = sotounpcb(so);
1374	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1375	unp2 = sotounpcb(so2);
1376	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1377	UNP_PCB_LOCK(unp);
1378	UNP_PCB_LOCK(unp2);
1379	error = unp_connect2(so, so2, PRU_CONNECT);
1380	UNP_PCB_UNLOCK(unp2);
1381	UNP_PCB_UNLOCK(unp);
1382bad2:
1383	UNP_LINK_WUNLOCK();
1384	if (vfslocked)
1385		/*
1386		 * Giant has been previously acquired. This means filesystem
1387		 * isn't MPSAFE.  Do it once again.
1388		 */
1389		mtx_lock(&Giant);
1390bad:
1391	if (vp != NULL)
1392		vput(vp);
1393	VFS_UNLOCK_GIANT(vfslocked);
1394	free(sa, M_SONAME);
1395	UNP_LINK_WLOCK();
1396	UNP_PCB_LOCK(unp);
1397	unp->unp_flags &= ~UNP_CONNECTING;
1398	UNP_PCB_UNLOCK(unp);
1399	return (error);
1400}
1401
1402static int
1403unp_connect2(struct socket *so, struct socket *so2, int req)
1404{
1405	struct unpcb *unp;
1406	struct unpcb *unp2;
1407
1408	unp = sotounpcb(so);
1409	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1410	unp2 = sotounpcb(so2);
1411	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1412
1413	UNP_LINK_WLOCK_ASSERT();
1414	UNP_PCB_LOCK_ASSERT(unp);
1415	UNP_PCB_LOCK_ASSERT(unp2);
1416
1417	if (so2->so_type != so->so_type)
1418		return (EPROTOTYPE);
1419	unp->unp_conn = unp2;
1420
1421	switch (so->so_type) {
1422	case SOCK_DGRAM:
1423		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1424		soisconnected(so);
1425		break;
1426
1427	case SOCK_STREAM:
1428	case SOCK_SEQPACKET:
1429		unp2->unp_conn = unp;
1430		if (req == PRU_CONNECT &&
1431		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1432			soisconnecting(so);
1433		else
1434			soisconnected(so);
1435		soisconnected(so2);
1436		break;
1437
1438	default:
1439		panic("unp_connect2");
1440	}
1441	return (0);
1442}
1443
1444static void
1445unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1446{
1447	struct socket *so;
1448
1449	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1450
1451	UNP_LINK_WLOCK_ASSERT();
1452	UNP_PCB_LOCK_ASSERT(unp);
1453	UNP_PCB_LOCK_ASSERT(unp2);
1454
1455	unp->unp_conn = NULL;
1456	switch (unp->unp_socket->so_type) {
1457	case SOCK_DGRAM:
1458		LIST_REMOVE(unp, unp_reflink);
1459		so = unp->unp_socket;
1460		SOCK_LOCK(so);
1461		so->so_state &= ~SS_ISCONNECTED;
1462		SOCK_UNLOCK(so);
1463		break;
1464
1465	case SOCK_STREAM:
1466	case SOCK_SEQPACKET:
1467		soisdisconnected(unp->unp_socket);
1468		unp2->unp_conn = NULL;
1469		soisdisconnected(unp2->unp_socket);
1470		break;
1471	}
1472}
1473
1474/*
1475 * unp_pcblist() walks the global list of struct unpcb's to generate a
1476 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1477 * sequentially, validating the generation number on each to see if it has
1478 * been detached.  All of this is necessary because copyout() may sleep on
1479 * disk I/O.
1480 */
1481static int
1482unp_pcblist(SYSCTL_HANDLER_ARGS)
1483{
1484	int error, i, n;
1485	int freeunp;
1486	struct unpcb *unp, **unp_list;
1487	unp_gen_t gencnt;
1488	struct xunpgen *xug;
1489	struct unp_head *head;
1490	struct xunpcb *xu;
1491
1492	switch ((intptr_t)arg1) {
1493	case SOCK_STREAM:
1494		head = &unp_shead;
1495		break;
1496
1497	case SOCK_DGRAM:
1498		head = &unp_dhead;
1499		break;
1500
1501	case SOCK_SEQPACKET:
1502		head = &unp_sphead;
1503		break;
1504
1505	default:
1506		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1507	}
1508
1509	/*
1510	 * The process of preparing the PCB list is too time-consuming and
1511	 * resource-intensive to repeat twice on every request.
1512	 */
1513	if (req->oldptr == NULL) {
1514		n = unp_count;
1515		req->oldidx = 2 * (sizeof *xug)
1516			+ (n + n/8) * sizeof(struct xunpcb);
1517		return (0);
1518	}
1519
1520	if (req->newptr != NULL)
1521		return (EPERM);
1522
1523	/*
1524	 * OK, now we're committed to doing something.
1525	 */
1526	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1527	UNP_LIST_LOCK();
1528	gencnt = unp_gencnt;
1529	n = unp_count;
1530	UNP_LIST_UNLOCK();
1531
1532	xug->xug_len = sizeof *xug;
1533	xug->xug_count = n;
1534	xug->xug_gen = gencnt;
1535	xug->xug_sogen = so_gencnt;
1536	error = SYSCTL_OUT(req, xug, sizeof *xug);
1537	if (error) {
1538		free(xug, M_TEMP);
1539		return (error);
1540	}
1541
1542	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1543
1544	UNP_LIST_LOCK();
1545	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1546	     unp = LIST_NEXT(unp, unp_link)) {
1547		UNP_PCB_LOCK(unp);
1548		if (unp->unp_gencnt <= gencnt) {
1549			if (cr_cansee(req->td->td_ucred,
1550			    unp->unp_socket->so_cred)) {
1551				UNP_PCB_UNLOCK(unp);
1552				continue;
1553			}
1554			unp_list[i++] = unp;
1555			unp->unp_refcount++;
1556		}
1557		UNP_PCB_UNLOCK(unp);
1558	}
1559	UNP_LIST_UNLOCK();
1560	n = i;			/* In case we lost some during malloc. */
1561
1562	error = 0;
1563	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1564	for (i = 0; i < n; i++) {
1565		unp = unp_list[i];
1566		UNP_PCB_LOCK(unp);
1567		unp->unp_refcount--;
1568	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1569			xu->xu_len = sizeof *xu;
1570			xu->xu_unpp = unp;
1571			/*
1572			 * XXX - need more locking here to protect against
1573			 * connect/disconnect races for SMP.
1574			 */
1575			if (unp->unp_addr != NULL)
1576				bcopy(unp->unp_addr, &xu->xu_addr,
1577				      unp->unp_addr->sun_len);
1578			if (unp->unp_conn != NULL &&
1579			    unp->unp_conn->unp_addr != NULL)
1580				bcopy(unp->unp_conn->unp_addr,
1581				      &xu->xu_caddr,
1582				      unp->unp_conn->unp_addr->sun_len);
1583			bcopy(unp, &xu->xu_unp, sizeof *unp);
1584			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1585			UNP_PCB_UNLOCK(unp);
1586			error = SYSCTL_OUT(req, xu, sizeof *xu);
1587		} else {
1588			freeunp = (unp->unp_refcount == 0);
1589			UNP_PCB_UNLOCK(unp);
1590			if (freeunp) {
1591				UNP_PCB_LOCK_DESTROY(unp);
1592				uma_zfree(unp_zone, unp);
1593			}
1594		}
1595	}
1596	free(xu, M_TEMP);
1597	if (!error) {
1598		/*
1599		 * Give the user an updated idea of our state.  If the
1600		 * generation differs from what we told her before, she knows
1601		 * that something happened while we were processing this
1602		 * request, and it might be necessary to retry.
1603		 */
1604		xug->xug_gen = unp_gencnt;
1605		xug->xug_sogen = so_gencnt;
1606		xug->xug_count = unp_count;
1607		error = SYSCTL_OUT(req, xug, sizeof *xug);
1608	}
1609	free(unp_list, M_TEMP);
1610	free(xug, M_TEMP);
1611	return (error);
1612}
1613
1614SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1615    (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1616    "List of active local datagram sockets");
1617SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1618    (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1619    "List of active local stream sockets");
1620SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1621    CTLTYPE_OPAQUE | CTLFLAG_RD,
1622    (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1623    "List of active local seqpacket sockets");
1624
1625static void
1626unp_shutdown(struct unpcb *unp)
1627{
1628	struct unpcb *unp2;
1629	struct socket *so;
1630
1631	UNP_LINK_WLOCK_ASSERT();
1632	UNP_PCB_LOCK_ASSERT(unp);
1633
1634	unp2 = unp->unp_conn;
1635	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1636	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1637		so = unp2->unp_socket;
1638		if (so != NULL)
1639			socantrcvmore(so);
1640	}
1641}
1642
1643static void
1644unp_drop(struct unpcb *unp, int errno)
1645{
1646	struct socket *so = unp->unp_socket;
1647	struct unpcb *unp2;
1648
1649	UNP_LINK_WLOCK_ASSERT();
1650	UNP_PCB_LOCK_ASSERT(unp);
1651
1652	so->so_error = errno;
1653	unp2 = unp->unp_conn;
1654	if (unp2 == NULL)
1655		return;
1656	UNP_PCB_LOCK(unp2);
1657	unp_disconnect(unp, unp2);
1658	UNP_PCB_UNLOCK(unp2);
1659}
1660
1661static void
1662unp_freerights(struct file **rp, int fdcount)
1663{
1664	int i;
1665	struct file *fp;
1666
1667	for (i = 0; i < fdcount; i++) {
1668		fp = *rp;
1669		*rp++ = NULL;
1670		unp_discard(fp);
1671	}
1672}
1673
1674static int
1675unp_externalize(struct mbuf *control, struct mbuf **controlp)
1676{
1677	struct thread *td = curthread;		/* XXX */
1678	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1679	int i;
1680	int *fdp;
1681	struct file **rp;
1682	struct file *fp;
1683	void *data;
1684	socklen_t clen = control->m_len, datalen;
1685	int error, newfds;
1686	int f;
1687	u_int newlen;
1688
1689	UNP_LINK_UNLOCK_ASSERT();
1690
1691	error = 0;
1692	if (controlp != NULL) /* controlp == NULL => free control messages */
1693		*controlp = NULL;
1694	while (cm != NULL) {
1695		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1696			error = EINVAL;
1697			break;
1698		}
1699		data = CMSG_DATA(cm);
1700		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1701		if (cm->cmsg_level == SOL_SOCKET
1702		    && cm->cmsg_type == SCM_RIGHTS) {
1703			newfds = datalen / sizeof(struct file *);
1704			rp = data;
1705
1706			/* If we're not outputting the descriptors free them. */
1707			if (error || controlp == NULL) {
1708				unp_freerights(rp, newfds);
1709				goto next;
1710			}
1711			FILEDESC_XLOCK(td->td_proc->p_fd);
1712			/* if the new FD's will not fit free them.  */
1713			if (!fdavail(td, newfds)) {
1714				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1715				error = EMSGSIZE;
1716				unp_freerights(rp, newfds);
1717				goto next;
1718			}
1719
1720			/*
1721			 * Now change each pointer to an fd in the global
1722			 * table to an integer that is the index to the local
1723			 * fd table entry that we set up to point to the
1724			 * global one we are transferring.
1725			 */
1726			newlen = newfds * sizeof(int);
1727			*controlp = sbcreatecontrol(NULL, newlen,
1728			    SCM_RIGHTS, SOL_SOCKET);
1729			if (*controlp == NULL) {
1730				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1731				error = E2BIG;
1732				unp_freerights(rp, newfds);
1733				goto next;
1734			}
1735
1736			fdp = (int *)
1737			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1738			for (i = 0; i < newfds; i++) {
1739				if (fdalloc(td, 0, &f))
1740					panic("unp_externalize fdalloc failed");
1741				fp = *rp++;
1742				td->td_proc->p_fd->fd_ofiles[f] = fp;
1743				unp_externalize_fp(fp);
1744				*fdp++ = f;
1745			}
1746			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1747		} else {
1748			/* We can just copy anything else across. */
1749			if (error || controlp == NULL)
1750				goto next;
1751			*controlp = sbcreatecontrol(NULL, datalen,
1752			    cm->cmsg_type, cm->cmsg_level);
1753			if (*controlp == NULL) {
1754				error = ENOBUFS;
1755				goto next;
1756			}
1757			bcopy(data,
1758			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1759			    datalen);
1760		}
1761		controlp = &(*controlp)->m_next;
1762
1763next:
1764		if (CMSG_SPACE(datalen) < clen) {
1765			clen -= CMSG_SPACE(datalen);
1766			cm = (struct cmsghdr *)
1767			    ((caddr_t)cm + CMSG_SPACE(datalen));
1768		} else {
1769			clen = 0;
1770			cm = NULL;
1771		}
1772	}
1773
1774	m_freem(control);
1775	return (error);
1776}
1777
1778static void
1779unp_zone_change(void *tag)
1780{
1781
1782	uma_zone_set_max(unp_zone, maxsockets);
1783}
1784
1785static void
1786unp_init(void)
1787{
1788
1789#ifdef VIMAGE
1790	if (!IS_DEFAULT_VNET(curvnet))
1791		return;
1792#endif
1793	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1794	    NULL, NULL, UMA_ALIGN_PTR, 0);
1795	if (unp_zone == NULL)
1796		panic("unp_init");
1797	uma_zone_set_max(unp_zone, maxsockets);
1798	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1799	    NULL, EVENTHANDLER_PRI_ANY);
1800	LIST_INIT(&unp_dhead);
1801	LIST_INIT(&unp_shead);
1802	LIST_INIT(&unp_sphead);
1803	SLIST_INIT(&unp_defers);
1804	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1805	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1806	UNP_LINK_LOCK_INIT();
1807	UNP_LIST_LOCK_INIT();
1808	UNP_DEFERRED_LOCK_INIT();
1809}
1810
1811static int
1812unp_internalize(struct mbuf **controlp, struct thread *td)
1813{
1814	struct mbuf *control = *controlp;
1815	struct proc *p = td->td_proc;
1816	struct filedesc *fdescp = p->p_fd;
1817	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1818	struct cmsgcred *cmcred;
1819	struct file **rp;
1820	struct file *fp;
1821	struct timeval *tv;
1822	int i, fd, *fdp;
1823	void *data;
1824	socklen_t clen = control->m_len, datalen;
1825	int error, oldfds;
1826	u_int newlen;
1827
1828	UNP_LINK_UNLOCK_ASSERT();
1829
1830	error = 0;
1831	*controlp = NULL;
1832	while (cm != NULL) {
1833		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1834		    || cm->cmsg_len > clen) {
1835			error = EINVAL;
1836			goto out;
1837		}
1838		data = CMSG_DATA(cm);
1839		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1840
1841		switch (cm->cmsg_type) {
1842		/*
1843		 * Fill in credential information.
1844		 */
1845		case SCM_CREDS:
1846			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1847			    SCM_CREDS, SOL_SOCKET);
1848			if (*controlp == NULL) {
1849				error = ENOBUFS;
1850				goto out;
1851			}
1852			cmcred = (struct cmsgcred *)
1853			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1854			cmcred->cmcred_pid = p->p_pid;
1855			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1856			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1857			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1858			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1859			    CMGROUP_MAX);
1860			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1861				cmcred->cmcred_groups[i] =
1862				    td->td_ucred->cr_groups[i];
1863			break;
1864
1865		case SCM_RIGHTS:
1866			oldfds = datalen / sizeof (int);
1867			/*
1868			 * Check that all the FDs passed in refer to legal
1869			 * files.  If not, reject the entire operation.
1870			 */
1871			fdp = data;
1872			FILEDESC_SLOCK(fdescp);
1873			for (i = 0; i < oldfds; i++) {
1874				fd = *fdp++;
1875				if ((unsigned)fd >= fdescp->fd_nfiles ||
1876				    fdescp->fd_ofiles[fd] == NULL) {
1877					FILEDESC_SUNLOCK(fdescp);
1878					error = EBADF;
1879					goto out;
1880				}
1881				fp = fdescp->fd_ofiles[fd];
1882				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1883					FILEDESC_SUNLOCK(fdescp);
1884					error = EOPNOTSUPP;
1885					goto out;
1886				}
1887
1888			}
1889
1890			/*
1891			 * Now replace the integer FDs with pointers to the
1892			 * associated global file table entry..
1893			 */
1894			newlen = oldfds * sizeof(struct file *);
1895			*controlp = sbcreatecontrol(NULL, newlen,
1896			    SCM_RIGHTS, SOL_SOCKET);
1897			if (*controlp == NULL) {
1898				FILEDESC_SUNLOCK(fdescp);
1899				error = E2BIG;
1900				goto out;
1901			}
1902			fdp = data;
1903			rp = (struct file **)
1904			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1905			for (i = 0; i < oldfds; i++) {
1906				fp = fdescp->fd_ofiles[*fdp++];
1907				*rp++ = fp;
1908				unp_internalize_fp(fp);
1909			}
1910			FILEDESC_SUNLOCK(fdescp);
1911			break;
1912
1913		case SCM_TIMESTAMP:
1914			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1915			    SCM_TIMESTAMP, SOL_SOCKET);
1916			if (*controlp == NULL) {
1917				error = ENOBUFS;
1918				goto out;
1919			}
1920			tv = (struct timeval *)
1921			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1922			microtime(tv);
1923			break;
1924
1925		default:
1926			error = EINVAL;
1927			goto out;
1928		}
1929
1930		controlp = &(*controlp)->m_next;
1931		if (CMSG_SPACE(datalen) < clen) {
1932			clen -= CMSG_SPACE(datalen);
1933			cm = (struct cmsghdr *)
1934			    ((caddr_t)cm + CMSG_SPACE(datalen));
1935		} else {
1936			clen = 0;
1937			cm = NULL;
1938		}
1939	}
1940
1941out:
1942	m_freem(control);
1943	return (error);
1944}
1945
1946static struct mbuf *
1947unp_addsockcred(struct thread *td, struct mbuf *control)
1948{
1949	struct mbuf *m, *n, *n_prev;
1950	struct sockcred *sc;
1951	const struct cmsghdr *cm;
1952	int ngroups;
1953	int i;
1954
1955	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1956	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1957	if (m == NULL)
1958		return (control);
1959
1960	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1961	sc->sc_uid = td->td_ucred->cr_ruid;
1962	sc->sc_euid = td->td_ucred->cr_uid;
1963	sc->sc_gid = td->td_ucred->cr_rgid;
1964	sc->sc_egid = td->td_ucred->cr_gid;
1965	sc->sc_ngroups = ngroups;
1966	for (i = 0; i < sc->sc_ngroups; i++)
1967		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1968
1969	/*
1970	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1971	 * created SCM_CREDS control message (struct sockcred) has another
1972	 * format.
1973	 */
1974	if (control != NULL)
1975		for (n = control, n_prev = NULL; n != NULL;) {
1976			cm = mtod(n, struct cmsghdr *);
1977    			if (cm->cmsg_level == SOL_SOCKET &&
1978			    cm->cmsg_type == SCM_CREDS) {
1979    				if (n_prev == NULL)
1980					control = n->m_next;
1981				else
1982					n_prev->m_next = n->m_next;
1983				n = m_free(n);
1984			} else {
1985				n_prev = n;
1986				n = n->m_next;
1987			}
1988		}
1989
1990	/* Prepend it to the head. */
1991	m->m_next = control;
1992	return (m);
1993}
1994
1995static struct unpcb *
1996fptounp(struct file *fp)
1997{
1998	struct socket *so;
1999
2000	if (fp->f_type != DTYPE_SOCKET)
2001		return (NULL);
2002	if ((so = fp->f_data) == NULL)
2003		return (NULL);
2004	if (so->so_proto->pr_domain != &localdomain)
2005		return (NULL);
2006	return sotounpcb(so);
2007}
2008
2009static void
2010unp_discard(struct file *fp)
2011{
2012	struct unp_defer *dr;
2013
2014	if (unp_externalize_fp(fp)) {
2015		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2016		dr->ud_fp = fp;
2017		UNP_DEFERRED_LOCK();
2018		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2019		UNP_DEFERRED_UNLOCK();
2020		atomic_add_int(&unp_defers_count, 1);
2021		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2022	} else
2023		(void) closef(fp, (struct thread *)NULL);
2024}
2025
2026static void
2027unp_process_defers(void *arg __unused, int pending)
2028{
2029	struct unp_defer *dr;
2030	SLIST_HEAD(, unp_defer) drl;
2031	int count;
2032
2033	SLIST_INIT(&drl);
2034	for (;;) {
2035		UNP_DEFERRED_LOCK();
2036		if (SLIST_FIRST(&unp_defers) == NULL) {
2037			UNP_DEFERRED_UNLOCK();
2038			break;
2039		}
2040		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2041		UNP_DEFERRED_UNLOCK();
2042		count = 0;
2043		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2044			SLIST_REMOVE_HEAD(&drl, ud_link);
2045			closef(dr->ud_fp, NULL);
2046			free(dr, M_TEMP);
2047			count++;
2048		}
2049		atomic_add_int(&unp_defers_count, -count);
2050	}
2051}
2052
2053static void
2054unp_internalize_fp(struct file *fp)
2055{
2056	struct unpcb *unp;
2057
2058	UNP_LINK_WLOCK();
2059	if ((unp = fptounp(fp)) != NULL) {
2060		unp->unp_file = fp;
2061		unp->unp_msgcount++;
2062	}
2063	fhold(fp);
2064	unp_rights++;
2065	UNP_LINK_WUNLOCK();
2066}
2067
2068static int
2069unp_externalize_fp(struct file *fp)
2070{
2071	struct unpcb *unp;
2072	int ret;
2073
2074	UNP_LINK_WLOCK();
2075	if ((unp = fptounp(fp)) != NULL) {
2076		unp->unp_msgcount--;
2077		ret = 1;
2078	} else
2079		ret = 0;
2080	unp_rights--;
2081	UNP_LINK_WUNLOCK();
2082	return (ret);
2083}
2084
2085/*
2086 * unp_defer indicates whether additional work has been defered for a future
2087 * pass through unp_gc().  It is thread local and does not require explicit
2088 * synchronization.
2089 */
2090static int	unp_marked;
2091static int	unp_unreachable;
2092
2093static void
2094unp_accessable(struct file *fp)
2095{
2096	struct unpcb *unp;
2097
2098	if ((unp = fptounp(fp)) == NULL)
2099		return;
2100	if (unp->unp_gcflag & UNPGC_REF)
2101		return;
2102	unp->unp_gcflag &= ~UNPGC_DEAD;
2103	unp->unp_gcflag |= UNPGC_REF;
2104	unp_marked++;
2105}
2106
2107static void
2108unp_gc_process(struct unpcb *unp)
2109{
2110	struct socket *soa;
2111	struct socket *so;
2112	struct file *fp;
2113
2114	/* Already processed. */
2115	if (unp->unp_gcflag & UNPGC_SCANNED)
2116		return;
2117	fp = unp->unp_file;
2118
2119	/*
2120	 * Check for a socket potentially in a cycle.  It must be in a
2121	 * queue as indicated by msgcount, and this must equal the file
2122	 * reference count.  Note that when msgcount is 0 the file is NULL.
2123	 */
2124	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2125	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2126		unp->unp_gcflag |= UNPGC_DEAD;
2127		unp_unreachable++;
2128		return;
2129	}
2130
2131	/*
2132	 * Mark all sockets we reference with RIGHTS.
2133	 */
2134	so = unp->unp_socket;
2135	SOCKBUF_LOCK(&so->so_rcv);
2136	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2137	SOCKBUF_UNLOCK(&so->so_rcv);
2138
2139	/*
2140	 * Mark all sockets in our accept queue.
2141	 */
2142	ACCEPT_LOCK();
2143	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2144		SOCKBUF_LOCK(&soa->so_rcv);
2145		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2146		SOCKBUF_UNLOCK(&soa->so_rcv);
2147	}
2148	ACCEPT_UNLOCK();
2149	unp->unp_gcflag |= UNPGC_SCANNED;
2150}
2151
2152static int unp_recycled;
2153SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2154    "Number of unreachable sockets claimed by the garbage collector.");
2155
2156static int unp_taskcount;
2157SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2158    "Number of times the garbage collector has run.");
2159
2160static void
2161unp_gc(__unused void *arg, int pending)
2162{
2163	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2164				    NULL };
2165	struct unp_head **head;
2166	struct file *f, **unref;
2167	struct unpcb *unp;
2168	int i, total;
2169
2170	unp_taskcount++;
2171	UNP_LIST_LOCK();
2172	/*
2173	 * First clear all gc flags from previous runs.
2174	 */
2175	for (head = heads; *head != NULL; head++)
2176		LIST_FOREACH(unp, *head, unp_link)
2177			unp->unp_gcflag = 0;
2178
2179	/*
2180	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2181	 * is reachable all of the sockets it references are reachable.
2182	 * Stop the scan once we do a complete loop without discovering
2183	 * a new reachable socket.
2184	 */
2185	do {
2186		unp_unreachable = 0;
2187		unp_marked = 0;
2188		for (head = heads; *head != NULL; head++)
2189			LIST_FOREACH(unp, *head, unp_link)
2190				unp_gc_process(unp);
2191	} while (unp_marked);
2192	UNP_LIST_UNLOCK();
2193	if (unp_unreachable == 0)
2194		return;
2195
2196	/*
2197	 * Allocate space for a local list of dead unpcbs.
2198	 */
2199	unref = malloc(unp_unreachable * sizeof(struct file *),
2200	    M_TEMP, M_WAITOK);
2201
2202	/*
2203	 * Iterate looking for sockets which have been specifically marked
2204	 * as as unreachable and store them locally.
2205	 */
2206	UNP_LINK_RLOCK();
2207	UNP_LIST_LOCK();
2208	for (total = 0, head = heads; *head != NULL; head++)
2209		LIST_FOREACH(unp, *head, unp_link)
2210			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2211				f = unp->unp_file;
2212				if (unp->unp_msgcount == 0 || f == NULL ||
2213				    f->f_count != unp->unp_msgcount)
2214					continue;
2215				unref[total++] = f;
2216				fhold(f);
2217				KASSERT(total <= unp_unreachable,
2218				    ("unp_gc: incorrect unreachable count."));
2219			}
2220	UNP_LIST_UNLOCK();
2221	UNP_LINK_RUNLOCK();
2222
2223	/*
2224	 * Now flush all sockets, free'ing rights.  This will free the
2225	 * struct files associated with these sockets but leave each socket
2226	 * with one remaining ref.
2227	 */
2228	for (i = 0; i < total; i++) {
2229		struct socket *so;
2230
2231		so = unref[i]->f_data;
2232		CURVNET_SET(so->so_vnet);
2233		sorflush(so);
2234		CURVNET_RESTORE();
2235	}
2236
2237	/*
2238	 * And finally release the sockets so they can be reclaimed.
2239	 */
2240	for (i = 0; i < total; i++)
2241		fdrop(unref[i], NULL);
2242	unp_recycled += total;
2243	free(unref, M_TEMP);
2244}
2245
2246static void
2247unp_dispose(struct mbuf *m)
2248{
2249
2250	if (m)
2251		unp_scan(m, unp_discard);
2252}
2253
2254static void
2255unp_scan(struct mbuf *m0, void (*op)(struct file *))
2256{
2257	struct mbuf *m;
2258	struct file **rp;
2259	struct cmsghdr *cm;
2260	void *data;
2261	int i;
2262	socklen_t clen, datalen;
2263	int qfds;
2264
2265	while (m0 != NULL) {
2266		for (m = m0; m; m = m->m_next) {
2267			if (m->m_type != MT_CONTROL)
2268				continue;
2269
2270			cm = mtod(m, struct cmsghdr *);
2271			clen = m->m_len;
2272
2273			while (cm != NULL) {
2274				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2275					break;
2276
2277				data = CMSG_DATA(cm);
2278				datalen = (caddr_t)cm + cm->cmsg_len
2279				    - (caddr_t)data;
2280
2281				if (cm->cmsg_level == SOL_SOCKET &&
2282				    cm->cmsg_type == SCM_RIGHTS) {
2283					qfds = datalen / sizeof (struct file *);
2284					rp = data;
2285					for (i = 0; i < qfds; i++)
2286						(*op)(*rp++);
2287				}
2288
2289				if (CMSG_SPACE(datalen) < clen) {
2290					clen -= CMSG_SPACE(datalen);
2291					cm = (struct cmsghdr *)
2292					    ((caddr_t)cm + CMSG_SPACE(datalen));
2293				} else {
2294					clen = 0;
2295					cm = NULL;
2296				}
2297			}
2298		}
2299		m0 = m0->m_act;
2300	}
2301}
2302
2303/*
2304 * A helper function called by VFS before socket-type vnode reclamation.
2305 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2306 * use count.
2307 */
2308void
2309vfs_unp_reclaim(struct vnode *vp)
2310{
2311	struct socket *so;
2312	struct unpcb *unp;
2313	int active;
2314
2315	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2316	KASSERT(vp->v_type == VSOCK,
2317	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2318
2319	active = 0;
2320	UNP_LINK_WLOCK();
2321	so = vp->v_socket;
2322	if (so == NULL)
2323		goto done;
2324	unp = sotounpcb(so);
2325	if (unp == NULL)
2326		goto done;
2327	UNP_PCB_LOCK(unp);
2328	if (unp->unp_vnode != NULL) {
2329		KASSERT(unp->unp_vnode == vp,
2330		    ("vfs_unp_reclaim: vp != unp->unp_vnode"));
2331		vp->v_socket = NULL;
2332		unp->unp_vnode = NULL;
2333		active = 1;
2334	}
2335	UNP_PCB_UNLOCK(unp);
2336done:
2337	UNP_LINK_WUNLOCK();
2338	if (active)
2339		vunref(vp);
2340}
2341
2342#ifdef DDB
2343static void
2344db_print_indent(int indent)
2345{
2346	int i;
2347
2348	for (i = 0; i < indent; i++)
2349		db_printf(" ");
2350}
2351
2352static void
2353db_print_unpflags(int unp_flags)
2354{
2355	int comma;
2356
2357	comma = 0;
2358	if (unp_flags & UNP_HAVEPC) {
2359		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2360		comma = 1;
2361	}
2362	if (unp_flags & UNP_HAVEPCCACHED) {
2363		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2364		comma = 1;
2365	}
2366	if (unp_flags & UNP_WANTCRED) {
2367		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2368		comma = 1;
2369	}
2370	if (unp_flags & UNP_CONNWAIT) {
2371		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2372		comma = 1;
2373	}
2374	if (unp_flags & UNP_CONNECTING) {
2375		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2376		comma = 1;
2377	}
2378	if (unp_flags & UNP_BINDING) {
2379		db_printf("%sUNP_BINDING", comma ? ", " : "");
2380		comma = 1;
2381	}
2382}
2383
2384static void
2385db_print_xucred(int indent, struct xucred *xu)
2386{
2387	int comma, i;
2388
2389	db_print_indent(indent);
2390	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2391	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2392	db_print_indent(indent);
2393	db_printf("cr_groups: ");
2394	comma = 0;
2395	for (i = 0; i < xu->cr_ngroups; i++) {
2396		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2397		comma = 1;
2398	}
2399	db_printf("\n");
2400}
2401
2402static void
2403db_print_unprefs(int indent, struct unp_head *uh)
2404{
2405	struct unpcb *unp;
2406	int counter;
2407
2408	counter = 0;
2409	LIST_FOREACH(unp, uh, unp_reflink) {
2410		if (counter % 4 == 0)
2411			db_print_indent(indent);
2412		db_printf("%p  ", unp);
2413		if (counter % 4 == 3)
2414			db_printf("\n");
2415		counter++;
2416	}
2417	if (counter != 0 && counter % 4 != 0)
2418		db_printf("\n");
2419}
2420
2421DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2422{
2423	struct unpcb *unp;
2424
2425        if (!have_addr) {
2426                db_printf("usage: show unpcb <addr>\n");
2427                return;
2428        }
2429        unp = (struct unpcb *)addr;
2430
2431	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2432	    unp->unp_vnode);
2433
2434	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2435	    unp->unp_conn);
2436
2437	db_printf("unp_refs:\n");
2438	db_print_unprefs(2, &unp->unp_refs);
2439
2440	/* XXXRW: Would be nice to print the full address, if any. */
2441	db_printf("unp_addr: %p\n", unp->unp_addr);
2442
2443	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2444	    unp->unp_cc, unp->unp_mbcnt,
2445	    (unsigned long long)unp->unp_gencnt);
2446
2447	db_printf("unp_flags: %x (", unp->unp_flags);
2448	db_print_unpflags(unp->unp_flags);
2449	db_printf(")\n");
2450
2451	db_printf("unp_peercred:\n");
2452	db_print_xucred(2, &unp->unp_peercred);
2453
2454	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2455}
2456#endif
2457