uipc_usrreq.c revision 217555
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	RDM
54 *	distinguish datagram size limits from flow control limits in SEQPACKET
55 *	rethink name space problems
56 *	need a proper out-of-band
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/uipc_usrreq.c 217555 2011-01-18 21:14:18Z mdf $");
61
62#include "opt_ddb.h"
63
64#include <sys/param.h>
65#include <sys/domain.h>
66#include <sys/fcntl.h>
67#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68#include <sys/eventhandler.h>
69#include <sys/file.h>
70#include <sys/filedesc.h>
71#include <sys/kernel.h>
72#include <sys/lock.h>
73#include <sys/mbuf.h>
74#include <sys/mount.h>
75#include <sys/mutex.h>
76#include <sys/namei.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/queue.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/socket.h>
83#include <sys/socketvar.h>
84#include <sys/signalvar.h>
85#include <sys/stat.h>
86#include <sys/sx.h>
87#include <sys/sysctl.h>
88#include <sys/systm.h>
89#include <sys/taskqueue.h>
90#include <sys/un.h>
91#include <sys/unpcb.h>
92#include <sys/vnode.h>
93
94#include <net/vnet.h>
95
96#ifdef DDB
97#include <ddb/ddb.h>
98#endif
99
100#include <security/mac/mac_framework.h>
101
102#include <vm/uma.h>
103
104/*
105 * Locking key:
106 * (l)	Locked using list lock
107 * (g)	Locked using linkage lock
108 */
109
110static uma_zone_t	unp_zone;
111static unp_gen_t	unp_gencnt;	/* (l) */
112static u_int		unp_count;	/* (l) Count of local sockets. */
113static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114static int		unp_rights;	/* (g) File descriptors in flight. */
115static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118
119struct unp_defer {
120	SLIST_ENTRY(unp_defer) ud_link;
121	struct file *ud_fp;
122};
123static SLIST_HEAD(, unp_defer) unp_defers;
124static int unp_defers_count;
125
126static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127
128/*
129 * Garbage collection of cyclic file descriptor/socket references occurs
130 * asynchronously in a taskqueue context in order to avoid recursion and
131 * reentrance in the UNIX domain socket, file descriptor, and socket layer
132 * code.  See unp_gc() for a full description.
133 */
134static struct task	unp_gc_task;
135
136/*
137 * The close of unix domain sockets attached as SCM_RIGHTS is
138 * postponed to the taskqueue, to avoid arbitrary recursion depth.
139 * The attached sockets might have another sockets attached.
140 */
141static struct task	unp_defer_task;
142
143/*
144 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145 * stream sockets, although the total for sender and receiver is actually
146 * only PIPSIZ.
147 *
148 * Datagram sockets really use the sendspace as the maximum datagram size,
149 * and don't really want to reserve the sendspace.  Their recvspace should be
150 * large enough for at least one max-size datagram plus address.
151 */
152#ifndef PIPSIZ
153#define	PIPSIZ	8192
154#endif
155static u_long	unpst_sendspace = PIPSIZ;
156static u_long	unpst_recvspace = PIPSIZ;
157static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
158static u_long	unpdg_recvspace = 4*1024;
159static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160static u_long	unpsp_recvspace = PIPSIZ;
161
162SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
163SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM");
164SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
165SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
166    "SOCK_SEQPACKET");
167
168SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
169	   &unpst_sendspace, 0, "Default stream send space.");
170SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
171	   &unpst_recvspace, 0, "Default stream receive space.");
172SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
173	   &unpdg_sendspace, 0, "Default datagram send space.");
174SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
175	   &unpdg_recvspace, 0, "Default datagram receive space.");
176SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
177	   &unpsp_sendspace, 0, "Default seqpacket send space.");
178SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
179	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
180SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
181    "File descriptors in flight.");
182SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
183    &unp_defers_count, 0,
184    "File descriptors deferred to taskqueue for close.");
185
186/*
187 * Locking and synchronization:
188 *
189 * Three types of locks exit in the local domain socket implementation: a
190 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
191 * global locks, the list lock protects the socket count, global generation
192 * number, and stream/datagram global lists.  The linkage lock protects the
193 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
194 * held exclusively over the acquisition of multiple unpcb locks to prevent
195 * deadlock.
196 *
197 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
198 * allocated in pru_attach() and freed in pru_detach().  The validity of that
199 * pointer is an invariant, so no lock is required to dereference the so_pcb
200 * pointer if a valid socket reference is held by the caller.  In practice,
201 * this is always true during operations performed on a socket.  Each unpcb
202 * has a back-pointer to its socket, unp_socket, which will be stable under
203 * the same circumstances.
204 *
205 * This pointer may only be safely dereferenced as long as a valid reference
206 * to the unpcb is held.  Typically, this reference will be from the socket,
207 * or from another unpcb when the referring unpcb's lock is held (in order
208 * that the reference not be invalidated during use).  For example, to follow
209 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
210 * as unp_socket remains valid as long as the reference to unp_conn is valid.
211 *
212 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
213 * atomic reads without the lock may be performed "lockless", but more
214 * complex reads and read-modify-writes require the mutex to be held.  No
215 * lock order is defined between unpcb locks -- multiple unpcb locks may be
216 * acquired at the same time only when holding the linkage rwlock
217 * exclusively, which prevents deadlocks.
218 *
219 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
220 * protocols, bind() is a non-atomic operation, and connect() requires
221 * potential sleeping in the protocol, due to potentially waiting on local or
222 * distributed file systems.  We try to separate "lookup" operations, which
223 * may sleep, and the IPC operations themselves, which typically can occur
224 * with relative atomicity as locks can be held over the entire operation.
225 *
226 * Another tricky issue is simultaneous multi-threaded or multi-process
227 * access to a single UNIX domain socket.  These are handled by the flags
228 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
229 * binding, both of which involve dropping UNIX domain socket locks in order
230 * to perform namei() and other file system operations.
231 */
232static struct rwlock	unp_link_rwlock;
233static struct mtx	unp_list_lock;
234static struct mtx	unp_defers_lock;
235
236#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
237					    "unp_link_rwlock")
238
239#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
240					    RA_LOCKED)
241#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
242					    RA_UNLOCKED)
243
244#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
245#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
246#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
247#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
248#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
249					    RA_WLOCKED)
250
251#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
252					    "unp_list_lock", NULL, MTX_DEF)
253#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
254#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
255
256#define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
257					    "unp_defer", NULL, MTX_DEF)
258#define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
259#define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
260
261#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
262					    "unp_mtx", "unp_mtx",	\
263					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
264#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
265#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
266#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
267#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
268
269static int	uipc_connect2(struct socket *, struct socket *);
270static int	uipc_ctloutput(struct socket *, struct sockopt *);
271static int	unp_connect(struct socket *, struct sockaddr *,
272		    struct thread *);
273static int	unp_connect2(struct socket *so, struct socket *so2, int);
274static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
275static void	unp_dispose(struct mbuf *);
276static void	unp_shutdown(struct unpcb *);
277static void	unp_drop(struct unpcb *, int);
278static void	unp_gc(__unused void *, int);
279static void	unp_scan(struct mbuf *, void (*)(struct file *));
280static void	unp_discard(struct file *);
281static void	unp_freerights(struct file **, int);
282static void	unp_init(void);
283static int	unp_internalize(struct mbuf **, struct thread *);
284static void	unp_internalize_fp(struct file *);
285static int	unp_externalize(struct mbuf *, struct mbuf **);
286static int	unp_externalize_fp(struct file *);
287static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
288static void	unp_process_defers(void * __unused, int);
289
290/*
291 * Definitions of protocols supported in the LOCAL domain.
292 */
293static struct domain localdomain;
294static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
295static struct pr_usrreqs uipc_usrreqs_seqpacket;
296static struct protosw localsw[] = {
297{
298	.pr_type =		SOCK_STREAM,
299	.pr_domain =		&localdomain,
300	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
301	.pr_ctloutput =		&uipc_ctloutput,
302	.pr_usrreqs =		&uipc_usrreqs_stream
303},
304{
305	.pr_type =		SOCK_DGRAM,
306	.pr_domain =		&localdomain,
307	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
308	.pr_usrreqs =		&uipc_usrreqs_dgram
309},
310{
311	.pr_type =		SOCK_SEQPACKET,
312	.pr_domain =		&localdomain,
313
314	/*
315	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
316	 * due to our use of sbappendaddr.  A new sbappend variants is needed
317	 * that supports both atomic record writes and control data.
318	 */
319	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
320				    PR_RIGHTS,
321	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
322},
323};
324
325static struct domain localdomain = {
326	.dom_family =		AF_LOCAL,
327	.dom_name =		"local",
328	.dom_init =		unp_init,
329	.dom_externalize =	unp_externalize,
330	.dom_dispose =		unp_dispose,
331	.dom_protosw =		localsw,
332	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
333};
334DOMAIN_SET(local);
335
336static void
337uipc_abort(struct socket *so)
338{
339	struct unpcb *unp, *unp2;
340
341	unp = sotounpcb(so);
342	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
343
344	UNP_LINK_WLOCK();
345	UNP_PCB_LOCK(unp);
346	unp2 = unp->unp_conn;
347	if (unp2 != NULL) {
348		UNP_PCB_LOCK(unp2);
349		unp_drop(unp2, ECONNABORTED);
350		UNP_PCB_UNLOCK(unp2);
351	}
352	UNP_PCB_UNLOCK(unp);
353	UNP_LINK_WUNLOCK();
354}
355
356static int
357uipc_accept(struct socket *so, struct sockaddr **nam)
358{
359	struct unpcb *unp, *unp2;
360	const struct sockaddr *sa;
361
362	/*
363	 * Pass back name of connected socket, if it was bound and we are
364	 * still connected (our peer may have closed already!).
365	 */
366	unp = sotounpcb(so);
367	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
368
369	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
370	UNP_LINK_RLOCK();
371	unp2 = unp->unp_conn;
372	if (unp2 != NULL && unp2->unp_addr != NULL) {
373		UNP_PCB_LOCK(unp2);
374		sa = (struct sockaddr *) unp2->unp_addr;
375		bcopy(sa, *nam, sa->sa_len);
376		UNP_PCB_UNLOCK(unp2);
377	} else {
378		sa = &sun_noname;
379		bcopy(sa, *nam, sa->sa_len);
380	}
381	UNP_LINK_RUNLOCK();
382	return (0);
383}
384
385static int
386uipc_attach(struct socket *so, int proto, struct thread *td)
387{
388	u_long sendspace, recvspace;
389	struct unpcb *unp;
390	int error;
391
392	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
393	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
394		switch (so->so_type) {
395		case SOCK_STREAM:
396			sendspace = unpst_sendspace;
397			recvspace = unpst_recvspace;
398			break;
399
400		case SOCK_DGRAM:
401			sendspace = unpdg_sendspace;
402			recvspace = unpdg_recvspace;
403			break;
404
405		case SOCK_SEQPACKET:
406			sendspace = unpsp_sendspace;
407			recvspace = unpsp_recvspace;
408			break;
409
410		default:
411			panic("uipc_attach");
412		}
413		error = soreserve(so, sendspace, recvspace);
414		if (error)
415			return (error);
416	}
417	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
418	if (unp == NULL)
419		return (ENOBUFS);
420	LIST_INIT(&unp->unp_refs);
421	UNP_PCB_LOCK_INIT(unp);
422	unp->unp_socket = so;
423	so->so_pcb = unp;
424	unp->unp_refcount = 1;
425
426	UNP_LIST_LOCK();
427	unp->unp_gencnt = ++unp_gencnt;
428	unp_count++;
429	switch (so->so_type) {
430	case SOCK_STREAM:
431		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
432		break;
433
434	case SOCK_DGRAM:
435		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
436		break;
437
438	case SOCK_SEQPACKET:
439		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
440		break;
441
442	default:
443		panic("uipc_attach");
444	}
445	UNP_LIST_UNLOCK();
446
447	return (0);
448}
449
450static int
451uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
452{
453	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
454	struct vattr vattr;
455	int error, namelen, vfslocked;
456	struct nameidata nd;
457	struct unpcb *unp;
458	struct vnode *vp;
459	struct mount *mp;
460	char *buf;
461
462	unp = sotounpcb(so);
463	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
464
465	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
466	if (namelen <= 0)
467		return (EINVAL);
468
469	/*
470	 * We don't allow simultaneous bind() calls on a single UNIX domain
471	 * socket, so flag in-progress operations, and return an error if an
472	 * operation is already in progress.
473	 *
474	 * Historically, we have not allowed a socket to be rebound, so this
475	 * also returns an error.  Not allowing re-binding simplifies the
476	 * implementation and avoids a great many possible failure modes.
477	 */
478	UNP_PCB_LOCK(unp);
479	if (unp->unp_vnode != NULL) {
480		UNP_PCB_UNLOCK(unp);
481		return (EINVAL);
482	}
483	if (unp->unp_flags & UNP_BINDING) {
484		UNP_PCB_UNLOCK(unp);
485		return (EALREADY);
486	}
487	unp->unp_flags |= UNP_BINDING;
488	UNP_PCB_UNLOCK(unp);
489
490	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
491	bcopy(soun->sun_path, buf, namelen);
492	buf[namelen] = 0;
493
494restart:
495	vfslocked = 0;
496	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
497	    UIO_SYSSPACE, buf, td);
498/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
499	error = namei(&nd);
500	if (error)
501		goto error;
502	vp = nd.ni_vp;
503	vfslocked = NDHASGIANT(&nd);
504	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
505		NDFREE(&nd, NDF_ONLY_PNBUF);
506		if (nd.ni_dvp == vp)
507			vrele(nd.ni_dvp);
508		else
509			vput(nd.ni_dvp);
510		if (vp != NULL) {
511			vrele(vp);
512			error = EADDRINUSE;
513			goto error;
514		}
515		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
516		if (error)
517			goto error;
518		VFS_UNLOCK_GIANT(vfslocked);
519		goto restart;
520	}
521	VATTR_NULL(&vattr);
522	vattr.va_type = VSOCK;
523	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
524#ifdef MAC
525	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
526	    &vattr);
527#endif
528	if (error == 0)
529		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
530	NDFREE(&nd, NDF_ONLY_PNBUF);
531	vput(nd.ni_dvp);
532	if (error) {
533		vn_finished_write(mp);
534		goto error;
535	}
536	vp = nd.ni_vp;
537	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
538	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
539
540	UNP_LINK_WLOCK();
541	UNP_PCB_LOCK(unp);
542	vp->v_socket = unp->unp_socket;
543	unp->unp_vnode = vp;
544	unp->unp_addr = soun;
545	unp->unp_flags &= ~UNP_BINDING;
546	UNP_PCB_UNLOCK(unp);
547	UNP_LINK_WUNLOCK();
548	VOP_UNLOCK(vp, 0);
549	vn_finished_write(mp);
550	VFS_UNLOCK_GIANT(vfslocked);
551	free(buf, M_TEMP);
552	return (0);
553
554error:
555	VFS_UNLOCK_GIANT(vfslocked);
556	UNP_PCB_LOCK(unp);
557	unp->unp_flags &= ~UNP_BINDING;
558	UNP_PCB_UNLOCK(unp);
559	free(buf, M_TEMP);
560	return (error);
561}
562
563static int
564uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
565{
566	int error;
567
568	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
569	UNP_LINK_WLOCK();
570	error = unp_connect(so, nam, td);
571	UNP_LINK_WUNLOCK();
572	return (error);
573}
574
575static void
576uipc_close(struct socket *so)
577{
578	struct unpcb *unp, *unp2;
579
580	unp = sotounpcb(so);
581	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
582
583	UNP_LINK_WLOCK();
584	UNP_PCB_LOCK(unp);
585	unp2 = unp->unp_conn;
586	if (unp2 != NULL) {
587		UNP_PCB_LOCK(unp2);
588		unp_disconnect(unp, unp2);
589		UNP_PCB_UNLOCK(unp2);
590	}
591	UNP_PCB_UNLOCK(unp);
592	UNP_LINK_WUNLOCK();
593}
594
595static int
596uipc_connect2(struct socket *so1, struct socket *so2)
597{
598	struct unpcb *unp, *unp2;
599	int error;
600
601	UNP_LINK_WLOCK();
602	unp = so1->so_pcb;
603	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
604	UNP_PCB_LOCK(unp);
605	unp2 = so2->so_pcb;
606	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
607	UNP_PCB_LOCK(unp2);
608	error = unp_connect2(so1, so2, PRU_CONNECT2);
609	UNP_PCB_UNLOCK(unp2);
610	UNP_PCB_UNLOCK(unp);
611	UNP_LINK_WUNLOCK();
612	return (error);
613}
614
615static void
616uipc_detach(struct socket *so)
617{
618	struct unpcb *unp, *unp2;
619	struct sockaddr_un *saved_unp_addr;
620	struct vnode *vp;
621	int freeunp, local_unp_rights;
622
623	unp = sotounpcb(so);
624	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
625
626	UNP_LINK_WLOCK();
627	UNP_LIST_LOCK();
628	UNP_PCB_LOCK(unp);
629	LIST_REMOVE(unp, unp_link);
630	unp->unp_gencnt = ++unp_gencnt;
631	--unp_count;
632	UNP_LIST_UNLOCK();
633
634	/*
635	 * XXXRW: Should assert vp->v_socket == so.
636	 */
637	if ((vp = unp->unp_vnode) != NULL) {
638		unp->unp_vnode->v_socket = NULL;
639		unp->unp_vnode = NULL;
640	}
641	unp2 = unp->unp_conn;
642	if (unp2 != NULL) {
643		UNP_PCB_LOCK(unp2);
644		unp_disconnect(unp, unp2);
645		UNP_PCB_UNLOCK(unp2);
646	}
647
648	/*
649	 * We hold the linkage lock exclusively, so it's OK to acquire
650	 * multiple pcb locks at a time.
651	 */
652	while (!LIST_EMPTY(&unp->unp_refs)) {
653		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
654
655		UNP_PCB_LOCK(ref);
656		unp_drop(ref, ECONNRESET);
657		UNP_PCB_UNLOCK(ref);
658	}
659	local_unp_rights = unp_rights;
660	UNP_LINK_WUNLOCK();
661	unp->unp_socket->so_pcb = NULL;
662	saved_unp_addr = unp->unp_addr;
663	unp->unp_addr = NULL;
664	unp->unp_refcount--;
665	freeunp = (unp->unp_refcount == 0);
666	if (saved_unp_addr != NULL)
667		free(saved_unp_addr, M_SONAME);
668	if (freeunp) {
669		UNP_PCB_LOCK_DESTROY(unp);
670		uma_zfree(unp_zone, unp);
671	} else
672		UNP_PCB_UNLOCK(unp);
673	if (vp) {
674		int vfslocked;
675
676		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
677		vrele(vp);
678		VFS_UNLOCK_GIANT(vfslocked);
679	}
680	if (local_unp_rights)
681		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
682}
683
684static int
685uipc_disconnect(struct socket *so)
686{
687	struct unpcb *unp, *unp2;
688
689	unp = sotounpcb(so);
690	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
691
692	UNP_LINK_WLOCK();
693	UNP_PCB_LOCK(unp);
694	unp2 = unp->unp_conn;
695	if (unp2 != NULL) {
696		UNP_PCB_LOCK(unp2);
697		unp_disconnect(unp, unp2);
698		UNP_PCB_UNLOCK(unp2);
699	}
700	UNP_PCB_UNLOCK(unp);
701	UNP_LINK_WUNLOCK();
702	return (0);
703}
704
705static int
706uipc_listen(struct socket *so, int backlog, struct thread *td)
707{
708	struct unpcb *unp;
709	int error;
710
711	unp = sotounpcb(so);
712	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
713
714	UNP_PCB_LOCK(unp);
715	if (unp->unp_vnode == NULL) {
716		UNP_PCB_UNLOCK(unp);
717		return (EINVAL);
718	}
719
720	SOCK_LOCK(so);
721	error = solisten_proto_check(so);
722	if (error == 0) {
723		cru2x(td->td_ucred, &unp->unp_peercred);
724		unp->unp_flags |= UNP_HAVEPCCACHED;
725		solisten_proto(so, backlog);
726	}
727	SOCK_UNLOCK(so);
728	UNP_PCB_UNLOCK(unp);
729	return (error);
730}
731
732static int
733uipc_peeraddr(struct socket *so, struct sockaddr **nam)
734{
735	struct unpcb *unp, *unp2;
736	const struct sockaddr *sa;
737
738	unp = sotounpcb(so);
739	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
740
741	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
742	UNP_LINK_RLOCK();
743	/*
744	 * XXX: It seems that this test always fails even when connection is
745	 * established.  So, this else clause is added as workaround to
746	 * return PF_LOCAL sockaddr.
747	 */
748	unp2 = unp->unp_conn;
749	if (unp2 != NULL) {
750		UNP_PCB_LOCK(unp2);
751		if (unp2->unp_addr != NULL)
752			sa = (struct sockaddr *) unp2->unp_addr;
753		else
754			sa = &sun_noname;
755		bcopy(sa, *nam, sa->sa_len);
756		UNP_PCB_UNLOCK(unp2);
757	} else {
758		sa = &sun_noname;
759		bcopy(sa, *nam, sa->sa_len);
760	}
761	UNP_LINK_RUNLOCK();
762	return (0);
763}
764
765static int
766uipc_rcvd(struct socket *so, int flags)
767{
768	struct unpcb *unp, *unp2;
769	struct socket *so2;
770	u_int mbcnt, sbcc;
771	u_long newhiwat;
772
773	unp = sotounpcb(so);
774	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
775
776	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
777		panic("uipc_rcvd socktype %d", so->so_type);
778
779	/*
780	 * Adjust backpressure on sender and wakeup any waiting to write.
781	 *
782	 * The unp lock is acquired to maintain the validity of the unp_conn
783	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
784	 * static as long as we don't permit unp2 to disconnect from unp,
785	 * which is prevented by the lock on unp.  We cache values from
786	 * so_rcv to avoid holding the so_rcv lock over the entire
787	 * transaction on the remote so_snd.
788	 */
789	SOCKBUF_LOCK(&so->so_rcv);
790	mbcnt = so->so_rcv.sb_mbcnt;
791	sbcc = so->so_rcv.sb_cc;
792	SOCKBUF_UNLOCK(&so->so_rcv);
793	UNP_PCB_LOCK(unp);
794	unp2 = unp->unp_conn;
795	if (unp2 == NULL) {
796		UNP_PCB_UNLOCK(unp);
797		return (0);
798	}
799	so2 = unp2->unp_socket;
800	SOCKBUF_LOCK(&so2->so_snd);
801	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
802	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
803	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
804	    newhiwat, RLIM_INFINITY);
805	sowwakeup_locked(so2);
806	unp->unp_mbcnt = mbcnt;
807	unp->unp_cc = sbcc;
808	UNP_PCB_UNLOCK(unp);
809	return (0);
810}
811
812static int
813uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
814    struct mbuf *control, struct thread *td)
815{
816	struct unpcb *unp, *unp2;
817	struct socket *so2;
818	u_int mbcnt_delta, sbcc;
819	u_long newhiwat;
820	int error = 0;
821
822	unp = sotounpcb(so);
823	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
824
825	if (flags & PRUS_OOB) {
826		error = EOPNOTSUPP;
827		goto release;
828	}
829	if (control != NULL && (error = unp_internalize(&control, td)))
830		goto release;
831	if ((nam != NULL) || (flags & PRUS_EOF))
832		UNP_LINK_WLOCK();
833	else
834		UNP_LINK_RLOCK();
835	switch (so->so_type) {
836	case SOCK_DGRAM:
837	{
838		const struct sockaddr *from;
839
840		unp2 = unp->unp_conn;
841		if (nam != NULL) {
842			UNP_LINK_WLOCK_ASSERT();
843			if (unp2 != NULL) {
844				error = EISCONN;
845				break;
846			}
847			error = unp_connect(so, nam, td);
848			if (error)
849				break;
850			unp2 = unp->unp_conn;
851		}
852
853		/*
854		 * Because connect() and send() are non-atomic in a sendto()
855		 * with a target address, it's possible that the socket will
856		 * have disconnected before the send() can run.  In that case
857		 * return the slightly counter-intuitive but otherwise
858		 * correct error that the socket is not connected.
859		 */
860		if (unp2 == NULL) {
861			error = ENOTCONN;
862			break;
863		}
864		/* Lockless read. */
865		if (unp2->unp_flags & UNP_WANTCRED)
866			control = unp_addsockcred(td, control);
867		UNP_PCB_LOCK(unp);
868		if (unp->unp_addr != NULL)
869			from = (struct sockaddr *)unp->unp_addr;
870		else
871			from = &sun_noname;
872		so2 = unp2->unp_socket;
873		SOCKBUF_LOCK(&so2->so_rcv);
874		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
875			sorwakeup_locked(so2);
876			m = NULL;
877			control = NULL;
878		} else {
879			SOCKBUF_UNLOCK(&so2->so_rcv);
880			error = ENOBUFS;
881		}
882		if (nam != NULL) {
883			UNP_LINK_WLOCK_ASSERT();
884			UNP_PCB_LOCK(unp2);
885			unp_disconnect(unp, unp2);
886			UNP_PCB_UNLOCK(unp2);
887		}
888		UNP_PCB_UNLOCK(unp);
889		break;
890	}
891
892	case SOCK_SEQPACKET:
893	case SOCK_STREAM:
894		if ((so->so_state & SS_ISCONNECTED) == 0) {
895			if (nam != NULL) {
896				UNP_LINK_WLOCK_ASSERT();
897				error = unp_connect(so, nam, td);
898				if (error)
899					break;	/* XXX */
900			} else {
901				error = ENOTCONN;
902				break;
903			}
904		}
905
906		/* Lockless read. */
907		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
908			error = EPIPE;
909			break;
910		}
911
912		/*
913		 * Because connect() and send() are non-atomic in a sendto()
914		 * with a target address, it's possible that the socket will
915		 * have disconnected before the send() can run.  In that case
916		 * return the slightly counter-intuitive but otherwise
917		 * correct error that the socket is not connected.
918		 *
919		 * Locking here must be done carefully: the linkage lock
920		 * prevents interconnections between unpcbs from changing, so
921		 * we can traverse from unp to unp2 without acquiring unp's
922		 * lock.  Socket buffer locks follow unpcb locks, so we can
923		 * acquire both remote and lock socket buffer locks.
924		 */
925		unp2 = unp->unp_conn;
926		if (unp2 == NULL) {
927			error = ENOTCONN;
928			break;
929		}
930		so2 = unp2->unp_socket;
931		UNP_PCB_LOCK(unp2);
932		SOCKBUF_LOCK(&so2->so_rcv);
933		if (unp2->unp_flags & UNP_WANTCRED) {
934			/*
935			 * Credentials are passed only once on SOCK_STREAM.
936			 */
937			unp2->unp_flags &= ~UNP_WANTCRED;
938			control = unp_addsockcred(td, control);
939		}
940		/*
941		 * Send to paired receive port, and then reduce send buffer
942		 * hiwater marks to maintain backpressure.  Wake up readers.
943		 */
944		switch (so->so_type) {
945		case SOCK_STREAM:
946			if (control != NULL) {
947				if (sbappendcontrol_locked(&so2->so_rcv, m,
948				    control))
949					control = NULL;
950			} else
951				sbappend_locked(&so2->so_rcv, m);
952			break;
953
954		case SOCK_SEQPACKET: {
955			const struct sockaddr *from;
956
957			from = &sun_noname;
958			if (sbappendaddr_locked(&so2->so_rcv, from, m,
959			    control))
960				control = NULL;
961			break;
962			}
963		}
964
965		/*
966		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
967		 * datagram size and back-pressure for SOCK_SEQPACKET, which
968		 * can lead to undesired return of EMSGSIZE on send instead
969		 * of more desirable blocking.
970		 */
971		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
972		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
973		sbcc = so2->so_rcv.sb_cc;
974		sorwakeup_locked(so2);
975
976		SOCKBUF_LOCK(&so->so_snd);
977		newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
978		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
979		    newhiwat, RLIM_INFINITY);
980		so->so_snd.sb_mbmax -= mbcnt_delta;
981		SOCKBUF_UNLOCK(&so->so_snd);
982		unp2->unp_cc = sbcc;
983		UNP_PCB_UNLOCK(unp2);
984		m = NULL;
985		break;
986
987	default:
988		panic("uipc_send unknown socktype");
989	}
990
991	/*
992	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
993	 */
994	if (flags & PRUS_EOF) {
995		UNP_PCB_LOCK(unp);
996		socantsendmore(so);
997		unp_shutdown(unp);
998		UNP_PCB_UNLOCK(unp);
999	}
1000
1001	if ((nam != NULL) || (flags & PRUS_EOF))
1002		UNP_LINK_WUNLOCK();
1003	else
1004		UNP_LINK_RUNLOCK();
1005
1006	if (control != NULL && error != 0)
1007		unp_dispose(control);
1008
1009release:
1010	if (control != NULL)
1011		m_freem(control);
1012	if (m != NULL)
1013		m_freem(m);
1014	return (error);
1015}
1016
1017static int
1018uipc_sense(struct socket *so, struct stat *sb)
1019{
1020	struct unpcb *unp, *unp2;
1021	struct socket *so2;
1022
1023	unp = sotounpcb(so);
1024	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1025
1026	sb->st_blksize = so->so_snd.sb_hiwat;
1027	UNP_LINK_RLOCK();
1028	UNP_PCB_LOCK(unp);
1029	unp2 = unp->unp_conn;
1030	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1031	    unp2 != NULL) {
1032		so2 = unp2->unp_socket;
1033		sb->st_blksize += so2->so_rcv.sb_cc;
1034	}
1035	sb->st_dev = NODEV;
1036	if (unp->unp_ino == 0)
1037		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1038	sb->st_ino = unp->unp_ino;
1039	UNP_PCB_UNLOCK(unp);
1040	UNP_LINK_RUNLOCK();
1041	return (0);
1042}
1043
1044static int
1045uipc_shutdown(struct socket *so)
1046{
1047	struct unpcb *unp;
1048
1049	unp = sotounpcb(so);
1050	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1051
1052	UNP_LINK_WLOCK();
1053	UNP_PCB_LOCK(unp);
1054	socantsendmore(so);
1055	unp_shutdown(unp);
1056	UNP_PCB_UNLOCK(unp);
1057	UNP_LINK_WUNLOCK();
1058	return (0);
1059}
1060
1061static int
1062uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1063{
1064	struct unpcb *unp;
1065	const struct sockaddr *sa;
1066
1067	unp = sotounpcb(so);
1068	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1069
1070	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1071	UNP_PCB_LOCK(unp);
1072	if (unp->unp_addr != NULL)
1073		sa = (struct sockaddr *) unp->unp_addr;
1074	else
1075		sa = &sun_noname;
1076	bcopy(sa, *nam, sa->sa_len);
1077	UNP_PCB_UNLOCK(unp);
1078	return (0);
1079}
1080
1081static struct pr_usrreqs uipc_usrreqs_dgram = {
1082	.pru_abort = 		uipc_abort,
1083	.pru_accept =		uipc_accept,
1084	.pru_attach =		uipc_attach,
1085	.pru_bind =		uipc_bind,
1086	.pru_connect =		uipc_connect,
1087	.pru_connect2 =		uipc_connect2,
1088	.pru_detach =		uipc_detach,
1089	.pru_disconnect =	uipc_disconnect,
1090	.pru_listen =		uipc_listen,
1091	.pru_peeraddr =		uipc_peeraddr,
1092	.pru_rcvd =		uipc_rcvd,
1093	.pru_send =		uipc_send,
1094	.pru_sense =		uipc_sense,
1095	.pru_shutdown =		uipc_shutdown,
1096	.pru_sockaddr =		uipc_sockaddr,
1097	.pru_soreceive =	soreceive_dgram,
1098	.pru_close =		uipc_close,
1099};
1100
1101static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1102	.pru_abort =		uipc_abort,
1103	.pru_accept =		uipc_accept,
1104	.pru_attach =		uipc_attach,
1105	.pru_bind =		uipc_bind,
1106	.pru_connect =		uipc_connect,
1107	.pru_connect2 =		uipc_connect2,
1108	.pru_detach =		uipc_detach,
1109	.pru_disconnect =	uipc_disconnect,
1110	.pru_listen =		uipc_listen,
1111	.pru_peeraddr =		uipc_peeraddr,
1112	.pru_rcvd =		uipc_rcvd,
1113	.pru_send =		uipc_send,
1114	.pru_sense =		uipc_sense,
1115	.pru_shutdown =		uipc_shutdown,
1116	.pru_sockaddr =		uipc_sockaddr,
1117	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1118	.pru_close =		uipc_close,
1119};
1120
1121static struct pr_usrreqs uipc_usrreqs_stream = {
1122	.pru_abort = 		uipc_abort,
1123	.pru_accept =		uipc_accept,
1124	.pru_attach =		uipc_attach,
1125	.pru_bind =		uipc_bind,
1126	.pru_connect =		uipc_connect,
1127	.pru_connect2 =		uipc_connect2,
1128	.pru_detach =		uipc_detach,
1129	.pru_disconnect =	uipc_disconnect,
1130	.pru_listen =		uipc_listen,
1131	.pru_peeraddr =		uipc_peeraddr,
1132	.pru_rcvd =		uipc_rcvd,
1133	.pru_send =		uipc_send,
1134	.pru_sense =		uipc_sense,
1135	.pru_shutdown =		uipc_shutdown,
1136	.pru_sockaddr =		uipc_sockaddr,
1137	.pru_soreceive =	soreceive_generic,
1138	.pru_close =		uipc_close,
1139};
1140
1141static int
1142uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1143{
1144	struct unpcb *unp;
1145	struct xucred xu;
1146	int error, optval;
1147
1148	if (sopt->sopt_level != 0)
1149		return (EINVAL);
1150
1151	unp = sotounpcb(so);
1152	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1153	error = 0;
1154	switch (sopt->sopt_dir) {
1155	case SOPT_GET:
1156		switch (sopt->sopt_name) {
1157		case LOCAL_PEERCRED:
1158			UNP_PCB_LOCK(unp);
1159			if (unp->unp_flags & UNP_HAVEPC)
1160				xu = unp->unp_peercred;
1161			else {
1162				if (so->so_type == SOCK_STREAM)
1163					error = ENOTCONN;
1164				else
1165					error = EINVAL;
1166			}
1167			UNP_PCB_UNLOCK(unp);
1168			if (error == 0)
1169				error = sooptcopyout(sopt, &xu, sizeof(xu));
1170			break;
1171
1172		case LOCAL_CREDS:
1173			/* Unlocked read. */
1174			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1175			error = sooptcopyout(sopt, &optval, sizeof(optval));
1176			break;
1177
1178		case LOCAL_CONNWAIT:
1179			/* Unlocked read. */
1180			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1181			error = sooptcopyout(sopt, &optval, sizeof(optval));
1182			break;
1183
1184		default:
1185			error = EOPNOTSUPP;
1186			break;
1187		}
1188		break;
1189
1190	case SOPT_SET:
1191		switch (sopt->sopt_name) {
1192		case LOCAL_CREDS:
1193		case LOCAL_CONNWAIT:
1194			error = sooptcopyin(sopt, &optval, sizeof(optval),
1195					    sizeof(optval));
1196			if (error)
1197				break;
1198
1199#define	OPTSET(bit) do {						\
1200	UNP_PCB_LOCK(unp);						\
1201	if (optval)							\
1202		unp->unp_flags |= bit;					\
1203	else								\
1204		unp->unp_flags &= ~bit;					\
1205	UNP_PCB_UNLOCK(unp);						\
1206} while (0)
1207
1208			switch (sopt->sopt_name) {
1209			case LOCAL_CREDS:
1210				OPTSET(UNP_WANTCRED);
1211				break;
1212
1213			case LOCAL_CONNWAIT:
1214				OPTSET(UNP_CONNWAIT);
1215				break;
1216
1217			default:
1218				break;
1219			}
1220			break;
1221#undef	OPTSET
1222		default:
1223			error = ENOPROTOOPT;
1224			break;
1225		}
1226		break;
1227
1228	default:
1229		error = EOPNOTSUPP;
1230		break;
1231	}
1232	return (error);
1233}
1234
1235static int
1236unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1237{
1238	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1239	struct vnode *vp;
1240	struct socket *so2, *so3;
1241	struct unpcb *unp, *unp2, *unp3;
1242	int error, len, vfslocked;
1243	struct nameidata nd;
1244	char buf[SOCK_MAXADDRLEN];
1245	struct sockaddr *sa;
1246
1247	UNP_LINK_WLOCK_ASSERT();
1248
1249	unp = sotounpcb(so);
1250	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1251
1252	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1253	if (len <= 0)
1254		return (EINVAL);
1255	bcopy(soun->sun_path, buf, len);
1256	buf[len] = 0;
1257
1258	UNP_PCB_LOCK(unp);
1259	if (unp->unp_flags & UNP_CONNECTING) {
1260		UNP_PCB_UNLOCK(unp);
1261		return (EALREADY);
1262	}
1263	UNP_LINK_WUNLOCK();
1264	unp->unp_flags |= UNP_CONNECTING;
1265	UNP_PCB_UNLOCK(unp);
1266
1267	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1268	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf,
1269	    td);
1270	error = namei(&nd);
1271	if (error)
1272		vp = NULL;
1273	else
1274		vp = nd.ni_vp;
1275	ASSERT_VOP_LOCKED(vp, "unp_connect");
1276	vfslocked = NDHASGIANT(&nd);
1277	NDFREE(&nd, NDF_ONLY_PNBUF);
1278	if (error)
1279		goto bad;
1280
1281	if (vp->v_type != VSOCK) {
1282		error = ENOTSOCK;
1283		goto bad;
1284	}
1285#ifdef MAC
1286	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1287	if (error)
1288		goto bad;
1289#endif
1290	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1291	if (error)
1292		goto bad;
1293	VFS_UNLOCK_GIANT(vfslocked);
1294
1295	unp = sotounpcb(so);
1296	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1297
1298	/*
1299	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1300	 * and to protect simultaneous locking of multiple pcbs.
1301	 */
1302	UNP_LINK_WLOCK();
1303	so2 = vp->v_socket;
1304	if (so2 == NULL) {
1305		error = ECONNREFUSED;
1306		goto bad2;
1307	}
1308	if (so->so_type != so2->so_type) {
1309		error = EPROTOTYPE;
1310		goto bad2;
1311	}
1312	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1313		if (so2->so_options & SO_ACCEPTCONN) {
1314			so3 = sonewconn(so2, 0);
1315		} else
1316			so3 = NULL;
1317		if (so3 == NULL) {
1318			error = ECONNREFUSED;
1319			goto bad2;
1320		}
1321		unp = sotounpcb(so);
1322		unp2 = sotounpcb(so2);
1323		unp3 = sotounpcb(so3);
1324		UNP_PCB_LOCK(unp);
1325		UNP_PCB_LOCK(unp2);
1326		UNP_PCB_LOCK(unp3);
1327		if (unp2->unp_addr != NULL) {
1328			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1329			unp3->unp_addr = (struct sockaddr_un *) sa;
1330			sa = NULL;
1331		}
1332
1333		/*
1334		 * The connecter's (client's) credentials are copied from its
1335		 * process structure at the time of connect() (which is now).
1336		 */
1337		cru2x(td->td_ucred, &unp3->unp_peercred);
1338		unp3->unp_flags |= UNP_HAVEPC;
1339
1340		/*
1341		 * The receiver's (server's) credentials are copied from the
1342		 * unp_peercred member of socket on which the former called
1343		 * listen(); uipc_listen() cached that process's credentials
1344		 * at that time so we can use them now.
1345		 */
1346		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1347		    ("unp_connect: listener without cached peercred"));
1348		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1349		    sizeof(unp->unp_peercred));
1350		unp->unp_flags |= UNP_HAVEPC;
1351		if (unp2->unp_flags & UNP_WANTCRED)
1352			unp3->unp_flags |= UNP_WANTCRED;
1353		UNP_PCB_UNLOCK(unp3);
1354		UNP_PCB_UNLOCK(unp2);
1355		UNP_PCB_UNLOCK(unp);
1356#ifdef MAC
1357		mac_socketpeer_set_from_socket(so, so3);
1358		mac_socketpeer_set_from_socket(so3, so);
1359#endif
1360
1361		so2 = so3;
1362	}
1363	unp = sotounpcb(so);
1364	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1365	unp2 = sotounpcb(so2);
1366	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1367	UNP_PCB_LOCK(unp);
1368	UNP_PCB_LOCK(unp2);
1369	error = unp_connect2(so, so2, PRU_CONNECT);
1370	UNP_PCB_UNLOCK(unp2);
1371	UNP_PCB_UNLOCK(unp);
1372bad2:
1373	UNP_LINK_WUNLOCK();
1374	if (vfslocked)
1375		/*
1376		 * Giant has been previously acquired. This means filesystem
1377		 * isn't MPSAFE.  Do it once again.
1378		 */
1379		mtx_lock(&Giant);
1380bad:
1381	if (vp != NULL)
1382		vput(vp);
1383	VFS_UNLOCK_GIANT(vfslocked);
1384	free(sa, M_SONAME);
1385	UNP_LINK_WLOCK();
1386	UNP_PCB_LOCK(unp);
1387	unp->unp_flags &= ~UNP_CONNECTING;
1388	UNP_PCB_UNLOCK(unp);
1389	return (error);
1390}
1391
1392static int
1393unp_connect2(struct socket *so, struct socket *so2, int req)
1394{
1395	struct unpcb *unp;
1396	struct unpcb *unp2;
1397
1398	unp = sotounpcb(so);
1399	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1400	unp2 = sotounpcb(so2);
1401	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1402
1403	UNP_LINK_WLOCK_ASSERT();
1404	UNP_PCB_LOCK_ASSERT(unp);
1405	UNP_PCB_LOCK_ASSERT(unp2);
1406
1407	if (so2->so_type != so->so_type)
1408		return (EPROTOTYPE);
1409	unp->unp_conn = unp2;
1410
1411	switch (so->so_type) {
1412	case SOCK_DGRAM:
1413		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1414		soisconnected(so);
1415		break;
1416
1417	case SOCK_STREAM:
1418	case SOCK_SEQPACKET:
1419		unp2->unp_conn = unp;
1420		if (req == PRU_CONNECT &&
1421		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1422			soisconnecting(so);
1423		else
1424			soisconnected(so);
1425		soisconnected(so2);
1426		break;
1427
1428	default:
1429		panic("unp_connect2");
1430	}
1431	return (0);
1432}
1433
1434static void
1435unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1436{
1437	struct socket *so;
1438
1439	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1440
1441	UNP_LINK_WLOCK_ASSERT();
1442	UNP_PCB_LOCK_ASSERT(unp);
1443	UNP_PCB_LOCK_ASSERT(unp2);
1444
1445	unp->unp_conn = NULL;
1446	switch (unp->unp_socket->so_type) {
1447	case SOCK_DGRAM:
1448		LIST_REMOVE(unp, unp_reflink);
1449		so = unp->unp_socket;
1450		SOCK_LOCK(so);
1451		so->so_state &= ~SS_ISCONNECTED;
1452		SOCK_UNLOCK(so);
1453		break;
1454
1455	case SOCK_STREAM:
1456	case SOCK_SEQPACKET:
1457		soisdisconnected(unp->unp_socket);
1458		unp2->unp_conn = NULL;
1459		soisdisconnected(unp2->unp_socket);
1460		break;
1461	}
1462}
1463
1464/*
1465 * unp_pcblist() walks the global list of struct unpcb's to generate a
1466 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1467 * sequentially, validating the generation number on each to see if it has
1468 * been detached.  All of this is necessary because copyout() may sleep on
1469 * disk I/O.
1470 */
1471static int
1472unp_pcblist(SYSCTL_HANDLER_ARGS)
1473{
1474	int error, i, n;
1475	int freeunp;
1476	struct unpcb *unp, **unp_list;
1477	unp_gen_t gencnt;
1478	struct xunpgen *xug;
1479	struct unp_head *head;
1480	struct xunpcb *xu;
1481
1482	switch ((intptr_t)arg1) {
1483	case SOCK_STREAM:
1484		head = &unp_shead;
1485		break;
1486
1487	case SOCK_DGRAM:
1488		head = &unp_dhead;
1489		break;
1490
1491	case SOCK_SEQPACKET:
1492		head = &unp_sphead;
1493		break;
1494
1495	default:
1496		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1497	}
1498
1499	/*
1500	 * The process of preparing the PCB list is too time-consuming and
1501	 * resource-intensive to repeat twice on every request.
1502	 */
1503	if (req->oldptr == NULL) {
1504		n = unp_count;
1505		req->oldidx = 2 * (sizeof *xug)
1506			+ (n + n/8) * sizeof(struct xunpcb);
1507		return (0);
1508	}
1509
1510	if (req->newptr != NULL)
1511		return (EPERM);
1512
1513	/*
1514	 * OK, now we're committed to doing something.
1515	 */
1516	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1517	UNP_LIST_LOCK();
1518	gencnt = unp_gencnt;
1519	n = unp_count;
1520	UNP_LIST_UNLOCK();
1521
1522	xug->xug_len = sizeof *xug;
1523	xug->xug_count = n;
1524	xug->xug_gen = gencnt;
1525	xug->xug_sogen = so_gencnt;
1526	error = SYSCTL_OUT(req, xug, sizeof *xug);
1527	if (error) {
1528		free(xug, M_TEMP);
1529		return (error);
1530	}
1531
1532	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1533
1534	UNP_LIST_LOCK();
1535	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1536	     unp = LIST_NEXT(unp, unp_link)) {
1537		UNP_PCB_LOCK(unp);
1538		if (unp->unp_gencnt <= gencnt) {
1539			if (cr_cansee(req->td->td_ucred,
1540			    unp->unp_socket->so_cred)) {
1541				UNP_PCB_UNLOCK(unp);
1542				continue;
1543			}
1544			unp_list[i++] = unp;
1545			unp->unp_refcount++;
1546		}
1547		UNP_PCB_UNLOCK(unp);
1548	}
1549	UNP_LIST_UNLOCK();
1550	n = i;			/* In case we lost some during malloc. */
1551
1552	error = 0;
1553	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1554	for (i = 0; i < n; i++) {
1555		unp = unp_list[i];
1556		UNP_PCB_LOCK(unp);
1557		unp->unp_refcount--;
1558	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1559			xu->xu_len = sizeof *xu;
1560			xu->xu_unpp = unp;
1561			/*
1562			 * XXX - need more locking here to protect against
1563			 * connect/disconnect races for SMP.
1564			 */
1565			if (unp->unp_addr != NULL)
1566				bcopy(unp->unp_addr, &xu->xu_addr,
1567				      unp->unp_addr->sun_len);
1568			if (unp->unp_conn != NULL &&
1569			    unp->unp_conn->unp_addr != NULL)
1570				bcopy(unp->unp_conn->unp_addr,
1571				      &xu->xu_caddr,
1572				      unp->unp_conn->unp_addr->sun_len);
1573			bcopy(unp, &xu->xu_unp, sizeof *unp);
1574			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1575			UNP_PCB_UNLOCK(unp);
1576			error = SYSCTL_OUT(req, xu, sizeof *xu);
1577		} else {
1578			freeunp = (unp->unp_refcount == 0);
1579			UNP_PCB_UNLOCK(unp);
1580			if (freeunp) {
1581				UNP_PCB_LOCK_DESTROY(unp);
1582				uma_zfree(unp_zone, unp);
1583			}
1584		}
1585	}
1586	free(xu, M_TEMP);
1587	if (!error) {
1588		/*
1589		 * Give the user an updated idea of our state.  If the
1590		 * generation differs from what we told her before, she knows
1591		 * that something happened while we were processing this
1592		 * request, and it might be necessary to retry.
1593		 */
1594		xug->xug_gen = unp_gencnt;
1595		xug->xug_sogen = so_gencnt;
1596		xug->xug_count = unp_count;
1597		error = SYSCTL_OUT(req, xug, sizeof *xug);
1598	}
1599	free(unp_list, M_TEMP);
1600	free(xug, M_TEMP);
1601	return (error);
1602}
1603
1604SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1605    (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1606    "List of active local datagram sockets");
1607SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1608    (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1609    "List of active local stream sockets");
1610SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1611    CTLTYPE_OPAQUE | CTLFLAG_RD,
1612    (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1613    "List of active local seqpacket sockets");
1614
1615static void
1616unp_shutdown(struct unpcb *unp)
1617{
1618	struct unpcb *unp2;
1619	struct socket *so;
1620
1621	UNP_LINK_WLOCK_ASSERT();
1622	UNP_PCB_LOCK_ASSERT(unp);
1623
1624	unp2 = unp->unp_conn;
1625	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1626	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1627		so = unp2->unp_socket;
1628		if (so != NULL)
1629			socantrcvmore(so);
1630	}
1631}
1632
1633static void
1634unp_drop(struct unpcb *unp, int errno)
1635{
1636	struct socket *so = unp->unp_socket;
1637	struct unpcb *unp2;
1638
1639	UNP_LINK_WLOCK_ASSERT();
1640	UNP_PCB_LOCK_ASSERT(unp);
1641
1642	so->so_error = errno;
1643	unp2 = unp->unp_conn;
1644	if (unp2 == NULL)
1645		return;
1646	UNP_PCB_LOCK(unp2);
1647	unp_disconnect(unp, unp2);
1648	UNP_PCB_UNLOCK(unp2);
1649}
1650
1651static void
1652unp_freerights(struct file **rp, int fdcount)
1653{
1654	int i;
1655	struct file *fp;
1656
1657	for (i = 0; i < fdcount; i++) {
1658		fp = *rp;
1659		*rp++ = NULL;
1660		unp_discard(fp);
1661	}
1662}
1663
1664static int
1665unp_externalize(struct mbuf *control, struct mbuf **controlp)
1666{
1667	struct thread *td = curthread;		/* XXX */
1668	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1669	int i;
1670	int *fdp;
1671	struct file **rp;
1672	struct file *fp;
1673	void *data;
1674	socklen_t clen = control->m_len, datalen;
1675	int error, newfds;
1676	int f;
1677	u_int newlen;
1678
1679	UNP_LINK_UNLOCK_ASSERT();
1680
1681	error = 0;
1682	if (controlp != NULL) /* controlp == NULL => free control messages */
1683		*controlp = NULL;
1684	while (cm != NULL) {
1685		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1686			error = EINVAL;
1687			break;
1688		}
1689		data = CMSG_DATA(cm);
1690		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1691		if (cm->cmsg_level == SOL_SOCKET
1692		    && cm->cmsg_type == SCM_RIGHTS) {
1693			newfds = datalen / sizeof(struct file *);
1694			rp = data;
1695
1696			/* If we're not outputting the descriptors free them. */
1697			if (error || controlp == NULL) {
1698				unp_freerights(rp, newfds);
1699				goto next;
1700			}
1701			FILEDESC_XLOCK(td->td_proc->p_fd);
1702			/* if the new FD's will not fit free them.  */
1703			if (!fdavail(td, newfds)) {
1704				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1705				error = EMSGSIZE;
1706				unp_freerights(rp, newfds);
1707				goto next;
1708			}
1709
1710			/*
1711			 * Now change each pointer to an fd in the global
1712			 * table to an integer that is the index to the local
1713			 * fd table entry that we set up to point to the
1714			 * global one we are transferring.
1715			 */
1716			newlen = newfds * sizeof(int);
1717			*controlp = sbcreatecontrol(NULL, newlen,
1718			    SCM_RIGHTS, SOL_SOCKET);
1719			if (*controlp == NULL) {
1720				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1721				error = E2BIG;
1722				unp_freerights(rp, newfds);
1723				goto next;
1724			}
1725
1726			fdp = (int *)
1727			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1728			for (i = 0; i < newfds; i++) {
1729				if (fdalloc(td, 0, &f))
1730					panic("unp_externalize fdalloc failed");
1731				fp = *rp++;
1732				td->td_proc->p_fd->fd_ofiles[f] = fp;
1733				unp_externalize_fp(fp);
1734				*fdp++ = f;
1735			}
1736			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1737		} else {
1738			/* We can just copy anything else across. */
1739			if (error || controlp == NULL)
1740				goto next;
1741			*controlp = sbcreatecontrol(NULL, datalen,
1742			    cm->cmsg_type, cm->cmsg_level);
1743			if (*controlp == NULL) {
1744				error = ENOBUFS;
1745				goto next;
1746			}
1747			bcopy(data,
1748			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1749			    datalen);
1750		}
1751		controlp = &(*controlp)->m_next;
1752
1753next:
1754		if (CMSG_SPACE(datalen) < clen) {
1755			clen -= CMSG_SPACE(datalen);
1756			cm = (struct cmsghdr *)
1757			    ((caddr_t)cm + CMSG_SPACE(datalen));
1758		} else {
1759			clen = 0;
1760			cm = NULL;
1761		}
1762	}
1763
1764	m_freem(control);
1765	return (error);
1766}
1767
1768static void
1769unp_zone_change(void *tag)
1770{
1771
1772	uma_zone_set_max(unp_zone, maxsockets);
1773}
1774
1775static void
1776unp_init(void)
1777{
1778
1779#ifdef VIMAGE
1780	if (!IS_DEFAULT_VNET(curvnet))
1781		return;
1782#endif
1783	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1784	    NULL, NULL, UMA_ALIGN_PTR, 0);
1785	if (unp_zone == NULL)
1786		panic("unp_init");
1787	uma_zone_set_max(unp_zone, maxsockets);
1788	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1789	    NULL, EVENTHANDLER_PRI_ANY);
1790	LIST_INIT(&unp_dhead);
1791	LIST_INIT(&unp_shead);
1792	LIST_INIT(&unp_sphead);
1793	SLIST_INIT(&unp_defers);
1794	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1795	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1796	UNP_LINK_LOCK_INIT();
1797	UNP_LIST_LOCK_INIT();
1798	UNP_DEFERRED_LOCK_INIT();
1799}
1800
1801static int
1802unp_internalize(struct mbuf **controlp, struct thread *td)
1803{
1804	struct mbuf *control = *controlp;
1805	struct proc *p = td->td_proc;
1806	struct filedesc *fdescp = p->p_fd;
1807	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1808	struct cmsgcred *cmcred;
1809	struct file **rp;
1810	struct file *fp;
1811	struct timeval *tv;
1812	int i, fd, *fdp;
1813	void *data;
1814	socklen_t clen = control->m_len, datalen;
1815	int error, oldfds;
1816	u_int newlen;
1817
1818	UNP_LINK_UNLOCK_ASSERT();
1819
1820	error = 0;
1821	*controlp = NULL;
1822	while (cm != NULL) {
1823		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1824		    || cm->cmsg_len > clen) {
1825			error = EINVAL;
1826			goto out;
1827		}
1828		data = CMSG_DATA(cm);
1829		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1830
1831		switch (cm->cmsg_type) {
1832		/*
1833		 * Fill in credential information.
1834		 */
1835		case SCM_CREDS:
1836			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1837			    SCM_CREDS, SOL_SOCKET);
1838			if (*controlp == NULL) {
1839				error = ENOBUFS;
1840				goto out;
1841			}
1842			cmcred = (struct cmsgcred *)
1843			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1844			cmcred->cmcred_pid = p->p_pid;
1845			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1846			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1847			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1848			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1849			    CMGROUP_MAX);
1850			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1851				cmcred->cmcred_groups[i] =
1852				    td->td_ucred->cr_groups[i];
1853			break;
1854
1855		case SCM_RIGHTS:
1856			oldfds = datalen / sizeof (int);
1857			/*
1858			 * Check that all the FDs passed in refer to legal
1859			 * files.  If not, reject the entire operation.
1860			 */
1861			fdp = data;
1862			FILEDESC_SLOCK(fdescp);
1863			for (i = 0; i < oldfds; i++) {
1864				fd = *fdp++;
1865				if ((unsigned)fd >= fdescp->fd_nfiles ||
1866				    fdescp->fd_ofiles[fd] == NULL) {
1867					FILEDESC_SUNLOCK(fdescp);
1868					error = EBADF;
1869					goto out;
1870				}
1871				fp = fdescp->fd_ofiles[fd];
1872				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1873					FILEDESC_SUNLOCK(fdescp);
1874					error = EOPNOTSUPP;
1875					goto out;
1876				}
1877
1878			}
1879
1880			/*
1881			 * Now replace the integer FDs with pointers to the
1882			 * associated global file table entry..
1883			 */
1884			newlen = oldfds * sizeof(struct file *);
1885			*controlp = sbcreatecontrol(NULL, newlen,
1886			    SCM_RIGHTS, SOL_SOCKET);
1887			if (*controlp == NULL) {
1888				FILEDESC_SUNLOCK(fdescp);
1889				error = E2BIG;
1890				goto out;
1891			}
1892			fdp = data;
1893			rp = (struct file **)
1894			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1895			for (i = 0; i < oldfds; i++) {
1896				fp = fdescp->fd_ofiles[*fdp++];
1897				*rp++ = fp;
1898				unp_internalize_fp(fp);
1899			}
1900			FILEDESC_SUNLOCK(fdescp);
1901			break;
1902
1903		case SCM_TIMESTAMP:
1904			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1905			    SCM_TIMESTAMP, SOL_SOCKET);
1906			if (*controlp == NULL) {
1907				error = ENOBUFS;
1908				goto out;
1909			}
1910			tv = (struct timeval *)
1911			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1912			microtime(tv);
1913			break;
1914
1915		default:
1916			error = EINVAL;
1917			goto out;
1918		}
1919
1920		controlp = &(*controlp)->m_next;
1921		if (CMSG_SPACE(datalen) < clen) {
1922			clen -= CMSG_SPACE(datalen);
1923			cm = (struct cmsghdr *)
1924			    ((caddr_t)cm + CMSG_SPACE(datalen));
1925		} else {
1926			clen = 0;
1927			cm = NULL;
1928		}
1929	}
1930
1931out:
1932	m_freem(control);
1933	return (error);
1934}
1935
1936static struct mbuf *
1937unp_addsockcred(struct thread *td, struct mbuf *control)
1938{
1939	struct mbuf *m, *n, *n_prev;
1940	struct sockcred *sc;
1941	const struct cmsghdr *cm;
1942	int ngroups;
1943	int i;
1944
1945	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1946	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1947	if (m == NULL)
1948		return (control);
1949
1950	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1951	sc->sc_uid = td->td_ucred->cr_ruid;
1952	sc->sc_euid = td->td_ucred->cr_uid;
1953	sc->sc_gid = td->td_ucred->cr_rgid;
1954	sc->sc_egid = td->td_ucred->cr_gid;
1955	sc->sc_ngroups = ngroups;
1956	for (i = 0; i < sc->sc_ngroups; i++)
1957		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1958
1959	/*
1960	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1961	 * created SCM_CREDS control message (struct sockcred) has another
1962	 * format.
1963	 */
1964	if (control != NULL)
1965		for (n = control, n_prev = NULL; n != NULL;) {
1966			cm = mtod(n, struct cmsghdr *);
1967    			if (cm->cmsg_level == SOL_SOCKET &&
1968			    cm->cmsg_type == SCM_CREDS) {
1969    				if (n_prev == NULL)
1970					control = n->m_next;
1971				else
1972					n_prev->m_next = n->m_next;
1973				n = m_free(n);
1974			} else {
1975				n_prev = n;
1976				n = n->m_next;
1977			}
1978		}
1979
1980	/* Prepend it to the head. */
1981	m->m_next = control;
1982	return (m);
1983}
1984
1985static struct unpcb *
1986fptounp(struct file *fp)
1987{
1988	struct socket *so;
1989
1990	if (fp->f_type != DTYPE_SOCKET)
1991		return (NULL);
1992	if ((so = fp->f_data) == NULL)
1993		return (NULL);
1994	if (so->so_proto->pr_domain != &localdomain)
1995		return (NULL);
1996	return sotounpcb(so);
1997}
1998
1999static void
2000unp_discard(struct file *fp)
2001{
2002	struct unp_defer *dr;
2003
2004	if (unp_externalize_fp(fp)) {
2005		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2006		dr->ud_fp = fp;
2007		UNP_DEFERRED_LOCK();
2008		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2009		UNP_DEFERRED_UNLOCK();
2010		atomic_add_int(&unp_defers_count, 1);
2011		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2012	} else
2013		(void) closef(fp, (struct thread *)NULL);
2014}
2015
2016static void
2017unp_process_defers(void *arg __unused, int pending)
2018{
2019	struct unp_defer *dr;
2020	SLIST_HEAD(, unp_defer) drl;
2021	int count;
2022
2023	SLIST_INIT(&drl);
2024	for (;;) {
2025		UNP_DEFERRED_LOCK();
2026		if (SLIST_FIRST(&unp_defers) == NULL) {
2027			UNP_DEFERRED_UNLOCK();
2028			break;
2029		}
2030		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2031		UNP_DEFERRED_UNLOCK();
2032		count = 0;
2033		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2034			SLIST_REMOVE_HEAD(&drl, ud_link);
2035			closef(dr->ud_fp, NULL);
2036			free(dr, M_TEMP);
2037			count++;
2038		}
2039		atomic_add_int(&unp_defers_count, -count);
2040	}
2041}
2042
2043static void
2044unp_internalize_fp(struct file *fp)
2045{
2046	struct unpcb *unp;
2047
2048	UNP_LINK_WLOCK();
2049	if ((unp = fptounp(fp)) != NULL) {
2050		unp->unp_file = fp;
2051		unp->unp_msgcount++;
2052	}
2053	fhold(fp);
2054	unp_rights++;
2055	UNP_LINK_WUNLOCK();
2056}
2057
2058static int
2059unp_externalize_fp(struct file *fp)
2060{
2061	struct unpcb *unp;
2062	int ret;
2063
2064	UNP_LINK_WLOCK();
2065	if ((unp = fptounp(fp)) != NULL) {
2066		unp->unp_msgcount--;
2067		ret = 1;
2068	} else
2069		ret = 0;
2070	unp_rights--;
2071	UNP_LINK_WUNLOCK();
2072	return (ret);
2073}
2074
2075/*
2076 * unp_defer indicates whether additional work has been defered for a future
2077 * pass through unp_gc().  It is thread local and does not require explicit
2078 * synchronization.
2079 */
2080static int	unp_marked;
2081static int	unp_unreachable;
2082
2083static void
2084unp_accessable(struct file *fp)
2085{
2086	struct unpcb *unp;
2087
2088	if ((unp = fptounp(fp)) == NULL)
2089		return;
2090	if (unp->unp_gcflag & UNPGC_REF)
2091		return;
2092	unp->unp_gcflag &= ~UNPGC_DEAD;
2093	unp->unp_gcflag |= UNPGC_REF;
2094	unp_marked++;
2095}
2096
2097static void
2098unp_gc_process(struct unpcb *unp)
2099{
2100	struct socket *soa;
2101	struct socket *so;
2102	struct file *fp;
2103
2104	/* Already processed. */
2105	if (unp->unp_gcflag & UNPGC_SCANNED)
2106		return;
2107	fp = unp->unp_file;
2108
2109	/*
2110	 * Check for a socket potentially in a cycle.  It must be in a
2111	 * queue as indicated by msgcount, and this must equal the file
2112	 * reference count.  Note that when msgcount is 0 the file is NULL.
2113	 */
2114	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2115	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2116		unp->unp_gcflag |= UNPGC_DEAD;
2117		unp_unreachable++;
2118		return;
2119	}
2120
2121	/*
2122	 * Mark all sockets we reference with RIGHTS.
2123	 */
2124	so = unp->unp_socket;
2125	SOCKBUF_LOCK(&so->so_rcv);
2126	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2127	SOCKBUF_UNLOCK(&so->so_rcv);
2128
2129	/*
2130	 * Mark all sockets in our accept queue.
2131	 */
2132	ACCEPT_LOCK();
2133	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2134		SOCKBUF_LOCK(&soa->so_rcv);
2135		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2136		SOCKBUF_UNLOCK(&soa->so_rcv);
2137	}
2138	ACCEPT_UNLOCK();
2139	unp->unp_gcflag |= UNPGC_SCANNED;
2140}
2141
2142static int unp_recycled;
2143SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2144    "Number of unreachable sockets claimed by the garbage collector.");
2145
2146static int unp_taskcount;
2147SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2148    "Number of times the garbage collector has run.");
2149
2150static void
2151unp_gc(__unused void *arg, int pending)
2152{
2153	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2154				    NULL };
2155	struct unp_head **head;
2156	struct file **unref;
2157	struct unpcb *unp;
2158	int i;
2159
2160	unp_taskcount++;
2161	UNP_LIST_LOCK();
2162	/*
2163	 * First clear all gc flags from previous runs.
2164	 */
2165	for (head = heads; *head != NULL; head++)
2166		LIST_FOREACH(unp, *head, unp_link)
2167			unp->unp_gcflag = 0;
2168
2169	/*
2170	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2171	 * is reachable all of the sockets it references are reachable.
2172	 * Stop the scan once we do a complete loop without discovering
2173	 * a new reachable socket.
2174	 */
2175	do {
2176		unp_unreachable = 0;
2177		unp_marked = 0;
2178		for (head = heads; *head != NULL; head++)
2179			LIST_FOREACH(unp, *head, unp_link)
2180				unp_gc_process(unp);
2181	} while (unp_marked);
2182	UNP_LIST_UNLOCK();
2183	if (unp_unreachable == 0)
2184		return;
2185
2186	/*
2187	 * Allocate space for a local list of dead unpcbs.
2188	 */
2189	unref = malloc(unp_unreachable * sizeof(struct file *),
2190	    M_TEMP, M_WAITOK);
2191
2192	/*
2193	 * Iterate looking for sockets which have been specifically marked
2194	 * as as unreachable and store them locally.
2195	 */
2196	UNP_LIST_LOCK();
2197	for (i = 0, head = heads; *head != NULL; head++)
2198		LIST_FOREACH(unp, *head, unp_link)
2199			if (unp->unp_gcflag & UNPGC_DEAD) {
2200				unref[i++] = unp->unp_file;
2201				fhold(unp->unp_file);
2202				KASSERT(unp->unp_file != NULL,
2203				    ("unp_gc: Invalid unpcb."));
2204				KASSERT(i <= unp_unreachable,
2205				    ("unp_gc: incorrect unreachable count."));
2206			}
2207	UNP_LIST_UNLOCK();
2208
2209	/*
2210	 * Now flush all sockets, free'ing rights.  This will free the
2211	 * struct files associated with these sockets but leave each socket
2212	 * with one remaining ref.
2213	 */
2214	for (i = 0; i < unp_unreachable; i++)
2215		sorflush(unref[i]->f_data);
2216
2217	/*
2218	 * And finally release the sockets so they can be reclaimed.
2219	 */
2220	for (i = 0; i < unp_unreachable; i++)
2221		fdrop(unref[i], NULL);
2222	unp_recycled += unp_unreachable;
2223	free(unref, M_TEMP);
2224}
2225
2226static void
2227unp_dispose(struct mbuf *m)
2228{
2229
2230	if (m)
2231		unp_scan(m, unp_discard);
2232}
2233
2234static void
2235unp_scan(struct mbuf *m0, void (*op)(struct file *))
2236{
2237	struct mbuf *m;
2238	struct file **rp;
2239	struct cmsghdr *cm;
2240	void *data;
2241	int i;
2242	socklen_t clen, datalen;
2243	int qfds;
2244
2245	while (m0 != NULL) {
2246		for (m = m0; m; m = m->m_next) {
2247			if (m->m_type != MT_CONTROL)
2248				continue;
2249
2250			cm = mtod(m, struct cmsghdr *);
2251			clen = m->m_len;
2252
2253			while (cm != NULL) {
2254				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2255					break;
2256
2257				data = CMSG_DATA(cm);
2258				datalen = (caddr_t)cm + cm->cmsg_len
2259				    - (caddr_t)data;
2260
2261				if (cm->cmsg_level == SOL_SOCKET &&
2262				    cm->cmsg_type == SCM_RIGHTS) {
2263					qfds = datalen / sizeof (struct file *);
2264					rp = data;
2265					for (i = 0; i < qfds; i++)
2266						(*op)(*rp++);
2267				}
2268
2269				if (CMSG_SPACE(datalen) < clen) {
2270					clen -= CMSG_SPACE(datalen);
2271					cm = (struct cmsghdr *)
2272					    ((caddr_t)cm + CMSG_SPACE(datalen));
2273				} else {
2274					clen = 0;
2275					cm = NULL;
2276				}
2277			}
2278		}
2279		m0 = m0->m_act;
2280	}
2281}
2282
2283#ifdef DDB
2284static void
2285db_print_indent(int indent)
2286{
2287	int i;
2288
2289	for (i = 0; i < indent; i++)
2290		db_printf(" ");
2291}
2292
2293static void
2294db_print_unpflags(int unp_flags)
2295{
2296	int comma;
2297
2298	comma = 0;
2299	if (unp_flags & UNP_HAVEPC) {
2300		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2301		comma = 1;
2302	}
2303	if (unp_flags & UNP_HAVEPCCACHED) {
2304		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2305		comma = 1;
2306	}
2307	if (unp_flags & UNP_WANTCRED) {
2308		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2309		comma = 1;
2310	}
2311	if (unp_flags & UNP_CONNWAIT) {
2312		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2313		comma = 1;
2314	}
2315	if (unp_flags & UNP_CONNECTING) {
2316		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2317		comma = 1;
2318	}
2319	if (unp_flags & UNP_BINDING) {
2320		db_printf("%sUNP_BINDING", comma ? ", " : "");
2321		comma = 1;
2322	}
2323}
2324
2325static void
2326db_print_xucred(int indent, struct xucred *xu)
2327{
2328	int comma, i;
2329
2330	db_print_indent(indent);
2331	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2332	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2333	db_print_indent(indent);
2334	db_printf("cr_groups: ");
2335	comma = 0;
2336	for (i = 0; i < xu->cr_ngroups; i++) {
2337		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2338		comma = 1;
2339	}
2340	db_printf("\n");
2341}
2342
2343static void
2344db_print_unprefs(int indent, struct unp_head *uh)
2345{
2346	struct unpcb *unp;
2347	int counter;
2348
2349	counter = 0;
2350	LIST_FOREACH(unp, uh, unp_reflink) {
2351		if (counter % 4 == 0)
2352			db_print_indent(indent);
2353		db_printf("%p  ", unp);
2354		if (counter % 4 == 3)
2355			db_printf("\n");
2356		counter++;
2357	}
2358	if (counter != 0 && counter % 4 != 0)
2359		db_printf("\n");
2360}
2361
2362DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2363{
2364	struct unpcb *unp;
2365
2366        if (!have_addr) {
2367                db_printf("usage: show unpcb <addr>\n");
2368                return;
2369        }
2370        unp = (struct unpcb *)addr;
2371
2372	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2373	    unp->unp_vnode);
2374
2375	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2376	    unp->unp_conn);
2377
2378	db_printf("unp_refs:\n");
2379	db_print_unprefs(2, &unp->unp_refs);
2380
2381	/* XXXRW: Would be nice to print the full address, if any. */
2382	db_printf("unp_addr: %p\n", unp->unp_addr);
2383
2384	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2385	    unp->unp_cc, unp->unp_mbcnt,
2386	    (unsigned long long)unp->unp_gencnt);
2387
2388	db_printf("unp_flags: %x (", unp->unp_flags);
2389	db_print_unpflags(unp->unp_flags);
2390	db_printf(")\n");
2391
2392	db_printf("unp_peercred:\n");
2393	db_print_xucred(2, &unp->unp_peercred);
2394
2395	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2396}
2397#endif
2398