uipc_socket.c revision 243999
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004 The FreeBSD Foundation
5 * Copyright (c) 2004-2008 Robert N. M. Watson
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33 */
34
35/*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn().  Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn().  Socket layer private.
43 *
44 * pru_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation.  This is called
46 * from socreate() and sonewconn().  Socket layer private.
47 *
48 * pru_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pru_attach() has
50 * been successfully called.  If pru_attach() returned an error,
51 * pru_detach() will not be called.  Socket layer private.
52 *
53 * pru_abort() and pru_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection.  Historically, pru_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state.  This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state.  This is a
64 * public interface  that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected).  This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required.  Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation.  This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed.  This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment.  For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 *
96 * NOTE: With regard to VNETs the general rule is that callers do not set
97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
99 * and sorflush(), which are usually called from a pre-set VNET context.
100 * sopoll() currently does not need a VNET context to be set.
101 */
102
103#include <sys/cdefs.h>
104__FBSDID("$FreeBSD: head/sys/kern/uipc_socket.c 243999 2012-12-07 22:30:30Z pjd $");
105
106#include "opt_inet.h"
107#include "opt_inet6.h"
108#include "opt_zero.h"
109#include "opt_compat.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/fcntl.h>
114#include <sys/limits.h>
115#include <sys/lock.h>
116#include <sys/mac.h>
117#include <sys/malloc.h>
118#include <sys/mbuf.h>
119#include <sys/mutex.h>
120#include <sys/domain.h>
121#include <sys/file.h>			/* for struct knote */
122#include <sys/kernel.h>
123#include <sys/event.h>
124#include <sys/eventhandler.h>
125#include <sys/poll.h>
126#include <sys/proc.h>
127#include <sys/protosw.h>
128#include <sys/socket.h>
129#include <sys/socketvar.h>
130#include <sys/resourcevar.h>
131#include <net/route.h>
132#include <sys/signalvar.h>
133#include <sys/stat.h>
134#include <sys/sx.h>
135#include <sys/sysctl.h>
136#include <sys/uio.h>
137#include <sys/jail.h>
138#include <sys/syslog.h>
139
140#include <net/vnet.h>
141
142#include <security/mac/mac_framework.h>
143
144#include <vm/uma.h>
145
146#ifdef COMPAT_FREEBSD32
147#include <sys/mount.h>
148#include <sys/sysent.h>
149#include <compat/freebsd32/freebsd32.h>
150#endif
151
152static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
153		    int flags);
154
155static void	filt_sordetach(struct knote *kn);
156static int	filt_soread(struct knote *kn, long hint);
157static void	filt_sowdetach(struct knote *kn);
158static int	filt_sowrite(struct knote *kn, long hint);
159static int	filt_solisten(struct knote *kn, long hint);
160
161static struct filterops solisten_filtops = {
162	.f_isfd = 1,
163	.f_detach = filt_sordetach,
164	.f_event = filt_solisten,
165};
166static struct filterops soread_filtops = {
167	.f_isfd = 1,
168	.f_detach = filt_sordetach,
169	.f_event = filt_soread,
170};
171static struct filterops sowrite_filtops = {
172	.f_isfd = 1,
173	.f_detach = filt_sowdetach,
174	.f_event = filt_sowrite,
175};
176
177so_gen_t	so_gencnt;	/* generation count for sockets */
178
179MALLOC_DEFINE(M_SONAME, "soname", "socket name");
180MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
181
182#define	VNET_SO_ASSERT(so)						\
183	VNET_ASSERT(curvnet != NULL,					\
184	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
185
186/*
187 * Limit on the number of connections in the listen queue waiting
188 * for accept(2).
189 * NB: The orginal sysctl somaxconn is still available but hidden
190 * to prevent confusion about the actual purpose of this number.
191 */
192static int somaxconn = SOMAXCONN;
193
194static int
195sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
196{
197	int error;
198	int val;
199
200	val = somaxconn;
201	error = sysctl_handle_int(oidp, &val, 0, req);
202	if (error || !req->newptr )
203		return (error);
204
205	if (val < 1 || val > USHRT_MAX)
206		return (EINVAL);
207
208	somaxconn = val;
209	return (0);
210}
211SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW,
212    0, sizeof(int), sysctl_somaxconn, "I",
213    "Maximum listen socket pending connection accept queue size");
214SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
215    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP,
216    0, sizeof(int), sysctl_somaxconn, "I",
217    "Maximum listen socket pending connection accept queue size (compat)");
218
219static int numopensockets;
220SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
221    &numopensockets, 0, "Number of open sockets");
222
223#if defined(SOCKET_SEND_COW) || defined(SOCKET_RECV_PFLIP)
224SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
225    "Zero copy controls");
226#ifdef SOCKET_RECV_PFLIP
227int so_zero_copy_receive = 1;
228SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
229    &so_zero_copy_receive, 0, "Enable zero copy receive");
230#endif
231#ifdef SOCKET_SEND_COW
232int so_zero_copy_send = 1;
233SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
234    &so_zero_copy_send, 0, "Enable zero copy send");
235#endif /* SOCKET_SEND_COW */
236#endif /* SOCKET_SEND_COW || SOCKET_RECV_PFLIP */
237
238/*
239 * accept_mtx locks down per-socket fields relating to accept queues.  See
240 * socketvar.h for an annotation of the protected fields of struct socket.
241 */
242struct mtx accept_mtx;
243MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
244
245/*
246 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
247 * so_gencnt field.
248 */
249static struct mtx so_global_mtx;
250MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
251
252/*
253 * General IPC sysctl name space, used by sockets and a variety of other IPC
254 * types.
255 */
256SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
257
258/*
259 * Initialize the socket subsystem and set up the socket
260 * memory allocator.
261 */
262static uma_zone_t socket_zone;
263int	maxsockets;
264
265static void
266socket_zone_change(void *tag)
267{
268
269	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
270}
271
272static void
273socket_init(void *tag)
274{
275
276	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
277	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
278	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
279	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
280	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
281	    EVENTHANDLER_PRI_FIRST);
282}
283SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
284
285/*
286 * Initialise maxsockets.  This SYSINIT must be run after
287 * tunable_mbinit().
288 */
289static void
290init_maxsockets(void *ignored)
291{
292
293	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
294	maxsockets = imax(maxsockets, maxfiles);
295}
296SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
297
298/*
299 * Sysctl to get and set the maximum global sockets limit.  Notify protocols
300 * of the change so that they can update their dependent limits as required.
301 */
302static int
303sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
304{
305	int error, newmaxsockets;
306
307	newmaxsockets = maxsockets;
308	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
309	if (error == 0 && req->newptr) {
310		if (newmaxsockets > maxsockets &&
311		    newmaxsockets <= maxfiles) {
312			maxsockets = newmaxsockets;
313			EVENTHANDLER_INVOKE(maxsockets_change);
314		} else
315			error = EINVAL;
316	}
317	return (error);
318}
319SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
320    &maxsockets, 0, sysctl_maxsockets, "IU",
321    "Maximum number of sockets avaliable");
322
323/*
324 * Socket operation routines.  These routines are called by the routines in
325 * sys_socket.c or from a system process, and implement the semantics of
326 * socket operations by switching out to the protocol specific routines.
327 */
328
329/*
330 * Get a socket structure from our zone, and initialize it.  Note that it
331 * would probably be better to allocate socket and PCB at the same time, but
332 * I'm not convinced that all the protocols can be easily modified to do
333 * this.
334 *
335 * soalloc() returns a socket with a ref count of 0.
336 */
337static struct socket *
338soalloc(struct vnet *vnet)
339{
340	struct socket *so;
341
342	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
343	if (so == NULL)
344		return (NULL);
345#ifdef MAC
346	if (mac_socket_init(so, M_NOWAIT) != 0) {
347		uma_zfree(socket_zone, so);
348		return (NULL);
349	}
350#endif
351	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
352	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
353	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
354	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
355	TAILQ_INIT(&so->so_aiojobq);
356	mtx_lock(&so_global_mtx);
357	so->so_gencnt = ++so_gencnt;
358	++numopensockets;
359#ifdef VIMAGE
360	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
361	    __func__, __LINE__, so));
362	vnet->vnet_sockcnt++;
363	so->so_vnet = vnet;
364#endif
365	mtx_unlock(&so_global_mtx);
366	return (so);
367}
368
369/*
370 * Free the storage associated with a socket at the socket layer, tear down
371 * locks, labels, etc.  All protocol state is assumed already to have been
372 * torn down (and possibly never set up) by the caller.
373 */
374static void
375sodealloc(struct socket *so)
376{
377
378	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
379	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
380
381	mtx_lock(&so_global_mtx);
382	so->so_gencnt = ++so_gencnt;
383	--numopensockets;	/* Could be below, but faster here. */
384#ifdef VIMAGE
385	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
386	    __func__, __LINE__, so));
387	so->so_vnet->vnet_sockcnt--;
388#endif
389	mtx_unlock(&so_global_mtx);
390	if (so->so_rcv.sb_hiwat)
391		(void)chgsbsize(so->so_cred->cr_uidinfo,
392		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
393	if (so->so_snd.sb_hiwat)
394		(void)chgsbsize(so->so_cred->cr_uidinfo,
395		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
396#ifdef INET
397	/* remove acccept filter if one is present. */
398	if (so->so_accf != NULL)
399		do_setopt_accept_filter(so, NULL);
400#endif
401#ifdef MAC
402	mac_socket_destroy(so);
403#endif
404	crfree(so->so_cred);
405	sx_destroy(&so->so_snd.sb_sx);
406	sx_destroy(&so->so_rcv.sb_sx);
407	SOCKBUF_LOCK_DESTROY(&so->so_snd);
408	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
409	uma_zfree(socket_zone, so);
410}
411
412/*
413 * socreate returns a socket with a ref count of 1.  The socket should be
414 * closed with soclose().
415 */
416int
417socreate(int dom, struct socket **aso, int type, int proto,
418    struct ucred *cred, struct thread *td)
419{
420	struct protosw *prp;
421	struct socket *so;
422	int error;
423
424	if (proto)
425		prp = pffindproto(dom, proto, type);
426	else
427		prp = pffindtype(dom, type);
428
429	if (prp == NULL) {
430		/* No support for domain. */
431		if (pffinddomain(dom) == NULL)
432			return (EAFNOSUPPORT);
433		/* No support for socket type. */
434		if (proto == 0 && type != 0)
435			return (EPROTOTYPE);
436		return (EPROTONOSUPPORT);
437	}
438	if (prp->pr_usrreqs->pru_attach == NULL ||
439	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
440		return (EPROTONOSUPPORT);
441
442	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
443		return (EPROTONOSUPPORT);
444
445	if (prp->pr_type != type)
446		return (EPROTOTYPE);
447	so = soalloc(CRED_TO_VNET(cred));
448	if (so == NULL)
449		return (ENOBUFS);
450
451	TAILQ_INIT(&so->so_incomp);
452	TAILQ_INIT(&so->so_comp);
453	so->so_type = type;
454	so->so_cred = crhold(cred);
455	if ((prp->pr_domain->dom_family == PF_INET) ||
456	    (prp->pr_domain->dom_family == PF_INET6) ||
457	    (prp->pr_domain->dom_family == PF_ROUTE))
458		so->so_fibnum = td->td_proc->p_fibnum;
459	else
460		so->so_fibnum = 0;
461	so->so_proto = prp;
462#ifdef MAC
463	mac_socket_create(cred, so);
464#endif
465	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
466	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
467	so->so_count = 1;
468	/*
469	 * Auto-sizing of socket buffers is managed by the protocols and
470	 * the appropriate flags must be set in the pru_attach function.
471	 */
472	CURVNET_SET(so->so_vnet);
473	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
474	CURVNET_RESTORE();
475	if (error) {
476		KASSERT(so->so_count == 1, ("socreate: so_count %d",
477		    so->so_count));
478		so->so_count = 0;
479		sodealloc(so);
480		return (error);
481	}
482	*aso = so;
483	return (0);
484}
485
486#ifdef REGRESSION
487static int regression_sonewconn_earlytest = 1;
488SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
489    &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
490#endif
491
492/*
493 * When an attempt at a new connection is noted on a socket which accepts
494 * connections, sonewconn is called.  If the connection is possible (subject
495 * to space constraints, etc.) then we allocate a new structure, propoerly
496 * linked into the data structure of the original socket, and return this.
497 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
498 *
499 * Note: the ref count on the socket is 0 on return.
500 */
501struct socket *
502sonewconn(struct socket *head, int connstatus)
503{
504	struct socket *so;
505	int over;
506
507	ACCEPT_LOCK();
508	over = (head->so_qlen > 3 * head->so_qlimit / 2);
509	ACCEPT_UNLOCK();
510#ifdef REGRESSION
511	if (regression_sonewconn_earlytest && over) {
512#else
513	if (over) {
514#endif
515		log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
516		    "%i already in queue awaiting acceptance\n",
517		    __func__, head->so_pcb, over);
518		return (NULL);
519	}
520	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
521	    __func__, __LINE__, head));
522	so = soalloc(head->so_vnet);
523	if (so == NULL) {
524		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
525		    "limit reached or out of memory\n",
526		    __func__, head->so_pcb);
527		return (NULL);
528	}
529	if ((head->so_options & SO_ACCEPTFILTER) != 0)
530		connstatus = 0;
531	so->so_head = head;
532	so->so_type = head->so_type;
533	so->so_options = head->so_options &~ SO_ACCEPTCONN;
534	so->so_linger = head->so_linger;
535	so->so_state = head->so_state | SS_NOFDREF;
536	so->so_fibnum = head->so_fibnum;
537	so->so_proto = head->so_proto;
538	so->so_cred = crhold(head->so_cred);
539#ifdef MAC
540	mac_socket_newconn(head, so);
541#endif
542	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
543	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
544	VNET_SO_ASSERT(head);
545	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
546		sodealloc(so);
547		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
548		    __func__, head->so_pcb);
549		return (NULL);
550	}
551	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
552		sodealloc(so);
553		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
554		    __func__, head->so_pcb);
555		return (NULL);
556	}
557	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
558	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
559	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
560	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
561	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
562	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
563	so->so_state |= connstatus;
564	ACCEPT_LOCK();
565	/*
566	 * The accept socket may be tearing down but we just
567	 * won a race on the ACCEPT_LOCK.
568	 */
569	if (!(head->so_options & SO_ACCEPTCONN)) {
570		SOCK_LOCK(so);
571		so->so_head = NULL;
572		sofree(so);		/* NB: returns ACCEPT_UNLOCK'ed. */
573		return (NULL);
574	}
575	if (connstatus) {
576		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
577		so->so_qstate |= SQ_COMP;
578		head->so_qlen++;
579	} else {
580		/*
581		 * Keep removing sockets from the head until there's room for
582		 * us to insert on the tail.  In pre-locking revisions, this
583		 * was a simple if(), but as we could be racing with other
584		 * threads and soabort() requires dropping locks, we must
585		 * loop waiting for the condition to be true.
586		 */
587		while (head->so_incqlen > head->so_qlimit) {
588			struct socket *sp;
589			sp = TAILQ_FIRST(&head->so_incomp);
590			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
591			head->so_incqlen--;
592			sp->so_qstate &= ~SQ_INCOMP;
593			sp->so_head = NULL;
594			ACCEPT_UNLOCK();
595			soabort(sp);
596			ACCEPT_LOCK();
597		}
598		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
599		so->so_qstate |= SQ_INCOMP;
600		head->so_incqlen++;
601	}
602	ACCEPT_UNLOCK();
603	if (connstatus) {
604		sorwakeup(head);
605		wakeup_one(&head->so_timeo);
606	}
607	return (so);
608}
609
610int
611sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
612{
613	int error;
614
615	CURVNET_SET(so->so_vnet);
616	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
617	CURVNET_RESTORE();
618	return error;
619}
620
621/*
622 * solisten() transitions a socket from a non-listening state to a listening
623 * state, but can also be used to update the listen queue depth on an
624 * existing listen socket.  The protocol will call back into the sockets
625 * layer using solisten_proto_check() and solisten_proto() to check and set
626 * socket-layer listen state.  Call backs are used so that the protocol can
627 * acquire both protocol and socket layer locks in whatever order is required
628 * by the protocol.
629 *
630 * Protocol implementors are advised to hold the socket lock across the
631 * socket-layer test and set to avoid races at the socket layer.
632 */
633int
634solisten(struct socket *so, int backlog, struct thread *td)
635{
636	int error;
637
638	CURVNET_SET(so->so_vnet);
639	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
640	CURVNET_RESTORE();
641	return error;
642}
643
644int
645solisten_proto_check(struct socket *so)
646{
647
648	SOCK_LOCK_ASSERT(so);
649
650	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
651	    SS_ISDISCONNECTING))
652		return (EINVAL);
653	return (0);
654}
655
656void
657solisten_proto(struct socket *so, int backlog)
658{
659
660	SOCK_LOCK_ASSERT(so);
661
662	if (backlog < 0 || backlog > somaxconn)
663		backlog = somaxconn;
664	so->so_qlimit = backlog;
665	so->so_options |= SO_ACCEPTCONN;
666}
667
668/*
669 * Evaluate the reference count and named references on a socket; if no
670 * references remain, free it.  This should be called whenever a reference is
671 * released, such as in sorele(), but also when named reference flags are
672 * cleared in socket or protocol code.
673 *
674 * sofree() will free the socket if:
675 *
676 * - There are no outstanding file descriptor references or related consumers
677 *   (so_count == 0).
678 *
679 * - The socket has been closed by user space, if ever open (SS_NOFDREF).
680 *
681 * - The protocol does not have an outstanding strong reference on the socket
682 *   (SS_PROTOREF).
683 *
684 * - The socket is not in a completed connection queue, so a process has been
685 *   notified that it is present.  If it is removed, the user process may
686 *   block in accept() despite select() saying the socket was ready.
687 */
688void
689sofree(struct socket *so)
690{
691	struct protosw *pr = so->so_proto;
692	struct socket *head;
693
694	ACCEPT_LOCK_ASSERT();
695	SOCK_LOCK_ASSERT(so);
696
697	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
698	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
699		SOCK_UNLOCK(so);
700		ACCEPT_UNLOCK();
701		return;
702	}
703
704	head = so->so_head;
705	if (head != NULL) {
706		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
707		    (so->so_qstate & SQ_INCOMP) != 0,
708		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
709		    "SQ_INCOMP"));
710		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
711		    (so->so_qstate & SQ_INCOMP) == 0,
712		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
713		TAILQ_REMOVE(&head->so_incomp, so, so_list);
714		head->so_incqlen--;
715		so->so_qstate &= ~SQ_INCOMP;
716		so->so_head = NULL;
717	}
718	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
719	    (so->so_qstate & SQ_INCOMP) == 0,
720	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
721	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
722	if (so->so_options & SO_ACCEPTCONN) {
723		KASSERT((TAILQ_EMPTY(&so->so_comp)),
724		    ("sofree: so_comp populated"));
725		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
726		    ("sofree: so_incomp populated"));
727	}
728	SOCK_UNLOCK(so);
729	ACCEPT_UNLOCK();
730
731	VNET_SO_ASSERT(so);
732	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
733		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
734	if (pr->pr_usrreqs->pru_detach != NULL)
735		(*pr->pr_usrreqs->pru_detach)(so);
736
737	/*
738	 * From this point on, we assume that no other references to this
739	 * socket exist anywhere else in the stack.  Therefore, no locks need
740	 * to be acquired or held.
741	 *
742	 * We used to do a lot of socket buffer and socket locking here, as
743	 * well as invoke sorflush() and perform wakeups.  The direct call to
744	 * dom_dispose() and sbrelease_internal() are an inlining of what was
745	 * necessary from sorflush().
746	 *
747	 * Notice that the socket buffer and kqueue state are torn down
748	 * before calling pru_detach.  This means that protocols shold not
749	 * assume they can perform socket wakeups, etc, in their detach code.
750	 */
751	sbdestroy(&so->so_snd, so);
752	sbdestroy(&so->so_rcv, so);
753	seldrain(&so->so_snd.sb_sel);
754	seldrain(&so->so_rcv.sb_sel);
755	knlist_destroy(&so->so_rcv.sb_sel.si_note);
756	knlist_destroy(&so->so_snd.sb_sel.si_note);
757	sodealloc(so);
758}
759
760/*
761 * Close a socket on last file table reference removal.  Initiate disconnect
762 * if connected.  Free socket when disconnect complete.
763 *
764 * This function will sorele() the socket.  Note that soclose() may be called
765 * prior to the ref count reaching zero.  The actual socket structure will
766 * not be freed until the ref count reaches zero.
767 */
768int
769soclose(struct socket *so)
770{
771	int error = 0;
772
773	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
774
775	CURVNET_SET(so->so_vnet);
776	funsetown(&so->so_sigio);
777	if (so->so_state & SS_ISCONNECTED) {
778		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
779			error = sodisconnect(so);
780			if (error) {
781				if (error == ENOTCONN)
782					error = 0;
783				goto drop;
784			}
785		}
786		if (so->so_options & SO_LINGER) {
787			if ((so->so_state & SS_ISDISCONNECTING) &&
788			    (so->so_state & SS_NBIO))
789				goto drop;
790			while (so->so_state & SS_ISCONNECTED) {
791				error = tsleep(&so->so_timeo,
792				    PSOCK | PCATCH, "soclos",
793				    so->so_linger * hz);
794				if (error)
795					break;
796			}
797		}
798	}
799
800drop:
801	if (so->so_proto->pr_usrreqs->pru_close != NULL)
802		(*so->so_proto->pr_usrreqs->pru_close)(so);
803	ACCEPT_LOCK();
804	if (so->so_options & SO_ACCEPTCONN) {
805		struct socket *sp;
806		/*
807		 * Prevent new additions to the accept queues due
808		 * to ACCEPT_LOCK races while we are draining them.
809		 */
810		so->so_options &= ~SO_ACCEPTCONN;
811		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
812			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
813			so->so_incqlen--;
814			sp->so_qstate &= ~SQ_INCOMP;
815			sp->so_head = NULL;
816			ACCEPT_UNLOCK();
817			soabort(sp);
818			ACCEPT_LOCK();
819		}
820		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
821			TAILQ_REMOVE(&so->so_comp, sp, so_list);
822			so->so_qlen--;
823			sp->so_qstate &= ~SQ_COMP;
824			sp->so_head = NULL;
825			ACCEPT_UNLOCK();
826			soabort(sp);
827			ACCEPT_LOCK();
828		}
829		KASSERT((TAILQ_EMPTY(&so->so_comp)),
830		    ("%s: so_comp populated", __func__));
831		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
832		    ("%s: so_incomp populated", __func__));
833	}
834	SOCK_LOCK(so);
835	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
836	so->so_state |= SS_NOFDREF;
837	sorele(so);			/* NB: Returns with ACCEPT_UNLOCK(). */
838	CURVNET_RESTORE();
839	return (error);
840}
841
842/*
843 * soabort() is used to abruptly tear down a connection, such as when a
844 * resource limit is reached (listen queue depth exceeded), or if a listen
845 * socket is closed while there are sockets waiting to be accepted.
846 *
847 * This interface is tricky, because it is called on an unreferenced socket,
848 * and must be called only by a thread that has actually removed the socket
849 * from the listen queue it was on, or races with other threads are risked.
850 *
851 * This interface will call into the protocol code, so must not be called
852 * with any socket locks held.  Protocols do call it while holding their own
853 * recursible protocol mutexes, but this is something that should be subject
854 * to review in the future.
855 */
856void
857soabort(struct socket *so)
858{
859
860	/*
861	 * In as much as is possible, assert that no references to this
862	 * socket are held.  This is not quite the same as asserting that the
863	 * current thread is responsible for arranging for no references, but
864	 * is as close as we can get for now.
865	 */
866	KASSERT(so->so_count == 0, ("soabort: so_count"));
867	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
868	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
869	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
870	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
871	VNET_SO_ASSERT(so);
872
873	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
874		(*so->so_proto->pr_usrreqs->pru_abort)(so);
875	ACCEPT_LOCK();
876	SOCK_LOCK(so);
877	sofree(so);
878}
879
880int
881soaccept(struct socket *so, struct sockaddr **nam)
882{
883	int error;
884
885	SOCK_LOCK(so);
886	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
887	so->so_state &= ~SS_NOFDREF;
888	SOCK_UNLOCK(so);
889
890	CURVNET_SET(so->so_vnet);
891	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
892	CURVNET_RESTORE();
893	return (error);
894}
895
896int
897soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
898{
899	int error;
900
901	if (so->so_options & SO_ACCEPTCONN)
902		return (EOPNOTSUPP);
903
904	CURVNET_SET(so->so_vnet);
905	/*
906	 * If protocol is connection-based, can only connect once.
907	 * Otherwise, if connected, try to disconnect first.  This allows
908	 * user to disconnect by connecting to, e.g., a null address.
909	 */
910	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
911	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
912	    (error = sodisconnect(so)))) {
913		error = EISCONN;
914	} else {
915		/*
916		 * Prevent accumulated error from previous connection from
917		 * biting us.
918		 */
919		so->so_error = 0;
920		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
921	}
922	CURVNET_RESTORE();
923
924	return (error);
925}
926
927int
928soconnect2(struct socket *so1, struct socket *so2)
929{
930	int error;
931
932	CURVNET_SET(so1->so_vnet);
933	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
934	CURVNET_RESTORE();
935	return (error);
936}
937
938int
939sodisconnect(struct socket *so)
940{
941	int error;
942
943	if ((so->so_state & SS_ISCONNECTED) == 0)
944		return (ENOTCONN);
945	if (so->so_state & SS_ISDISCONNECTING)
946		return (EALREADY);
947	VNET_SO_ASSERT(so);
948	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
949	return (error);
950}
951
952#ifdef SOCKET_SEND_COW
953struct so_zerocopy_stats{
954	int size_ok;
955	int align_ok;
956	int found_ifp;
957};
958struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
959
960/*
961 * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
962 * sosend_dgram() and sosend_generic() use m_uiotombuf().
963 *
964 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
965 * all of the data referenced by the uio.  If desired, it uses zero-copy.
966 * *space will be updated to reflect data copied in.
967 *
968 * NB: If atomic I/O is requested, the caller must already have checked that
969 * space can hold resid bytes.
970 *
971 * NB: In the event of an error, the caller may need to free the partial
972 * chain pointed to by *mpp.  The contents of both *uio and *space may be
973 * modified even in the case of an error.
974 */
975static int
976sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
977    int flags)
978{
979	struct mbuf *m, **mp, *top;
980	long len;
981	ssize_t resid;
982	int error;
983	int cow_send;
984
985	*retmp = top = NULL;
986	mp = &top;
987	len = 0;
988	resid = uio->uio_resid;
989	error = 0;
990	do {
991		cow_send = 0;
992		if (resid >= MINCLSIZE) {
993			if (top == NULL) {
994				m = m_gethdr(M_WAITOK, MT_DATA);
995				m->m_pkthdr.len = 0;
996				m->m_pkthdr.rcvif = NULL;
997			} else
998				m = m_get(M_WAITOK, MT_DATA);
999			if (so_zero_copy_send &&
1000			    resid >= PAGE_SIZE &&
1001			    *space >= PAGE_SIZE &&
1002			    uio->uio_iov->iov_len >= PAGE_SIZE) {
1003				so_zerocp_stats.size_ok++;
1004				so_zerocp_stats.align_ok++;
1005				cow_send = socow_setup(m, uio);
1006				len = cow_send;
1007			}
1008			if (!cow_send) {
1009				m_clget(m, M_WAITOK);
1010				len = min(min(MCLBYTES, resid), *space);
1011			}
1012		} else {
1013			if (top == NULL) {
1014				m = m_gethdr(M_WAITOK, MT_DATA);
1015				m->m_pkthdr.len = 0;
1016				m->m_pkthdr.rcvif = NULL;
1017
1018				len = min(min(MHLEN, resid), *space);
1019				/*
1020				 * For datagram protocols, leave room
1021				 * for protocol headers in first mbuf.
1022				 */
1023				if (atomic && m && len < MHLEN)
1024					MH_ALIGN(m, len);
1025			} else {
1026				m = m_get(M_WAITOK, MT_DATA);
1027				len = min(min(MLEN, resid), *space);
1028			}
1029		}
1030		if (m == NULL) {
1031			error = ENOBUFS;
1032			goto out;
1033		}
1034
1035		*space -= len;
1036		if (cow_send)
1037			error = 0;
1038		else
1039			error = uiomove(mtod(m, void *), (int)len, uio);
1040		resid = uio->uio_resid;
1041		m->m_len = len;
1042		*mp = m;
1043		top->m_pkthdr.len += len;
1044		if (error)
1045			goto out;
1046		mp = &m->m_next;
1047		if (resid <= 0) {
1048			if (flags & MSG_EOR)
1049				top->m_flags |= M_EOR;
1050			break;
1051		}
1052	} while (*space > 0 && atomic);
1053out:
1054	*retmp = top;
1055	return (error);
1056}
1057#endif /* SOCKET_SEND_COW */
1058
1059#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1060
1061int
1062sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1063    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1064{
1065	long space;
1066	ssize_t resid;
1067	int clen = 0, error, dontroute;
1068#ifdef SOCKET_SEND_COW
1069	int atomic = sosendallatonce(so) || top;
1070#endif
1071
1072	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1073	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1074	    ("sosend_dgram: !PR_ATOMIC"));
1075
1076	if (uio != NULL)
1077		resid = uio->uio_resid;
1078	else
1079		resid = top->m_pkthdr.len;
1080	/*
1081	 * In theory resid should be unsigned.  However, space must be
1082	 * signed, as it might be less than 0 if we over-committed, and we
1083	 * must use a signed comparison of space and resid.  On the other
1084	 * hand, a negative resid causes us to loop sending 0-length
1085	 * segments to the protocol.
1086	 */
1087	if (resid < 0) {
1088		error = EINVAL;
1089		goto out;
1090	}
1091
1092	dontroute =
1093	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1094	if (td != NULL)
1095		td->td_ru.ru_msgsnd++;
1096	if (control != NULL)
1097		clen = control->m_len;
1098
1099	SOCKBUF_LOCK(&so->so_snd);
1100	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1101		SOCKBUF_UNLOCK(&so->so_snd);
1102		error = EPIPE;
1103		goto out;
1104	}
1105	if (so->so_error) {
1106		error = so->so_error;
1107		so->so_error = 0;
1108		SOCKBUF_UNLOCK(&so->so_snd);
1109		goto out;
1110	}
1111	if ((so->so_state & SS_ISCONNECTED) == 0) {
1112		/*
1113		 * `sendto' and `sendmsg' is allowed on a connection-based
1114		 * socket if it supports implied connect.  Return ENOTCONN if
1115		 * not connected and no address is supplied.
1116		 */
1117		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1118		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1119			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1120			    !(resid == 0 && clen != 0)) {
1121				SOCKBUF_UNLOCK(&so->so_snd);
1122				error = ENOTCONN;
1123				goto out;
1124			}
1125		} else if (addr == NULL) {
1126			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1127				error = ENOTCONN;
1128			else
1129				error = EDESTADDRREQ;
1130			SOCKBUF_UNLOCK(&so->so_snd);
1131			goto out;
1132		}
1133	}
1134
1135	/*
1136	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1137	 * problem and need fixing.
1138	 */
1139	space = sbspace(&so->so_snd);
1140	if (flags & MSG_OOB)
1141		space += 1024;
1142	space -= clen;
1143	SOCKBUF_UNLOCK(&so->so_snd);
1144	if (resid > space) {
1145		error = EMSGSIZE;
1146		goto out;
1147	}
1148	if (uio == NULL) {
1149		resid = 0;
1150		if (flags & MSG_EOR)
1151			top->m_flags |= M_EOR;
1152	} else {
1153#ifdef SOCKET_SEND_COW
1154		error = sosend_copyin(uio, &top, atomic, &space, flags);
1155		if (error)
1156			goto out;
1157#else
1158		/*
1159		 * Copy the data from userland into a mbuf chain.
1160		 * If no data is to be copied in, a single empty mbuf
1161		 * is returned.
1162		 */
1163		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1164		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1165		if (top == NULL) {
1166			error = EFAULT;	/* only possible error */
1167			goto out;
1168		}
1169		space -= resid - uio->uio_resid;
1170#endif /* SOCKET_SEND_COW */
1171		resid = uio->uio_resid;
1172	}
1173	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1174	/*
1175	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1176	 * than with.
1177	 */
1178	if (dontroute) {
1179		SOCK_LOCK(so);
1180		so->so_options |= SO_DONTROUTE;
1181		SOCK_UNLOCK(so);
1182	}
1183	/*
1184	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1185	 * of date.  We could have recieved a reset packet in an interrupt or
1186	 * maybe we slept while doing page faults in uiomove() etc.  We could
1187	 * probably recheck again inside the locking protection here, but
1188	 * there are probably other places that this also happens.  We must
1189	 * rethink this.
1190	 */
1191	VNET_SO_ASSERT(so);
1192	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1193	    (flags & MSG_OOB) ? PRUS_OOB :
1194	/*
1195	 * If the user set MSG_EOF, the protocol understands this flag and
1196	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1197	 */
1198	    ((flags & MSG_EOF) &&
1199	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1200	     (resid <= 0)) ?
1201		PRUS_EOF :
1202		/* If there is more to send set PRUS_MORETOCOME */
1203		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1204		top, addr, control, td);
1205	if (dontroute) {
1206		SOCK_LOCK(so);
1207		so->so_options &= ~SO_DONTROUTE;
1208		SOCK_UNLOCK(so);
1209	}
1210	clen = 0;
1211	control = NULL;
1212	top = NULL;
1213out:
1214	if (top != NULL)
1215		m_freem(top);
1216	if (control != NULL)
1217		m_freem(control);
1218	return (error);
1219}
1220
1221/*
1222 * Send on a socket.  If send must go all at once and message is larger than
1223 * send buffering, then hard error.  Lock against other senders.  If must go
1224 * all at once and not enough room now, then inform user that this would
1225 * block and do nothing.  Otherwise, if nonblocking, send as much as
1226 * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1227 * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1228 * in mbuf chain must be small enough to send all at once.
1229 *
1230 * Returns nonzero on error, timeout or signal; callers must check for short
1231 * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1232 * on return.
1233 */
1234int
1235sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1236    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1237{
1238	long space;
1239	ssize_t resid;
1240	int clen = 0, error, dontroute;
1241	int atomic = sosendallatonce(so) || top;
1242
1243	if (uio != NULL)
1244		resid = uio->uio_resid;
1245	else
1246		resid = top->m_pkthdr.len;
1247	/*
1248	 * In theory resid should be unsigned.  However, space must be
1249	 * signed, as it might be less than 0 if we over-committed, and we
1250	 * must use a signed comparison of space and resid.  On the other
1251	 * hand, a negative resid causes us to loop sending 0-length
1252	 * segments to the protocol.
1253	 *
1254	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1255	 * type sockets since that's an error.
1256	 */
1257	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1258		error = EINVAL;
1259		goto out;
1260	}
1261
1262	dontroute =
1263	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1264	    (so->so_proto->pr_flags & PR_ATOMIC);
1265	if (td != NULL)
1266		td->td_ru.ru_msgsnd++;
1267	if (control != NULL)
1268		clen = control->m_len;
1269
1270	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1271	if (error)
1272		goto out;
1273
1274restart:
1275	do {
1276		SOCKBUF_LOCK(&so->so_snd);
1277		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1278			SOCKBUF_UNLOCK(&so->so_snd);
1279			error = EPIPE;
1280			goto release;
1281		}
1282		if (so->so_error) {
1283			error = so->so_error;
1284			so->so_error = 0;
1285			SOCKBUF_UNLOCK(&so->so_snd);
1286			goto release;
1287		}
1288		if ((so->so_state & SS_ISCONNECTED) == 0) {
1289			/*
1290			 * `sendto' and `sendmsg' is allowed on a connection-
1291			 * based socket if it supports implied connect.
1292			 * Return ENOTCONN if not connected and no address is
1293			 * supplied.
1294			 */
1295			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1296			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1297				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1298				    !(resid == 0 && clen != 0)) {
1299					SOCKBUF_UNLOCK(&so->so_snd);
1300					error = ENOTCONN;
1301					goto release;
1302				}
1303			} else if (addr == NULL) {
1304				SOCKBUF_UNLOCK(&so->so_snd);
1305				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1306					error = ENOTCONN;
1307				else
1308					error = EDESTADDRREQ;
1309				goto release;
1310			}
1311		}
1312		space = sbspace(&so->so_snd);
1313		if (flags & MSG_OOB)
1314			space += 1024;
1315		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1316		    clen > so->so_snd.sb_hiwat) {
1317			SOCKBUF_UNLOCK(&so->so_snd);
1318			error = EMSGSIZE;
1319			goto release;
1320		}
1321		if (space < resid + clen &&
1322		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1323			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1324				SOCKBUF_UNLOCK(&so->so_snd);
1325				error = EWOULDBLOCK;
1326				goto release;
1327			}
1328			error = sbwait(&so->so_snd);
1329			SOCKBUF_UNLOCK(&so->so_snd);
1330			if (error)
1331				goto release;
1332			goto restart;
1333		}
1334		SOCKBUF_UNLOCK(&so->so_snd);
1335		space -= clen;
1336		do {
1337			if (uio == NULL) {
1338				resid = 0;
1339				if (flags & MSG_EOR)
1340					top->m_flags |= M_EOR;
1341			} else {
1342#ifdef SOCKET_SEND_COW
1343				error = sosend_copyin(uio, &top, atomic,
1344				    &space, flags);
1345				if (error != 0)
1346					goto release;
1347#else
1348				/*
1349				 * Copy the data from userland into a mbuf
1350				 * chain.  If no data is to be copied in,
1351				 * a single empty mbuf is returned.
1352				 */
1353				top = m_uiotombuf(uio, M_WAITOK, space,
1354				    (atomic ? max_hdr : 0),
1355				    (atomic ? M_PKTHDR : 0) |
1356				    ((flags & MSG_EOR) ? M_EOR : 0));
1357				if (top == NULL) {
1358					error = EFAULT; /* only possible error */
1359					goto release;
1360				}
1361				space -= resid - uio->uio_resid;
1362#endif /* SOCKET_SEND_COW */
1363				resid = uio->uio_resid;
1364			}
1365			if (dontroute) {
1366				SOCK_LOCK(so);
1367				so->so_options |= SO_DONTROUTE;
1368				SOCK_UNLOCK(so);
1369			}
1370			/*
1371			 * XXX all the SBS_CANTSENDMORE checks previously
1372			 * done could be out of date.  We could have recieved
1373			 * a reset packet in an interrupt or maybe we slept
1374			 * while doing page faults in uiomove() etc.  We
1375			 * could probably recheck again inside the locking
1376			 * protection here, but there are probably other
1377			 * places that this also happens.  We must rethink
1378			 * this.
1379			 */
1380			VNET_SO_ASSERT(so);
1381			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1382			    (flags & MSG_OOB) ? PRUS_OOB :
1383			/*
1384			 * If the user set MSG_EOF, the protocol understands
1385			 * this flag and nothing left to send then use
1386			 * PRU_SEND_EOF instead of PRU_SEND.
1387			 */
1388			    ((flags & MSG_EOF) &&
1389			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1390			     (resid <= 0)) ?
1391				PRUS_EOF :
1392			/* If there is more to send set PRUS_MORETOCOME. */
1393			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1394			    top, addr, control, td);
1395			if (dontroute) {
1396				SOCK_LOCK(so);
1397				so->so_options &= ~SO_DONTROUTE;
1398				SOCK_UNLOCK(so);
1399			}
1400			clen = 0;
1401			control = NULL;
1402			top = NULL;
1403			if (error)
1404				goto release;
1405		} while (resid && space > 0);
1406	} while (resid);
1407
1408release:
1409	sbunlock(&so->so_snd);
1410out:
1411	if (top != NULL)
1412		m_freem(top);
1413	if (control != NULL)
1414		m_freem(control);
1415	return (error);
1416}
1417
1418int
1419sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1420    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1421{
1422	int error;
1423
1424	CURVNET_SET(so->so_vnet);
1425	error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1426	    control, flags, td);
1427	CURVNET_RESTORE();
1428	return (error);
1429}
1430
1431/*
1432 * The part of soreceive() that implements reading non-inline out-of-band
1433 * data from a socket.  For more complete comments, see soreceive(), from
1434 * which this code originated.
1435 *
1436 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1437 * unable to return an mbuf chain to the caller.
1438 */
1439static int
1440soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1441{
1442	struct protosw *pr = so->so_proto;
1443	struct mbuf *m;
1444	int error;
1445
1446	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1447	VNET_SO_ASSERT(so);
1448
1449	m = m_get(M_WAITOK, MT_DATA);
1450	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1451	if (error)
1452		goto bad;
1453	do {
1454#ifdef SOCKET_RECV_PFLIP
1455		if (so_zero_copy_receive) {
1456			int disposable;
1457
1458			if ((m->m_flags & M_EXT)
1459			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1460				disposable = 1;
1461			else
1462				disposable = 0;
1463
1464			error = uiomoveco(mtod(m, void *),
1465			    min(uio->uio_resid, m->m_len), uio, disposable);
1466		} else
1467#endif /* SOCKET_RECV_PFLIP */
1468		error = uiomove(mtod(m, void *),
1469		    (int) min(uio->uio_resid, m->m_len), uio);
1470		m = m_free(m);
1471	} while (uio->uio_resid && error == 0 && m);
1472bad:
1473	if (m != NULL)
1474		m_freem(m);
1475	return (error);
1476}
1477
1478/*
1479 * Following replacement or removal of the first mbuf on the first mbuf chain
1480 * of a socket buffer, push necessary state changes back into the socket
1481 * buffer so that other consumers see the values consistently.  'nextrecord'
1482 * is the callers locally stored value of the original value of
1483 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1484 * NOTE: 'nextrecord' may be NULL.
1485 */
1486static __inline void
1487sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1488{
1489
1490	SOCKBUF_LOCK_ASSERT(sb);
1491	/*
1492	 * First, update for the new value of nextrecord.  If necessary, make
1493	 * it the first record.
1494	 */
1495	if (sb->sb_mb != NULL)
1496		sb->sb_mb->m_nextpkt = nextrecord;
1497	else
1498		sb->sb_mb = nextrecord;
1499
1500	/*
1501	 * Now update any dependent socket buffer fields to reflect the new
1502	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1503	 * addition of a second clause that takes care of the case where
1504	 * sb_mb has been updated, but remains the last record.
1505	 */
1506	if (sb->sb_mb == NULL) {
1507		sb->sb_mbtail = NULL;
1508		sb->sb_lastrecord = NULL;
1509	} else if (sb->sb_mb->m_nextpkt == NULL)
1510		sb->sb_lastrecord = sb->sb_mb;
1511}
1512
1513/*
1514 * Implement receive operations on a socket.  We depend on the way that
1515 * records are added to the sockbuf by sbappend.  In particular, each record
1516 * (mbufs linked through m_next) must begin with an address if the protocol
1517 * so specifies, followed by an optional mbuf or mbufs containing ancillary
1518 * data, and then zero or more mbufs of data.  In order to allow parallelism
1519 * between network receive and copying to user space, as well as avoid
1520 * sleeping with a mutex held, we release the socket buffer mutex during the
1521 * user space copy.  Although the sockbuf is locked, new data may still be
1522 * appended, and thus we must maintain consistency of the sockbuf during that
1523 * time.
1524 *
1525 * The caller may receive the data as a single mbuf chain by supplying an
1526 * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1527 * the count in uio_resid.
1528 */
1529int
1530soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1531    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1532{
1533	struct mbuf *m, **mp;
1534	int flags, error, offset;
1535	ssize_t len;
1536	struct protosw *pr = so->so_proto;
1537	struct mbuf *nextrecord;
1538	int moff, type = 0;
1539	ssize_t orig_resid = uio->uio_resid;
1540
1541	mp = mp0;
1542	if (psa != NULL)
1543		*psa = NULL;
1544	if (controlp != NULL)
1545		*controlp = NULL;
1546	if (flagsp != NULL)
1547		flags = *flagsp &~ MSG_EOR;
1548	else
1549		flags = 0;
1550	if (flags & MSG_OOB)
1551		return (soreceive_rcvoob(so, uio, flags));
1552	if (mp != NULL)
1553		*mp = NULL;
1554	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1555	    && uio->uio_resid) {
1556		VNET_SO_ASSERT(so);
1557		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1558	}
1559
1560	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1561	if (error)
1562		return (error);
1563
1564restart:
1565	SOCKBUF_LOCK(&so->so_rcv);
1566	m = so->so_rcv.sb_mb;
1567	/*
1568	 * If we have less data than requested, block awaiting more (subject
1569	 * to any timeout) if:
1570	 *   1. the current count is less than the low water mark, or
1571	 *   2. MSG_DONTWAIT is not set
1572	 */
1573	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1574	    so->so_rcv.sb_cc < uio->uio_resid) &&
1575	    so->so_rcv.sb_cc < so->so_rcv.sb_lowat &&
1576	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1577		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1578		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1579		    m, so->so_rcv.sb_cc));
1580		if (so->so_error) {
1581			if (m != NULL)
1582				goto dontblock;
1583			error = so->so_error;
1584			if ((flags & MSG_PEEK) == 0)
1585				so->so_error = 0;
1586			SOCKBUF_UNLOCK(&so->so_rcv);
1587			goto release;
1588		}
1589		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1590		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1591			if (m == NULL) {
1592				SOCKBUF_UNLOCK(&so->so_rcv);
1593				goto release;
1594			} else
1595				goto dontblock;
1596		}
1597		for (; m != NULL; m = m->m_next)
1598			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1599				m = so->so_rcv.sb_mb;
1600				goto dontblock;
1601			}
1602		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1603		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1604			SOCKBUF_UNLOCK(&so->so_rcv);
1605			error = ENOTCONN;
1606			goto release;
1607		}
1608		if (uio->uio_resid == 0) {
1609			SOCKBUF_UNLOCK(&so->so_rcv);
1610			goto release;
1611		}
1612		if ((so->so_state & SS_NBIO) ||
1613		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1614			SOCKBUF_UNLOCK(&so->so_rcv);
1615			error = EWOULDBLOCK;
1616			goto release;
1617		}
1618		SBLASTRECORDCHK(&so->so_rcv);
1619		SBLASTMBUFCHK(&so->so_rcv);
1620		error = sbwait(&so->so_rcv);
1621		SOCKBUF_UNLOCK(&so->so_rcv);
1622		if (error)
1623			goto release;
1624		goto restart;
1625	}
1626dontblock:
1627	/*
1628	 * From this point onward, we maintain 'nextrecord' as a cache of the
1629	 * pointer to the next record in the socket buffer.  We must keep the
1630	 * various socket buffer pointers and local stack versions of the
1631	 * pointers in sync, pushing out modifications before dropping the
1632	 * socket buffer mutex, and re-reading them when picking it up.
1633	 *
1634	 * Otherwise, we will race with the network stack appending new data
1635	 * or records onto the socket buffer by using inconsistent/stale
1636	 * versions of the field, possibly resulting in socket buffer
1637	 * corruption.
1638	 *
1639	 * By holding the high-level sblock(), we prevent simultaneous
1640	 * readers from pulling off the front of the socket buffer.
1641	 */
1642	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1643	if (uio->uio_td)
1644		uio->uio_td->td_ru.ru_msgrcv++;
1645	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1646	SBLASTRECORDCHK(&so->so_rcv);
1647	SBLASTMBUFCHK(&so->so_rcv);
1648	nextrecord = m->m_nextpkt;
1649	if (pr->pr_flags & PR_ADDR) {
1650		KASSERT(m->m_type == MT_SONAME,
1651		    ("m->m_type == %d", m->m_type));
1652		orig_resid = 0;
1653		if (psa != NULL)
1654			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1655			    M_NOWAIT);
1656		if (flags & MSG_PEEK) {
1657			m = m->m_next;
1658		} else {
1659			sbfree(&so->so_rcv, m);
1660			so->so_rcv.sb_mb = m_free(m);
1661			m = so->so_rcv.sb_mb;
1662			sockbuf_pushsync(&so->so_rcv, nextrecord);
1663		}
1664	}
1665
1666	/*
1667	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1668	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1669	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1670	 * perform externalization (or freeing if controlp == NULL).
1671	 */
1672	if (m != NULL && m->m_type == MT_CONTROL) {
1673		struct mbuf *cm = NULL, *cmn;
1674		struct mbuf **cme = &cm;
1675
1676		do {
1677			if (flags & MSG_PEEK) {
1678				if (controlp != NULL) {
1679					*controlp = m_copy(m, 0, m->m_len);
1680					controlp = &(*controlp)->m_next;
1681				}
1682				m = m->m_next;
1683			} else {
1684				sbfree(&so->so_rcv, m);
1685				so->so_rcv.sb_mb = m->m_next;
1686				m->m_next = NULL;
1687				*cme = m;
1688				cme = &(*cme)->m_next;
1689				m = so->so_rcv.sb_mb;
1690			}
1691		} while (m != NULL && m->m_type == MT_CONTROL);
1692		if ((flags & MSG_PEEK) == 0)
1693			sockbuf_pushsync(&so->so_rcv, nextrecord);
1694		while (cm != NULL) {
1695			cmn = cm->m_next;
1696			cm->m_next = NULL;
1697			if (pr->pr_domain->dom_externalize != NULL) {
1698				SOCKBUF_UNLOCK(&so->so_rcv);
1699				VNET_SO_ASSERT(so);
1700				error = (*pr->pr_domain->dom_externalize)
1701				    (cm, controlp);
1702				SOCKBUF_LOCK(&so->so_rcv);
1703			} else if (controlp != NULL)
1704				*controlp = cm;
1705			else
1706				m_freem(cm);
1707			if (controlp != NULL) {
1708				orig_resid = 0;
1709				while (*controlp != NULL)
1710					controlp = &(*controlp)->m_next;
1711			}
1712			cm = cmn;
1713		}
1714		if (m != NULL)
1715			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1716		else
1717			nextrecord = so->so_rcv.sb_mb;
1718		orig_resid = 0;
1719	}
1720	if (m != NULL) {
1721		if ((flags & MSG_PEEK) == 0) {
1722			KASSERT(m->m_nextpkt == nextrecord,
1723			    ("soreceive: post-control, nextrecord !sync"));
1724			if (nextrecord == NULL) {
1725				KASSERT(so->so_rcv.sb_mb == m,
1726				    ("soreceive: post-control, sb_mb!=m"));
1727				KASSERT(so->so_rcv.sb_lastrecord == m,
1728				    ("soreceive: post-control, lastrecord!=m"));
1729			}
1730		}
1731		type = m->m_type;
1732		if (type == MT_OOBDATA)
1733			flags |= MSG_OOB;
1734	} else {
1735		if ((flags & MSG_PEEK) == 0) {
1736			KASSERT(so->so_rcv.sb_mb == nextrecord,
1737			    ("soreceive: sb_mb != nextrecord"));
1738			if (so->so_rcv.sb_mb == NULL) {
1739				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1740				    ("soreceive: sb_lastercord != NULL"));
1741			}
1742		}
1743	}
1744	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1745	SBLASTRECORDCHK(&so->so_rcv);
1746	SBLASTMBUFCHK(&so->so_rcv);
1747
1748	/*
1749	 * Now continue to read any data mbufs off of the head of the socket
1750	 * buffer until the read request is satisfied.  Note that 'type' is
1751	 * used to store the type of any mbuf reads that have happened so far
1752	 * such that soreceive() can stop reading if the type changes, which
1753	 * causes soreceive() to return only one of regular data and inline
1754	 * out-of-band data in a single socket receive operation.
1755	 */
1756	moff = 0;
1757	offset = 0;
1758	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1759		/*
1760		 * If the type of mbuf has changed since the last mbuf
1761		 * examined ('type'), end the receive operation.
1762		 */
1763		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1764		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
1765			if (type != m->m_type)
1766				break;
1767		} else if (type == MT_OOBDATA)
1768			break;
1769		else
1770		    KASSERT(m->m_type == MT_DATA,
1771			("m->m_type == %d", m->m_type));
1772		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1773		len = uio->uio_resid;
1774		if (so->so_oobmark && len > so->so_oobmark - offset)
1775			len = so->so_oobmark - offset;
1776		if (len > m->m_len - moff)
1777			len = m->m_len - moff;
1778		/*
1779		 * If mp is set, just pass back the mbufs.  Otherwise copy
1780		 * them out via the uio, then free.  Sockbuf must be
1781		 * consistent here (points to current mbuf, it points to next
1782		 * record) when we drop priority; we must note any additions
1783		 * to the sockbuf when we block interrupts again.
1784		 */
1785		if (mp == NULL) {
1786			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1787			SBLASTRECORDCHK(&so->so_rcv);
1788			SBLASTMBUFCHK(&so->so_rcv);
1789			SOCKBUF_UNLOCK(&so->so_rcv);
1790#ifdef SOCKET_RECV_PFLIP
1791			if (so_zero_copy_receive) {
1792				int disposable;
1793
1794				if ((m->m_flags & M_EXT)
1795				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1796					disposable = 1;
1797				else
1798					disposable = 0;
1799
1800				error = uiomoveco(mtod(m, char *) + moff,
1801				    (int)len, uio, disposable);
1802			} else
1803#endif /* SOCKET_RECV_PFLIP */
1804			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1805			SOCKBUF_LOCK(&so->so_rcv);
1806			if (error) {
1807				/*
1808				 * The MT_SONAME mbuf has already been removed
1809				 * from the record, so it is necessary to
1810				 * remove the data mbufs, if any, to preserve
1811				 * the invariant in the case of PR_ADDR that
1812				 * requires MT_SONAME mbufs at the head of
1813				 * each record.
1814				 */
1815				if (m && pr->pr_flags & PR_ATOMIC &&
1816				    ((flags & MSG_PEEK) == 0))
1817					(void)sbdroprecord_locked(&so->so_rcv);
1818				SOCKBUF_UNLOCK(&so->so_rcv);
1819				goto release;
1820			}
1821		} else
1822			uio->uio_resid -= len;
1823		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1824		if (len == m->m_len - moff) {
1825			if (m->m_flags & M_EOR)
1826				flags |= MSG_EOR;
1827			if (flags & MSG_PEEK) {
1828				m = m->m_next;
1829				moff = 0;
1830			} else {
1831				nextrecord = m->m_nextpkt;
1832				sbfree(&so->so_rcv, m);
1833				if (mp != NULL) {
1834					*mp = m;
1835					mp = &m->m_next;
1836					so->so_rcv.sb_mb = m = m->m_next;
1837					*mp = NULL;
1838				} else {
1839					so->so_rcv.sb_mb = m_free(m);
1840					m = so->so_rcv.sb_mb;
1841				}
1842				sockbuf_pushsync(&so->so_rcv, nextrecord);
1843				SBLASTRECORDCHK(&so->so_rcv);
1844				SBLASTMBUFCHK(&so->so_rcv);
1845			}
1846		} else {
1847			if (flags & MSG_PEEK)
1848				moff += len;
1849			else {
1850				if (mp != NULL) {
1851					int copy_flag;
1852
1853					if (flags & MSG_DONTWAIT)
1854						copy_flag = M_NOWAIT;
1855					else
1856						copy_flag = M_WAIT;
1857					if (copy_flag == M_WAITOK)
1858						SOCKBUF_UNLOCK(&so->so_rcv);
1859					*mp = m_copym(m, 0, len, copy_flag);
1860					if (copy_flag == M_WAITOK)
1861						SOCKBUF_LOCK(&so->so_rcv);
1862					if (*mp == NULL) {
1863						/*
1864						 * m_copym() couldn't
1865						 * allocate an mbuf.  Adjust
1866						 * uio_resid back (it was
1867						 * adjusted down by len
1868						 * bytes, which we didn't end
1869						 * up "copying" over).
1870						 */
1871						uio->uio_resid += len;
1872						break;
1873					}
1874				}
1875				m->m_data += len;
1876				m->m_len -= len;
1877				so->so_rcv.sb_cc -= len;
1878			}
1879		}
1880		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1881		if (so->so_oobmark) {
1882			if ((flags & MSG_PEEK) == 0) {
1883				so->so_oobmark -= len;
1884				if (so->so_oobmark == 0) {
1885					so->so_rcv.sb_state |= SBS_RCVATMARK;
1886					break;
1887				}
1888			} else {
1889				offset += len;
1890				if (offset == so->so_oobmark)
1891					break;
1892			}
1893		}
1894		if (flags & MSG_EOR)
1895			break;
1896		/*
1897		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1898		 * must not quit until "uio->uio_resid == 0" or an error
1899		 * termination.  If a signal/timeout occurs, return with a
1900		 * short count but without error.  Keep sockbuf locked
1901		 * against other readers.
1902		 */
1903		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1904		    !sosendallatonce(so) && nextrecord == NULL) {
1905			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1906			if (so->so_error ||
1907			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
1908				break;
1909			/*
1910			 * Notify the protocol that some data has been
1911			 * drained before blocking.
1912			 */
1913			if (pr->pr_flags & PR_WANTRCVD) {
1914				SOCKBUF_UNLOCK(&so->so_rcv);
1915				VNET_SO_ASSERT(so);
1916				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1917				SOCKBUF_LOCK(&so->so_rcv);
1918			}
1919			SBLASTRECORDCHK(&so->so_rcv);
1920			SBLASTMBUFCHK(&so->so_rcv);
1921			/*
1922			 * We could receive some data while was notifying
1923			 * the protocol. Skip blocking in this case.
1924			 */
1925			if (so->so_rcv.sb_mb == NULL) {
1926				error = sbwait(&so->so_rcv);
1927				if (error) {
1928					SOCKBUF_UNLOCK(&so->so_rcv);
1929					goto release;
1930				}
1931			}
1932			m = so->so_rcv.sb_mb;
1933			if (m != NULL)
1934				nextrecord = m->m_nextpkt;
1935		}
1936	}
1937
1938	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1939	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1940		flags |= MSG_TRUNC;
1941		if ((flags & MSG_PEEK) == 0)
1942			(void) sbdroprecord_locked(&so->so_rcv);
1943	}
1944	if ((flags & MSG_PEEK) == 0) {
1945		if (m == NULL) {
1946			/*
1947			 * First part is an inline SB_EMPTY_FIXUP().  Second
1948			 * part makes sure sb_lastrecord is up-to-date if
1949			 * there is still data in the socket buffer.
1950			 */
1951			so->so_rcv.sb_mb = nextrecord;
1952			if (so->so_rcv.sb_mb == NULL) {
1953				so->so_rcv.sb_mbtail = NULL;
1954				so->so_rcv.sb_lastrecord = NULL;
1955			} else if (nextrecord->m_nextpkt == NULL)
1956				so->so_rcv.sb_lastrecord = nextrecord;
1957		}
1958		SBLASTRECORDCHK(&so->so_rcv);
1959		SBLASTMBUFCHK(&so->so_rcv);
1960		/*
1961		 * If soreceive() is being done from the socket callback,
1962		 * then don't need to generate ACK to peer to update window,
1963		 * since ACK will be generated on return to TCP.
1964		 */
1965		if (!(flags & MSG_SOCALLBCK) &&
1966		    (pr->pr_flags & PR_WANTRCVD)) {
1967			SOCKBUF_UNLOCK(&so->so_rcv);
1968			VNET_SO_ASSERT(so);
1969			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1970			SOCKBUF_LOCK(&so->so_rcv);
1971		}
1972	}
1973	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1974	if (orig_resid == uio->uio_resid && orig_resid &&
1975	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1976		SOCKBUF_UNLOCK(&so->so_rcv);
1977		goto restart;
1978	}
1979	SOCKBUF_UNLOCK(&so->so_rcv);
1980
1981	if (flagsp != NULL)
1982		*flagsp |= flags;
1983release:
1984	sbunlock(&so->so_rcv);
1985	return (error);
1986}
1987
1988/*
1989 * Optimized version of soreceive() for stream (TCP) sockets.
1990 * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled.
1991 */
1992int
1993soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
1994    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1995{
1996	int len = 0, error = 0, flags, oresid;
1997	struct sockbuf *sb;
1998	struct mbuf *m, *n = NULL;
1999
2000	/* We only do stream sockets. */
2001	if (so->so_type != SOCK_STREAM)
2002		return (EINVAL);
2003	if (psa != NULL)
2004		*psa = NULL;
2005	if (controlp != NULL)
2006		return (EINVAL);
2007	if (flagsp != NULL)
2008		flags = *flagsp &~ MSG_EOR;
2009	else
2010		flags = 0;
2011	if (flags & MSG_OOB)
2012		return (soreceive_rcvoob(so, uio, flags));
2013	if (mp0 != NULL)
2014		*mp0 = NULL;
2015
2016	sb = &so->so_rcv;
2017
2018	/* Prevent other readers from entering the socket. */
2019	error = sblock(sb, SBLOCKWAIT(flags));
2020	if (error)
2021		goto out;
2022	SOCKBUF_LOCK(sb);
2023
2024	/* Easy one, no space to copyout anything. */
2025	if (uio->uio_resid == 0) {
2026		error = EINVAL;
2027		goto out;
2028	}
2029	oresid = uio->uio_resid;
2030
2031	/* We will never ever get anything unless we are or were connected. */
2032	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2033		error = ENOTCONN;
2034		goto out;
2035	}
2036
2037restart:
2038	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2039
2040	/* Abort if socket has reported problems. */
2041	if (so->so_error) {
2042		if (sb->sb_cc > 0)
2043			goto deliver;
2044		if (oresid > uio->uio_resid)
2045			goto out;
2046		error = so->so_error;
2047		if (!(flags & MSG_PEEK))
2048			so->so_error = 0;
2049		goto out;
2050	}
2051
2052	/* Door is closed.  Deliver what is left, if any. */
2053	if (sb->sb_state & SBS_CANTRCVMORE) {
2054		if (sb->sb_cc > 0)
2055			goto deliver;
2056		else
2057			goto out;
2058	}
2059
2060	/* Socket buffer is empty and we shall not block. */
2061	if (sb->sb_cc == 0 &&
2062	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2063		error = EAGAIN;
2064		goto out;
2065	}
2066
2067	/* Socket buffer got some data that we shall deliver now. */
2068	if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) &&
2069	    ((sb->sb_flags & SS_NBIO) ||
2070	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2071	     sb->sb_cc >= sb->sb_lowat ||
2072	     sb->sb_cc >= uio->uio_resid ||
2073	     sb->sb_cc >= sb->sb_hiwat) ) {
2074		goto deliver;
2075	}
2076
2077	/* On MSG_WAITALL we must wait until all data or error arrives. */
2078	if ((flags & MSG_WAITALL) &&
2079	    (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat))
2080		goto deliver;
2081
2082	/*
2083	 * Wait and block until (more) data comes in.
2084	 * NB: Drops the sockbuf lock during wait.
2085	 */
2086	error = sbwait(sb);
2087	if (error)
2088		goto out;
2089	goto restart;
2090
2091deliver:
2092	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2093	KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__));
2094	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2095
2096	/* Statistics. */
2097	if (uio->uio_td)
2098		uio->uio_td->td_ru.ru_msgrcv++;
2099
2100	/* Fill uio until full or current end of socket buffer is reached. */
2101	len = min(uio->uio_resid, sb->sb_cc);
2102	if (mp0 != NULL) {
2103		/* Dequeue as many mbufs as possible. */
2104		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2105			if (*mp0 == NULL)
2106				*mp0 = sb->sb_mb;
2107			else
2108				m_cat(*mp0, sb->sb_mb);
2109			for (m = sb->sb_mb;
2110			     m != NULL && m->m_len <= len;
2111			     m = m->m_next) {
2112				len -= m->m_len;
2113				uio->uio_resid -= m->m_len;
2114				sbfree(sb, m);
2115				n = m;
2116			}
2117			n->m_next = NULL;
2118			sb->sb_mb = m;
2119			sb->sb_lastrecord = sb->sb_mb;
2120			if (sb->sb_mb == NULL)
2121				SB_EMPTY_FIXUP(sb);
2122		}
2123		/* Copy the remainder. */
2124		if (len > 0) {
2125			KASSERT(sb->sb_mb != NULL,
2126			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2127
2128			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2129			if (m == NULL)
2130				len = 0;	/* Don't flush data from sockbuf. */
2131			else
2132				uio->uio_resid -= len;
2133			if (*mp0 != NULL)
2134				m_cat(*mp0, m);
2135			else
2136				*mp0 = m;
2137			if (*mp0 == NULL) {
2138				error = ENOBUFS;
2139				goto out;
2140			}
2141		}
2142	} else {
2143		/* NB: Must unlock socket buffer as uiomove may sleep. */
2144		SOCKBUF_UNLOCK(sb);
2145		error = m_mbuftouio(uio, sb->sb_mb, len);
2146		SOCKBUF_LOCK(sb);
2147		if (error)
2148			goto out;
2149	}
2150	SBLASTRECORDCHK(sb);
2151	SBLASTMBUFCHK(sb);
2152
2153	/*
2154	 * Remove the delivered data from the socket buffer unless we
2155	 * were only peeking.
2156	 */
2157	if (!(flags & MSG_PEEK)) {
2158		if (len > 0)
2159			sbdrop_locked(sb, len);
2160
2161		/* Notify protocol that we drained some data. */
2162		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2163		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2164		     !(flags & MSG_SOCALLBCK))) {
2165			SOCKBUF_UNLOCK(sb);
2166			VNET_SO_ASSERT(so);
2167			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2168			SOCKBUF_LOCK(sb);
2169		}
2170	}
2171
2172	/*
2173	 * For MSG_WAITALL we may have to loop again and wait for
2174	 * more data to come in.
2175	 */
2176	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2177		goto restart;
2178out:
2179	SOCKBUF_LOCK_ASSERT(sb);
2180	SBLASTRECORDCHK(sb);
2181	SBLASTMBUFCHK(sb);
2182	SOCKBUF_UNLOCK(sb);
2183	sbunlock(sb);
2184	return (error);
2185}
2186
2187/*
2188 * Optimized version of soreceive() for simple datagram cases from userspace.
2189 * Unlike in the stream case, we're able to drop a datagram if copyout()
2190 * fails, and because we handle datagrams atomically, we don't need to use a
2191 * sleep lock to prevent I/O interlacing.
2192 */
2193int
2194soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2195    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2196{
2197	struct mbuf *m, *m2;
2198	int flags, error;
2199	ssize_t len;
2200	struct protosw *pr = so->so_proto;
2201	struct mbuf *nextrecord;
2202
2203	if (psa != NULL)
2204		*psa = NULL;
2205	if (controlp != NULL)
2206		*controlp = NULL;
2207	if (flagsp != NULL)
2208		flags = *flagsp &~ MSG_EOR;
2209	else
2210		flags = 0;
2211
2212	/*
2213	 * For any complicated cases, fall back to the full
2214	 * soreceive_generic().
2215	 */
2216	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2217		return (soreceive_generic(so, psa, uio, mp0, controlp,
2218		    flagsp));
2219
2220	/*
2221	 * Enforce restrictions on use.
2222	 */
2223	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2224	    ("soreceive_dgram: wantrcvd"));
2225	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2226	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2227	    ("soreceive_dgram: SBS_RCVATMARK"));
2228	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2229	    ("soreceive_dgram: P_CONNREQUIRED"));
2230
2231	/*
2232	 * Loop blocking while waiting for a datagram.
2233	 */
2234	SOCKBUF_LOCK(&so->so_rcv);
2235	while ((m = so->so_rcv.sb_mb) == NULL) {
2236		KASSERT(so->so_rcv.sb_cc == 0,
2237		    ("soreceive_dgram: sb_mb NULL but sb_cc %u",
2238		    so->so_rcv.sb_cc));
2239		if (so->so_error) {
2240			error = so->so_error;
2241			so->so_error = 0;
2242			SOCKBUF_UNLOCK(&so->so_rcv);
2243			return (error);
2244		}
2245		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2246		    uio->uio_resid == 0) {
2247			SOCKBUF_UNLOCK(&so->so_rcv);
2248			return (0);
2249		}
2250		if ((so->so_state & SS_NBIO) ||
2251		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2252			SOCKBUF_UNLOCK(&so->so_rcv);
2253			return (EWOULDBLOCK);
2254		}
2255		SBLASTRECORDCHK(&so->so_rcv);
2256		SBLASTMBUFCHK(&so->so_rcv);
2257		error = sbwait(&so->so_rcv);
2258		if (error) {
2259			SOCKBUF_UNLOCK(&so->so_rcv);
2260			return (error);
2261		}
2262	}
2263	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2264
2265	if (uio->uio_td)
2266		uio->uio_td->td_ru.ru_msgrcv++;
2267	SBLASTRECORDCHK(&so->so_rcv);
2268	SBLASTMBUFCHK(&so->so_rcv);
2269	nextrecord = m->m_nextpkt;
2270	if (nextrecord == NULL) {
2271		KASSERT(so->so_rcv.sb_lastrecord == m,
2272		    ("soreceive_dgram: lastrecord != m"));
2273	}
2274
2275	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2276	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2277
2278	/*
2279	 * Pull 'm' and its chain off the front of the packet queue.
2280	 */
2281	so->so_rcv.sb_mb = NULL;
2282	sockbuf_pushsync(&so->so_rcv, nextrecord);
2283
2284	/*
2285	 * Walk 'm's chain and free that many bytes from the socket buffer.
2286	 */
2287	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2288		sbfree(&so->so_rcv, m2);
2289
2290	/*
2291	 * Do a few last checks before we let go of the lock.
2292	 */
2293	SBLASTRECORDCHK(&so->so_rcv);
2294	SBLASTMBUFCHK(&so->so_rcv);
2295	SOCKBUF_UNLOCK(&so->so_rcv);
2296
2297	if (pr->pr_flags & PR_ADDR) {
2298		KASSERT(m->m_type == MT_SONAME,
2299		    ("m->m_type == %d", m->m_type));
2300		if (psa != NULL)
2301			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2302			    M_NOWAIT);
2303		m = m_free(m);
2304	}
2305	if (m == NULL) {
2306		/* XXXRW: Can this happen? */
2307		return (0);
2308	}
2309
2310	/*
2311	 * Packet to copyout() is now in 'm' and it is disconnected from the
2312	 * queue.
2313	 *
2314	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2315	 * in the first mbuf chain on the socket buffer.  We call into the
2316	 * protocol to perform externalization (or freeing if controlp ==
2317	 * NULL).
2318	 */
2319	if (m->m_type == MT_CONTROL) {
2320		struct mbuf *cm = NULL, *cmn;
2321		struct mbuf **cme = &cm;
2322
2323		do {
2324			m2 = m->m_next;
2325			m->m_next = NULL;
2326			*cme = m;
2327			cme = &(*cme)->m_next;
2328			m = m2;
2329		} while (m != NULL && m->m_type == MT_CONTROL);
2330		while (cm != NULL) {
2331			cmn = cm->m_next;
2332			cm->m_next = NULL;
2333			if (pr->pr_domain->dom_externalize != NULL) {
2334				error = (*pr->pr_domain->dom_externalize)
2335				    (cm, controlp);
2336			} else if (controlp != NULL)
2337				*controlp = cm;
2338			else
2339				m_freem(cm);
2340			if (controlp != NULL) {
2341				while (*controlp != NULL)
2342					controlp = &(*controlp)->m_next;
2343			}
2344			cm = cmn;
2345		}
2346	}
2347	KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
2348
2349	while (m != NULL && uio->uio_resid > 0) {
2350		len = uio->uio_resid;
2351		if (len > m->m_len)
2352			len = m->m_len;
2353		error = uiomove(mtod(m, char *), (int)len, uio);
2354		if (error) {
2355			m_freem(m);
2356			return (error);
2357		}
2358		if (len == m->m_len)
2359			m = m_free(m);
2360		else {
2361			m->m_data += len;
2362			m->m_len -= len;
2363		}
2364	}
2365	if (m != NULL)
2366		flags |= MSG_TRUNC;
2367	m_freem(m);
2368	if (flagsp != NULL)
2369		*flagsp |= flags;
2370	return (0);
2371}
2372
2373int
2374soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2375    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2376{
2377	int error;
2378
2379	CURVNET_SET(so->so_vnet);
2380	error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2381	    controlp, flagsp));
2382	CURVNET_RESTORE();
2383	return (error);
2384}
2385
2386int
2387soshutdown(struct socket *so, int how)
2388{
2389	struct protosw *pr = so->so_proto;
2390	int error;
2391
2392	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2393		return (EINVAL);
2394
2395	CURVNET_SET(so->so_vnet);
2396	if (pr->pr_usrreqs->pru_flush != NULL)
2397		(*pr->pr_usrreqs->pru_flush)(so, how);
2398	if (how != SHUT_WR)
2399		sorflush(so);
2400	if (how != SHUT_RD) {
2401		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2402		CURVNET_RESTORE();
2403		return (error);
2404	}
2405	CURVNET_RESTORE();
2406	return (0);
2407}
2408
2409void
2410sorflush(struct socket *so)
2411{
2412	struct sockbuf *sb = &so->so_rcv;
2413	struct protosw *pr = so->so_proto;
2414	struct sockbuf asb;
2415
2416	VNET_SO_ASSERT(so);
2417
2418	/*
2419	 * In order to avoid calling dom_dispose with the socket buffer mutex
2420	 * held, and in order to generally avoid holding the lock for a long
2421	 * time, we make a copy of the socket buffer and clear the original
2422	 * (except locks, state).  The new socket buffer copy won't have
2423	 * initialized locks so we can only call routines that won't use or
2424	 * assert those locks.
2425	 *
2426	 * Dislodge threads currently blocked in receive and wait to acquire
2427	 * a lock against other simultaneous readers before clearing the
2428	 * socket buffer.  Don't let our acquire be interrupted by a signal
2429	 * despite any existing socket disposition on interruptable waiting.
2430	 */
2431	socantrcvmore(so);
2432	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2433
2434	/*
2435	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2436	 * and mutex data unchanged.
2437	 */
2438	SOCKBUF_LOCK(sb);
2439	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2440	bcopy(&sb->sb_startzero, &asb.sb_startzero,
2441	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2442	bzero(&sb->sb_startzero,
2443	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2444	SOCKBUF_UNLOCK(sb);
2445	sbunlock(sb);
2446
2447	/*
2448	 * Dispose of special rights and flush the socket buffer.  Don't call
2449	 * any unsafe routines (that rely on locks being initialized) on asb.
2450	 */
2451	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2452		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
2453	sbrelease_internal(&asb, so);
2454}
2455
2456/*
2457 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2458 * additional variant to handle the case where the option value needs to be
2459 * some kind of integer, but not a specific size.  In addition to their use
2460 * here, these functions are also called by the protocol-level pr_ctloutput()
2461 * routines.
2462 */
2463int
2464sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2465{
2466	size_t	valsize;
2467
2468	/*
2469	 * If the user gives us more than we wanted, we ignore it, but if we
2470	 * don't get the minimum length the caller wants, we return EINVAL.
2471	 * On success, sopt->sopt_valsize is set to however much we actually
2472	 * retrieved.
2473	 */
2474	if ((valsize = sopt->sopt_valsize) < minlen)
2475		return EINVAL;
2476	if (valsize > len)
2477		sopt->sopt_valsize = valsize = len;
2478
2479	if (sopt->sopt_td != NULL)
2480		return (copyin(sopt->sopt_val, buf, valsize));
2481
2482	bcopy(sopt->sopt_val, buf, valsize);
2483	return (0);
2484}
2485
2486/*
2487 * Kernel version of setsockopt(2).
2488 *
2489 * XXX: optlen is size_t, not socklen_t
2490 */
2491int
2492so_setsockopt(struct socket *so, int level, int optname, void *optval,
2493    size_t optlen)
2494{
2495	struct sockopt sopt;
2496
2497	sopt.sopt_level = level;
2498	sopt.sopt_name = optname;
2499	sopt.sopt_dir = SOPT_SET;
2500	sopt.sopt_val = optval;
2501	sopt.sopt_valsize = optlen;
2502	sopt.sopt_td = NULL;
2503	return (sosetopt(so, &sopt));
2504}
2505
2506int
2507sosetopt(struct socket *so, struct sockopt *sopt)
2508{
2509	int	error, optval;
2510	struct	linger l;
2511	struct	timeval tv;
2512	u_long  val;
2513	uint32_t val32;
2514#ifdef MAC
2515	struct mac extmac;
2516#endif
2517
2518	CURVNET_SET(so->so_vnet);
2519	error = 0;
2520	if (sopt->sopt_level != SOL_SOCKET) {
2521		if (so->so_proto->pr_ctloutput != NULL) {
2522			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2523			CURVNET_RESTORE();
2524			return (error);
2525		}
2526		error = ENOPROTOOPT;
2527	} else {
2528		switch (sopt->sopt_name) {
2529#ifdef INET
2530		case SO_ACCEPTFILTER:
2531			error = do_setopt_accept_filter(so, sopt);
2532			if (error)
2533				goto bad;
2534			break;
2535#endif
2536		case SO_LINGER:
2537			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2538			if (error)
2539				goto bad;
2540
2541			SOCK_LOCK(so);
2542			so->so_linger = l.l_linger;
2543			if (l.l_onoff)
2544				so->so_options |= SO_LINGER;
2545			else
2546				so->so_options &= ~SO_LINGER;
2547			SOCK_UNLOCK(so);
2548			break;
2549
2550		case SO_DEBUG:
2551		case SO_KEEPALIVE:
2552		case SO_DONTROUTE:
2553		case SO_USELOOPBACK:
2554		case SO_BROADCAST:
2555		case SO_REUSEADDR:
2556		case SO_REUSEPORT:
2557		case SO_OOBINLINE:
2558		case SO_TIMESTAMP:
2559		case SO_BINTIME:
2560		case SO_NOSIGPIPE:
2561		case SO_NO_DDP:
2562		case SO_NO_OFFLOAD:
2563			error = sooptcopyin(sopt, &optval, sizeof optval,
2564			    sizeof optval);
2565			if (error)
2566				goto bad;
2567			SOCK_LOCK(so);
2568			if (optval)
2569				so->so_options |= sopt->sopt_name;
2570			else
2571				so->so_options &= ~sopt->sopt_name;
2572			SOCK_UNLOCK(so);
2573			break;
2574
2575		case SO_SETFIB:
2576			error = sooptcopyin(sopt, &optval, sizeof optval,
2577			    sizeof optval);
2578			if (error)
2579				goto bad;
2580
2581			if (optval < 0 || optval >= rt_numfibs) {
2582				error = EINVAL;
2583				goto bad;
2584			}
2585			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
2586			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
2587			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
2588				so->so_fibnum = optval;
2589			else
2590				so->so_fibnum = 0;
2591			break;
2592
2593		case SO_USER_COOKIE:
2594			error = sooptcopyin(sopt, &val32, sizeof val32,
2595			    sizeof val32);
2596			if (error)
2597				goto bad;
2598			so->so_user_cookie = val32;
2599			break;
2600
2601		case SO_SNDBUF:
2602		case SO_RCVBUF:
2603		case SO_SNDLOWAT:
2604		case SO_RCVLOWAT:
2605			error = sooptcopyin(sopt, &optval, sizeof optval,
2606			    sizeof optval);
2607			if (error)
2608				goto bad;
2609
2610			/*
2611			 * Values < 1 make no sense for any of these options,
2612			 * so disallow them.
2613			 */
2614			if (optval < 1) {
2615				error = EINVAL;
2616				goto bad;
2617			}
2618
2619			switch (sopt->sopt_name) {
2620			case SO_SNDBUF:
2621			case SO_RCVBUF:
2622				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2623				    &so->so_snd : &so->so_rcv, (u_long)optval,
2624				    so, curthread) == 0) {
2625					error = ENOBUFS;
2626					goto bad;
2627				}
2628				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2629				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2630				break;
2631
2632			/*
2633			 * Make sure the low-water is never greater than the
2634			 * high-water.
2635			 */
2636			case SO_SNDLOWAT:
2637				SOCKBUF_LOCK(&so->so_snd);
2638				so->so_snd.sb_lowat =
2639				    (optval > so->so_snd.sb_hiwat) ?
2640				    so->so_snd.sb_hiwat : optval;
2641				SOCKBUF_UNLOCK(&so->so_snd);
2642				break;
2643			case SO_RCVLOWAT:
2644				SOCKBUF_LOCK(&so->so_rcv);
2645				so->so_rcv.sb_lowat =
2646				    (optval > so->so_rcv.sb_hiwat) ?
2647				    so->so_rcv.sb_hiwat : optval;
2648				SOCKBUF_UNLOCK(&so->so_rcv);
2649				break;
2650			}
2651			break;
2652
2653		case SO_SNDTIMEO:
2654		case SO_RCVTIMEO:
2655#ifdef COMPAT_FREEBSD32
2656			if (SV_CURPROC_FLAG(SV_ILP32)) {
2657				struct timeval32 tv32;
2658
2659				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2660				    sizeof tv32);
2661				CP(tv32, tv, tv_sec);
2662				CP(tv32, tv, tv_usec);
2663			} else
2664#endif
2665				error = sooptcopyin(sopt, &tv, sizeof tv,
2666				    sizeof tv);
2667			if (error)
2668				goto bad;
2669
2670			/* assert(hz > 0); */
2671			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2672			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2673				error = EDOM;
2674				goto bad;
2675			}
2676			/* assert(tick > 0); */
2677			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2678			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2679			if (val > INT_MAX) {
2680				error = EDOM;
2681				goto bad;
2682			}
2683			if (val == 0 && tv.tv_usec != 0)
2684				val = 1;
2685
2686			switch (sopt->sopt_name) {
2687			case SO_SNDTIMEO:
2688				so->so_snd.sb_timeo = val;
2689				break;
2690			case SO_RCVTIMEO:
2691				so->so_rcv.sb_timeo = val;
2692				break;
2693			}
2694			break;
2695
2696		case SO_LABEL:
2697#ifdef MAC
2698			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2699			    sizeof extmac);
2700			if (error)
2701				goto bad;
2702			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2703			    so, &extmac);
2704#else
2705			error = EOPNOTSUPP;
2706#endif
2707			break;
2708
2709		default:
2710			error = ENOPROTOOPT;
2711			break;
2712		}
2713		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
2714			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
2715	}
2716bad:
2717	CURVNET_RESTORE();
2718	return (error);
2719}
2720
2721/*
2722 * Helper routine for getsockopt.
2723 */
2724int
2725sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2726{
2727	int	error;
2728	size_t	valsize;
2729
2730	error = 0;
2731
2732	/*
2733	 * Documented get behavior is that we always return a value, possibly
2734	 * truncated to fit in the user's buffer.  Traditional behavior is
2735	 * that we always tell the user precisely how much we copied, rather
2736	 * than something useful like the total amount we had available for
2737	 * her.  Note that this interface is not idempotent; the entire
2738	 * answer must generated ahead of time.
2739	 */
2740	valsize = min(len, sopt->sopt_valsize);
2741	sopt->sopt_valsize = valsize;
2742	if (sopt->sopt_val != NULL) {
2743		if (sopt->sopt_td != NULL)
2744			error = copyout(buf, sopt->sopt_val, valsize);
2745		else
2746			bcopy(buf, sopt->sopt_val, valsize);
2747	}
2748	return (error);
2749}
2750
2751int
2752sogetopt(struct socket *so, struct sockopt *sopt)
2753{
2754	int	error, optval;
2755	struct	linger l;
2756	struct	timeval tv;
2757#ifdef MAC
2758	struct mac extmac;
2759#endif
2760
2761	CURVNET_SET(so->so_vnet);
2762	error = 0;
2763	if (sopt->sopt_level != SOL_SOCKET) {
2764		if (so->so_proto->pr_ctloutput != NULL)
2765			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2766		else
2767			error = ENOPROTOOPT;
2768		CURVNET_RESTORE();
2769		return (error);
2770	} else {
2771		switch (sopt->sopt_name) {
2772#ifdef INET
2773		case SO_ACCEPTFILTER:
2774			error = do_getopt_accept_filter(so, sopt);
2775			break;
2776#endif
2777		case SO_LINGER:
2778			SOCK_LOCK(so);
2779			l.l_onoff = so->so_options & SO_LINGER;
2780			l.l_linger = so->so_linger;
2781			SOCK_UNLOCK(so);
2782			error = sooptcopyout(sopt, &l, sizeof l);
2783			break;
2784
2785		case SO_USELOOPBACK:
2786		case SO_DONTROUTE:
2787		case SO_DEBUG:
2788		case SO_KEEPALIVE:
2789		case SO_REUSEADDR:
2790		case SO_REUSEPORT:
2791		case SO_BROADCAST:
2792		case SO_OOBINLINE:
2793		case SO_ACCEPTCONN:
2794		case SO_TIMESTAMP:
2795		case SO_BINTIME:
2796		case SO_NOSIGPIPE:
2797			optval = so->so_options & sopt->sopt_name;
2798integer:
2799			error = sooptcopyout(sopt, &optval, sizeof optval);
2800			break;
2801
2802		case SO_TYPE:
2803			optval = so->so_type;
2804			goto integer;
2805
2806		case SO_PROTOCOL:
2807			optval = so->so_proto->pr_protocol;
2808			goto integer;
2809
2810		case SO_ERROR:
2811			SOCK_LOCK(so);
2812			optval = so->so_error;
2813			so->so_error = 0;
2814			SOCK_UNLOCK(so);
2815			goto integer;
2816
2817		case SO_SNDBUF:
2818			optval = so->so_snd.sb_hiwat;
2819			goto integer;
2820
2821		case SO_RCVBUF:
2822			optval = so->so_rcv.sb_hiwat;
2823			goto integer;
2824
2825		case SO_SNDLOWAT:
2826			optval = so->so_snd.sb_lowat;
2827			goto integer;
2828
2829		case SO_RCVLOWAT:
2830			optval = so->so_rcv.sb_lowat;
2831			goto integer;
2832
2833		case SO_SNDTIMEO:
2834		case SO_RCVTIMEO:
2835			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2836				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2837
2838			tv.tv_sec = optval / hz;
2839			tv.tv_usec = (optval % hz) * tick;
2840#ifdef COMPAT_FREEBSD32
2841			if (SV_CURPROC_FLAG(SV_ILP32)) {
2842				struct timeval32 tv32;
2843
2844				CP(tv, tv32, tv_sec);
2845				CP(tv, tv32, tv_usec);
2846				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2847			} else
2848#endif
2849				error = sooptcopyout(sopt, &tv, sizeof tv);
2850			break;
2851
2852		case SO_LABEL:
2853#ifdef MAC
2854			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2855			    sizeof(extmac));
2856			if (error)
2857				goto bad;
2858			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2859			    so, &extmac);
2860			if (error)
2861				goto bad;
2862			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2863#else
2864			error = EOPNOTSUPP;
2865#endif
2866			break;
2867
2868		case SO_PEERLABEL:
2869#ifdef MAC
2870			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2871			    sizeof(extmac));
2872			if (error)
2873				goto bad;
2874			error = mac_getsockopt_peerlabel(
2875			    sopt->sopt_td->td_ucred, so, &extmac);
2876			if (error)
2877				goto bad;
2878			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2879#else
2880			error = EOPNOTSUPP;
2881#endif
2882			break;
2883
2884		case SO_LISTENQLIMIT:
2885			optval = so->so_qlimit;
2886			goto integer;
2887
2888		case SO_LISTENQLEN:
2889			optval = so->so_qlen;
2890			goto integer;
2891
2892		case SO_LISTENINCQLEN:
2893			optval = so->so_incqlen;
2894			goto integer;
2895
2896		default:
2897			error = ENOPROTOOPT;
2898			break;
2899		}
2900	}
2901#ifdef MAC
2902bad:
2903#endif
2904	CURVNET_RESTORE();
2905	return (error);
2906}
2907
2908int
2909soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2910{
2911	struct mbuf *m, *m_prev;
2912	int sopt_size = sopt->sopt_valsize;
2913
2914	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2915	if (m == NULL)
2916		return ENOBUFS;
2917	if (sopt_size > MLEN) {
2918		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
2919		if ((m->m_flags & M_EXT) == 0) {
2920			m_free(m);
2921			return ENOBUFS;
2922		}
2923		m->m_len = min(MCLBYTES, sopt_size);
2924	} else {
2925		m->m_len = min(MLEN, sopt_size);
2926	}
2927	sopt_size -= m->m_len;
2928	*mp = m;
2929	m_prev = m;
2930
2931	while (sopt_size) {
2932		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2933		if (m == NULL) {
2934			m_freem(*mp);
2935			return ENOBUFS;
2936		}
2937		if (sopt_size > MLEN) {
2938			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
2939			    M_NOWAIT);
2940			if ((m->m_flags & M_EXT) == 0) {
2941				m_freem(m);
2942				m_freem(*mp);
2943				return ENOBUFS;
2944			}
2945			m->m_len = min(MCLBYTES, sopt_size);
2946		} else {
2947			m->m_len = min(MLEN, sopt_size);
2948		}
2949		sopt_size -= m->m_len;
2950		m_prev->m_next = m;
2951		m_prev = m;
2952	}
2953	return (0);
2954}
2955
2956int
2957soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2958{
2959	struct mbuf *m0 = m;
2960
2961	if (sopt->sopt_val == NULL)
2962		return (0);
2963	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2964		if (sopt->sopt_td != NULL) {
2965			int error;
2966
2967			error = copyin(sopt->sopt_val, mtod(m, char *),
2968			    m->m_len);
2969			if (error != 0) {
2970				m_freem(m0);
2971				return(error);
2972			}
2973		} else
2974			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2975		sopt->sopt_valsize -= m->m_len;
2976		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2977		m = m->m_next;
2978	}
2979	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2980		panic("ip6_sooptmcopyin");
2981	return (0);
2982}
2983
2984int
2985soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2986{
2987	struct mbuf *m0 = m;
2988	size_t valsize = 0;
2989
2990	if (sopt->sopt_val == NULL)
2991		return (0);
2992	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2993		if (sopt->sopt_td != NULL) {
2994			int error;
2995
2996			error = copyout(mtod(m, char *), sopt->sopt_val,
2997			    m->m_len);
2998			if (error != 0) {
2999				m_freem(m0);
3000				return(error);
3001			}
3002		} else
3003			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3004		sopt->sopt_valsize -= m->m_len;
3005		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3006		valsize += m->m_len;
3007		m = m->m_next;
3008	}
3009	if (m != NULL) {
3010		/* enough soopt buffer should be given from user-land */
3011		m_freem(m0);
3012		return(EINVAL);
3013	}
3014	sopt->sopt_valsize = valsize;
3015	return (0);
3016}
3017
3018/*
3019 * sohasoutofband(): protocol notifies socket layer of the arrival of new
3020 * out-of-band data, which will then notify socket consumers.
3021 */
3022void
3023sohasoutofband(struct socket *so)
3024{
3025
3026	if (so->so_sigio != NULL)
3027		pgsigio(&so->so_sigio, SIGURG, 0);
3028	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
3029}
3030
3031int
3032sopoll(struct socket *so, int events, struct ucred *active_cred,
3033    struct thread *td)
3034{
3035
3036	/*
3037	 * We do not need to set or assert curvnet as long as everyone uses
3038	 * sopoll_generic().
3039	 */
3040	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3041	    td));
3042}
3043
3044int
3045sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3046    struct thread *td)
3047{
3048	int revents = 0;
3049
3050	SOCKBUF_LOCK(&so->so_snd);
3051	SOCKBUF_LOCK(&so->so_rcv);
3052	if (events & (POLLIN | POLLRDNORM))
3053		if (soreadabledata(so))
3054			revents |= events & (POLLIN | POLLRDNORM);
3055
3056	if (events & (POLLOUT | POLLWRNORM))
3057		if (sowriteable(so))
3058			revents |= events & (POLLOUT | POLLWRNORM);
3059
3060	if (events & (POLLPRI | POLLRDBAND))
3061		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
3062			revents |= events & (POLLPRI | POLLRDBAND);
3063
3064	if ((events & POLLINIGNEOF) == 0) {
3065		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3066			revents |= events & (POLLIN | POLLRDNORM);
3067			if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3068				revents |= POLLHUP;
3069		}
3070	}
3071
3072	if (revents == 0) {
3073		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3074			selrecord(td, &so->so_rcv.sb_sel);
3075			so->so_rcv.sb_flags |= SB_SEL;
3076		}
3077
3078		if (events & (POLLOUT | POLLWRNORM)) {
3079			selrecord(td, &so->so_snd.sb_sel);
3080			so->so_snd.sb_flags |= SB_SEL;
3081		}
3082	}
3083
3084	SOCKBUF_UNLOCK(&so->so_rcv);
3085	SOCKBUF_UNLOCK(&so->so_snd);
3086	return (revents);
3087}
3088
3089int
3090soo_kqfilter(struct file *fp, struct knote *kn)
3091{
3092	struct socket *so = kn->kn_fp->f_data;
3093	struct sockbuf *sb;
3094
3095	switch (kn->kn_filter) {
3096	case EVFILT_READ:
3097		if (so->so_options & SO_ACCEPTCONN)
3098			kn->kn_fop = &solisten_filtops;
3099		else
3100			kn->kn_fop = &soread_filtops;
3101		sb = &so->so_rcv;
3102		break;
3103	case EVFILT_WRITE:
3104		kn->kn_fop = &sowrite_filtops;
3105		sb = &so->so_snd;
3106		break;
3107	default:
3108		return (EINVAL);
3109	}
3110
3111	SOCKBUF_LOCK(sb);
3112	knlist_add(&sb->sb_sel.si_note, kn, 1);
3113	sb->sb_flags |= SB_KNOTE;
3114	SOCKBUF_UNLOCK(sb);
3115	return (0);
3116}
3117
3118/*
3119 * Some routines that return EOPNOTSUPP for entry points that are not
3120 * supported by a protocol.  Fill in as needed.
3121 */
3122int
3123pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3124{
3125
3126	return EOPNOTSUPP;
3127}
3128
3129int
3130pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3131{
3132
3133	return EOPNOTSUPP;
3134}
3135
3136int
3137pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3138{
3139
3140	return EOPNOTSUPP;
3141}
3142
3143int
3144pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3145{
3146
3147	return EOPNOTSUPP;
3148}
3149
3150int
3151pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3152{
3153
3154	return EOPNOTSUPP;
3155}
3156
3157int
3158pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3159    struct ifnet *ifp, struct thread *td)
3160{
3161
3162	return EOPNOTSUPP;
3163}
3164
3165int
3166pru_disconnect_notsupp(struct socket *so)
3167{
3168
3169	return EOPNOTSUPP;
3170}
3171
3172int
3173pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3174{
3175
3176	return EOPNOTSUPP;
3177}
3178
3179int
3180pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3181{
3182
3183	return EOPNOTSUPP;
3184}
3185
3186int
3187pru_rcvd_notsupp(struct socket *so, int flags)
3188{
3189
3190	return EOPNOTSUPP;
3191}
3192
3193int
3194pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3195{
3196
3197	return EOPNOTSUPP;
3198}
3199
3200int
3201pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3202    struct sockaddr *addr, struct mbuf *control, struct thread *td)
3203{
3204
3205	return EOPNOTSUPP;
3206}
3207
3208/*
3209 * This isn't really a ``null'' operation, but it's the default one and
3210 * doesn't do anything destructive.
3211 */
3212int
3213pru_sense_null(struct socket *so, struct stat *sb)
3214{
3215
3216	sb->st_blksize = so->so_snd.sb_hiwat;
3217	return 0;
3218}
3219
3220int
3221pru_shutdown_notsupp(struct socket *so)
3222{
3223
3224	return EOPNOTSUPP;
3225}
3226
3227int
3228pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3229{
3230
3231	return EOPNOTSUPP;
3232}
3233
3234int
3235pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3236    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3237{
3238
3239	return EOPNOTSUPP;
3240}
3241
3242int
3243pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3244    struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3245{
3246
3247	return EOPNOTSUPP;
3248}
3249
3250int
3251pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3252    struct thread *td)
3253{
3254
3255	return EOPNOTSUPP;
3256}
3257
3258static void
3259filt_sordetach(struct knote *kn)
3260{
3261	struct socket *so = kn->kn_fp->f_data;
3262
3263	SOCKBUF_LOCK(&so->so_rcv);
3264	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
3265	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
3266		so->so_rcv.sb_flags &= ~SB_KNOTE;
3267	SOCKBUF_UNLOCK(&so->so_rcv);
3268}
3269
3270/*ARGSUSED*/
3271static int
3272filt_soread(struct knote *kn, long hint)
3273{
3274	struct socket *so;
3275
3276	so = kn->kn_fp->f_data;
3277	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3278
3279	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
3280	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3281		kn->kn_flags |= EV_EOF;
3282		kn->kn_fflags = so->so_error;
3283		return (1);
3284	} else if (so->so_error)	/* temporary udp error */
3285		return (1);
3286	else if (kn->kn_sfflags & NOTE_LOWAT)
3287		return (kn->kn_data >= kn->kn_sdata);
3288	else
3289		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
3290}
3291
3292static void
3293filt_sowdetach(struct knote *kn)
3294{
3295	struct socket *so = kn->kn_fp->f_data;
3296
3297	SOCKBUF_LOCK(&so->so_snd);
3298	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
3299	if (knlist_empty(&so->so_snd.sb_sel.si_note))
3300		so->so_snd.sb_flags &= ~SB_KNOTE;
3301	SOCKBUF_UNLOCK(&so->so_snd);
3302}
3303
3304/*ARGSUSED*/
3305static int
3306filt_sowrite(struct knote *kn, long hint)
3307{
3308	struct socket *so;
3309
3310	so = kn->kn_fp->f_data;
3311	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3312	kn->kn_data = sbspace(&so->so_snd);
3313	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3314		kn->kn_flags |= EV_EOF;
3315		kn->kn_fflags = so->so_error;
3316		return (1);
3317	} else if (so->so_error)	/* temporary udp error */
3318		return (1);
3319	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3320	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3321		return (0);
3322	else if (kn->kn_sfflags & NOTE_LOWAT)
3323		return (kn->kn_data >= kn->kn_sdata);
3324	else
3325		return (kn->kn_data >= so->so_snd.sb_lowat);
3326}
3327
3328/*ARGSUSED*/
3329static int
3330filt_solisten(struct knote *kn, long hint)
3331{
3332	struct socket *so = kn->kn_fp->f_data;
3333
3334	kn->kn_data = so->so_qlen;
3335	return (!TAILQ_EMPTY(&so->so_comp));
3336}
3337
3338int
3339socheckuid(struct socket *so, uid_t uid)
3340{
3341
3342	if (so == NULL)
3343		return (EPERM);
3344	if (so->so_cred->cr_uid != uid)
3345		return (EPERM);
3346	return (0);
3347}
3348
3349/*
3350 * These functions are used by protocols to notify the socket layer (and its
3351 * consumers) of state changes in the sockets driven by protocol-side events.
3352 */
3353
3354/*
3355 * Procedures to manipulate state flags of socket and do appropriate wakeups.
3356 *
3357 * Normal sequence from the active (originating) side is that
3358 * soisconnecting() is called during processing of connect() call, resulting
3359 * in an eventual call to soisconnected() if/when the connection is
3360 * established.  When the connection is torn down soisdisconnecting() is
3361 * called during processing of disconnect() call, and soisdisconnected() is
3362 * called when the connection to the peer is totally severed.  The semantics
3363 * of these routines are such that connectionless protocols can call
3364 * soisconnected() and soisdisconnected() only, bypassing the in-progress
3365 * calls when setting up a ``connection'' takes no time.
3366 *
3367 * From the passive side, a socket is created with two queues of sockets:
3368 * so_incomp for connections in progress and so_comp for connections already
3369 * made and awaiting user acceptance.  As a protocol is preparing incoming
3370 * connections, it creates a socket structure queued on so_incomp by calling
3371 * sonewconn().  When the connection is established, soisconnected() is
3372 * called, and transfers the socket structure to so_comp, making it available
3373 * to accept().
3374 *
3375 * If a socket is closed with sockets on either so_incomp or so_comp, these
3376 * sockets are dropped.
3377 *
3378 * If higher-level protocols are implemented in the kernel, the wakeups done
3379 * here will sometimes cause software-interrupt process scheduling.
3380 */
3381void
3382soisconnecting(struct socket *so)
3383{
3384
3385	SOCK_LOCK(so);
3386	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3387	so->so_state |= SS_ISCONNECTING;
3388	SOCK_UNLOCK(so);
3389}
3390
3391void
3392soisconnected(struct socket *so)
3393{
3394	struct socket *head;
3395	int ret;
3396
3397restart:
3398	ACCEPT_LOCK();
3399	SOCK_LOCK(so);
3400	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3401	so->so_state |= SS_ISCONNECTED;
3402	head = so->so_head;
3403	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3404		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3405			SOCK_UNLOCK(so);
3406			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3407			head->so_incqlen--;
3408			so->so_qstate &= ~SQ_INCOMP;
3409			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3410			head->so_qlen++;
3411			so->so_qstate |= SQ_COMP;
3412			ACCEPT_UNLOCK();
3413			sorwakeup(head);
3414			wakeup_one(&head->so_timeo);
3415		} else {
3416			ACCEPT_UNLOCK();
3417			soupcall_set(so, SO_RCV,
3418			    head->so_accf->so_accept_filter->accf_callback,
3419			    head->so_accf->so_accept_filter_arg);
3420			so->so_options &= ~SO_ACCEPTFILTER;
3421			ret = head->so_accf->so_accept_filter->accf_callback(so,
3422			    head->so_accf->so_accept_filter_arg, M_NOWAIT);
3423			if (ret == SU_ISCONNECTED)
3424				soupcall_clear(so, SO_RCV);
3425			SOCK_UNLOCK(so);
3426			if (ret == SU_ISCONNECTED)
3427				goto restart;
3428		}
3429		return;
3430	}
3431	SOCK_UNLOCK(so);
3432	ACCEPT_UNLOCK();
3433	wakeup(&so->so_timeo);
3434	sorwakeup(so);
3435	sowwakeup(so);
3436}
3437
3438void
3439soisdisconnecting(struct socket *so)
3440{
3441
3442	/*
3443	 * Note: This code assumes that SOCK_LOCK(so) and
3444	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3445	 */
3446	SOCKBUF_LOCK(&so->so_rcv);
3447	so->so_state &= ~SS_ISCONNECTING;
3448	so->so_state |= SS_ISDISCONNECTING;
3449	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3450	sorwakeup_locked(so);
3451	SOCKBUF_LOCK(&so->so_snd);
3452	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3453	sowwakeup_locked(so);
3454	wakeup(&so->so_timeo);
3455}
3456
3457void
3458soisdisconnected(struct socket *so)
3459{
3460
3461	/*
3462	 * Note: This code assumes that SOCK_LOCK(so) and
3463	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3464	 */
3465	SOCKBUF_LOCK(&so->so_rcv);
3466	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3467	so->so_state |= SS_ISDISCONNECTED;
3468	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3469	sorwakeup_locked(so);
3470	SOCKBUF_LOCK(&so->so_snd);
3471	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3472	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3473	sowwakeup_locked(so);
3474	wakeup(&so->so_timeo);
3475}
3476
3477/*
3478 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3479 */
3480struct sockaddr *
3481sodupsockaddr(const struct sockaddr *sa, int mflags)
3482{
3483	struct sockaddr *sa2;
3484
3485	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3486	if (sa2)
3487		bcopy(sa, sa2, sa->sa_len);
3488	return sa2;
3489}
3490
3491/*
3492 * Register per-socket buffer upcalls.
3493 */
3494void
3495soupcall_set(struct socket *so, int which,
3496    int (*func)(struct socket *, void *, int), void *arg)
3497{
3498	struct sockbuf *sb;
3499
3500	switch (which) {
3501	case SO_RCV:
3502		sb = &so->so_rcv;
3503		break;
3504	case SO_SND:
3505		sb = &so->so_snd;
3506		break;
3507	default:
3508		panic("soupcall_set: bad which");
3509	}
3510	SOCKBUF_LOCK_ASSERT(sb);
3511#if 0
3512	/* XXX: accf_http actually wants to do this on purpose. */
3513	KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall"));
3514#endif
3515	sb->sb_upcall = func;
3516	sb->sb_upcallarg = arg;
3517	sb->sb_flags |= SB_UPCALL;
3518}
3519
3520void
3521soupcall_clear(struct socket *so, int which)
3522{
3523	struct sockbuf *sb;
3524
3525	switch (which) {
3526	case SO_RCV:
3527		sb = &so->so_rcv;
3528		break;
3529	case SO_SND:
3530		sb = &so->so_snd;
3531		break;
3532	default:
3533		panic("soupcall_clear: bad which");
3534	}
3535	SOCKBUF_LOCK_ASSERT(sb);
3536	KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear"));
3537	sb->sb_upcall = NULL;
3538	sb->sb_upcallarg = NULL;
3539	sb->sb_flags &= ~SB_UPCALL;
3540}
3541
3542/*
3543 * Create an external-format (``xsocket'') structure using the information in
3544 * the kernel-format socket structure pointed to by so.  This is done to
3545 * reduce the spew of irrelevant information over this interface, to isolate
3546 * user code from changes in the kernel structure, and potentially to provide
3547 * information-hiding if we decide that some of this information should be
3548 * hidden from users.
3549 */
3550void
3551sotoxsocket(struct socket *so, struct xsocket *xso)
3552{
3553
3554	xso->xso_len = sizeof *xso;
3555	xso->xso_so = so;
3556	xso->so_type = so->so_type;
3557	xso->so_options = so->so_options;
3558	xso->so_linger = so->so_linger;
3559	xso->so_state = so->so_state;
3560	xso->so_pcb = so->so_pcb;
3561	xso->xso_protocol = so->so_proto->pr_protocol;
3562	xso->xso_family = so->so_proto->pr_domain->dom_family;
3563	xso->so_qlen = so->so_qlen;
3564	xso->so_incqlen = so->so_incqlen;
3565	xso->so_qlimit = so->so_qlimit;
3566	xso->so_timeo = so->so_timeo;
3567	xso->so_error = so->so_error;
3568	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3569	xso->so_oobmark = so->so_oobmark;
3570	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3571	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3572	xso->so_uid = so->so_cred->cr_uid;
3573}
3574
3575
3576/*
3577 * Socket accessor functions to provide external consumers with
3578 * a safe interface to socket state
3579 *
3580 */
3581
3582void
3583so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *),
3584    void *arg)
3585{
3586
3587	TAILQ_FOREACH(so, &so->so_comp, so_list)
3588		func(so, arg);
3589}
3590
3591struct sockbuf *
3592so_sockbuf_rcv(struct socket *so)
3593{
3594
3595	return (&so->so_rcv);
3596}
3597
3598struct sockbuf *
3599so_sockbuf_snd(struct socket *so)
3600{
3601
3602	return (&so->so_snd);
3603}
3604
3605int
3606so_state_get(const struct socket *so)
3607{
3608
3609	return (so->so_state);
3610}
3611
3612void
3613so_state_set(struct socket *so, int val)
3614{
3615
3616	so->so_state = val;
3617}
3618
3619int
3620so_options_get(const struct socket *so)
3621{
3622
3623	return (so->so_options);
3624}
3625
3626void
3627so_options_set(struct socket *so, int val)
3628{
3629
3630	so->so_options = val;
3631}
3632
3633int
3634so_error_get(const struct socket *so)
3635{
3636
3637	return (so->so_error);
3638}
3639
3640void
3641so_error_set(struct socket *so, int val)
3642{
3643
3644	so->so_error = val;
3645}
3646
3647int
3648so_linger_get(const struct socket *so)
3649{
3650
3651	return (so->so_linger);
3652}
3653
3654void
3655so_linger_set(struct socket *so, int val)
3656{
3657
3658	so->so_linger = val;
3659}
3660
3661struct protosw *
3662so_protosw_get(const struct socket *so)
3663{
3664
3665	return (so->so_proto);
3666}
3667
3668void
3669so_protosw_set(struct socket *so, struct protosw *val)
3670{
3671
3672	so->so_proto = val;
3673}
3674
3675void
3676so_sorwakeup(struct socket *so)
3677{
3678
3679	sorwakeup(so);
3680}
3681
3682void
3683so_sowwakeup(struct socket *so)
3684{
3685
3686	sowwakeup(so);
3687}
3688
3689void
3690so_sorwakeup_locked(struct socket *so)
3691{
3692
3693	sorwakeup_locked(so);
3694}
3695
3696void
3697so_sowwakeup_locked(struct socket *so)
3698{
3699
3700	sowwakeup_locked(so);
3701}
3702
3703void
3704so_lock(struct socket *so)
3705{
3706
3707	SOCK_LOCK(so);
3708}
3709
3710void
3711so_unlock(struct socket *so)
3712{
3713
3714	SOCK_UNLOCK(so);
3715}
3716