uipc_usrreq.c revision 139804
1/*-
2 * Copyright 2004 Robert N. M. Watson
3 * Copyright (c) 1982, 1986, 1989, 1991, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/kern/uipc_usrreq.c 139804 2005-01-06 23:35:40Z imp $");
35
36#include "opt_mac.h"
37
38#include <sys/param.h>
39#include <sys/domain.h>
40#include <sys/fcntl.h>
41#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
42#include <sys/file.h>
43#include <sys/filedesc.h>
44#include <sys/jail.h>
45#include <sys/kernel.h>
46#include <sys/lock.h>
47#include <sys/mac.h>
48#include <sys/mbuf.h>
49#include <sys/mutex.h>
50#include <sys/namei.h>
51#include <sys/proc.h>
52#include <sys/protosw.h>
53#include <sys/resourcevar.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/signalvar.h>
57#include <sys/stat.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/systm.h>
61#include <sys/un.h>
62#include <sys/unpcb.h>
63#include <sys/vnode.h>
64
65#include <vm/uma.h>
66
67static uma_zone_t unp_zone;
68static	unp_gen_t unp_gencnt;
69static	u_int unp_count;
70
71static	struct unp_head unp_shead, unp_dhead;
72
73/*
74 * Unix communications domain.
75 *
76 * TODO:
77 *	SEQPACKET, RDM
78 *	rethink name space problems
79 *	need a proper out-of-band
80 *	lock pushdown
81 */
82static const struct	sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
83static ino_t	unp_ino;		/* prototype for fake inode numbers */
84
85/*
86 * Currently, UNIX domain sockets are protected by a single subsystem lock,
87 * which covers global data structures and variables, the contents of each
88 * per-socket unpcb structure, and the so_pcb field in sockets attached to
89 * the UNIX domain.  This provides for a moderate degree of paralellism, as
90 * receive operations on UNIX domain sockets do not need to acquire the
91 * subsystem lock.  Finer grained locking to permit send() without acquiring
92 * a global lock would be a logical next step.
93 *
94 * The UNIX domain socket lock preceds all socket layer locks, including the
95 * socket lock and socket buffer lock, permitting UNIX domain socket code to
96 * call into socket support routines without releasing its locks.
97 *
98 * Some caution is required in areas where the UNIX domain socket code enters
99 * VFS in order to create or find rendezvous points.  This results in
100 * dropping of the UNIX domain socket subsystem lock, acquisition of the
101 * Giant lock, and potential sleeping.  This increases the chances of races,
102 * and exposes weaknesses in the socket->protocol API by offering poor
103 * failure modes.
104 */
105static struct mtx unp_mtx;
106#define	UNP_LOCK_INIT() \
107	mtx_init(&unp_mtx, "unp", NULL, MTX_DEF)
108#define	UNP_LOCK()		mtx_lock(&unp_mtx)
109#define	UNP_UNLOCK()		mtx_unlock(&unp_mtx)
110#define	UNP_LOCK_ASSERT()	mtx_assert(&unp_mtx, MA_OWNED)
111#define	UNP_UNLOCK_ASSERT()	mtx_assert(&unp_mtx, MA_NOTOWNED)
112
113static int     unp_attach(struct socket *);
114static void    unp_detach(struct unpcb *);
115static int     unp_bind(struct unpcb *,struct sockaddr *, struct thread *);
116static int     unp_connect(struct socket *,struct sockaddr *, struct thread *);
117static int     unp_connect2(struct socket *so, struct socket *so2);
118static void    unp_disconnect(struct unpcb *);
119static void    unp_shutdown(struct unpcb *);
120static void    unp_drop(struct unpcb *, int);
121static void    unp_gc(void);
122static void    unp_scan(struct mbuf *, void (*)(struct file *));
123static void    unp_mark(struct file *);
124static void    unp_discard(struct file *);
125static void    unp_freerights(struct file **, int);
126static int     unp_internalize(struct mbuf **, struct thread *);
127static int     unp_listen(struct unpcb *, struct thread *);
128
129static int
130uipc_abort(struct socket *so)
131{
132	struct unpcb *unp;
133
134	UNP_LOCK();
135	unp = sotounpcb(so);
136	if (unp == NULL) {
137		UNP_UNLOCK();
138		return (EINVAL);
139	}
140	unp_drop(unp, ECONNABORTED);
141	unp_detach(unp);
142	UNP_UNLOCK_ASSERT();
143	ACCEPT_LOCK();
144	SOCK_LOCK(so);
145	sotryfree(so);
146	return (0);
147}
148
149static int
150uipc_accept(struct socket *so, struct sockaddr **nam)
151{
152	struct unpcb *unp;
153	const struct sockaddr *sa;
154
155	/*
156	 * Pass back name of connected socket,
157	 * if it was bound and we are still connected
158	 * (our peer may have closed already!).
159	 */
160	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
161	UNP_LOCK();
162	unp = sotounpcb(so);
163	if (unp == NULL) {
164		UNP_UNLOCK();
165		free(*nam, M_SONAME);
166		*nam = NULL;
167		return (EINVAL);
168	}
169	if (unp->unp_conn != NULL && unp->unp_conn->unp_addr != NULL)
170		sa = (struct sockaddr *) unp->unp_conn->unp_addr;
171	else
172		sa = &sun_noname;
173	bcopy(sa, *nam, sa->sa_len);
174	UNP_UNLOCK();
175	return (0);
176}
177
178static int
179uipc_attach(struct socket *so, int proto, struct thread *td)
180{
181	struct unpcb *unp = sotounpcb(so);
182
183	if (unp != NULL)
184		return (EISCONN);
185	return (unp_attach(so));
186}
187
188static int
189uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
190{
191	struct unpcb *unp;
192	int error;
193
194	UNP_LOCK();
195	unp = sotounpcb(so);
196	if (unp == NULL) {
197		UNP_UNLOCK();
198		return (EINVAL);
199	}
200	error = unp_bind(unp, nam, td);
201	UNP_UNLOCK();
202	return (error);
203}
204
205static int
206uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
207{
208	struct unpcb *unp;
209	int error;
210
211	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
212
213	UNP_LOCK();
214	unp = sotounpcb(so);
215	if (unp == NULL) {
216		UNP_UNLOCK();
217		return (EINVAL);
218	}
219	error = unp_connect(so, nam, td);
220	UNP_UNLOCK();
221	return (error);
222}
223
224int
225uipc_connect2(struct socket *so1, struct socket *so2)
226{
227	struct unpcb *unp;
228	int error;
229
230	UNP_LOCK();
231	unp = sotounpcb(so1);
232	if (unp == NULL) {
233		UNP_UNLOCK();
234		return (EINVAL);
235	}
236	error = unp_connect2(so1, so2);
237	UNP_UNLOCK();
238	return (error);
239}
240
241/* control is EOPNOTSUPP */
242
243static int
244uipc_detach(struct socket *so)
245{
246	struct unpcb *unp;
247
248	UNP_LOCK();
249	unp = sotounpcb(so);
250	if (unp == NULL) {
251		UNP_UNLOCK();
252		return (EINVAL);
253	}
254	unp_detach(unp);
255	UNP_UNLOCK_ASSERT();
256	return (0);
257}
258
259static int
260uipc_disconnect(struct socket *so)
261{
262	struct unpcb *unp;
263
264	UNP_LOCK();
265	unp = sotounpcb(so);
266	if (unp == NULL) {
267		UNP_UNLOCK();
268		return (EINVAL);
269	}
270	unp_disconnect(unp);
271	UNP_UNLOCK();
272	return (0);
273}
274
275static int
276uipc_listen(struct socket *so, struct thread *td)
277{
278	struct unpcb *unp;
279	int error;
280
281	UNP_LOCK();
282	unp = sotounpcb(so);
283	if (unp == NULL || unp->unp_vnode == NULL) {
284		UNP_UNLOCK();
285		return (EINVAL);
286	}
287	error = unp_listen(unp, td);
288	UNP_UNLOCK();
289	return (error);
290}
291
292static int
293uipc_peeraddr(struct socket *so, struct sockaddr **nam)
294{
295	struct unpcb *unp;
296	const struct sockaddr *sa;
297
298	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
299	UNP_LOCK();
300	unp = sotounpcb(so);
301	if (unp == NULL) {
302		UNP_UNLOCK();
303		free(*nam, M_SONAME);
304		*nam = NULL;
305		return (EINVAL);
306	}
307	if (unp->unp_conn != NULL && unp->unp_conn->unp_addr!= NULL)
308		sa = (struct sockaddr *) unp->unp_conn->unp_addr;
309	else {
310		/*
311		 * XXX: It seems that this test always fails even when
312		 * connection is established.  So, this else clause is
313		 * added as workaround to return PF_LOCAL sockaddr.
314		 */
315		sa = &sun_noname;
316	}
317	bcopy(sa, *nam, sa->sa_len);
318	UNP_UNLOCK();
319	return (0);
320}
321
322static int
323uipc_rcvd(struct socket *so, int flags)
324{
325	struct unpcb *unp;
326	struct socket *so2;
327	u_long newhiwat;
328
329	UNP_LOCK();
330	unp = sotounpcb(so);
331	if (unp == NULL) {
332		UNP_UNLOCK();
333		return (EINVAL);
334	}
335	switch (so->so_type) {
336	case SOCK_DGRAM:
337		panic("uipc_rcvd DGRAM?");
338		/*NOTREACHED*/
339
340	case SOCK_STREAM:
341		if (unp->unp_conn == NULL)
342			break;
343		so2 = unp->unp_conn->unp_socket;
344		SOCKBUF_LOCK(&so2->so_snd);
345		SOCKBUF_LOCK(&so->so_rcv);
346		/*
347		 * Adjust backpressure on sender
348		 * and wakeup any waiting to write.
349		 */
350		so2->so_snd.sb_mbmax += unp->unp_mbcnt - so->so_rcv.sb_mbcnt;
351		unp->unp_mbcnt = so->so_rcv.sb_mbcnt;
352		newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc -
353		    so->so_rcv.sb_cc;
354		(void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat,
355		    newhiwat, RLIM_INFINITY);
356		unp->unp_cc = so->so_rcv.sb_cc;
357		SOCKBUF_UNLOCK(&so->so_rcv);
358		sowwakeup_locked(so2);
359		break;
360
361	default:
362		panic("uipc_rcvd unknown socktype");
363	}
364	UNP_UNLOCK();
365	return (0);
366}
367
368/* pru_rcvoob is EOPNOTSUPP */
369
370static int
371uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
372	  struct mbuf *control, struct thread *td)
373{
374	int error = 0;
375	struct unpcb *unp;
376	struct socket *so2;
377	u_long newhiwat;
378
379	unp = sotounpcb(so);
380	if (unp == NULL) {
381		error = EINVAL;
382		goto release;
383	}
384	if (flags & PRUS_OOB) {
385		error = EOPNOTSUPP;
386		goto release;
387	}
388
389	if (control != NULL && (error = unp_internalize(&control, td)))
390		goto release;
391
392	UNP_LOCK();
393	unp = sotounpcb(so);
394	if (unp == NULL) {
395		UNP_UNLOCK();
396		error = EINVAL;
397		goto dispose_release;
398	}
399
400	switch (so->so_type) {
401	case SOCK_DGRAM:
402	{
403		const struct sockaddr *from;
404
405		if (nam != NULL) {
406			if (unp->unp_conn != NULL) {
407				error = EISCONN;
408				break;
409			}
410			error = unp_connect(so, nam, td);
411			if (error)
412				break;
413		} else {
414			if (unp->unp_conn == NULL) {
415				error = ENOTCONN;
416				break;
417			}
418		}
419		so2 = unp->unp_conn->unp_socket;
420		if (unp->unp_addr != NULL)
421			from = (struct sockaddr *)unp->unp_addr;
422		else
423			from = &sun_noname;
424		SOCKBUF_LOCK(&so2->so_rcv);
425		if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) {
426			sorwakeup_locked(so2);
427			m = NULL;
428			control = NULL;
429		} else {
430			SOCKBUF_UNLOCK(&so2->so_rcv);
431			error = ENOBUFS;
432		}
433		if (nam != NULL)
434			unp_disconnect(unp);
435		break;
436	}
437
438	case SOCK_STREAM:
439		/* Connect if not connected yet. */
440		/*
441		 * Note: A better implementation would complain
442		 * if not equal to the peer's address.
443		 */
444		if ((so->so_state & SS_ISCONNECTED) == 0) {
445			if (nam != NULL) {
446				error = unp_connect(so, nam, td);
447				if (error)
448					break;	/* XXX */
449			} else {
450				error = ENOTCONN;
451				break;
452			}
453		}
454
455		SOCKBUF_LOCK(&so->so_snd);
456		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
457			SOCKBUF_UNLOCK(&so->so_snd);
458			error = EPIPE;
459			break;
460		}
461		if (unp->unp_conn == NULL)
462			panic("uipc_send connected but no connection?");
463		so2 = unp->unp_conn->unp_socket;
464		SOCKBUF_LOCK(&so2->so_rcv);
465		/*
466		 * Send to paired receive port, and then reduce
467		 * send buffer hiwater marks to maintain backpressure.
468		 * Wake up readers.
469		 */
470		if (control != NULL) {
471			if (sbappendcontrol_locked(&so2->so_rcv, m, control))
472				control = NULL;
473		} else {
474			sbappend_locked(&so2->so_rcv, m);
475		}
476		so->so_snd.sb_mbmax -=
477			so2->so_rcv.sb_mbcnt - unp->unp_conn->unp_mbcnt;
478		unp->unp_conn->unp_mbcnt = so2->so_rcv.sb_mbcnt;
479		newhiwat = so->so_snd.sb_hiwat -
480		    (so2->so_rcv.sb_cc - unp->unp_conn->unp_cc);
481		(void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat,
482		    newhiwat, RLIM_INFINITY);
483		SOCKBUF_UNLOCK(&so->so_snd);
484		unp->unp_conn->unp_cc = so2->so_rcv.sb_cc;
485		sorwakeup_locked(so2);
486		m = NULL;
487		break;
488
489	default:
490		panic("uipc_send unknown socktype");
491	}
492
493	/*
494	 * SEND_EOF is equivalent to a SEND followed by
495	 * a SHUTDOWN.
496	 */
497	if (flags & PRUS_EOF) {
498		socantsendmore(so);
499		unp_shutdown(unp);
500	}
501	UNP_UNLOCK();
502
503dispose_release:
504	if (control != NULL && error != 0)
505		unp_dispose(control);
506
507release:
508	if (control != NULL)
509		m_freem(control);
510	if (m != NULL)
511		m_freem(m);
512	return (error);
513}
514
515static int
516uipc_sense(struct socket *so, struct stat *sb)
517{
518	struct unpcb *unp;
519	struct socket *so2;
520
521	UNP_LOCK();
522	unp = sotounpcb(so);
523	if (unp == NULL) {
524		UNP_UNLOCK();
525		return (EINVAL);
526	}
527	sb->st_blksize = so->so_snd.sb_hiwat;
528	if (so->so_type == SOCK_STREAM && unp->unp_conn != NULL) {
529		so2 = unp->unp_conn->unp_socket;
530		sb->st_blksize += so2->so_rcv.sb_cc;
531	}
532	sb->st_dev = NODEV;
533	if (unp->unp_ino == 0)
534		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
535	sb->st_ino = unp->unp_ino;
536	UNP_UNLOCK();
537	return (0);
538}
539
540static int
541uipc_shutdown(struct socket *so)
542{
543	struct unpcb *unp;
544
545	UNP_LOCK();
546	unp = sotounpcb(so);
547	if (unp == NULL) {
548		UNP_UNLOCK();
549		return (EINVAL);
550	}
551	socantsendmore(so);
552	unp_shutdown(unp);
553	UNP_UNLOCK();
554	return (0);
555}
556
557static int
558uipc_sockaddr(struct socket *so, struct sockaddr **nam)
559{
560	struct unpcb *unp;
561	const struct sockaddr *sa;
562
563	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
564	UNP_LOCK();
565	unp = sotounpcb(so);
566	if (unp == NULL) {
567		UNP_UNLOCK();
568		free(*nam, M_SONAME);
569		*nam = NULL;
570		return (EINVAL);
571	}
572	if (unp->unp_addr != NULL)
573		sa = (struct sockaddr *) unp->unp_addr;
574	else
575		sa = &sun_noname;
576	bcopy(sa, *nam, sa->sa_len);
577	UNP_UNLOCK();
578	return (0);
579}
580
581struct pr_usrreqs uipc_usrreqs = {
582	.pru_abort = 		uipc_abort,
583	.pru_accept =		uipc_accept,
584	.pru_attach =		uipc_attach,
585	.pru_bind =		uipc_bind,
586	.pru_connect =		uipc_connect,
587	.pru_connect2 =		uipc_connect2,
588	.pru_detach =		uipc_detach,
589	.pru_disconnect =	uipc_disconnect,
590	.pru_listen =		uipc_listen,
591	.pru_peeraddr =		uipc_peeraddr,
592	.pru_rcvd =		uipc_rcvd,
593	.pru_send =		uipc_send,
594	.pru_sense =		uipc_sense,
595	.pru_shutdown =		uipc_shutdown,
596	.pru_sockaddr =		uipc_sockaddr,
597	.pru_sosend =		sosend,
598	.pru_soreceive =	soreceive,
599	.pru_sopoll =		sopoll,
600};
601
602int
603uipc_ctloutput(so, sopt)
604	struct socket *so;
605	struct sockopt *sopt;
606{
607	struct unpcb *unp;
608	struct xucred xu;
609	int error;
610
611	switch (sopt->sopt_dir) {
612	case SOPT_GET:
613		switch (sopt->sopt_name) {
614		case LOCAL_PEERCRED:
615			error = 0;
616			UNP_LOCK();
617			unp = sotounpcb(so);
618			if (unp == NULL) {
619				UNP_UNLOCK();
620				error = EINVAL;
621				break;
622			}
623			if (unp->unp_flags & UNP_HAVEPC)
624				xu = unp->unp_peercred;
625			else {
626				if (so->so_type == SOCK_STREAM)
627					error = ENOTCONN;
628				else
629					error = EINVAL;
630			}
631			UNP_UNLOCK();
632			if (error == 0)
633				error = sooptcopyout(sopt, &xu, sizeof(xu));
634			break;
635		default:
636			error = EOPNOTSUPP;
637			break;
638		}
639		break;
640	case SOPT_SET:
641	default:
642		error = EOPNOTSUPP;
643		break;
644	}
645	return (error);
646}
647
648/*
649 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
650 * for stream sockets, although the total for sender and receiver is
651 * actually only PIPSIZ.
652 * Datagram sockets really use the sendspace as the maximum datagram size,
653 * and don't really want to reserve the sendspace.  Their recvspace should
654 * be large enough for at least one max-size datagram plus address.
655 */
656#ifndef PIPSIZ
657#define	PIPSIZ	8192
658#endif
659static u_long	unpst_sendspace = PIPSIZ;
660static u_long	unpst_recvspace = PIPSIZ;
661static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
662static u_long	unpdg_recvspace = 4*1024;
663
664static int	unp_rights;			/* file descriptors in flight */
665
666SYSCTL_DECL(_net_local_stream);
667SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
668	   &unpst_sendspace, 0, "");
669SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
670	   &unpst_recvspace, 0, "");
671SYSCTL_DECL(_net_local_dgram);
672SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
673	   &unpdg_sendspace, 0, "");
674SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
675	   &unpdg_recvspace, 0, "");
676SYSCTL_DECL(_net_local);
677SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, "");
678
679static int
680unp_attach(so)
681	struct socket *so;
682{
683	register struct unpcb *unp;
684	int error;
685
686	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
687		switch (so->so_type) {
688
689		case SOCK_STREAM:
690			error = soreserve(so, unpst_sendspace, unpst_recvspace);
691			break;
692
693		case SOCK_DGRAM:
694			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
695			break;
696
697		default:
698			panic("unp_attach");
699		}
700		if (error)
701			return (error);
702	}
703	unp = uma_zalloc(unp_zone, M_WAITOK);
704	if (unp == NULL)
705		return (ENOBUFS);
706	bzero(unp, sizeof *unp);
707	LIST_INIT(&unp->unp_refs);
708	unp->unp_socket = so;
709
710	UNP_LOCK();
711	unp->unp_gencnt = ++unp_gencnt;
712	unp_count++;
713	LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead
714			 : &unp_shead, unp, unp_link);
715	so->so_pcb = unp;
716	UNP_UNLOCK();
717
718	return (0);
719}
720
721static void
722unp_detach(unp)
723	register struct unpcb *unp;
724{
725	struct vnode *vp;
726
727	UNP_LOCK_ASSERT();
728
729	LIST_REMOVE(unp, unp_link);
730	unp->unp_gencnt = ++unp_gencnt;
731	--unp_count;
732	if ((vp = unp->unp_vnode) != NULL) {
733		/*
734		 * XXXRW: should v_socket be frobbed only while holding
735		 * Giant?
736		 */
737		unp->unp_vnode->v_socket = NULL;
738		unp->unp_vnode = NULL;
739	}
740	if (unp->unp_conn != NULL)
741		unp_disconnect(unp);
742	while (!LIST_EMPTY(&unp->unp_refs)) {
743		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
744		unp_drop(ref, ECONNRESET);
745	}
746	soisdisconnected(unp->unp_socket);
747	unp->unp_socket->so_pcb = NULL;
748	if (unp_rights) {
749		/*
750		 * Normally the receive buffer is flushed later,
751		 * in sofree, but if our receive buffer holds references
752		 * to descriptors that are now garbage, we will dispose
753		 * of those descriptor references after the garbage collector
754		 * gets them (resulting in a "panic: closef: count < 0").
755		 */
756		sorflush(unp->unp_socket);
757		unp_gc();	/* Will unlock UNP. */
758	} else
759		UNP_UNLOCK();
760	UNP_UNLOCK_ASSERT();
761	if (unp->unp_addr != NULL)
762		FREE(unp->unp_addr, M_SONAME);
763	uma_zfree(unp_zone, unp);
764	if (vp) {
765		mtx_lock(&Giant);
766		vrele(vp);
767		mtx_unlock(&Giant);
768	}
769}
770
771static int
772unp_bind(unp, nam, td)
773	struct unpcb *unp;
774	struct sockaddr *nam;
775	struct thread *td;
776{
777	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
778	struct vnode *vp;
779	struct mount *mp;
780	struct vattr vattr;
781	int error, namelen;
782	struct nameidata nd;
783	char *buf;
784
785	UNP_LOCK_ASSERT();
786
787	/*
788	 * XXXRW: This test-and-set of unp_vnode is non-atomic; the
789	 * unlocked read here is fine, but the value of unp_vnode needs
790	 * to be tested again after we do all the lookups to see if the
791	 * pcb is still unbound?
792	 */
793	if (unp->unp_vnode != NULL)
794		return (EINVAL);
795
796	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
797	if (namelen <= 0)
798		return (EINVAL);
799
800	UNP_UNLOCK();
801
802	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
803	strlcpy(buf, soun->sun_path, namelen + 1);
804
805	mtx_lock(&Giant);
806restart:
807	mtx_assert(&Giant, MA_OWNED);
808	NDINIT(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME, UIO_SYSSPACE,
809	    buf, td);
810/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
811	error = namei(&nd);
812	if (error)
813		goto done;
814	vp = nd.ni_vp;
815	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
816		NDFREE(&nd, NDF_ONLY_PNBUF);
817		if (nd.ni_dvp == vp)
818			vrele(nd.ni_dvp);
819		else
820			vput(nd.ni_dvp);
821		if (vp != NULL) {
822			vrele(vp);
823			error = EADDRINUSE;
824			goto done;
825		}
826		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
827		if (error)
828			goto done;
829		goto restart;
830	}
831	VATTR_NULL(&vattr);
832	vattr.va_type = VSOCK;
833	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
834#ifdef MAC
835	error = mac_check_vnode_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
836	    &vattr);
837#endif
838	if (error == 0) {
839		VOP_LEASE(nd.ni_dvp, td, td->td_ucred, LEASE_WRITE);
840		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
841	}
842	NDFREE(&nd, NDF_ONLY_PNBUF);
843	vput(nd.ni_dvp);
844	if (error)
845		goto done;
846	vp = nd.ni_vp;
847	ASSERT_VOP_LOCKED(vp, "unp_bind");
848	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
849	UNP_LOCK();
850	vp->v_socket = unp->unp_socket;
851	unp->unp_vnode = vp;
852	unp->unp_addr = soun;
853	UNP_UNLOCK();
854	VOP_UNLOCK(vp, 0, td);
855	vn_finished_write(mp);
856done:
857	mtx_unlock(&Giant);
858	free(buf, M_TEMP);
859	UNP_LOCK();
860	return (error);
861}
862
863static int
864unp_connect(so, nam, td)
865	struct socket *so;
866	struct sockaddr *nam;
867	struct thread *td;
868{
869	register struct sockaddr_un *soun = (struct sockaddr_un *)nam;
870	register struct vnode *vp;
871	register struct socket *so2, *so3;
872	struct unpcb *unp, *unp2, *unp3;
873	int error, len;
874	struct nameidata nd;
875	char buf[SOCK_MAXADDRLEN];
876	struct sockaddr *sa;
877
878	UNP_LOCK_ASSERT();
879	unp = sotounpcb(so);
880
881	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
882	if (len <= 0)
883		return (EINVAL);
884	strlcpy(buf, soun->sun_path, len + 1);
885	UNP_UNLOCK();
886	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
887	mtx_lock(&Giant);
888	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf, td);
889	error = namei(&nd);
890	if (error)
891		vp = NULL;
892	else
893		vp = nd.ni_vp;
894	ASSERT_VOP_LOCKED(vp, "unp_connect");
895	NDFREE(&nd, NDF_ONLY_PNBUF);
896	if (error)
897		goto bad;
898
899	if (vp->v_type != VSOCK) {
900		error = ENOTSOCK;
901		goto bad;
902	}
903	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
904	if (error)
905		goto bad;
906	mtx_unlock(&Giant);
907	UNP_LOCK();
908	unp = sotounpcb(so);
909	if (unp == NULL) {
910		error = EINVAL;
911		goto bad2;
912	}
913	so2 = vp->v_socket;
914	if (so2 == NULL) {
915		error = ECONNREFUSED;
916		goto bad2;
917	}
918	if (so->so_type != so2->so_type) {
919		error = EPROTOTYPE;
920		goto bad2;
921	}
922	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
923		if (so2->so_options & SO_ACCEPTCONN) {
924			/*
925			 * NB: drop locks here so unp_attach is entered
926			 *     w/o locks; this avoids a recursive lock
927			 *     of the head and holding sleep locks across
928			 *     a (potentially) blocking malloc.
929			 */
930			UNP_UNLOCK();
931			so3 = sonewconn(so2, 0);
932			UNP_LOCK();
933		} else
934			so3 = NULL;
935		if (so3 == NULL) {
936			error = ECONNREFUSED;
937			goto bad2;
938		}
939		unp = sotounpcb(so);
940		unp2 = sotounpcb(so2);
941		unp3 = sotounpcb(so3);
942		if (unp2->unp_addr != NULL) {
943			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
944			unp3->unp_addr = (struct sockaddr_un *) sa;
945			sa = NULL;
946		}
947		/*
948		 * unp_peercred management:
949		 *
950		 * The connecter's (client's) credentials are copied
951		 * from its process structure at the time of connect()
952		 * (which is now).
953		 */
954		cru2x(td->td_ucred, &unp3->unp_peercred);
955		unp3->unp_flags |= UNP_HAVEPC;
956		/*
957		 * The receiver's (server's) credentials are copied
958		 * from the unp_peercred member of socket on which the
959		 * former called listen(); unp_listen() cached that
960		 * process's credentials at that time so we can use
961		 * them now.
962		 */
963		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
964		    ("unp_connect: listener without cached peercred"));
965		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
966		    sizeof(unp->unp_peercred));
967		unp->unp_flags |= UNP_HAVEPC;
968#ifdef MAC
969		SOCK_LOCK(so);
970		mac_set_socket_peer_from_socket(so, so3);
971		mac_set_socket_peer_from_socket(so3, so);
972		SOCK_UNLOCK(so);
973#endif
974
975		so2 = so3;
976	}
977	error = unp_connect2(so, so2);
978bad2:
979	UNP_UNLOCK();
980	mtx_lock(&Giant);
981bad:
982	mtx_assert(&Giant, MA_OWNED);
983	if (vp != NULL)
984		vput(vp);
985	mtx_unlock(&Giant);
986	free(sa, M_SONAME);
987	UNP_LOCK();
988	return (error);
989}
990
991static int
992unp_connect2(so, so2)
993	register struct socket *so;
994	register struct socket *so2;
995{
996	register struct unpcb *unp = sotounpcb(so);
997	register struct unpcb *unp2;
998
999	UNP_LOCK_ASSERT();
1000
1001	if (so2->so_type != so->so_type)
1002		return (EPROTOTYPE);
1003	unp2 = sotounpcb(so2);
1004	unp->unp_conn = unp2;
1005	switch (so->so_type) {
1006
1007	case SOCK_DGRAM:
1008		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1009		soisconnected(so);
1010		break;
1011
1012	case SOCK_STREAM:
1013		unp2->unp_conn = unp;
1014		soisconnected(so);
1015		soisconnected(so2);
1016		break;
1017
1018	default:
1019		panic("unp_connect2");
1020	}
1021	return (0);
1022}
1023
1024static void
1025unp_disconnect(unp)
1026	struct unpcb *unp;
1027{
1028	register struct unpcb *unp2 = unp->unp_conn;
1029	struct socket *so;
1030
1031	UNP_LOCK_ASSERT();
1032
1033	if (unp2 == NULL)
1034		return;
1035	unp->unp_conn = NULL;
1036	switch (unp->unp_socket->so_type) {
1037
1038	case SOCK_DGRAM:
1039		LIST_REMOVE(unp, unp_reflink);
1040		so = unp->unp_socket;
1041		SOCK_LOCK(so);
1042		so->so_state &= ~SS_ISCONNECTED;
1043		SOCK_UNLOCK(so);
1044		break;
1045
1046	case SOCK_STREAM:
1047		soisdisconnected(unp->unp_socket);
1048		unp2->unp_conn = NULL;
1049		soisdisconnected(unp2->unp_socket);
1050		break;
1051	}
1052}
1053
1054#ifdef notdef
1055void
1056unp_abort(unp)
1057	struct unpcb *unp;
1058{
1059
1060	unp_detach(unp);
1061	UNP_UNLOCK_ASSERT();
1062}
1063#endif
1064
1065/*
1066 * unp_pcblist() assumes that UNIX domain socket memory is never reclaimed
1067 * by the zone (UMA_ZONE_NOFREE), and as such potentially stale pointers
1068 * are safe to reference.  It first scans the list of struct unpcb's to
1069 * generate a pointer list, then it rescans its list one entry at a time to
1070 * externalize and copyout.  It checks the generation number to see if a
1071 * struct unpcb has been reused, and will skip it if so.
1072 */
1073static int
1074unp_pcblist(SYSCTL_HANDLER_ARGS)
1075{
1076	int error, i, n;
1077	struct unpcb *unp, **unp_list;
1078	unp_gen_t gencnt;
1079	struct xunpgen *xug;
1080	struct unp_head *head;
1081	struct xunpcb *xu;
1082
1083	head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead);
1084
1085	/*
1086	 * The process of preparing the PCB list is too time-consuming and
1087	 * resource-intensive to repeat twice on every request.
1088	 */
1089	if (req->oldptr == NULL) {
1090		n = unp_count;
1091		req->oldidx = 2 * (sizeof *xug)
1092			+ (n + n/8) * sizeof(struct xunpcb);
1093		return (0);
1094	}
1095
1096	if (req->newptr != NULL)
1097		return (EPERM);
1098
1099	/*
1100	 * OK, now we're committed to doing something.
1101	 */
1102	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1103	UNP_LOCK();
1104	gencnt = unp_gencnt;
1105	n = unp_count;
1106	UNP_UNLOCK();
1107
1108	xug->xug_len = sizeof *xug;
1109	xug->xug_count = n;
1110	xug->xug_gen = gencnt;
1111	xug->xug_sogen = so_gencnt;
1112	error = SYSCTL_OUT(req, xug, sizeof *xug);
1113	if (error) {
1114		free(xug, M_TEMP);
1115		return (error);
1116	}
1117
1118	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1119
1120	UNP_LOCK();
1121	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1122	     unp = LIST_NEXT(unp, unp_link)) {
1123		if (unp->unp_gencnt <= gencnt) {
1124			if (cr_cansee(req->td->td_ucred,
1125			    unp->unp_socket->so_cred))
1126				continue;
1127			unp_list[i++] = unp;
1128		}
1129	}
1130	UNP_UNLOCK();
1131	n = i;			/* in case we lost some during malloc */
1132
1133	error = 0;
1134	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK);
1135	for (i = 0; i < n; i++) {
1136		unp = unp_list[i];
1137		if (unp->unp_gencnt <= gencnt) {
1138			xu->xu_len = sizeof *xu;
1139			xu->xu_unpp = unp;
1140			/*
1141			 * XXX - need more locking here to protect against
1142			 * connect/disconnect races for SMP.
1143			 */
1144			if (unp->unp_addr != NULL)
1145				bcopy(unp->unp_addr, &xu->xu_addr,
1146				      unp->unp_addr->sun_len);
1147			if (unp->unp_conn != NULL &&
1148			    unp->unp_conn->unp_addr != NULL)
1149				bcopy(unp->unp_conn->unp_addr,
1150				      &xu->xu_caddr,
1151				      unp->unp_conn->unp_addr->sun_len);
1152			bcopy(unp, &xu->xu_unp, sizeof *unp);
1153			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1154			error = SYSCTL_OUT(req, xu, sizeof *xu);
1155		}
1156	}
1157	free(xu, M_TEMP);
1158	if (!error) {
1159		/*
1160		 * Give the user an updated idea of our state.
1161		 * If the generation differs from what we told
1162		 * her before, she knows that something happened
1163		 * while we were processing this request, and it
1164		 * might be necessary to retry.
1165		 */
1166		xug->xug_gen = unp_gencnt;
1167		xug->xug_sogen = so_gencnt;
1168		xug->xug_count = unp_count;
1169		error = SYSCTL_OUT(req, xug, sizeof *xug);
1170	}
1171	free(unp_list, M_TEMP);
1172	free(xug, M_TEMP);
1173	return (error);
1174}
1175
1176SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD,
1177	    (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1178	    "List of active local datagram sockets");
1179SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD,
1180	    (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1181	    "List of active local stream sockets");
1182
1183static void
1184unp_shutdown(unp)
1185	struct unpcb *unp;
1186{
1187	struct socket *so;
1188
1189	UNP_LOCK_ASSERT();
1190
1191	if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1192	    (so = unp->unp_conn->unp_socket))
1193		socantrcvmore(so);
1194}
1195
1196static void
1197unp_drop(unp, errno)
1198	struct unpcb *unp;
1199	int errno;
1200{
1201	struct socket *so = unp->unp_socket;
1202
1203	UNP_LOCK_ASSERT();
1204
1205	so->so_error = errno;
1206	unp_disconnect(unp);
1207}
1208
1209#ifdef notdef
1210void
1211unp_drain()
1212{
1213
1214}
1215#endif
1216
1217static void
1218unp_freerights(rp, fdcount)
1219	struct file **rp;
1220	int fdcount;
1221{
1222	int i;
1223	struct file *fp;
1224
1225	for (i = 0; i < fdcount; i++) {
1226		fp = *rp;
1227		/*
1228		 * zero the pointer before calling
1229		 * unp_discard since it may end up
1230		 * in unp_gc()..
1231		 */
1232		*rp++ = 0;
1233		unp_discard(fp);
1234	}
1235}
1236
1237int
1238unp_externalize(control, controlp)
1239	struct mbuf *control, **controlp;
1240{
1241	struct thread *td = curthread;		/* XXX */
1242	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1243	int i;
1244	int *fdp;
1245	struct file **rp;
1246	struct file *fp;
1247	void *data;
1248	socklen_t clen = control->m_len, datalen;
1249	int error, newfds;
1250	int f;
1251	u_int newlen;
1252
1253	UNP_UNLOCK_ASSERT();
1254
1255	error = 0;
1256	if (controlp != NULL) /* controlp == NULL => free control messages */
1257		*controlp = NULL;
1258
1259	while (cm != NULL) {
1260		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1261			error = EINVAL;
1262			break;
1263		}
1264
1265		data = CMSG_DATA(cm);
1266		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1267
1268		if (cm->cmsg_level == SOL_SOCKET
1269		    && cm->cmsg_type == SCM_RIGHTS) {
1270			newfds = datalen / sizeof(struct file *);
1271			rp = data;
1272
1273			/* If we're not outputting the descriptors free them. */
1274			if (error || controlp == NULL) {
1275				unp_freerights(rp, newfds);
1276				goto next;
1277			}
1278			FILEDESC_LOCK(td->td_proc->p_fd);
1279			/* if the new FD's will not fit free them.  */
1280			if (!fdavail(td, newfds)) {
1281				FILEDESC_UNLOCK(td->td_proc->p_fd);
1282				error = EMSGSIZE;
1283				unp_freerights(rp, newfds);
1284				goto next;
1285			}
1286			/*
1287			 * now change each pointer to an fd in the global
1288			 * table to an integer that is the index to the
1289			 * local fd table entry that we set up to point
1290			 * to the global one we are transferring.
1291			 */
1292			newlen = newfds * sizeof(int);
1293			*controlp = sbcreatecontrol(NULL, newlen,
1294			    SCM_RIGHTS, SOL_SOCKET);
1295			if (*controlp == NULL) {
1296				FILEDESC_UNLOCK(td->td_proc->p_fd);
1297				error = E2BIG;
1298				unp_freerights(rp, newfds);
1299				goto next;
1300			}
1301
1302			fdp = (int *)
1303			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1304			for (i = 0; i < newfds; i++) {
1305				if (fdalloc(td, 0, &f))
1306					panic("unp_externalize fdalloc failed");
1307				fp = *rp++;
1308				td->td_proc->p_fd->fd_ofiles[f] = fp;
1309				FILE_LOCK(fp);
1310				fp->f_msgcount--;
1311				FILE_UNLOCK(fp);
1312				unp_rights--;
1313				*fdp++ = f;
1314			}
1315			FILEDESC_UNLOCK(td->td_proc->p_fd);
1316		} else { /* We can just copy anything else across */
1317			if (error || controlp == NULL)
1318				goto next;
1319			*controlp = sbcreatecontrol(NULL, datalen,
1320			    cm->cmsg_type, cm->cmsg_level);
1321			if (*controlp == NULL) {
1322				error = ENOBUFS;
1323				goto next;
1324			}
1325			bcopy(data,
1326			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1327			    datalen);
1328		}
1329
1330		controlp = &(*controlp)->m_next;
1331
1332next:
1333		if (CMSG_SPACE(datalen) < clen) {
1334			clen -= CMSG_SPACE(datalen);
1335			cm = (struct cmsghdr *)
1336			    ((caddr_t)cm + CMSG_SPACE(datalen));
1337		} else {
1338			clen = 0;
1339			cm = NULL;
1340		}
1341	}
1342
1343	m_freem(control);
1344
1345	return (error);
1346}
1347
1348void
1349unp_init(void)
1350{
1351	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1352	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
1353	if (unp_zone == NULL)
1354		panic("unp_init");
1355	uma_zone_set_max(unp_zone, nmbclusters);
1356	LIST_INIT(&unp_dhead);
1357	LIST_INIT(&unp_shead);
1358
1359	UNP_LOCK_INIT();
1360}
1361
1362static int
1363unp_internalize(controlp, td)
1364	struct mbuf **controlp;
1365	struct thread *td;
1366{
1367	struct mbuf *control = *controlp;
1368	struct proc *p = td->td_proc;
1369	struct filedesc *fdescp = p->p_fd;
1370	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1371	struct cmsgcred *cmcred;
1372	struct file **rp;
1373	struct file *fp;
1374	struct timeval *tv;
1375	int i, fd, *fdp;
1376	void *data;
1377	socklen_t clen = control->m_len, datalen;
1378	int error, oldfds;
1379	u_int newlen;
1380
1381	UNP_UNLOCK_ASSERT();
1382
1383	error = 0;
1384	*controlp = NULL;
1385
1386	while (cm != NULL) {
1387		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1388		    || cm->cmsg_len > clen) {
1389			error = EINVAL;
1390			goto out;
1391		}
1392
1393		data = CMSG_DATA(cm);
1394		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1395
1396		switch (cm->cmsg_type) {
1397		/*
1398		 * Fill in credential information.
1399		 */
1400		case SCM_CREDS:
1401			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1402			    SCM_CREDS, SOL_SOCKET);
1403			if (*controlp == NULL) {
1404				error = ENOBUFS;
1405				goto out;
1406			}
1407
1408			cmcred = (struct cmsgcred *)
1409			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1410			cmcred->cmcred_pid = p->p_pid;
1411			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1412			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1413			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1414			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1415							CMGROUP_MAX);
1416			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1417				cmcred->cmcred_groups[i] =
1418				    td->td_ucred->cr_groups[i];
1419			break;
1420
1421		case SCM_RIGHTS:
1422			oldfds = datalen / sizeof (int);
1423			/*
1424			 * check that all the FDs passed in refer to legal files
1425			 * If not, reject the entire operation.
1426			 */
1427			fdp = data;
1428			FILEDESC_LOCK(fdescp);
1429			for (i = 0; i < oldfds; i++) {
1430				fd = *fdp++;
1431				if ((unsigned)fd >= fdescp->fd_nfiles ||
1432				    fdescp->fd_ofiles[fd] == NULL) {
1433					FILEDESC_UNLOCK(fdescp);
1434					error = EBADF;
1435					goto out;
1436				}
1437				fp = fdescp->fd_ofiles[fd];
1438				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1439					FILEDESC_UNLOCK(fdescp);
1440					error = EOPNOTSUPP;
1441					goto out;
1442				}
1443
1444			}
1445			/*
1446			 * Now replace the integer FDs with pointers to
1447			 * the associated global file table entry..
1448			 */
1449			newlen = oldfds * sizeof(struct file *);
1450			*controlp = sbcreatecontrol(NULL, newlen,
1451			    SCM_RIGHTS, SOL_SOCKET);
1452			if (*controlp == NULL) {
1453				FILEDESC_UNLOCK(fdescp);
1454				error = E2BIG;
1455				goto out;
1456			}
1457
1458			fdp = data;
1459			rp = (struct file **)
1460			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1461			for (i = 0; i < oldfds; i++) {
1462				fp = fdescp->fd_ofiles[*fdp++];
1463				*rp++ = fp;
1464				FILE_LOCK(fp);
1465				fp->f_count++;
1466				fp->f_msgcount++;
1467				FILE_UNLOCK(fp);
1468				unp_rights++;
1469			}
1470			FILEDESC_UNLOCK(fdescp);
1471			break;
1472
1473		case SCM_TIMESTAMP:
1474			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1475			    SCM_TIMESTAMP, SOL_SOCKET);
1476			if (*controlp == NULL) {
1477				error = ENOBUFS;
1478				goto out;
1479			}
1480			tv = (struct timeval *)
1481			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1482			microtime(tv);
1483			break;
1484
1485		default:
1486			error = EINVAL;
1487			goto out;
1488		}
1489
1490		controlp = &(*controlp)->m_next;
1491
1492		if (CMSG_SPACE(datalen) < clen) {
1493			clen -= CMSG_SPACE(datalen);
1494			cm = (struct cmsghdr *)
1495			    ((caddr_t)cm + CMSG_SPACE(datalen));
1496		} else {
1497			clen = 0;
1498			cm = NULL;
1499		}
1500	}
1501
1502out:
1503	m_freem(control);
1504
1505	return (error);
1506}
1507
1508/*
1509 * unp_defer is thread-local during garbage collection, and does not require
1510 * explicit synchronization.  unp_gcing prevents other threads from entering
1511 * garbage collection, and perhaps should be an sx lock instead.
1512 */
1513static int	unp_defer, unp_gcing;
1514
1515static void
1516unp_gc()
1517{
1518	register struct file *fp, *nextfp;
1519	register struct socket *so;
1520	struct file **extra_ref, **fpp;
1521	int nunref, i;
1522	int nfiles_snap;
1523	int nfiles_slack = 20;
1524
1525	UNP_LOCK_ASSERT();
1526
1527	if (unp_gcing) {
1528		UNP_UNLOCK();
1529		return;
1530	}
1531	unp_gcing = 1;
1532	unp_defer = 0;
1533	UNP_UNLOCK();
1534	/*
1535	 * before going through all this, set all FDs to
1536	 * be NOT defered and NOT externally accessible
1537	 */
1538	sx_slock(&filelist_lock);
1539	LIST_FOREACH(fp, &filehead, f_list)
1540		fp->f_gcflag &= ~(FMARK|FDEFER);
1541	do {
1542		LIST_FOREACH(fp, &filehead, f_list) {
1543			FILE_LOCK(fp);
1544			/*
1545			 * If the file is not open, skip it
1546			 */
1547			if (fp->f_count == 0) {
1548				FILE_UNLOCK(fp);
1549				continue;
1550			}
1551			/*
1552			 * If we already marked it as 'defer'  in a
1553			 * previous pass, then try process it this time
1554			 * and un-mark it
1555			 */
1556			if (fp->f_gcflag & FDEFER) {
1557				fp->f_gcflag &= ~FDEFER;
1558				unp_defer--;
1559			} else {
1560				/*
1561				 * if it's not defered, then check if it's
1562				 * already marked.. if so skip it
1563				 */
1564				if (fp->f_gcflag & FMARK) {
1565					FILE_UNLOCK(fp);
1566					continue;
1567				}
1568				/*
1569				 * If all references are from messages
1570				 * in transit, then skip it. it's not
1571				 * externally accessible.
1572				 */
1573				if (fp->f_count == fp->f_msgcount) {
1574					FILE_UNLOCK(fp);
1575					continue;
1576				}
1577				/*
1578				 * If it got this far then it must be
1579				 * externally accessible.
1580				 */
1581				fp->f_gcflag |= FMARK;
1582			}
1583			/*
1584			 * either it was defered, or it is externally
1585			 * accessible and not already marked so.
1586			 * Now check if it is possibly one of OUR sockets.
1587			 */
1588			if (fp->f_type != DTYPE_SOCKET ||
1589			    (so = fp->f_data) == NULL) {
1590				FILE_UNLOCK(fp);
1591				continue;
1592			}
1593			FILE_UNLOCK(fp);
1594			if (so->so_proto->pr_domain != &localdomain ||
1595			    (so->so_proto->pr_flags&PR_RIGHTS) == 0)
1596				continue;
1597#ifdef notdef
1598			if (so->so_rcv.sb_flags & SB_LOCK) {
1599				/*
1600				 * This is problematical; it's not clear
1601				 * we need to wait for the sockbuf to be
1602				 * unlocked (on a uniprocessor, at least),
1603				 * and it's also not clear what to do
1604				 * if sbwait returns an error due to receipt
1605				 * of a signal.  If sbwait does return
1606				 * an error, we'll go into an infinite
1607				 * loop.  Delete all of this for now.
1608				 */
1609				(void) sbwait(&so->so_rcv);
1610				goto restart;
1611			}
1612#endif
1613			/*
1614			 * So, Ok, it's one of our sockets and it IS externally
1615			 * accessible (or was defered). Now we look
1616			 * to see if we hold any file descriptors in its
1617			 * message buffers. Follow those links and mark them
1618			 * as accessible too.
1619			 */
1620			SOCKBUF_LOCK(&so->so_rcv);
1621			unp_scan(so->so_rcv.sb_mb, unp_mark);
1622			SOCKBUF_UNLOCK(&so->so_rcv);
1623		}
1624	} while (unp_defer);
1625	sx_sunlock(&filelist_lock);
1626	/*
1627	 * We grab an extra reference to each of the file table entries
1628	 * that are not otherwise accessible and then free the rights
1629	 * that are stored in messages on them.
1630	 *
1631	 * The bug in the orginal code is a little tricky, so I'll describe
1632	 * what's wrong with it here.
1633	 *
1634	 * It is incorrect to simply unp_discard each entry for f_msgcount
1635	 * times -- consider the case of sockets A and B that contain
1636	 * references to each other.  On a last close of some other socket,
1637	 * we trigger a gc since the number of outstanding rights (unp_rights)
1638	 * is non-zero.  If during the sweep phase the gc code un_discards,
1639	 * we end up doing a (full) closef on the descriptor.  A closef on A
1640	 * results in the following chain.  Closef calls soo_close, which
1641	 * calls soclose.   Soclose calls first (through the switch
1642	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1643	 * returns because the previous instance had set unp_gcing, and
1644	 * we return all the way back to soclose, which marks the socket
1645	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1646	 * to free up the rights that are queued in messages on the socket A,
1647	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1648	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1649	 * instance of unp_discard just calls closef on B.
1650	 *
1651	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1652	 * which results in another closef on A.  Unfortunately, A is already
1653	 * being closed, and the descriptor has already been marked with
1654	 * SS_NOFDREF, and soclose panics at this point.
1655	 *
1656	 * Here, we first take an extra reference to each inaccessible
1657	 * descriptor.  Then, we call sorflush ourself, since we know
1658	 * it is a Unix domain socket anyhow.  After we destroy all the
1659	 * rights carried in messages, we do a last closef to get rid
1660	 * of our extra reference.  This is the last close, and the
1661	 * unp_detach etc will shut down the socket.
1662	 *
1663	 * 91/09/19, bsy@cs.cmu.edu
1664	 */
1665again:
1666	nfiles_snap = openfiles + nfiles_slack;	/* some slack */
1667	extra_ref = malloc(nfiles_snap * sizeof(struct file *), M_TEMP,
1668	    M_WAITOK);
1669	sx_slock(&filelist_lock);
1670	if (nfiles_snap < openfiles) {
1671		sx_sunlock(&filelist_lock);
1672		free(extra_ref, M_TEMP);
1673		nfiles_slack += 20;
1674		goto again;
1675	}
1676	for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref;
1677	    fp != NULL; fp = nextfp) {
1678		nextfp = LIST_NEXT(fp, f_list);
1679		FILE_LOCK(fp);
1680		/*
1681		 * If it's not open, skip it
1682		 */
1683		if (fp->f_count == 0) {
1684			FILE_UNLOCK(fp);
1685			continue;
1686		}
1687		/*
1688		 * If all refs are from msgs, and it's not marked accessible
1689		 * then it must be referenced from some unreachable cycle
1690		 * of (shut-down) FDs, so include it in our
1691		 * list of FDs to remove
1692		 */
1693		if (fp->f_count == fp->f_msgcount && !(fp->f_gcflag & FMARK)) {
1694			*fpp++ = fp;
1695			nunref++;
1696			fp->f_count++;
1697		}
1698		FILE_UNLOCK(fp);
1699	}
1700	sx_sunlock(&filelist_lock);
1701	/*
1702	 * for each FD on our hit list, do the following two things
1703	 */
1704	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1705		struct file *tfp = *fpp;
1706		FILE_LOCK(tfp);
1707		if (tfp->f_type == DTYPE_SOCKET &&
1708		    tfp->f_data != NULL) {
1709			FILE_UNLOCK(tfp);
1710			sorflush(tfp->f_data);
1711		} else {
1712			FILE_UNLOCK(tfp);
1713		}
1714	}
1715	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp)
1716		closef(*fpp, (struct thread *) NULL);
1717	free(extra_ref, M_TEMP);
1718	unp_gcing = 0;
1719
1720	UNP_UNLOCK_ASSERT();
1721}
1722
1723void
1724unp_dispose(m)
1725	struct mbuf *m;
1726{
1727
1728	if (m)
1729		unp_scan(m, unp_discard);
1730}
1731
1732static int
1733unp_listen(unp, td)
1734	struct unpcb *unp;
1735	struct thread *td;
1736{
1737	UNP_LOCK_ASSERT();
1738
1739	/*
1740	 * XXXRW: Why populate the local peer cred with our own credential?
1741	 */
1742	cru2x(td->td_ucred, &unp->unp_peercred);
1743	unp->unp_flags |= UNP_HAVEPCCACHED;
1744	return (0);
1745}
1746
1747static void
1748unp_scan(m0, op)
1749	register struct mbuf *m0;
1750	void (*op)(struct file *);
1751{
1752	struct mbuf *m;
1753	struct file **rp;
1754	struct cmsghdr *cm;
1755	void *data;
1756	int i;
1757	socklen_t clen, datalen;
1758	int qfds;
1759
1760	while (m0 != NULL) {
1761		for (m = m0; m; m = m->m_next) {
1762			if (m->m_type != MT_CONTROL)
1763				continue;
1764
1765			cm = mtod(m, struct cmsghdr *);
1766			clen = m->m_len;
1767
1768			while (cm != NULL) {
1769				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
1770					break;
1771
1772				data = CMSG_DATA(cm);
1773				datalen = (caddr_t)cm + cm->cmsg_len
1774				    - (caddr_t)data;
1775
1776				if (cm->cmsg_level == SOL_SOCKET &&
1777				    cm->cmsg_type == SCM_RIGHTS) {
1778					qfds = datalen / sizeof (struct file *);
1779					rp = data;
1780					for (i = 0; i < qfds; i++)
1781						(*op)(*rp++);
1782				}
1783
1784				if (CMSG_SPACE(datalen) < clen) {
1785					clen -= CMSG_SPACE(datalen);
1786					cm = (struct cmsghdr *)
1787					    ((caddr_t)cm + CMSG_SPACE(datalen));
1788				} else {
1789					clen = 0;
1790					cm = NULL;
1791				}
1792			}
1793		}
1794		m0 = m0->m_act;
1795	}
1796}
1797
1798static void
1799unp_mark(fp)
1800	struct file *fp;
1801{
1802	if (fp->f_gcflag & FMARK)
1803		return;
1804	unp_defer++;
1805	fp->f_gcflag |= (FMARK|FDEFER);
1806}
1807
1808static void
1809unp_discard(fp)
1810	struct file *fp;
1811{
1812	FILE_LOCK(fp);
1813	fp->f_msgcount--;
1814	unp_rights--;
1815	FILE_UNLOCK(fp);
1816	(void) closef(fp, (struct thread *)NULL);
1817}
1818