uipc_usrreq.c revision 210225
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	RDM
54 *	distinguish datagram size limits from flow control limits in SEQPACKET
55 *	rethink name space problems
56 *	need a proper out-of-band
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/uipc_usrreq.c 210225 2010-07-18 20:23:10Z trasz $");
61
62#include "opt_ddb.h"
63
64#include <sys/param.h>
65#include <sys/domain.h>
66#include <sys/fcntl.h>
67#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68#include <sys/eventhandler.h>
69#include <sys/file.h>
70#include <sys/filedesc.h>
71#include <sys/kernel.h>
72#include <sys/lock.h>
73#include <sys/mbuf.h>
74#include <sys/mount.h>
75#include <sys/mutex.h>
76#include <sys/namei.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/socket.h>
82#include <sys/socketvar.h>
83#include <sys/signalvar.h>
84#include <sys/stat.h>
85#include <sys/sx.h>
86#include <sys/sysctl.h>
87#include <sys/systm.h>
88#include <sys/taskqueue.h>
89#include <sys/un.h>
90#include <sys/unpcb.h>
91#include <sys/vnode.h>
92
93#include <net/vnet.h>
94
95#ifdef DDB
96#include <ddb/ddb.h>
97#endif
98
99#include <security/mac/mac_framework.h>
100
101#include <vm/uma.h>
102
103/*
104 * Locking key:
105 * (l)	Locked using list lock
106 * (g)	Locked using linkage lock
107 */
108
109static uma_zone_t	unp_zone;
110static unp_gen_t	unp_gencnt;	/* (l) */
111static u_int		unp_count;	/* (l) Count of local sockets. */
112static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
113static int		unp_rights;	/* (g) File descriptors in flight. */
114static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
115static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
116static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
117
118static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
119
120/*
121 * Garbage collection of cyclic file descriptor/socket references occurs
122 * asynchronously in a taskqueue context in order to avoid recursion and
123 * reentrance in the UNIX domain socket, file descriptor, and socket layer
124 * code.  See unp_gc() for a full description.
125 */
126static struct task	unp_gc_task;
127
128/*
129 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
130 * stream sockets, although the total for sender and receiver is actually
131 * only PIPSIZ.
132 *
133 * Datagram sockets really use the sendspace as the maximum datagram size,
134 * and don't really want to reserve the sendspace.  Their recvspace should be
135 * large enough for at least one max-size datagram plus address.
136 */
137#ifndef PIPSIZ
138#define	PIPSIZ	8192
139#endif
140static u_long	unpst_sendspace = PIPSIZ;
141static u_long	unpst_recvspace = PIPSIZ;
142static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
143static u_long	unpdg_recvspace = 4*1024;
144static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
145static u_long	unpsp_recvspace = PIPSIZ;
146
147SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
148SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM");
149SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
150SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
151    "SOCK_SEQPACKET");
152
153SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
154	   &unpst_sendspace, 0, "Default stream send space.");
155SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
156	   &unpst_recvspace, 0, "Default stream receive space.");
157SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
158	   &unpdg_sendspace, 0, "Default datagram send space.");
159SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
160	   &unpdg_recvspace, 0, "Default datagram receive space.");
161SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
162	   &unpsp_sendspace, 0, "Default seqpacket send space.");
163SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
164	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
165SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
166    "File descriptors in flight.");
167
168/*
169 * Locking and synchronization:
170 *
171 * Three types of locks exit in the local domain socket implementation: a
172 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
173 * global locks, the list lock protects the socket count, global generation
174 * number, and stream/datagram global lists.  The linkage lock protects the
175 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
176 * held exclusively over the acquisition of multiple unpcb locks to prevent
177 * deadlock.
178 *
179 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
180 * allocated in pru_attach() and freed in pru_detach().  The validity of that
181 * pointer is an invariant, so no lock is required to dereference the so_pcb
182 * pointer if a valid socket reference is held by the caller.  In practice,
183 * this is always true during operations performed on a socket.  Each unpcb
184 * has a back-pointer to its socket, unp_socket, which will be stable under
185 * the same circumstances.
186 *
187 * This pointer may only be safely dereferenced as long as a valid reference
188 * to the unpcb is held.  Typically, this reference will be from the socket,
189 * or from another unpcb when the referring unpcb's lock is held (in order
190 * that the reference not be invalidated during use).  For example, to follow
191 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
192 * as unp_socket remains valid as long as the reference to unp_conn is valid.
193 *
194 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
195 * atomic reads without the lock may be performed "lockless", but more
196 * complex reads and read-modify-writes require the mutex to be held.  No
197 * lock order is defined between unpcb locks -- multiple unpcb locks may be
198 * acquired at the same time only when holding the linkage rwlock
199 * exclusively, which prevents deadlocks.
200 *
201 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
202 * protocols, bind() is a non-atomic operation, and connect() requires
203 * potential sleeping in the protocol, due to potentially waiting on local or
204 * distributed file systems.  We try to separate "lookup" operations, which
205 * may sleep, and the IPC operations themselves, which typically can occur
206 * with relative atomicity as locks can be held over the entire operation.
207 *
208 * Another tricky issue is simultaneous multi-threaded or multi-process
209 * access to a single UNIX domain socket.  These are handled by the flags
210 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
211 * binding, both of which involve dropping UNIX domain socket locks in order
212 * to perform namei() and other file system operations.
213 */
214static struct rwlock	unp_link_rwlock;
215static struct mtx	unp_list_lock;
216
217#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
218					    "unp_link_rwlock")
219
220#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
221					    RA_LOCKED)
222#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
223					    RA_UNLOCKED)
224
225#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
226#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
227#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
228#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
229#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
230					    RA_WLOCKED)
231
232#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
233					    "unp_list_lock", NULL, MTX_DEF)
234#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
235#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
236
237#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
238					    "unp_mtx", "unp_mtx",	\
239					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
240#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
241#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
242#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
243#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
244
245static int	uipc_connect2(struct socket *, struct socket *);
246static int	uipc_ctloutput(struct socket *, struct sockopt *);
247static int	unp_connect(struct socket *, struct sockaddr *,
248		    struct thread *);
249static int	unp_connect2(struct socket *so, struct socket *so2, int);
250static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
251static void	unp_dispose(struct mbuf *);
252static void	unp_shutdown(struct unpcb *);
253static void	unp_drop(struct unpcb *, int);
254static void	unp_gc(__unused void *, int);
255static void	unp_scan(struct mbuf *, void (*)(struct file *));
256static void	unp_discard(struct file *);
257static void	unp_freerights(struct file **, int);
258static void	unp_init(void);
259static int	unp_internalize(struct mbuf **, struct thread *);
260static void	unp_internalize_fp(struct file *);
261static int	unp_externalize(struct mbuf *, struct mbuf **);
262static void	unp_externalize_fp(struct file *);
263static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
264
265/*
266 * Definitions of protocols supported in the LOCAL domain.
267 */
268static struct domain localdomain;
269static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
270static struct pr_usrreqs uipc_usrreqs_seqpacket;
271static struct protosw localsw[] = {
272{
273	.pr_type =		SOCK_STREAM,
274	.pr_domain =		&localdomain,
275	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
276	.pr_ctloutput =		&uipc_ctloutput,
277	.pr_usrreqs =		&uipc_usrreqs_stream
278},
279{
280	.pr_type =		SOCK_DGRAM,
281	.pr_domain =		&localdomain,
282	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
283	.pr_usrreqs =		&uipc_usrreqs_dgram
284},
285{
286	.pr_type =		SOCK_SEQPACKET,
287	.pr_domain =		&localdomain,
288
289	/*
290	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
291	 * due to our use of sbappendaddr.  A new sbappend variants is needed
292	 * that supports both atomic record writes and control data.
293	 */
294	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
295				    PR_RIGHTS,
296	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
297},
298};
299
300static struct domain localdomain = {
301	.dom_family =		AF_LOCAL,
302	.dom_name =		"local",
303	.dom_init =		unp_init,
304	.dom_externalize =	unp_externalize,
305	.dom_dispose =		unp_dispose,
306	.dom_protosw =		localsw,
307	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
308};
309DOMAIN_SET(local);
310
311static void
312uipc_abort(struct socket *so)
313{
314	struct unpcb *unp, *unp2;
315
316	unp = sotounpcb(so);
317	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
318
319	UNP_LINK_WLOCK();
320	UNP_PCB_LOCK(unp);
321	unp2 = unp->unp_conn;
322	if (unp2 != NULL) {
323		UNP_PCB_LOCK(unp2);
324		unp_drop(unp2, ECONNABORTED);
325		UNP_PCB_UNLOCK(unp2);
326	}
327	UNP_PCB_UNLOCK(unp);
328	UNP_LINK_WUNLOCK();
329}
330
331static int
332uipc_accept(struct socket *so, struct sockaddr **nam)
333{
334	struct unpcb *unp, *unp2;
335	const struct sockaddr *sa;
336
337	/*
338	 * Pass back name of connected socket, if it was bound and we are
339	 * still connected (our peer may have closed already!).
340	 */
341	unp = sotounpcb(so);
342	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
343
344	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
345	UNP_LINK_RLOCK();
346	unp2 = unp->unp_conn;
347	if (unp2 != NULL && unp2->unp_addr != NULL) {
348		UNP_PCB_LOCK(unp2);
349		sa = (struct sockaddr *) unp2->unp_addr;
350		bcopy(sa, *nam, sa->sa_len);
351		UNP_PCB_UNLOCK(unp2);
352	} else {
353		sa = &sun_noname;
354		bcopy(sa, *nam, sa->sa_len);
355	}
356	UNP_LINK_RUNLOCK();
357	return (0);
358}
359
360static int
361uipc_attach(struct socket *so, int proto, struct thread *td)
362{
363	u_long sendspace, recvspace;
364	struct unpcb *unp;
365	int error;
366
367	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
368	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
369		switch (so->so_type) {
370		case SOCK_STREAM:
371			sendspace = unpst_sendspace;
372			recvspace = unpst_recvspace;
373			break;
374
375		case SOCK_DGRAM:
376			sendspace = unpdg_sendspace;
377			recvspace = unpdg_recvspace;
378			break;
379
380		case SOCK_SEQPACKET:
381			sendspace = unpsp_sendspace;
382			recvspace = unpsp_recvspace;
383			break;
384
385		default:
386			panic("uipc_attach");
387		}
388		error = soreserve(so, sendspace, recvspace);
389		if (error)
390			return (error);
391	}
392	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
393	if (unp == NULL)
394		return (ENOBUFS);
395	LIST_INIT(&unp->unp_refs);
396	UNP_PCB_LOCK_INIT(unp);
397	unp->unp_socket = so;
398	so->so_pcb = unp;
399	unp->unp_refcount = 1;
400
401	UNP_LIST_LOCK();
402	unp->unp_gencnt = ++unp_gencnt;
403	unp_count++;
404	switch (so->so_type) {
405	case SOCK_STREAM:
406		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
407		break;
408
409	case SOCK_DGRAM:
410		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
411		break;
412
413	case SOCK_SEQPACKET:
414		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
415		break;
416
417	default:
418		panic("uipc_attach");
419	}
420	UNP_LIST_UNLOCK();
421
422	return (0);
423}
424
425static int
426uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
427{
428	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
429	struct vattr vattr;
430	int error, namelen, vfslocked;
431	struct nameidata nd;
432	struct unpcb *unp;
433	struct vnode *vp;
434	struct mount *mp;
435	char *buf;
436
437	unp = sotounpcb(so);
438	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
439
440	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
441	if (namelen <= 0)
442		return (EINVAL);
443
444	/*
445	 * We don't allow simultaneous bind() calls on a single UNIX domain
446	 * socket, so flag in-progress operations, and return an error if an
447	 * operation is already in progress.
448	 *
449	 * Historically, we have not allowed a socket to be rebound, so this
450	 * also returns an error.  Not allowing re-binding simplifies the
451	 * implementation and avoids a great many possible failure modes.
452	 */
453	UNP_PCB_LOCK(unp);
454	if (unp->unp_vnode != NULL) {
455		UNP_PCB_UNLOCK(unp);
456		return (EINVAL);
457	}
458	if (unp->unp_flags & UNP_BINDING) {
459		UNP_PCB_UNLOCK(unp);
460		return (EALREADY);
461	}
462	unp->unp_flags |= UNP_BINDING;
463	UNP_PCB_UNLOCK(unp);
464
465	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
466	bcopy(soun->sun_path, buf, namelen);
467	buf[namelen] = 0;
468
469restart:
470	vfslocked = 0;
471	NDINIT(&nd, CREATE, MPSAFE | NOFOLLOW | LOCKPARENT | SAVENAME,
472	    UIO_SYSSPACE, buf, td);
473/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
474	error = namei(&nd);
475	if (error)
476		goto error;
477	vp = nd.ni_vp;
478	vfslocked = NDHASGIANT(&nd);
479	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
480		NDFREE(&nd, NDF_ONLY_PNBUF);
481		if (nd.ni_dvp == vp)
482			vrele(nd.ni_dvp);
483		else
484			vput(nd.ni_dvp);
485		if (vp != NULL) {
486			vrele(vp);
487			error = EADDRINUSE;
488			goto error;
489		}
490		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
491		if (error)
492			goto error;
493		VFS_UNLOCK_GIANT(vfslocked);
494		goto restart;
495	}
496	VATTR_NULL(&vattr);
497	vattr.va_type = VSOCK;
498	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
499#ifdef MAC
500	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
501	    &vattr);
502#endif
503	if (error == 0)
504		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
505	NDFREE(&nd, NDF_ONLY_PNBUF);
506	vput(nd.ni_dvp);
507	if (error) {
508		vn_finished_write(mp);
509		goto error;
510	}
511	vp = nd.ni_vp;
512	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
513	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
514
515	UNP_LINK_WLOCK();
516	UNP_PCB_LOCK(unp);
517	vp->v_socket = unp->unp_socket;
518	unp->unp_vnode = vp;
519	unp->unp_addr = soun;
520	unp->unp_flags &= ~UNP_BINDING;
521	UNP_PCB_UNLOCK(unp);
522	UNP_LINK_WUNLOCK();
523	VOP_UNLOCK(vp, 0);
524	vn_finished_write(mp);
525	VFS_UNLOCK_GIANT(vfslocked);
526	free(buf, M_TEMP);
527	return (0);
528
529error:
530	VFS_UNLOCK_GIANT(vfslocked);
531	UNP_PCB_LOCK(unp);
532	unp->unp_flags &= ~UNP_BINDING;
533	UNP_PCB_UNLOCK(unp);
534	free(buf, M_TEMP);
535	return (error);
536}
537
538static int
539uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
540{
541	int error;
542
543	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
544	UNP_LINK_WLOCK();
545	error = unp_connect(so, nam, td);
546	UNP_LINK_WUNLOCK();
547	return (error);
548}
549
550static void
551uipc_close(struct socket *so)
552{
553	struct unpcb *unp, *unp2;
554
555	unp = sotounpcb(so);
556	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
557
558	UNP_LINK_WLOCK();
559	UNP_PCB_LOCK(unp);
560	unp2 = unp->unp_conn;
561	if (unp2 != NULL) {
562		UNP_PCB_LOCK(unp2);
563		unp_disconnect(unp, unp2);
564		UNP_PCB_UNLOCK(unp2);
565	}
566	UNP_PCB_UNLOCK(unp);
567	UNP_LINK_WUNLOCK();
568}
569
570static int
571uipc_connect2(struct socket *so1, struct socket *so2)
572{
573	struct unpcb *unp, *unp2;
574	int error;
575
576	UNP_LINK_WLOCK();
577	unp = so1->so_pcb;
578	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
579	UNP_PCB_LOCK(unp);
580	unp2 = so2->so_pcb;
581	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
582	UNP_PCB_LOCK(unp2);
583	error = unp_connect2(so1, so2, PRU_CONNECT2);
584	UNP_PCB_UNLOCK(unp2);
585	UNP_PCB_UNLOCK(unp);
586	UNP_LINK_WUNLOCK();
587	return (error);
588}
589
590static void
591uipc_detach(struct socket *so)
592{
593	struct unpcb *unp, *unp2;
594	struct sockaddr_un *saved_unp_addr;
595	struct vnode *vp;
596	int freeunp, local_unp_rights;
597
598	unp = sotounpcb(so);
599	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
600
601	UNP_LINK_WLOCK();
602	UNP_LIST_LOCK();
603	UNP_PCB_LOCK(unp);
604	LIST_REMOVE(unp, unp_link);
605	unp->unp_gencnt = ++unp_gencnt;
606	--unp_count;
607	UNP_LIST_UNLOCK();
608
609	/*
610	 * XXXRW: Should assert vp->v_socket == so.
611	 */
612	if ((vp = unp->unp_vnode) != NULL) {
613		unp->unp_vnode->v_socket = NULL;
614		unp->unp_vnode = NULL;
615	}
616	unp2 = unp->unp_conn;
617	if (unp2 != NULL) {
618		UNP_PCB_LOCK(unp2);
619		unp_disconnect(unp, unp2);
620		UNP_PCB_UNLOCK(unp2);
621	}
622
623	/*
624	 * We hold the linkage lock exclusively, so it's OK to acquire
625	 * multiple pcb locks at a time.
626	 */
627	while (!LIST_EMPTY(&unp->unp_refs)) {
628		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
629
630		UNP_PCB_LOCK(ref);
631		unp_drop(ref, ECONNRESET);
632		UNP_PCB_UNLOCK(ref);
633	}
634	local_unp_rights = unp_rights;
635	UNP_LINK_WUNLOCK();
636	unp->unp_socket->so_pcb = NULL;
637	saved_unp_addr = unp->unp_addr;
638	unp->unp_addr = NULL;
639	unp->unp_refcount--;
640	freeunp = (unp->unp_refcount == 0);
641	if (saved_unp_addr != NULL)
642		free(saved_unp_addr, M_SONAME);
643	if (freeunp) {
644		UNP_PCB_LOCK_DESTROY(unp);
645		uma_zfree(unp_zone, unp);
646	} else
647		UNP_PCB_UNLOCK(unp);
648	if (vp) {
649		int vfslocked;
650
651		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
652		vrele(vp);
653		VFS_UNLOCK_GIANT(vfslocked);
654	}
655	if (local_unp_rights)
656		taskqueue_enqueue(taskqueue_thread, &unp_gc_task);
657}
658
659static int
660uipc_disconnect(struct socket *so)
661{
662	struct unpcb *unp, *unp2;
663
664	unp = sotounpcb(so);
665	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
666
667	UNP_LINK_WLOCK();
668	UNP_PCB_LOCK(unp);
669	unp2 = unp->unp_conn;
670	if (unp2 != NULL) {
671		UNP_PCB_LOCK(unp2);
672		unp_disconnect(unp, unp2);
673		UNP_PCB_UNLOCK(unp2);
674	}
675	UNP_PCB_UNLOCK(unp);
676	UNP_LINK_WUNLOCK();
677	return (0);
678}
679
680static int
681uipc_listen(struct socket *so, int backlog, struct thread *td)
682{
683	struct unpcb *unp;
684	int error;
685
686	unp = sotounpcb(so);
687	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
688
689	UNP_PCB_LOCK(unp);
690	if (unp->unp_vnode == NULL) {
691		UNP_PCB_UNLOCK(unp);
692		return (EINVAL);
693	}
694
695	SOCK_LOCK(so);
696	error = solisten_proto_check(so);
697	if (error == 0) {
698		cru2x(td->td_ucred, &unp->unp_peercred);
699		unp->unp_flags |= UNP_HAVEPCCACHED;
700		solisten_proto(so, backlog);
701	}
702	SOCK_UNLOCK(so);
703	UNP_PCB_UNLOCK(unp);
704	return (error);
705}
706
707static int
708uipc_peeraddr(struct socket *so, struct sockaddr **nam)
709{
710	struct unpcb *unp, *unp2;
711	const struct sockaddr *sa;
712
713	unp = sotounpcb(so);
714	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
715
716	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
717	UNP_LINK_RLOCK();
718	/*
719	 * XXX: It seems that this test always fails even when connection is
720	 * established.  So, this else clause is added as workaround to
721	 * return PF_LOCAL sockaddr.
722	 */
723	unp2 = unp->unp_conn;
724	if (unp2 != NULL) {
725		UNP_PCB_LOCK(unp2);
726		if (unp2->unp_addr != NULL)
727			sa = (struct sockaddr *) unp2->unp_addr;
728		else
729			sa = &sun_noname;
730		bcopy(sa, *nam, sa->sa_len);
731		UNP_PCB_UNLOCK(unp2);
732	} else {
733		sa = &sun_noname;
734		bcopy(sa, *nam, sa->sa_len);
735	}
736	UNP_LINK_RUNLOCK();
737	return (0);
738}
739
740static int
741uipc_rcvd(struct socket *so, int flags)
742{
743	struct unpcb *unp, *unp2;
744	struct socket *so2;
745	u_int mbcnt, sbcc;
746	u_long newhiwat;
747
748	unp = sotounpcb(so);
749	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
750
751	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
752		panic("uipc_rcvd socktype %d", so->so_type);
753
754	/*
755	 * Adjust backpressure on sender and wakeup any waiting to write.
756	 *
757	 * The unp lock is acquired to maintain the validity of the unp_conn
758	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
759	 * static as long as we don't permit unp2 to disconnect from unp,
760	 * which is prevented by the lock on unp.  We cache values from
761	 * so_rcv to avoid holding the so_rcv lock over the entire
762	 * transaction on the remote so_snd.
763	 */
764	SOCKBUF_LOCK(&so->so_rcv);
765	mbcnt = so->so_rcv.sb_mbcnt;
766	sbcc = so->so_rcv.sb_cc;
767	SOCKBUF_UNLOCK(&so->so_rcv);
768	UNP_PCB_LOCK(unp);
769	unp2 = unp->unp_conn;
770	if (unp2 == NULL) {
771		UNP_PCB_UNLOCK(unp);
772		return (0);
773	}
774	so2 = unp2->unp_socket;
775	SOCKBUF_LOCK(&so2->so_snd);
776	so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt;
777	newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc;
778	(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
779	    newhiwat, RLIM_INFINITY);
780	sowwakeup_locked(so2);
781	unp->unp_mbcnt = mbcnt;
782	unp->unp_cc = sbcc;
783	UNP_PCB_UNLOCK(unp);
784	return (0);
785}
786
787static int
788uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
789    struct mbuf *control, struct thread *td)
790{
791	struct unpcb *unp, *unp2;
792	struct socket *so2;
793	u_int mbcnt_delta, sbcc;
794	u_long newhiwat;
795	int error = 0;
796
797	unp = sotounpcb(so);
798	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
799
800	if (flags & PRUS_OOB) {
801		error = EOPNOTSUPP;
802		goto release;
803	}
804	if (control != NULL && (error = unp_internalize(&control, td)))
805		goto release;
806	if ((nam != NULL) || (flags & PRUS_EOF))
807		UNP_LINK_WLOCK();
808	else
809		UNP_LINK_RLOCK();
810	switch (so->so_type) {
811	case SOCK_DGRAM:
812	{
813		const struct sockaddr *from;
814
815		unp2 = unp->unp_conn;
816		if (nam != NULL) {
817			UNP_LINK_WLOCK_ASSERT();
818			if (unp2 != NULL) {
819				error = EISCONN;
820				break;
821			}
822			error = unp_connect(so, nam, td);
823			if (error)
824				break;
825			unp2 = unp->unp_conn;
826		}
827
828		/*
829		 * Because connect() and send() are non-atomic in a sendto()
830		 * with a target address, it's possible that the socket will
831		 * have disconnected before the send() can run.  In that case
832		 * return the slightly counter-intuitive but otherwise
833		 * correct error that the socket is not connected.
834		 */
835		if (unp2 == NULL) {
836			error = ENOTCONN;
837			break;
838		}
839		/* Lockless read. */
840		if (unp2->unp_flags & UNP_WANTCRED)
841			control = unp_addsockcred(td, control);
842		UNP_PCB_LOCK(unp);
843		if (unp->unp_addr != NULL)
844			from = (struct sockaddr *)unp->unp_addr;
845		else
846			from = &sun_noname;
847		so2 = unp2->unp_socket;
848		SOCKBUF_LOCK(&so2->so_rcv);
849		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
850			sorwakeup_locked(so2);
851			m = NULL;
852			control = NULL;
853		} else {
854			SOCKBUF_UNLOCK(&so2->so_rcv);
855			error = ENOBUFS;
856		}
857		if (nam != NULL) {
858			UNP_LINK_WLOCK_ASSERT();
859			UNP_PCB_LOCK(unp2);
860			unp_disconnect(unp, unp2);
861			UNP_PCB_UNLOCK(unp2);
862		}
863		UNP_PCB_UNLOCK(unp);
864		break;
865	}
866
867	case SOCK_SEQPACKET:
868	case SOCK_STREAM:
869		if ((so->so_state & SS_ISCONNECTED) == 0) {
870			if (nam != NULL) {
871				UNP_LINK_WLOCK_ASSERT();
872				error = unp_connect(so, nam, td);
873				if (error)
874					break;	/* XXX */
875			} else {
876				error = ENOTCONN;
877				break;
878			}
879		}
880
881		/* Lockless read. */
882		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
883			error = EPIPE;
884			break;
885		}
886
887		/*
888		 * Because connect() and send() are non-atomic in a sendto()
889		 * with a target address, it's possible that the socket will
890		 * have disconnected before the send() can run.  In that case
891		 * return the slightly counter-intuitive but otherwise
892		 * correct error that the socket is not connected.
893		 *
894		 * Locking here must be done carefully: the linkage lock
895		 * prevents interconnections between unpcbs from changing, so
896		 * we can traverse from unp to unp2 without acquiring unp's
897		 * lock.  Socket buffer locks follow unpcb locks, so we can
898		 * acquire both remote and lock socket buffer locks.
899		 */
900		unp2 = unp->unp_conn;
901		if (unp2 == NULL) {
902			error = ENOTCONN;
903			break;
904		}
905		so2 = unp2->unp_socket;
906		UNP_PCB_LOCK(unp2);
907		SOCKBUF_LOCK(&so2->so_rcv);
908		if (unp2->unp_flags & UNP_WANTCRED) {
909			/*
910			 * Credentials are passed only once on SOCK_STREAM.
911			 */
912			unp2->unp_flags &= ~UNP_WANTCRED;
913			control = unp_addsockcred(td, control);
914		}
915		/*
916		 * Send to paired receive port, and then reduce send buffer
917		 * hiwater marks to maintain backpressure.  Wake up readers.
918		 */
919		switch (so->so_type) {
920		case SOCK_STREAM:
921			if (control != NULL) {
922				if (sbappendcontrol_locked(&so2->so_rcv, m,
923				    control))
924					control = NULL;
925			} else
926				sbappend_locked(&so2->so_rcv, m);
927			break;
928
929		case SOCK_SEQPACKET: {
930			const struct sockaddr *from;
931
932			from = &sun_noname;
933			if (sbappendaddr_locked(&so2->so_rcv, from, m,
934			    control))
935				control = NULL;
936			break;
937			}
938		}
939
940		/*
941		 * XXXRW: While fine for SOCK_STREAM, this conflates maximum
942		 * datagram size and back-pressure for SOCK_SEQPACKET, which
943		 * can lead to undesired return of EMSGSIZE on send instead
944		 * of more desirable blocking.
945		 */
946		mbcnt_delta = so2->so_rcv.sb_mbcnt - unp2->unp_mbcnt;
947		unp2->unp_mbcnt = so2->so_rcv.sb_mbcnt;
948		sbcc = so2->so_rcv.sb_cc;
949		sorwakeup_locked(so2);
950
951		SOCKBUF_LOCK(&so->so_snd);
952		newhiwat = so->so_snd.sb_hiwat - (sbcc - unp2->unp_cc);
953		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
954		    newhiwat, RLIM_INFINITY);
955		so->so_snd.sb_mbmax -= mbcnt_delta;
956		SOCKBUF_UNLOCK(&so->so_snd);
957		unp2->unp_cc = sbcc;
958		UNP_PCB_UNLOCK(unp2);
959		m = NULL;
960		break;
961
962	default:
963		panic("uipc_send unknown socktype");
964	}
965
966	/*
967	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
968	 */
969	if (flags & PRUS_EOF) {
970		UNP_PCB_LOCK(unp);
971		socantsendmore(so);
972		unp_shutdown(unp);
973		UNP_PCB_UNLOCK(unp);
974	}
975
976	if ((nam != NULL) || (flags & PRUS_EOF))
977		UNP_LINK_WUNLOCK();
978	else
979		UNP_LINK_RUNLOCK();
980
981	if (control != NULL && error != 0)
982		unp_dispose(control);
983
984release:
985	if (control != NULL)
986		m_freem(control);
987	if (m != NULL)
988		m_freem(m);
989	return (error);
990}
991
992static int
993uipc_sense(struct socket *so, struct stat *sb)
994{
995	struct unpcb *unp, *unp2;
996	struct socket *so2;
997
998	unp = sotounpcb(so);
999	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1000
1001	sb->st_blksize = so->so_snd.sb_hiwat;
1002	UNP_LINK_RLOCK();
1003	UNP_PCB_LOCK(unp);
1004	unp2 = unp->unp_conn;
1005	if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) &&
1006	    unp2 != NULL) {
1007		so2 = unp2->unp_socket;
1008		sb->st_blksize += so2->so_rcv.sb_cc;
1009	}
1010	sb->st_dev = NODEV;
1011	if (unp->unp_ino == 0)
1012		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1013	sb->st_ino = unp->unp_ino;
1014	UNP_PCB_UNLOCK(unp);
1015	UNP_LINK_RUNLOCK();
1016	return (0);
1017}
1018
1019static int
1020uipc_shutdown(struct socket *so)
1021{
1022	struct unpcb *unp;
1023
1024	unp = sotounpcb(so);
1025	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1026
1027	UNP_LINK_WLOCK();
1028	UNP_PCB_LOCK(unp);
1029	socantsendmore(so);
1030	unp_shutdown(unp);
1031	UNP_PCB_UNLOCK(unp);
1032	UNP_LINK_WUNLOCK();
1033	return (0);
1034}
1035
1036static int
1037uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1038{
1039	struct unpcb *unp;
1040	const struct sockaddr *sa;
1041
1042	unp = sotounpcb(so);
1043	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1044
1045	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1046	UNP_PCB_LOCK(unp);
1047	if (unp->unp_addr != NULL)
1048		sa = (struct sockaddr *) unp->unp_addr;
1049	else
1050		sa = &sun_noname;
1051	bcopy(sa, *nam, sa->sa_len);
1052	UNP_PCB_UNLOCK(unp);
1053	return (0);
1054}
1055
1056static struct pr_usrreqs uipc_usrreqs_dgram = {
1057	.pru_abort = 		uipc_abort,
1058	.pru_accept =		uipc_accept,
1059	.pru_attach =		uipc_attach,
1060	.pru_bind =		uipc_bind,
1061	.pru_connect =		uipc_connect,
1062	.pru_connect2 =		uipc_connect2,
1063	.pru_detach =		uipc_detach,
1064	.pru_disconnect =	uipc_disconnect,
1065	.pru_listen =		uipc_listen,
1066	.pru_peeraddr =		uipc_peeraddr,
1067	.pru_rcvd =		uipc_rcvd,
1068	.pru_send =		uipc_send,
1069	.pru_sense =		uipc_sense,
1070	.pru_shutdown =		uipc_shutdown,
1071	.pru_sockaddr =		uipc_sockaddr,
1072	.pru_soreceive =	soreceive_dgram,
1073	.pru_close =		uipc_close,
1074};
1075
1076static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1077	.pru_abort =		uipc_abort,
1078	.pru_accept =		uipc_accept,
1079	.pru_attach =		uipc_attach,
1080	.pru_bind =		uipc_bind,
1081	.pru_connect =		uipc_connect,
1082	.pru_connect2 =		uipc_connect2,
1083	.pru_detach =		uipc_detach,
1084	.pru_disconnect =	uipc_disconnect,
1085	.pru_listen =		uipc_listen,
1086	.pru_peeraddr =		uipc_peeraddr,
1087	.pru_rcvd =		uipc_rcvd,
1088	.pru_send =		uipc_send,
1089	.pru_sense =		uipc_sense,
1090	.pru_shutdown =		uipc_shutdown,
1091	.pru_sockaddr =		uipc_sockaddr,
1092	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1093	.pru_close =		uipc_close,
1094};
1095
1096static struct pr_usrreqs uipc_usrreqs_stream = {
1097	.pru_abort = 		uipc_abort,
1098	.pru_accept =		uipc_accept,
1099	.pru_attach =		uipc_attach,
1100	.pru_bind =		uipc_bind,
1101	.pru_connect =		uipc_connect,
1102	.pru_connect2 =		uipc_connect2,
1103	.pru_detach =		uipc_detach,
1104	.pru_disconnect =	uipc_disconnect,
1105	.pru_listen =		uipc_listen,
1106	.pru_peeraddr =		uipc_peeraddr,
1107	.pru_rcvd =		uipc_rcvd,
1108	.pru_send =		uipc_send,
1109	.pru_sense =		uipc_sense,
1110	.pru_shutdown =		uipc_shutdown,
1111	.pru_sockaddr =		uipc_sockaddr,
1112	.pru_soreceive =	soreceive_generic,
1113	.pru_close =		uipc_close,
1114};
1115
1116static int
1117uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1118{
1119	struct unpcb *unp;
1120	struct xucred xu;
1121	int error, optval;
1122
1123	if (sopt->sopt_level != 0)
1124		return (EINVAL);
1125
1126	unp = sotounpcb(so);
1127	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1128	error = 0;
1129	switch (sopt->sopt_dir) {
1130	case SOPT_GET:
1131		switch (sopt->sopt_name) {
1132		case LOCAL_PEERCRED:
1133			UNP_PCB_LOCK(unp);
1134			if (unp->unp_flags & UNP_HAVEPC)
1135				xu = unp->unp_peercred;
1136			else {
1137				if (so->so_type == SOCK_STREAM)
1138					error = ENOTCONN;
1139				else
1140					error = EINVAL;
1141			}
1142			UNP_PCB_UNLOCK(unp);
1143			if (error == 0)
1144				error = sooptcopyout(sopt, &xu, sizeof(xu));
1145			break;
1146
1147		case LOCAL_CREDS:
1148			/* Unlocked read. */
1149			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1150			error = sooptcopyout(sopt, &optval, sizeof(optval));
1151			break;
1152
1153		case LOCAL_CONNWAIT:
1154			/* Unlocked read. */
1155			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1156			error = sooptcopyout(sopt, &optval, sizeof(optval));
1157			break;
1158
1159		default:
1160			error = EOPNOTSUPP;
1161			break;
1162		}
1163		break;
1164
1165	case SOPT_SET:
1166		switch (sopt->sopt_name) {
1167		case LOCAL_CREDS:
1168		case LOCAL_CONNWAIT:
1169			error = sooptcopyin(sopt, &optval, sizeof(optval),
1170					    sizeof(optval));
1171			if (error)
1172				break;
1173
1174#define	OPTSET(bit) do {						\
1175	UNP_PCB_LOCK(unp);						\
1176	if (optval)							\
1177		unp->unp_flags |= bit;					\
1178	else								\
1179		unp->unp_flags &= ~bit;					\
1180	UNP_PCB_UNLOCK(unp);						\
1181} while (0)
1182
1183			switch (sopt->sopt_name) {
1184			case LOCAL_CREDS:
1185				OPTSET(UNP_WANTCRED);
1186				break;
1187
1188			case LOCAL_CONNWAIT:
1189				OPTSET(UNP_CONNWAIT);
1190				break;
1191
1192			default:
1193				break;
1194			}
1195			break;
1196#undef	OPTSET
1197		default:
1198			error = ENOPROTOOPT;
1199			break;
1200		}
1201		break;
1202
1203	default:
1204		error = EOPNOTSUPP;
1205		break;
1206	}
1207	return (error);
1208}
1209
1210static int
1211unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1212{
1213	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1214	struct vnode *vp;
1215	struct socket *so2, *so3;
1216	struct unpcb *unp, *unp2, *unp3;
1217	int error, len, vfslocked;
1218	struct nameidata nd;
1219	char buf[SOCK_MAXADDRLEN];
1220	struct sockaddr *sa;
1221
1222	UNP_LINK_WLOCK_ASSERT();
1223
1224	unp = sotounpcb(so);
1225	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1226
1227	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1228	if (len <= 0)
1229		return (EINVAL);
1230	bcopy(soun->sun_path, buf, len);
1231	buf[len] = 0;
1232
1233	UNP_PCB_LOCK(unp);
1234	if (unp->unp_flags & UNP_CONNECTING) {
1235		UNP_PCB_UNLOCK(unp);
1236		return (EALREADY);
1237	}
1238	UNP_LINK_WUNLOCK();
1239	unp->unp_flags |= UNP_CONNECTING;
1240	UNP_PCB_UNLOCK(unp);
1241
1242	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1243	NDINIT(&nd, LOOKUP, MPSAFE | FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf,
1244	    td);
1245	error = namei(&nd);
1246	if (error)
1247		vp = NULL;
1248	else
1249		vp = nd.ni_vp;
1250	ASSERT_VOP_LOCKED(vp, "unp_connect");
1251	vfslocked = NDHASGIANT(&nd);
1252	NDFREE(&nd, NDF_ONLY_PNBUF);
1253	if (error)
1254		goto bad;
1255
1256	if (vp->v_type != VSOCK) {
1257		error = ENOTSOCK;
1258		goto bad;
1259	}
1260#ifdef MAC
1261	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1262	if (error)
1263		goto bad;
1264#endif
1265	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1266	if (error)
1267		goto bad;
1268	VFS_UNLOCK_GIANT(vfslocked);
1269
1270	unp = sotounpcb(so);
1271	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1272
1273	/*
1274	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1275	 * and to protect simultaneous locking of multiple pcbs.
1276	 */
1277	UNP_LINK_WLOCK();
1278	so2 = vp->v_socket;
1279	if (so2 == NULL) {
1280		error = ECONNREFUSED;
1281		goto bad2;
1282	}
1283	if (so->so_type != so2->so_type) {
1284		error = EPROTOTYPE;
1285		goto bad2;
1286	}
1287	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1288		if (so2->so_options & SO_ACCEPTCONN) {
1289			so3 = sonewconn(so2, 0);
1290		} else
1291			so3 = NULL;
1292		if (so3 == NULL) {
1293			error = ECONNREFUSED;
1294			goto bad2;
1295		}
1296		unp = sotounpcb(so);
1297		unp2 = sotounpcb(so2);
1298		unp3 = sotounpcb(so3);
1299		UNP_PCB_LOCK(unp);
1300		UNP_PCB_LOCK(unp2);
1301		UNP_PCB_LOCK(unp3);
1302		if (unp2->unp_addr != NULL) {
1303			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1304			unp3->unp_addr = (struct sockaddr_un *) sa;
1305			sa = NULL;
1306		}
1307
1308		/*
1309		 * The connecter's (client's) credentials are copied from its
1310		 * process structure at the time of connect() (which is now).
1311		 */
1312		cru2x(td->td_ucred, &unp3->unp_peercred);
1313		unp3->unp_flags |= UNP_HAVEPC;
1314
1315		/*
1316		 * The receiver's (server's) credentials are copied from the
1317		 * unp_peercred member of socket on which the former called
1318		 * listen(); uipc_listen() cached that process's credentials
1319		 * at that time so we can use them now.
1320		 */
1321		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1322		    ("unp_connect: listener without cached peercred"));
1323		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1324		    sizeof(unp->unp_peercred));
1325		unp->unp_flags |= UNP_HAVEPC;
1326		if (unp2->unp_flags & UNP_WANTCRED)
1327			unp3->unp_flags |= UNP_WANTCRED;
1328		UNP_PCB_UNLOCK(unp3);
1329		UNP_PCB_UNLOCK(unp2);
1330		UNP_PCB_UNLOCK(unp);
1331#ifdef MAC
1332		mac_socketpeer_set_from_socket(so, so3);
1333		mac_socketpeer_set_from_socket(so3, so);
1334#endif
1335
1336		so2 = so3;
1337	}
1338	unp = sotounpcb(so);
1339	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1340	unp2 = sotounpcb(so2);
1341	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1342	UNP_PCB_LOCK(unp);
1343	UNP_PCB_LOCK(unp2);
1344	error = unp_connect2(so, so2, PRU_CONNECT);
1345	UNP_PCB_UNLOCK(unp2);
1346	UNP_PCB_UNLOCK(unp);
1347bad2:
1348	UNP_LINK_WUNLOCK();
1349	if (vfslocked)
1350		/*
1351		 * Giant has been previously acquired. This means filesystem
1352		 * isn't MPSAFE.  Do it once again.
1353		 */
1354		mtx_lock(&Giant);
1355bad:
1356	if (vp != NULL)
1357		vput(vp);
1358	VFS_UNLOCK_GIANT(vfslocked);
1359	free(sa, M_SONAME);
1360	UNP_LINK_WLOCK();
1361	UNP_PCB_LOCK(unp);
1362	unp->unp_flags &= ~UNP_CONNECTING;
1363	UNP_PCB_UNLOCK(unp);
1364	return (error);
1365}
1366
1367static int
1368unp_connect2(struct socket *so, struct socket *so2, int req)
1369{
1370	struct unpcb *unp;
1371	struct unpcb *unp2;
1372
1373	unp = sotounpcb(so);
1374	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1375	unp2 = sotounpcb(so2);
1376	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1377
1378	UNP_LINK_WLOCK_ASSERT();
1379	UNP_PCB_LOCK_ASSERT(unp);
1380	UNP_PCB_LOCK_ASSERT(unp2);
1381
1382	if (so2->so_type != so->so_type)
1383		return (EPROTOTYPE);
1384	unp->unp_conn = unp2;
1385
1386	switch (so->so_type) {
1387	case SOCK_DGRAM:
1388		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1389		soisconnected(so);
1390		break;
1391
1392	case SOCK_STREAM:
1393	case SOCK_SEQPACKET:
1394		unp2->unp_conn = unp;
1395		if (req == PRU_CONNECT &&
1396		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1397			soisconnecting(so);
1398		else
1399			soisconnected(so);
1400		soisconnected(so2);
1401		break;
1402
1403	default:
1404		panic("unp_connect2");
1405	}
1406	return (0);
1407}
1408
1409static void
1410unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1411{
1412	struct socket *so;
1413
1414	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1415
1416	UNP_LINK_WLOCK_ASSERT();
1417	UNP_PCB_LOCK_ASSERT(unp);
1418	UNP_PCB_LOCK_ASSERT(unp2);
1419
1420	unp->unp_conn = NULL;
1421	switch (unp->unp_socket->so_type) {
1422	case SOCK_DGRAM:
1423		LIST_REMOVE(unp, unp_reflink);
1424		so = unp->unp_socket;
1425		SOCK_LOCK(so);
1426		so->so_state &= ~SS_ISCONNECTED;
1427		SOCK_UNLOCK(so);
1428		break;
1429
1430	case SOCK_STREAM:
1431	case SOCK_SEQPACKET:
1432		soisdisconnected(unp->unp_socket);
1433		unp2->unp_conn = NULL;
1434		soisdisconnected(unp2->unp_socket);
1435		break;
1436	}
1437}
1438
1439/*
1440 * unp_pcblist() walks the global list of struct unpcb's to generate a
1441 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1442 * sequentially, validating the generation number on each to see if it has
1443 * been detached.  All of this is necessary because copyout() may sleep on
1444 * disk I/O.
1445 */
1446static int
1447unp_pcblist(SYSCTL_HANDLER_ARGS)
1448{
1449	int error, i, n;
1450	int freeunp;
1451	struct unpcb *unp, **unp_list;
1452	unp_gen_t gencnt;
1453	struct xunpgen *xug;
1454	struct unp_head *head;
1455	struct xunpcb *xu;
1456
1457	switch ((intptr_t)arg1) {
1458	case SOCK_STREAM:
1459		head = &unp_shead;
1460		break;
1461
1462	case SOCK_DGRAM:
1463		head = &unp_dhead;
1464		break;
1465
1466	case SOCK_SEQPACKET:
1467		head = &unp_sphead;
1468		break;
1469
1470	default:
1471		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1472	}
1473
1474	/*
1475	 * The process of preparing the PCB list is too time-consuming and
1476	 * resource-intensive to repeat twice on every request.
1477	 */
1478	if (req->oldptr == NULL) {
1479		n = unp_count;
1480		req->oldidx = 2 * (sizeof *xug)
1481			+ (n + n/8) * sizeof(struct xunpcb);
1482		return (0);
1483	}
1484
1485	if (req->newptr != NULL)
1486		return (EPERM);
1487
1488	/*
1489	 * OK, now we're committed to doing something.
1490	 */
1491	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1492	UNP_LIST_LOCK();
1493	gencnt = unp_gencnt;
1494	n = unp_count;
1495	UNP_LIST_UNLOCK();
1496
1497	xug->xug_len = sizeof *xug;
1498	xug->xug_count = n;
1499	xug->xug_gen = gencnt;
1500	xug->xug_sogen = so_gencnt;
1501	error = SYSCTL_OUT(req, xug, sizeof *xug);
1502	if (error) {
1503		free(xug, M_TEMP);
1504		return (error);
1505	}
1506
1507	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1508
1509	UNP_LIST_LOCK();
1510	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1511	     unp = LIST_NEXT(unp, unp_link)) {
1512		UNP_PCB_LOCK(unp);
1513		if (unp->unp_gencnt <= gencnt) {
1514			if (cr_cansee(req->td->td_ucred,
1515			    unp->unp_socket->so_cred)) {
1516				UNP_PCB_UNLOCK(unp);
1517				continue;
1518			}
1519			unp_list[i++] = unp;
1520			unp->unp_refcount++;
1521		}
1522		UNP_PCB_UNLOCK(unp);
1523	}
1524	UNP_LIST_UNLOCK();
1525	n = i;			/* In case we lost some during malloc. */
1526
1527	error = 0;
1528	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1529	for (i = 0; i < n; i++) {
1530		unp = unp_list[i];
1531		UNP_PCB_LOCK(unp);
1532		unp->unp_refcount--;
1533	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1534			xu->xu_len = sizeof *xu;
1535			xu->xu_unpp = unp;
1536			/*
1537			 * XXX - need more locking here to protect against
1538			 * connect/disconnect races for SMP.
1539			 */
1540			if (unp->unp_addr != NULL)
1541				bcopy(unp->unp_addr, &xu->xu_addr,
1542				      unp->unp_addr->sun_len);
1543			if (unp->unp_conn != NULL &&
1544			    unp->unp_conn->unp_addr != NULL)
1545				bcopy(unp->unp_conn->unp_addr,
1546				      &xu->xu_caddr,
1547				      unp->unp_conn->unp_addr->sun_len);
1548			bcopy(unp, &xu->xu_unp, sizeof *unp);
1549			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1550			UNP_PCB_UNLOCK(unp);
1551			error = SYSCTL_OUT(req, xu, sizeof *xu);
1552		} else {
1553			freeunp = (unp->unp_refcount == 0);
1554			UNP_PCB_UNLOCK(unp);
1555			if (freeunp) {
1556				UNP_PCB_LOCK_DESTROY(unp);
1557				uma_zfree(unp_zone, unp);
1558			}
1559		}
1560	}
1561	free(xu, M_TEMP);
1562	if (!error) {
1563		/*
1564		 * Give the user an updated idea of our state.  If the
1565		 * generation differs from what we told her before, she knows
1566		 * that something happened while we were processing this
1567		 * request, and it might be necessary to retry.
1568		 */
1569		xug->xug_gen = unp_gencnt;
1570		xug->xug_sogen = so_gencnt;
1571		xug->xug_count = unp_count;
1572		error = SYSCTL_OUT(req, xug, sizeof *xug);
1573	}
1574	free(unp_list, M_TEMP);
1575	free(xug, M_TEMP);
1576	return (error);
1577}
1578
1579SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1580	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1581	    "List of active local datagram sockets");
1582SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1583	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1584	    "List of active local stream sockets");
1585SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD,
1586	    (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1587	    "List of active local seqpacket sockets");
1588
1589static void
1590unp_shutdown(struct unpcb *unp)
1591{
1592	struct unpcb *unp2;
1593	struct socket *so;
1594
1595	UNP_LINK_WLOCK_ASSERT();
1596	UNP_PCB_LOCK_ASSERT(unp);
1597
1598	unp2 = unp->unp_conn;
1599	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1600	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1601		so = unp2->unp_socket;
1602		if (so != NULL)
1603			socantrcvmore(so);
1604	}
1605}
1606
1607static void
1608unp_drop(struct unpcb *unp, int errno)
1609{
1610	struct socket *so = unp->unp_socket;
1611	struct unpcb *unp2;
1612
1613	UNP_LINK_WLOCK_ASSERT();
1614	UNP_PCB_LOCK_ASSERT(unp);
1615
1616	so->so_error = errno;
1617	unp2 = unp->unp_conn;
1618	if (unp2 == NULL)
1619		return;
1620	UNP_PCB_LOCK(unp2);
1621	unp_disconnect(unp, unp2);
1622	UNP_PCB_UNLOCK(unp2);
1623}
1624
1625static void
1626unp_freerights(struct file **rp, int fdcount)
1627{
1628	int i;
1629	struct file *fp;
1630
1631	for (i = 0; i < fdcount; i++) {
1632		fp = *rp;
1633		*rp++ = NULL;
1634		unp_discard(fp);
1635	}
1636}
1637
1638static int
1639unp_externalize(struct mbuf *control, struct mbuf **controlp)
1640{
1641	struct thread *td = curthread;		/* XXX */
1642	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1643	int i;
1644	int *fdp;
1645	struct file **rp;
1646	struct file *fp;
1647	void *data;
1648	socklen_t clen = control->m_len, datalen;
1649	int error, newfds;
1650	int f;
1651	u_int newlen;
1652
1653	UNP_LINK_UNLOCK_ASSERT();
1654
1655	error = 0;
1656	if (controlp != NULL) /* controlp == NULL => free control messages */
1657		*controlp = NULL;
1658	while (cm != NULL) {
1659		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1660			error = EINVAL;
1661			break;
1662		}
1663		data = CMSG_DATA(cm);
1664		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1665		if (cm->cmsg_level == SOL_SOCKET
1666		    && cm->cmsg_type == SCM_RIGHTS) {
1667			newfds = datalen / sizeof(struct file *);
1668			rp = data;
1669
1670			/* If we're not outputting the descriptors free them. */
1671			if (error || controlp == NULL) {
1672				unp_freerights(rp, newfds);
1673				goto next;
1674			}
1675			FILEDESC_XLOCK(td->td_proc->p_fd);
1676			/* if the new FD's will not fit free them.  */
1677			if (!fdavail(td, newfds)) {
1678				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1679				error = EMSGSIZE;
1680				unp_freerights(rp, newfds);
1681				goto next;
1682			}
1683
1684			/*
1685			 * Now change each pointer to an fd in the global
1686			 * table to an integer that is the index to the local
1687			 * fd table entry that we set up to point to the
1688			 * global one we are transferring.
1689			 */
1690			newlen = newfds * sizeof(int);
1691			*controlp = sbcreatecontrol(NULL, newlen,
1692			    SCM_RIGHTS, SOL_SOCKET);
1693			if (*controlp == NULL) {
1694				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1695				error = E2BIG;
1696				unp_freerights(rp, newfds);
1697				goto next;
1698			}
1699
1700			fdp = (int *)
1701			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1702			for (i = 0; i < newfds; i++) {
1703				if (fdalloc(td, 0, &f))
1704					panic("unp_externalize fdalloc failed");
1705				fp = *rp++;
1706				td->td_proc->p_fd->fd_ofiles[f] = fp;
1707				unp_externalize_fp(fp);
1708				*fdp++ = f;
1709			}
1710			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1711		} else {
1712			/* We can just copy anything else across. */
1713			if (error || controlp == NULL)
1714				goto next;
1715			*controlp = sbcreatecontrol(NULL, datalen,
1716			    cm->cmsg_type, cm->cmsg_level);
1717			if (*controlp == NULL) {
1718				error = ENOBUFS;
1719				goto next;
1720			}
1721			bcopy(data,
1722			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1723			    datalen);
1724		}
1725		controlp = &(*controlp)->m_next;
1726
1727next:
1728		if (CMSG_SPACE(datalen) < clen) {
1729			clen -= CMSG_SPACE(datalen);
1730			cm = (struct cmsghdr *)
1731			    ((caddr_t)cm + CMSG_SPACE(datalen));
1732		} else {
1733			clen = 0;
1734			cm = NULL;
1735		}
1736	}
1737
1738	m_freem(control);
1739	return (error);
1740}
1741
1742static void
1743unp_zone_change(void *tag)
1744{
1745
1746	uma_zone_set_max(unp_zone, maxsockets);
1747}
1748
1749static void
1750unp_init(void)
1751{
1752
1753#ifdef VIMAGE
1754	if (!IS_DEFAULT_VNET(curvnet))
1755		return;
1756#endif
1757	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1758	    NULL, NULL, UMA_ALIGN_PTR, 0);
1759	if (unp_zone == NULL)
1760		panic("unp_init");
1761	uma_zone_set_max(unp_zone, maxsockets);
1762	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1763	    NULL, EVENTHANDLER_PRI_ANY);
1764	LIST_INIT(&unp_dhead);
1765	LIST_INIT(&unp_shead);
1766	LIST_INIT(&unp_sphead);
1767	TASK_INIT(&unp_gc_task, 0, unp_gc, NULL);
1768	UNP_LINK_LOCK_INIT();
1769	UNP_LIST_LOCK_INIT();
1770}
1771
1772static int
1773unp_internalize(struct mbuf **controlp, struct thread *td)
1774{
1775	struct mbuf *control = *controlp;
1776	struct proc *p = td->td_proc;
1777	struct filedesc *fdescp = p->p_fd;
1778	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1779	struct cmsgcred *cmcred;
1780	struct file **rp;
1781	struct file *fp;
1782	struct timeval *tv;
1783	int i, fd, *fdp;
1784	void *data;
1785	socklen_t clen = control->m_len, datalen;
1786	int error, oldfds;
1787	u_int newlen;
1788
1789	UNP_LINK_UNLOCK_ASSERT();
1790
1791	error = 0;
1792	*controlp = NULL;
1793	while (cm != NULL) {
1794		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1795		    || cm->cmsg_len > clen) {
1796			error = EINVAL;
1797			goto out;
1798		}
1799		data = CMSG_DATA(cm);
1800		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1801
1802		switch (cm->cmsg_type) {
1803		/*
1804		 * Fill in credential information.
1805		 */
1806		case SCM_CREDS:
1807			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1808			    SCM_CREDS, SOL_SOCKET);
1809			if (*controlp == NULL) {
1810				error = ENOBUFS;
1811				goto out;
1812			}
1813			cmcred = (struct cmsgcred *)
1814			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1815			cmcred->cmcred_pid = p->p_pid;
1816			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1817			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1818			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1819			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1820			    CMGROUP_MAX);
1821			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1822				cmcred->cmcred_groups[i] =
1823				    td->td_ucred->cr_groups[i];
1824			break;
1825
1826		case SCM_RIGHTS:
1827			oldfds = datalen / sizeof (int);
1828			/*
1829			 * Check that all the FDs passed in refer to legal
1830			 * files.  If not, reject the entire operation.
1831			 */
1832			fdp = data;
1833			FILEDESC_SLOCK(fdescp);
1834			for (i = 0; i < oldfds; i++) {
1835				fd = *fdp++;
1836				if ((unsigned)fd >= fdescp->fd_nfiles ||
1837				    fdescp->fd_ofiles[fd] == NULL) {
1838					FILEDESC_SUNLOCK(fdescp);
1839					error = EBADF;
1840					goto out;
1841				}
1842				fp = fdescp->fd_ofiles[fd];
1843				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1844					FILEDESC_SUNLOCK(fdescp);
1845					error = EOPNOTSUPP;
1846					goto out;
1847				}
1848
1849			}
1850
1851			/*
1852			 * Now replace the integer FDs with pointers to the
1853			 * associated global file table entry..
1854			 */
1855			newlen = oldfds * sizeof(struct file *);
1856			*controlp = sbcreatecontrol(NULL, newlen,
1857			    SCM_RIGHTS, SOL_SOCKET);
1858			if (*controlp == NULL) {
1859				FILEDESC_SUNLOCK(fdescp);
1860				error = E2BIG;
1861				goto out;
1862			}
1863			fdp = data;
1864			rp = (struct file **)
1865			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1866			for (i = 0; i < oldfds; i++) {
1867				fp = fdescp->fd_ofiles[*fdp++];
1868				*rp++ = fp;
1869				unp_internalize_fp(fp);
1870			}
1871			FILEDESC_SUNLOCK(fdescp);
1872			break;
1873
1874		case SCM_TIMESTAMP:
1875			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1876			    SCM_TIMESTAMP, SOL_SOCKET);
1877			if (*controlp == NULL) {
1878				error = ENOBUFS;
1879				goto out;
1880			}
1881			tv = (struct timeval *)
1882			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1883			microtime(tv);
1884			break;
1885
1886		default:
1887			error = EINVAL;
1888			goto out;
1889		}
1890
1891		controlp = &(*controlp)->m_next;
1892		if (CMSG_SPACE(datalen) < clen) {
1893			clen -= CMSG_SPACE(datalen);
1894			cm = (struct cmsghdr *)
1895			    ((caddr_t)cm + CMSG_SPACE(datalen));
1896		} else {
1897			clen = 0;
1898			cm = NULL;
1899		}
1900	}
1901
1902out:
1903	m_freem(control);
1904	return (error);
1905}
1906
1907static struct mbuf *
1908unp_addsockcred(struct thread *td, struct mbuf *control)
1909{
1910	struct mbuf *m, *n, *n_prev;
1911	struct sockcred *sc;
1912	const struct cmsghdr *cm;
1913	int ngroups;
1914	int i;
1915
1916	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
1917	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
1918	if (m == NULL)
1919		return (control);
1920
1921	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
1922	sc->sc_uid = td->td_ucred->cr_ruid;
1923	sc->sc_euid = td->td_ucred->cr_uid;
1924	sc->sc_gid = td->td_ucred->cr_rgid;
1925	sc->sc_egid = td->td_ucred->cr_gid;
1926	sc->sc_ngroups = ngroups;
1927	for (i = 0; i < sc->sc_ngroups; i++)
1928		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
1929
1930	/*
1931	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
1932	 * created SCM_CREDS control message (struct sockcred) has another
1933	 * format.
1934	 */
1935	if (control != NULL)
1936		for (n = control, n_prev = NULL; n != NULL;) {
1937			cm = mtod(n, struct cmsghdr *);
1938    			if (cm->cmsg_level == SOL_SOCKET &&
1939			    cm->cmsg_type == SCM_CREDS) {
1940    				if (n_prev == NULL)
1941					control = n->m_next;
1942				else
1943					n_prev->m_next = n->m_next;
1944				n = m_free(n);
1945			} else {
1946				n_prev = n;
1947				n = n->m_next;
1948			}
1949		}
1950
1951	/* Prepend it to the head. */
1952	m->m_next = control;
1953	return (m);
1954}
1955
1956static struct unpcb *
1957fptounp(struct file *fp)
1958{
1959	struct socket *so;
1960
1961	if (fp->f_type != DTYPE_SOCKET)
1962		return (NULL);
1963	if ((so = fp->f_data) == NULL)
1964		return (NULL);
1965	if (so->so_proto->pr_domain != &localdomain)
1966		return (NULL);
1967	return sotounpcb(so);
1968}
1969
1970static void
1971unp_discard(struct file *fp)
1972{
1973
1974	unp_externalize_fp(fp);
1975	(void) closef(fp, (struct thread *)NULL);
1976}
1977
1978static void
1979unp_internalize_fp(struct file *fp)
1980{
1981	struct unpcb *unp;
1982
1983	UNP_LINK_WLOCK();
1984	if ((unp = fptounp(fp)) != NULL) {
1985		unp->unp_file = fp;
1986		unp->unp_msgcount++;
1987	}
1988	fhold(fp);
1989	unp_rights++;
1990	UNP_LINK_WUNLOCK();
1991}
1992
1993static void
1994unp_externalize_fp(struct file *fp)
1995{
1996	struct unpcb *unp;
1997
1998	UNP_LINK_WLOCK();
1999	if ((unp = fptounp(fp)) != NULL)
2000		unp->unp_msgcount--;
2001	unp_rights--;
2002	UNP_LINK_WUNLOCK();
2003}
2004
2005/*
2006 * unp_defer indicates whether additional work has been defered for a future
2007 * pass through unp_gc().  It is thread local and does not require explicit
2008 * synchronization.
2009 */
2010static int	unp_marked;
2011static int	unp_unreachable;
2012
2013static void
2014unp_accessable(struct file *fp)
2015{
2016	struct unpcb *unp;
2017
2018	if ((unp = fptounp(fp)) == NULL)
2019		return;
2020	if (unp->unp_gcflag & UNPGC_REF)
2021		return;
2022	unp->unp_gcflag &= ~UNPGC_DEAD;
2023	unp->unp_gcflag |= UNPGC_REF;
2024	unp_marked++;
2025}
2026
2027static void
2028unp_gc_process(struct unpcb *unp)
2029{
2030	struct socket *soa;
2031	struct socket *so;
2032	struct file *fp;
2033
2034	/* Already processed. */
2035	if (unp->unp_gcflag & UNPGC_SCANNED)
2036		return;
2037	fp = unp->unp_file;
2038
2039	/*
2040	 * Check for a socket potentially in a cycle.  It must be in a
2041	 * queue as indicated by msgcount, and this must equal the file
2042	 * reference count.  Note that when msgcount is 0 the file is NULL.
2043	 */
2044	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2045	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2046		unp->unp_gcflag |= UNPGC_DEAD;
2047		unp_unreachable++;
2048		return;
2049	}
2050
2051	/*
2052	 * Mark all sockets we reference with RIGHTS.
2053	 */
2054	so = unp->unp_socket;
2055	SOCKBUF_LOCK(&so->so_rcv);
2056	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2057	SOCKBUF_UNLOCK(&so->so_rcv);
2058
2059	/*
2060	 * Mark all sockets in our accept queue.
2061	 */
2062	ACCEPT_LOCK();
2063	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2064		SOCKBUF_LOCK(&soa->so_rcv);
2065		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2066		SOCKBUF_UNLOCK(&soa->so_rcv);
2067	}
2068	ACCEPT_UNLOCK();
2069	unp->unp_gcflag |= UNPGC_SCANNED;
2070}
2071
2072static int unp_recycled;
2073SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2074    "Number of unreachable sockets claimed by the garbage collector.");
2075
2076static int unp_taskcount;
2077SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2078    "Number of times the garbage collector has run.");
2079
2080static void
2081unp_gc(__unused void *arg, int pending)
2082{
2083	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2084				    NULL };
2085	struct unp_head **head;
2086	struct file **unref;
2087	struct unpcb *unp;
2088	int i;
2089
2090	unp_taskcount++;
2091	UNP_LIST_LOCK();
2092	/*
2093	 * First clear all gc flags from previous runs.
2094	 */
2095	for (head = heads; *head != NULL; head++)
2096		LIST_FOREACH(unp, *head, unp_link)
2097			unp->unp_gcflag = 0;
2098
2099	/*
2100	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2101	 * is reachable all of the sockets it references are reachable.
2102	 * Stop the scan once we do a complete loop without discovering
2103	 * a new reachable socket.
2104	 */
2105	do {
2106		unp_unreachable = 0;
2107		unp_marked = 0;
2108		for (head = heads; *head != NULL; head++)
2109			LIST_FOREACH(unp, *head, unp_link)
2110				unp_gc_process(unp);
2111	} while (unp_marked);
2112	UNP_LIST_UNLOCK();
2113	if (unp_unreachable == 0)
2114		return;
2115
2116	/*
2117	 * Allocate space for a local list of dead unpcbs.
2118	 */
2119	unref = malloc(unp_unreachable * sizeof(struct file *),
2120	    M_TEMP, M_WAITOK);
2121
2122	/*
2123	 * Iterate looking for sockets which have been specifically marked
2124	 * as as unreachable and store them locally.
2125	 */
2126	UNP_LIST_LOCK();
2127	for (i = 0, head = heads; *head != NULL; head++)
2128		LIST_FOREACH(unp, *head, unp_link)
2129			if (unp->unp_gcflag & UNPGC_DEAD) {
2130				unref[i++] = unp->unp_file;
2131				fhold(unp->unp_file);
2132				KASSERT(unp->unp_file != NULL,
2133				    ("unp_gc: Invalid unpcb."));
2134				KASSERT(i <= unp_unreachable,
2135				    ("unp_gc: incorrect unreachable count."));
2136			}
2137	UNP_LIST_UNLOCK();
2138
2139	/*
2140	 * Now flush all sockets, free'ing rights.  This will free the
2141	 * struct files associated with these sockets but leave each socket
2142	 * with one remaining ref.
2143	 */
2144	for (i = 0; i < unp_unreachable; i++)
2145		sorflush(unref[i]->f_data);
2146
2147	/*
2148	 * And finally release the sockets so they can be reclaimed.
2149	 */
2150	for (i = 0; i < unp_unreachable; i++)
2151		fdrop(unref[i], NULL);
2152	unp_recycled += unp_unreachable;
2153	free(unref, M_TEMP);
2154}
2155
2156static void
2157unp_dispose(struct mbuf *m)
2158{
2159
2160	if (m)
2161		unp_scan(m, unp_discard);
2162}
2163
2164static void
2165unp_scan(struct mbuf *m0, void (*op)(struct file *))
2166{
2167	struct mbuf *m;
2168	struct file **rp;
2169	struct cmsghdr *cm;
2170	void *data;
2171	int i;
2172	socklen_t clen, datalen;
2173	int qfds;
2174
2175	while (m0 != NULL) {
2176		for (m = m0; m; m = m->m_next) {
2177			if (m->m_type != MT_CONTROL)
2178				continue;
2179
2180			cm = mtod(m, struct cmsghdr *);
2181			clen = m->m_len;
2182
2183			while (cm != NULL) {
2184				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2185					break;
2186
2187				data = CMSG_DATA(cm);
2188				datalen = (caddr_t)cm + cm->cmsg_len
2189				    - (caddr_t)data;
2190
2191				if (cm->cmsg_level == SOL_SOCKET &&
2192				    cm->cmsg_type == SCM_RIGHTS) {
2193					qfds = datalen / sizeof (struct file *);
2194					rp = data;
2195					for (i = 0; i < qfds; i++)
2196						(*op)(*rp++);
2197				}
2198
2199				if (CMSG_SPACE(datalen) < clen) {
2200					clen -= CMSG_SPACE(datalen);
2201					cm = (struct cmsghdr *)
2202					    ((caddr_t)cm + CMSG_SPACE(datalen));
2203				} else {
2204					clen = 0;
2205					cm = NULL;
2206				}
2207			}
2208		}
2209		m0 = m0->m_act;
2210	}
2211}
2212
2213#ifdef DDB
2214static void
2215db_print_indent(int indent)
2216{
2217	int i;
2218
2219	for (i = 0; i < indent; i++)
2220		db_printf(" ");
2221}
2222
2223static void
2224db_print_unpflags(int unp_flags)
2225{
2226	int comma;
2227
2228	comma = 0;
2229	if (unp_flags & UNP_HAVEPC) {
2230		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2231		comma = 1;
2232	}
2233	if (unp_flags & UNP_HAVEPCCACHED) {
2234		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2235		comma = 1;
2236	}
2237	if (unp_flags & UNP_WANTCRED) {
2238		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2239		comma = 1;
2240	}
2241	if (unp_flags & UNP_CONNWAIT) {
2242		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2243		comma = 1;
2244	}
2245	if (unp_flags & UNP_CONNECTING) {
2246		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2247		comma = 1;
2248	}
2249	if (unp_flags & UNP_BINDING) {
2250		db_printf("%sUNP_BINDING", comma ? ", " : "");
2251		comma = 1;
2252	}
2253}
2254
2255static void
2256db_print_xucred(int indent, struct xucred *xu)
2257{
2258	int comma, i;
2259
2260	db_print_indent(indent);
2261	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2262	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2263	db_print_indent(indent);
2264	db_printf("cr_groups: ");
2265	comma = 0;
2266	for (i = 0; i < xu->cr_ngroups; i++) {
2267		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2268		comma = 1;
2269	}
2270	db_printf("\n");
2271}
2272
2273static void
2274db_print_unprefs(int indent, struct unp_head *uh)
2275{
2276	struct unpcb *unp;
2277	int counter;
2278
2279	counter = 0;
2280	LIST_FOREACH(unp, uh, unp_reflink) {
2281		if (counter % 4 == 0)
2282			db_print_indent(indent);
2283		db_printf("%p  ", unp);
2284		if (counter % 4 == 3)
2285			db_printf("\n");
2286		counter++;
2287	}
2288	if (counter != 0 && counter % 4 != 0)
2289		db_printf("\n");
2290}
2291
2292DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2293{
2294	struct unpcb *unp;
2295
2296        if (!have_addr) {
2297                db_printf("usage: show unpcb <addr>\n");
2298                return;
2299        }
2300        unp = (struct unpcb *)addr;
2301
2302	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2303	    unp->unp_vnode);
2304
2305	db_printf("unp_ino: %d   unp_conn: %p\n", unp->unp_ino,
2306	    unp->unp_conn);
2307
2308	db_printf("unp_refs:\n");
2309	db_print_unprefs(2, &unp->unp_refs);
2310
2311	/* XXXRW: Would be nice to print the full address, if any. */
2312	db_printf("unp_addr: %p\n", unp->unp_addr);
2313
2314	db_printf("unp_cc: %d   unp_mbcnt: %d   unp_gencnt: %llu\n",
2315	    unp->unp_cc, unp->unp_mbcnt,
2316	    (unsigned long long)unp->unp_gencnt);
2317
2318	db_printf("unp_flags: %x (", unp->unp_flags);
2319	db_print_unpflags(unp->unp_flags);
2320	db_printf(")\n");
2321
2322	db_printf("unp_peercred:\n");
2323	db_print_xucred(2, &unp->unp_peercred);
2324
2325	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2326}
2327#endif
2328