uipc_socket.c revision 188146
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004 The FreeBSD Foundation
5 * Copyright (c) 2004-2008 Robert N. M. Watson
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33 */
34
35/*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn().  Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn().  Socket layer private.
43 *
44 * pru_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation.  This is called
46 * from socreate() and sonewconn().  Socket layer private.
47 *
48 * pru_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pru_attach() has
50 * been successfully called.  If pru_attach() returned an error,
51 * pru_detach() will not be called.  Socket layer private.
52 *
53 * pru_abort() and pru_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection.  Historically, pru_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state.  This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state.  This is a
64 * public interface  that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected).  This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required.  Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation.  This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed.  This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment.  For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 */
96
97#include <sys/cdefs.h>
98__FBSDID("$FreeBSD: head/sys/kern/uipc_socket.c 188146 2009-02-05 14:15:18Z jamie $");
99
100#include "opt_inet.h"
101#include "opt_inet6.h"
102#include "opt_mac.h"
103#include "opt_zero.h"
104#include "opt_compat.h"
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/fcntl.h>
109#include <sys/limits.h>
110#include <sys/lock.h>
111#include <sys/mac.h>
112#include <sys/malloc.h>
113#include <sys/mbuf.h>
114#include <sys/mutex.h>
115#include <sys/domain.h>
116#include <sys/file.h>			/* for struct knote */
117#include <sys/kernel.h>
118#include <sys/event.h>
119#include <sys/eventhandler.h>
120#include <sys/poll.h>
121#include <sys/proc.h>
122#include <sys/protosw.h>
123#include <sys/socket.h>
124#include <sys/socketvar.h>
125#include <sys/resourcevar.h>
126#include <net/route.h>
127#include <sys/signalvar.h>
128#include <sys/stat.h>
129#include <sys/sx.h>
130#include <sys/sysctl.h>
131#include <sys/uio.h>
132#include <sys/jail.h>
133
134#include <security/mac/mac_framework.h>
135
136#include <vm/uma.h>
137
138#ifdef COMPAT_IA32
139#include <sys/mount.h>
140#include <sys/sysent.h>
141#include <compat/freebsd32/freebsd32.h>
142#endif
143
144static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
145		    int flags);
146
147static void	filt_sordetach(struct knote *kn);
148static int	filt_soread(struct knote *kn, long hint);
149static void	filt_sowdetach(struct knote *kn);
150static int	filt_sowrite(struct knote *kn, long hint);
151static int	filt_solisten(struct knote *kn, long hint);
152
153static struct filterops solisten_filtops =
154	{ 1, NULL, filt_sordetach, filt_solisten };
155static struct filterops soread_filtops =
156	{ 1, NULL, filt_sordetach, filt_soread };
157static struct filterops sowrite_filtops =
158	{ 1, NULL, filt_sowdetach, filt_sowrite };
159
160uma_zone_t socket_zone;
161so_gen_t	so_gencnt;	/* generation count for sockets */
162
163int	maxsockets;
164
165MALLOC_DEFINE(M_SONAME, "soname", "socket name");
166MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
167
168static int somaxconn = SOMAXCONN;
169static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
170/* XXX: we dont have SYSCTL_USHORT */
171SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
172    0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
173    "queue size");
174static int numopensockets;
175SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
176    &numopensockets, 0, "Number of open sockets");
177#ifdef ZERO_COPY_SOCKETS
178/* These aren't static because they're used in other files. */
179int so_zero_copy_send = 1;
180int so_zero_copy_receive = 1;
181SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
182    "Zero copy controls");
183SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
184    &so_zero_copy_receive, 0, "Enable zero copy receive");
185SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
186    &so_zero_copy_send, 0, "Enable zero copy send");
187#endif /* ZERO_COPY_SOCKETS */
188
189/*
190 * accept_mtx locks down per-socket fields relating to accept queues.  See
191 * socketvar.h for an annotation of the protected fields of struct socket.
192 */
193struct mtx accept_mtx;
194MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
195
196/*
197 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
198 * so_gencnt field.
199 */
200static struct mtx so_global_mtx;
201MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
202
203/*
204 * General IPC sysctl name space, used by sockets and a variety of other IPC
205 * types.
206 */
207SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
208
209/*
210 * Sysctl to get and set the maximum global sockets limit.  Notify protocols
211 * of the change so that they can update their dependent limits as required.
212 */
213static int
214sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
215{
216	int error, newmaxsockets;
217
218	newmaxsockets = maxsockets;
219	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
220	if (error == 0 && req->newptr) {
221		if (newmaxsockets > maxsockets) {
222			maxsockets = newmaxsockets;
223			if (maxsockets > ((maxfiles / 4) * 3)) {
224				maxfiles = (maxsockets * 5) / 4;
225				maxfilesperproc = (maxfiles * 9) / 10;
226			}
227			EVENTHANDLER_INVOKE(maxsockets_change);
228		} else
229			error = EINVAL;
230	}
231	return (error);
232}
233
234SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
235    &maxsockets, 0, sysctl_maxsockets, "IU",
236    "Maximum number of sockets avaliable");
237
238/*
239 * Initialise maxsockets.  This SYSINIT must be run after
240 * tunable_mbinit().
241 */
242static void
243init_maxsockets(void *ignored)
244{
245
246	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
247	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
248}
249SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
250
251/*
252 * Socket operation routines.  These routines are called by the routines in
253 * sys_socket.c or from a system process, and implement the semantics of
254 * socket operations by switching out to the protocol specific routines.
255 */
256
257/*
258 * Get a socket structure from our zone, and initialize it.  Note that it
259 * would probably be better to allocate socket and PCB at the same time, but
260 * I'm not convinced that all the protocols can be easily modified to do
261 * this.
262 *
263 * soalloc() returns a socket with a ref count of 0.
264 */
265static struct socket *
266soalloc(void)
267{
268	struct socket *so;
269
270	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
271	if (so == NULL)
272		return (NULL);
273#ifdef MAC
274	if (mac_socket_init(so, M_NOWAIT) != 0) {
275		uma_zfree(socket_zone, so);
276		return (NULL);
277	}
278#endif
279	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
280	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
281	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
282	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
283	TAILQ_INIT(&so->so_aiojobq);
284	mtx_lock(&so_global_mtx);
285	so->so_gencnt = ++so_gencnt;
286	++numopensockets;
287	mtx_unlock(&so_global_mtx);
288	return (so);
289}
290
291/*
292 * Free the storage associated with a socket at the socket layer, tear down
293 * locks, labels, etc.  All protocol state is assumed already to have been
294 * torn down (and possibly never set up) by the caller.
295 */
296static void
297sodealloc(struct socket *so)
298{
299
300	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
301	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
302
303	mtx_lock(&so_global_mtx);
304	so->so_gencnt = ++so_gencnt;
305	--numopensockets;	/* Could be below, but faster here. */
306	mtx_unlock(&so_global_mtx);
307	if (so->so_rcv.sb_hiwat)
308		(void)chgsbsize(so->so_cred->cr_uidinfo,
309		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
310	if (so->so_snd.sb_hiwat)
311		(void)chgsbsize(so->so_cred->cr_uidinfo,
312		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
313#ifdef INET
314	/* remove acccept filter if one is present. */
315	if (so->so_accf != NULL)
316		do_setopt_accept_filter(so, NULL);
317#endif
318#ifdef MAC
319	mac_socket_destroy(so);
320#endif
321	crfree(so->so_cred);
322	sx_destroy(&so->so_snd.sb_sx);
323	sx_destroy(&so->so_rcv.sb_sx);
324	SOCKBUF_LOCK_DESTROY(&so->so_snd);
325	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
326	uma_zfree(socket_zone, so);
327}
328
329/*
330 * socreate returns a socket with a ref count of 1.  The socket should be
331 * closed with soclose().
332 */
333int
334socreate(int dom, struct socket **aso, int type, int proto,
335    struct ucred *cred, struct thread *td)
336{
337	struct protosw *prp;
338	struct socket *so;
339	int error;
340
341	if (proto)
342		prp = pffindproto(dom, proto, type);
343	else
344		prp = pffindtype(dom, type);
345
346	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
347	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
348		return (EPROTONOSUPPORT);
349
350	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
351		return (EPROTONOSUPPORT);
352
353	if (prp->pr_type != type)
354		return (EPROTOTYPE);
355	so = soalloc();
356	if (so == NULL)
357		return (ENOBUFS);
358
359	TAILQ_INIT(&so->so_incomp);
360	TAILQ_INIT(&so->so_comp);
361	so->so_type = type;
362	so->so_cred = crhold(cred);
363	if ((prp->pr_domain->dom_family == PF_INET) ||
364	    (prp->pr_domain->dom_family == PF_ROUTE))
365		so->so_fibnum = td->td_proc->p_fibnum;
366	else
367		so->so_fibnum = 0;
368	so->so_proto = prp;
369#ifdef MAC
370	mac_socket_create(cred, so);
371#endif
372	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
373	    NULL, NULL, NULL);
374	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
375	    NULL, NULL, NULL);
376	so->so_count = 1;
377	/*
378	 * Auto-sizing of socket buffers is managed by the protocols and
379	 * the appropriate flags must be set in the pru_attach function.
380	 */
381	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
382	if (error) {
383		KASSERT(so->so_count == 1, ("socreate: so_count %d",
384		    so->so_count));
385		so->so_count = 0;
386		sodealloc(so);
387		return (error);
388	}
389	*aso = so;
390	return (0);
391}
392
393#ifdef REGRESSION
394static int regression_sonewconn_earlytest = 1;
395SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
396    &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
397#endif
398
399/*
400 * When an attempt at a new connection is noted on a socket which accepts
401 * connections, sonewconn is called.  If the connection is possible (subject
402 * to space constraints, etc.) then we allocate a new structure, propoerly
403 * linked into the data structure of the original socket, and return this.
404 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
405 *
406 * Note: the ref count on the socket is 0 on return.
407 */
408struct socket *
409sonewconn(struct socket *head, int connstatus)
410{
411	struct socket *so;
412	int over;
413
414	ACCEPT_LOCK();
415	over = (head->so_qlen > 3 * head->so_qlimit / 2);
416	ACCEPT_UNLOCK();
417#ifdef REGRESSION
418	if (regression_sonewconn_earlytest && over)
419#else
420	if (over)
421#endif
422		return (NULL);
423	so = soalloc();
424	if (so == NULL)
425		return (NULL);
426	if ((head->so_options & SO_ACCEPTFILTER) != 0)
427		connstatus = 0;
428	so->so_head = head;
429	so->so_type = head->so_type;
430	so->so_options = head->so_options &~ SO_ACCEPTCONN;
431	so->so_linger = head->so_linger;
432	so->so_state = head->so_state | SS_NOFDREF;
433	so->so_proto = head->so_proto;
434	so->so_cred = crhold(head->so_cred);
435#ifdef MAC
436	SOCK_LOCK(head);
437	mac_socket_newconn(head, so);
438	SOCK_UNLOCK(head);
439#endif
440	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
441	    NULL, NULL, NULL);
442	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
443	    NULL, NULL, NULL);
444	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
445	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
446		sodealloc(so);
447		return (NULL);
448	}
449	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
450	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
451	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
452	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
453	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
454	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
455	so->so_state |= connstatus;
456	ACCEPT_LOCK();
457	if (connstatus) {
458		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
459		so->so_qstate |= SQ_COMP;
460		head->so_qlen++;
461	} else {
462		/*
463		 * Keep removing sockets from the head until there's room for
464		 * us to insert on the tail.  In pre-locking revisions, this
465		 * was a simple if(), but as we could be racing with other
466		 * threads and soabort() requires dropping locks, we must
467		 * loop waiting for the condition to be true.
468		 */
469		while (head->so_incqlen > head->so_qlimit) {
470			struct socket *sp;
471			sp = TAILQ_FIRST(&head->so_incomp);
472			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
473			head->so_incqlen--;
474			sp->so_qstate &= ~SQ_INCOMP;
475			sp->so_head = NULL;
476			ACCEPT_UNLOCK();
477			soabort(sp);
478			ACCEPT_LOCK();
479		}
480		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
481		so->so_qstate |= SQ_INCOMP;
482		head->so_incqlen++;
483	}
484	ACCEPT_UNLOCK();
485	if (connstatus) {
486		sorwakeup(head);
487		wakeup_one(&head->so_timeo);
488	}
489	return (so);
490}
491
492int
493sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
494{
495
496	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
497}
498
499/*
500 * solisten() transitions a socket from a non-listening state to a listening
501 * state, but can also be used to update the listen queue depth on an
502 * existing listen socket.  The protocol will call back into the sockets
503 * layer using solisten_proto_check() and solisten_proto() to check and set
504 * socket-layer listen state.  Call backs are used so that the protocol can
505 * acquire both protocol and socket layer locks in whatever order is required
506 * by the protocol.
507 *
508 * Protocol implementors are advised to hold the socket lock across the
509 * socket-layer test and set to avoid races at the socket layer.
510 */
511int
512solisten(struct socket *so, int backlog, struct thread *td)
513{
514
515	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
516}
517
518int
519solisten_proto_check(struct socket *so)
520{
521
522	SOCK_LOCK_ASSERT(so);
523
524	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
525	    SS_ISDISCONNECTING))
526		return (EINVAL);
527	return (0);
528}
529
530void
531solisten_proto(struct socket *so, int backlog)
532{
533
534	SOCK_LOCK_ASSERT(so);
535
536	if (backlog < 0 || backlog > somaxconn)
537		backlog = somaxconn;
538	so->so_qlimit = backlog;
539	so->so_options |= SO_ACCEPTCONN;
540}
541
542/*
543 * Attempt to free a socket.  This should really be sotryfree().
544 *
545 * sofree() will succeed if:
546 *
547 * - There are no outstanding file descriptor references or related consumers
548 *   (so_count == 0).
549 *
550 * - The socket has been closed by user space, if ever open (SS_NOFDREF).
551 *
552 * - The protocol does not have an outstanding strong reference on the socket
553 *   (SS_PROTOREF).
554 *
555 * - The socket is not in a completed connection queue, so a process has been
556 *   notified that it is present.  If it is removed, the user process may
557 *   block in accept() despite select() saying the socket was ready.
558 *
559 * Otherwise, it will quietly abort so that a future call to sofree(), when
560 * conditions are right, can succeed.
561 */
562void
563sofree(struct socket *so)
564{
565	struct protosw *pr = so->so_proto;
566	struct socket *head;
567
568	ACCEPT_LOCK_ASSERT();
569	SOCK_LOCK_ASSERT(so);
570
571	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
572	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
573		SOCK_UNLOCK(so);
574		ACCEPT_UNLOCK();
575		return;
576	}
577
578	head = so->so_head;
579	if (head != NULL) {
580		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
581		    (so->so_qstate & SQ_INCOMP) != 0,
582		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
583		    "SQ_INCOMP"));
584		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
585		    (so->so_qstate & SQ_INCOMP) == 0,
586		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
587		TAILQ_REMOVE(&head->so_incomp, so, so_list);
588		head->so_incqlen--;
589		so->so_qstate &= ~SQ_INCOMP;
590		so->so_head = NULL;
591	}
592	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
593	    (so->so_qstate & SQ_INCOMP) == 0,
594	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
595	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
596	if (so->so_options & SO_ACCEPTCONN) {
597		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
598		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
599	}
600	SOCK_UNLOCK(so);
601	ACCEPT_UNLOCK();
602
603	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
604		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
605	if (pr->pr_usrreqs->pru_detach != NULL)
606		(*pr->pr_usrreqs->pru_detach)(so);
607
608	/*
609	 * From this point on, we assume that no other references to this
610	 * socket exist anywhere else in the stack.  Therefore, no locks need
611	 * to be acquired or held.
612	 *
613	 * We used to do a lot of socket buffer and socket locking here, as
614	 * well as invoke sorflush() and perform wakeups.  The direct call to
615	 * dom_dispose() and sbrelease_internal() are an inlining of what was
616	 * necessary from sorflush().
617	 *
618	 * Notice that the socket buffer and kqueue state are torn down
619	 * before calling pru_detach.  This means that protocols shold not
620	 * assume they can perform socket wakeups, etc, in their detach code.
621	 */
622	sbdestroy(&so->so_snd, so);
623	sbdestroy(&so->so_rcv, so);
624	knlist_destroy(&so->so_rcv.sb_sel.si_note);
625	knlist_destroy(&so->so_snd.sb_sel.si_note);
626	sodealloc(so);
627}
628
629/*
630 * Close a socket on last file table reference removal.  Initiate disconnect
631 * if connected.  Free socket when disconnect complete.
632 *
633 * This function will sorele() the socket.  Note that soclose() may be called
634 * prior to the ref count reaching zero.  The actual socket structure will
635 * not be freed until the ref count reaches zero.
636 */
637int
638soclose(struct socket *so)
639{
640	int error = 0;
641
642	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
643
644	funsetown(&so->so_sigio);
645	if (so->so_state & SS_ISCONNECTED) {
646		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
647			error = sodisconnect(so);
648			if (error)
649				goto drop;
650		}
651		if (so->so_options & SO_LINGER) {
652			if ((so->so_state & SS_ISDISCONNECTING) &&
653			    (so->so_state & SS_NBIO))
654				goto drop;
655			while (so->so_state & SS_ISCONNECTED) {
656				error = tsleep(&so->so_timeo,
657				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
658				if (error)
659					break;
660			}
661		}
662	}
663
664drop:
665	if (so->so_proto->pr_usrreqs->pru_close != NULL)
666		(*so->so_proto->pr_usrreqs->pru_close)(so);
667	if (so->so_options & SO_ACCEPTCONN) {
668		struct socket *sp;
669		ACCEPT_LOCK();
670		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
671			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
672			so->so_incqlen--;
673			sp->so_qstate &= ~SQ_INCOMP;
674			sp->so_head = NULL;
675			ACCEPT_UNLOCK();
676			soabort(sp);
677			ACCEPT_LOCK();
678		}
679		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
680			TAILQ_REMOVE(&so->so_comp, sp, so_list);
681			so->so_qlen--;
682			sp->so_qstate &= ~SQ_COMP;
683			sp->so_head = NULL;
684			ACCEPT_UNLOCK();
685			soabort(sp);
686			ACCEPT_LOCK();
687		}
688		ACCEPT_UNLOCK();
689	}
690	ACCEPT_LOCK();
691	SOCK_LOCK(so);
692	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
693	so->so_state |= SS_NOFDREF;
694	sorele(so);
695	return (error);
696}
697
698/*
699 * soabort() is used to abruptly tear down a connection, such as when a
700 * resource limit is reached (listen queue depth exceeded), or if a listen
701 * socket is closed while there are sockets waiting to be accepted.
702 *
703 * This interface is tricky, because it is called on an unreferenced socket,
704 * and must be called only by a thread that has actually removed the socket
705 * from the listen queue it was on, or races with other threads are risked.
706 *
707 * This interface will call into the protocol code, so must not be called
708 * with any socket locks held.  Protocols do call it while holding their own
709 * recursible protocol mutexes, but this is something that should be subject
710 * to review in the future.
711 */
712void
713soabort(struct socket *so)
714{
715
716	/*
717	 * In as much as is possible, assert that no references to this
718	 * socket are held.  This is not quite the same as asserting that the
719	 * current thread is responsible for arranging for no references, but
720	 * is as close as we can get for now.
721	 */
722	KASSERT(so->so_count == 0, ("soabort: so_count"));
723	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
724	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
725	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
726	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
727
728	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
729		(*so->so_proto->pr_usrreqs->pru_abort)(so);
730	ACCEPT_LOCK();
731	SOCK_LOCK(so);
732	sofree(so);
733}
734
735int
736soaccept(struct socket *so, struct sockaddr **nam)
737{
738	int error;
739
740	SOCK_LOCK(so);
741	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
742	so->so_state &= ~SS_NOFDREF;
743	SOCK_UNLOCK(so);
744	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
745	return (error);
746}
747
748int
749soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
750{
751	int error;
752
753	if (so->so_options & SO_ACCEPTCONN)
754		return (EOPNOTSUPP);
755	/*
756	 * If protocol is connection-based, can only connect once.
757	 * Otherwise, if connected, try to disconnect first.  This allows
758	 * user to disconnect by connecting to, e.g., a null address.
759	 */
760	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
761	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
762	    (error = sodisconnect(so)))) {
763		error = EISCONN;
764	} else {
765		/*
766		 * Prevent accumulated error from previous connection from
767		 * biting us.
768		 */
769		so->so_error = 0;
770		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
771	}
772
773	return (error);
774}
775
776int
777soconnect2(struct socket *so1, struct socket *so2)
778{
779
780	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
781}
782
783int
784sodisconnect(struct socket *so)
785{
786	int error;
787
788	if ((so->so_state & SS_ISCONNECTED) == 0)
789		return (ENOTCONN);
790	if (so->so_state & SS_ISDISCONNECTING)
791		return (EALREADY);
792	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
793	return (error);
794}
795
796#ifdef ZERO_COPY_SOCKETS
797struct so_zerocopy_stats{
798	int size_ok;
799	int align_ok;
800	int found_ifp;
801};
802struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
803#include <netinet/in.h>
804#include <net/route.h>
805#include <netinet/in_pcb.h>
806#include <vm/vm.h>
807#include <vm/vm_page.h>
808#include <vm/vm_object.h>
809
810/*
811 * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
812 * sosend_dgram() and sosend_generic() use m_uiotombuf().
813 *
814 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
815 * all of the data referenced by the uio.  If desired, it uses zero-copy.
816 * *space will be updated to reflect data copied in.
817 *
818 * NB: If atomic I/O is requested, the caller must already have checked that
819 * space can hold resid bytes.
820 *
821 * NB: In the event of an error, the caller may need to free the partial
822 * chain pointed to by *mpp.  The contents of both *uio and *space may be
823 * modified even in the case of an error.
824 */
825static int
826sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
827    int flags)
828{
829	struct mbuf *m, **mp, *top;
830	long len, resid;
831	int error;
832#ifdef ZERO_COPY_SOCKETS
833	int cow_send;
834#endif
835
836	*retmp = top = NULL;
837	mp = &top;
838	len = 0;
839	resid = uio->uio_resid;
840	error = 0;
841	do {
842#ifdef ZERO_COPY_SOCKETS
843		cow_send = 0;
844#endif /* ZERO_COPY_SOCKETS */
845		if (resid >= MINCLSIZE) {
846#ifdef ZERO_COPY_SOCKETS
847			if (top == NULL) {
848				m = m_gethdr(M_WAITOK, MT_DATA);
849				m->m_pkthdr.len = 0;
850				m->m_pkthdr.rcvif = NULL;
851			} else
852				m = m_get(M_WAITOK, MT_DATA);
853			if (so_zero_copy_send &&
854			    resid>=PAGE_SIZE &&
855			    *space>=PAGE_SIZE &&
856			    uio->uio_iov->iov_len>=PAGE_SIZE) {
857				so_zerocp_stats.size_ok++;
858				so_zerocp_stats.align_ok++;
859				cow_send = socow_setup(m, uio);
860				len = cow_send;
861			}
862			if (!cow_send) {
863				m_clget(m, M_WAITOK);
864				len = min(min(MCLBYTES, resid), *space);
865			}
866#else /* ZERO_COPY_SOCKETS */
867			if (top == NULL) {
868				m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
869				m->m_pkthdr.len = 0;
870				m->m_pkthdr.rcvif = NULL;
871			} else
872				m = m_getcl(M_WAIT, MT_DATA, 0);
873			len = min(min(MCLBYTES, resid), *space);
874#endif /* ZERO_COPY_SOCKETS */
875		} else {
876			if (top == NULL) {
877				m = m_gethdr(M_WAIT, MT_DATA);
878				m->m_pkthdr.len = 0;
879				m->m_pkthdr.rcvif = NULL;
880
881				len = min(min(MHLEN, resid), *space);
882				/*
883				 * For datagram protocols, leave room
884				 * for protocol headers in first mbuf.
885				 */
886				if (atomic && m && len < MHLEN)
887					MH_ALIGN(m, len);
888			} else {
889				m = m_get(M_WAIT, MT_DATA);
890				len = min(min(MLEN, resid), *space);
891			}
892		}
893		if (m == NULL) {
894			error = ENOBUFS;
895			goto out;
896		}
897
898		*space -= len;
899#ifdef ZERO_COPY_SOCKETS
900		if (cow_send)
901			error = 0;
902		else
903#endif /* ZERO_COPY_SOCKETS */
904		error = uiomove(mtod(m, void *), (int)len, uio);
905		resid = uio->uio_resid;
906		m->m_len = len;
907		*mp = m;
908		top->m_pkthdr.len += len;
909		if (error)
910			goto out;
911		mp = &m->m_next;
912		if (resid <= 0) {
913			if (flags & MSG_EOR)
914				top->m_flags |= M_EOR;
915			break;
916		}
917	} while (*space > 0 && atomic);
918out:
919	*retmp = top;
920	return (error);
921}
922#endif /*ZERO_COPY_SOCKETS*/
923
924#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
925
926int
927sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
928    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
929{
930	long space, resid;
931	int clen = 0, error, dontroute;
932#ifdef ZERO_COPY_SOCKETS
933	int atomic = sosendallatonce(so) || top;
934#endif
935
936	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
937	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
938	    ("sodgram_send: !PR_ATOMIC"));
939
940	if (uio != NULL)
941		resid = uio->uio_resid;
942	else
943		resid = top->m_pkthdr.len;
944	/*
945	 * In theory resid should be unsigned.  However, space must be
946	 * signed, as it might be less than 0 if we over-committed, and we
947	 * must use a signed comparison of space and resid.  On the other
948	 * hand, a negative resid causes us to loop sending 0-length
949	 * segments to the protocol.
950	 *
951	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
952	 * type sockets since that's an error.
953	 */
954	if (resid < 0) {
955		error = EINVAL;
956		goto out;
957	}
958
959	dontroute =
960	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
961	if (td != NULL)
962		td->td_ru.ru_msgsnd++;
963	if (control != NULL)
964		clen = control->m_len;
965
966	SOCKBUF_LOCK(&so->so_snd);
967	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
968		SOCKBUF_UNLOCK(&so->so_snd);
969		error = EPIPE;
970		goto out;
971	}
972	if (so->so_error) {
973		error = so->so_error;
974		so->so_error = 0;
975		SOCKBUF_UNLOCK(&so->so_snd);
976		goto out;
977	}
978	if ((so->so_state & SS_ISCONNECTED) == 0) {
979		/*
980		 * `sendto' and `sendmsg' is allowed on a connection-based
981		 * socket if it supports implied connect.  Return ENOTCONN if
982		 * not connected and no address is supplied.
983		 */
984		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
985		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
986			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
987			    !(resid == 0 && clen != 0)) {
988				SOCKBUF_UNLOCK(&so->so_snd);
989				error = ENOTCONN;
990				goto out;
991			}
992		} else if (addr == NULL) {
993			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
994				error = ENOTCONN;
995			else
996				error = EDESTADDRREQ;
997			SOCKBUF_UNLOCK(&so->so_snd);
998			goto out;
999		}
1000	}
1001
1002	/*
1003	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1004	 * problem and need fixing.
1005	 */
1006	space = sbspace(&so->so_snd);
1007	if (flags & MSG_OOB)
1008		space += 1024;
1009	space -= clen;
1010	SOCKBUF_UNLOCK(&so->so_snd);
1011	if (resid > space) {
1012		error = EMSGSIZE;
1013		goto out;
1014	}
1015	if (uio == NULL) {
1016		resid = 0;
1017		if (flags & MSG_EOR)
1018			top->m_flags |= M_EOR;
1019	} else {
1020#ifdef ZERO_COPY_SOCKETS
1021		error = sosend_copyin(uio, &top, atomic, &space, flags);
1022		if (error)
1023			goto out;
1024#else
1025		/*
1026		 * Copy the data from userland into a mbuf chain.
1027		 * If no data is to be copied in, a single empty mbuf
1028		 * is returned.
1029		 */
1030		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1031		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1032		if (top == NULL) {
1033			error = EFAULT;	/* only possible error */
1034			goto out;
1035		}
1036		space -= resid - uio->uio_resid;
1037#endif
1038		resid = uio->uio_resid;
1039	}
1040	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1041	/*
1042	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1043	 * than with.
1044	 */
1045	if (dontroute) {
1046		SOCK_LOCK(so);
1047		so->so_options |= SO_DONTROUTE;
1048		SOCK_UNLOCK(so);
1049	}
1050	/*
1051	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1052	 * of date.  We could have recieved a reset packet in an interrupt or
1053	 * maybe we slept while doing page faults in uiomove() etc.  We could
1054	 * probably recheck again inside the locking protection here, but
1055	 * there are probably other places that this also happens.  We must
1056	 * rethink this.
1057	 */
1058	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1059	    (flags & MSG_OOB) ? PRUS_OOB :
1060	/*
1061	 * If the user set MSG_EOF, the protocol understands this flag and
1062	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1063	 */
1064	    ((flags & MSG_EOF) &&
1065	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1066	     (resid <= 0)) ?
1067		PRUS_EOF :
1068		/* If there is more to send set PRUS_MORETOCOME */
1069		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1070		top, addr, control, td);
1071	if (dontroute) {
1072		SOCK_LOCK(so);
1073		so->so_options &= ~SO_DONTROUTE;
1074		SOCK_UNLOCK(so);
1075	}
1076	clen = 0;
1077	control = NULL;
1078	top = NULL;
1079out:
1080	if (top != NULL)
1081		m_freem(top);
1082	if (control != NULL)
1083		m_freem(control);
1084	return (error);
1085}
1086
1087/*
1088 * Send on a socket.  If send must go all at once and message is larger than
1089 * send buffering, then hard error.  Lock against other senders.  If must go
1090 * all at once and not enough room now, then inform user that this would
1091 * block and do nothing.  Otherwise, if nonblocking, send as much as
1092 * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1093 * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1094 * in mbuf chain must be small enough to send all at once.
1095 *
1096 * Returns nonzero on error, timeout or signal; callers must check for short
1097 * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1098 * on return.
1099 */
1100int
1101sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1102    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1103{
1104	long space, resid;
1105	int clen = 0, error, dontroute;
1106	int atomic = sosendallatonce(so) || top;
1107
1108	if (uio != NULL)
1109		resid = uio->uio_resid;
1110	else
1111		resid = top->m_pkthdr.len;
1112	/*
1113	 * In theory resid should be unsigned.  However, space must be
1114	 * signed, as it might be less than 0 if we over-committed, and we
1115	 * must use a signed comparison of space and resid.  On the other
1116	 * hand, a negative resid causes us to loop sending 0-length
1117	 * segments to the protocol.
1118	 *
1119	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1120	 * type sockets since that's an error.
1121	 */
1122	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1123		error = EINVAL;
1124		goto out;
1125	}
1126
1127	dontroute =
1128	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1129	    (so->so_proto->pr_flags & PR_ATOMIC);
1130	if (td != NULL)
1131		td->td_ru.ru_msgsnd++;
1132	if (control != NULL)
1133		clen = control->m_len;
1134
1135	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1136	if (error)
1137		goto out;
1138
1139restart:
1140	do {
1141		SOCKBUF_LOCK(&so->so_snd);
1142		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1143			SOCKBUF_UNLOCK(&so->so_snd);
1144			error = EPIPE;
1145			goto release;
1146		}
1147		if (so->so_error) {
1148			error = so->so_error;
1149			so->so_error = 0;
1150			SOCKBUF_UNLOCK(&so->so_snd);
1151			goto release;
1152		}
1153		if ((so->so_state & SS_ISCONNECTED) == 0) {
1154			/*
1155			 * `sendto' and `sendmsg' is allowed on a connection-
1156			 * based socket if it supports implied connect.
1157			 * Return ENOTCONN if not connected and no address is
1158			 * supplied.
1159			 */
1160			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1161			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1162				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1163				    !(resid == 0 && clen != 0)) {
1164					SOCKBUF_UNLOCK(&so->so_snd);
1165					error = ENOTCONN;
1166					goto release;
1167				}
1168			} else if (addr == NULL) {
1169				SOCKBUF_UNLOCK(&so->so_snd);
1170				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1171					error = ENOTCONN;
1172				else
1173					error = EDESTADDRREQ;
1174				goto release;
1175			}
1176		}
1177		space = sbspace(&so->so_snd);
1178		if (flags & MSG_OOB)
1179			space += 1024;
1180		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1181		    clen > so->so_snd.sb_hiwat) {
1182			SOCKBUF_UNLOCK(&so->so_snd);
1183			error = EMSGSIZE;
1184			goto release;
1185		}
1186		if (space < resid + clen &&
1187		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1188			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1189				SOCKBUF_UNLOCK(&so->so_snd);
1190				error = EWOULDBLOCK;
1191				goto release;
1192			}
1193			error = sbwait(&so->so_snd);
1194			SOCKBUF_UNLOCK(&so->so_snd);
1195			if (error)
1196				goto release;
1197			goto restart;
1198		}
1199		SOCKBUF_UNLOCK(&so->so_snd);
1200		space -= clen;
1201		do {
1202			if (uio == NULL) {
1203				resid = 0;
1204				if (flags & MSG_EOR)
1205					top->m_flags |= M_EOR;
1206			} else {
1207#ifdef ZERO_COPY_SOCKETS
1208				error = sosend_copyin(uio, &top, atomic,
1209				    &space, flags);
1210				if (error != 0)
1211					goto release;
1212#else
1213				/*
1214				 * Copy the data from userland into a mbuf
1215				 * chain.  If no data is to be copied in,
1216				 * a single empty mbuf is returned.
1217				 */
1218				top = m_uiotombuf(uio, M_WAITOK, space,
1219				    (atomic ? max_hdr : 0),
1220				    (atomic ? M_PKTHDR : 0) |
1221				    ((flags & MSG_EOR) ? M_EOR : 0));
1222				if (top == NULL) {
1223					error = EFAULT; /* only possible error */
1224					goto release;
1225				}
1226				space -= resid - uio->uio_resid;
1227#endif
1228				resid = uio->uio_resid;
1229			}
1230			if (dontroute) {
1231				SOCK_LOCK(so);
1232				so->so_options |= SO_DONTROUTE;
1233				SOCK_UNLOCK(so);
1234			}
1235			/*
1236			 * XXX all the SBS_CANTSENDMORE checks previously
1237			 * done could be out of date.  We could have recieved
1238			 * a reset packet in an interrupt or maybe we slept
1239			 * while doing page faults in uiomove() etc.  We
1240			 * could probably recheck again inside the locking
1241			 * protection here, but there are probably other
1242			 * places that this also happens.  We must rethink
1243			 * this.
1244			 */
1245			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1246			    (flags & MSG_OOB) ? PRUS_OOB :
1247			/*
1248			 * If the user set MSG_EOF, the protocol understands
1249			 * this flag and nothing left to send then use
1250			 * PRU_SEND_EOF instead of PRU_SEND.
1251			 */
1252			    ((flags & MSG_EOF) &&
1253			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1254			     (resid <= 0)) ?
1255				PRUS_EOF :
1256			/* If there is more to send set PRUS_MORETOCOME. */
1257			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1258			    top, addr, control, td);
1259			if (dontroute) {
1260				SOCK_LOCK(so);
1261				so->so_options &= ~SO_DONTROUTE;
1262				SOCK_UNLOCK(so);
1263			}
1264			clen = 0;
1265			control = NULL;
1266			top = NULL;
1267			if (error)
1268				goto release;
1269		} while (resid && space > 0);
1270	} while (resid);
1271
1272release:
1273	sbunlock(&so->so_snd);
1274out:
1275	if (top != NULL)
1276		m_freem(top);
1277	if (control != NULL)
1278		m_freem(control);
1279	return (error);
1280}
1281
1282int
1283sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1284    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1285{
1286
1287	return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1288	    control, flags, td));
1289}
1290
1291/*
1292 * The part of soreceive() that implements reading non-inline out-of-band
1293 * data from a socket.  For more complete comments, see soreceive(), from
1294 * which this code originated.
1295 *
1296 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1297 * unable to return an mbuf chain to the caller.
1298 */
1299static int
1300soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1301{
1302	struct protosw *pr = so->so_proto;
1303	struct mbuf *m;
1304	int error;
1305
1306	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1307
1308	m = m_get(M_WAIT, MT_DATA);
1309	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1310	if (error)
1311		goto bad;
1312	do {
1313#ifdef ZERO_COPY_SOCKETS
1314		if (so_zero_copy_receive) {
1315			int disposable;
1316
1317			if ((m->m_flags & M_EXT)
1318			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1319				disposable = 1;
1320			else
1321				disposable = 0;
1322
1323			error = uiomoveco(mtod(m, void *),
1324					  min(uio->uio_resid, m->m_len),
1325					  uio, disposable);
1326		} else
1327#endif /* ZERO_COPY_SOCKETS */
1328		error = uiomove(mtod(m, void *),
1329		    (int) min(uio->uio_resid, m->m_len), uio);
1330		m = m_free(m);
1331	} while (uio->uio_resid && error == 0 && m);
1332bad:
1333	if (m != NULL)
1334		m_freem(m);
1335	return (error);
1336}
1337
1338/*
1339 * Following replacement or removal of the first mbuf on the first mbuf chain
1340 * of a socket buffer, push necessary state changes back into the socket
1341 * buffer so that other consumers see the values consistently.  'nextrecord'
1342 * is the callers locally stored value of the original value of
1343 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1344 * NOTE: 'nextrecord' may be NULL.
1345 */
1346static __inline void
1347sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1348{
1349
1350	SOCKBUF_LOCK_ASSERT(sb);
1351	/*
1352	 * First, update for the new value of nextrecord.  If necessary, make
1353	 * it the first record.
1354	 */
1355	if (sb->sb_mb != NULL)
1356		sb->sb_mb->m_nextpkt = nextrecord;
1357	else
1358		sb->sb_mb = nextrecord;
1359
1360        /*
1361         * Now update any dependent socket buffer fields to reflect the new
1362         * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1363	 * addition of a second clause that takes care of the case where
1364	 * sb_mb has been updated, but remains the last record.
1365         */
1366        if (sb->sb_mb == NULL) {
1367                sb->sb_mbtail = NULL;
1368                sb->sb_lastrecord = NULL;
1369        } else if (sb->sb_mb->m_nextpkt == NULL)
1370                sb->sb_lastrecord = sb->sb_mb;
1371}
1372
1373
1374/*
1375 * Implement receive operations on a socket.  We depend on the way that
1376 * records are added to the sockbuf by sbappend.  In particular, each record
1377 * (mbufs linked through m_next) must begin with an address if the protocol
1378 * so specifies, followed by an optional mbuf or mbufs containing ancillary
1379 * data, and then zero or more mbufs of data.  In order to allow parallelism
1380 * between network receive and copying to user space, as well as avoid
1381 * sleeping with a mutex held, we release the socket buffer mutex during the
1382 * user space copy.  Although the sockbuf is locked, new data may still be
1383 * appended, and thus we must maintain consistency of the sockbuf during that
1384 * time.
1385 *
1386 * The caller may receive the data as a single mbuf chain by supplying an
1387 * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1388 * the count in uio_resid.
1389 */
1390int
1391soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1392    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1393{
1394	struct mbuf *m, **mp;
1395	int flags, len, error, offset;
1396	struct protosw *pr = so->so_proto;
1397	struct mbuf *nextrecord;
1398	int moff, type = 0;
1399	int orig_resid = uio->uio_resid;
1400
1401	mp = mp0;
1402	if (psa != NULL)
1403		*psa = NULL;
1404	if (controlp != NULL)
1405		*controlp = NULL;
1406	if (flagsp != NULL)
1407		flags = *flagsp &~ MSG_EOR;
1408	else
1409		flags = 0;
1410	if (flags & MSG_OOB)
1411		return (soreceive_rcvoob(so, uio, flags));
1412	if (mp != NULL)
1413		*mp = NULL;
1414	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1415	    && uio->uio_resid)
1416		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1417
1418	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1419	if (error)
1420		return (error);
1421
1422restart:
1423	SOCKBUF_LOCK(&so->so_rcv);
1424	m = so->so_rcv.sb_mb;
1425	/*
1426	 * If we have less data than requested, block awaiting more (subject
1427	 * to any timeout) if:
1428	 *   1. the current count is less than the low water mark, or
1429	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1430	 *	receive operation at once if we block (resid <= hiwat).
1431	 *   3. MSG_DONTWAIT is not set
1432	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1433	 * we have to do the receive in sections, and thus risk returning a
1434	 * short count if a timeout or signal occurs after we start.
1435	 */
1436	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1437	    so->so_rcv.sb_cc < uio->uio_resid) &&
1438	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1439	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1440	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1441		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1442		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1443		    m, so->so_rcv.sb_cc));
1444		if (so->so_error) {
1445			if (m != NULL)
1446				goto dontblock;
1447			error = so->so_error;
1448			if ((flags & MSG_PEEK) == 0)
1449				so->so_error = 0;
1450			SOCKBUF_UNLOCK(&so->so_rcv);
1451			goto release;
1452		}
1453		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1454		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1455			if (m == NULL) {
1456				SOCKBUF_UNLOCK(&so->so_rcv);
1457				goto release;
1458			} else
1459				goto dontblock;
1460		}
1461		for (; m != NULL; m = m->m_next)
1462			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1463				m = so->so_rcv.sb_mb;
1464				goto dontblock;
1465			}
1466		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1467		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1468			SOCKBUF_UNLOCK(&so->so_rcv);
1469			error = ENOTCONN;
1470			goto release;
1471		}
1472		if (uio->uio_resid == 0) {
1473			SOCKBUF_UNLOCK(&so->so_rcv);
1474			goto release;
1475		}
1476		if ((so->so_state & SS_NBIO) ||
1477		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1478			SOCKBUF_UNLOCK(&so->so_rcv);
1479			error = EWOULDBLOCK;
1480			goto release;
1481		}
1482		SBLASTRECORDCHK(&so->so_rcv);
1483		SBLASTMBUFCHK(&so->so_rcv);
1484		error = sbwait(&so->so_rcv);
1485		SOCKBUF_UNLOCK(&so->so_rcv);
1486		if (error)
1487			goto release;
1488		goto restart;
1489	}
1490dontblock:
1491	/*
1492	 * From this point onward, we maintain 'nextrecord' as a cache of the
1493	 * pointer to the next record in the socket buffer.  We must keep the
1494	 * various socket buffer pointers and local stack versions of the
1495	 * pointers in sync, pushing out modifications before dropping the
1496	 * socket buffer mutex, and re-reading them when picking it up.
1497	 *
1498	 * Otherwise, we will race with the network stack appending new data
1499	 * or records onto the socket buffer by using inconsistent/stale
1500	 * versions of the field, possibly resulting in socket buffer
1501	 * corruption.
1502	 *
1503	 * By holding the high-level sblock(), we prevent simultaneous
1504	 * readers from pulling off the front of the socket buffer.
1505	 */
1506	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1507	if (uio->uio_td)
1508		uio->uio_td->td_ru.ru_msgrcv++;
1509	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1510	SBLASTRECORDCHK(&so->so_rcv);
1511	SBLASTMBUFCHK(&so->so_rcv);
1512	nextrecord = m->m_nextpkt;
1513	if (pr->pr_flags & PR_ADDR) {
1514		KASSERT(m->m_type == MT_SONAME,
1515		    ("m->m_type == %d", m->m_type));
1516		orig_resid = 0;
1517		if (psa != NULL)
1518			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1519			    M_NOWAIT);
1520		if (flags & MSG_PEEK) {
1521			m = m->m_next;
1522		} else {
1523			sbfree(&so->so_rcv, m);
1524			so->so_rcv.sb_mb = m_free(m);
1525			m = so->so_rcv.sb_mb;
1526			sockbuf_pushsync(&so->so_rcv, nextrecord);
1527		}
1528	}
1529
1530	/*
1531	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1532	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1533	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1534	 * perform externalization (or freeing if controlp == NULL).
1535	 */
1536	if (m != NULL && m->m_type == MT_CONTROL) {
1537		struct mbuf *cm = NULL, *cmn;
1538		struct mbuf **cme = &cm;
1539
1540		do {
1541			if (flags & MSG_PEEK) {
1542				if (controlp != NULL) {
1543					*controlp = m_copy(m, 0, m->m_len);
1544					controlp = &(*controlp)->m_next;
1545				}
1546				m = m->m_next;
1547			} else {
1548				sbfree(&so->so_rcv, m);
1549				so->so_rcv.sb_mb = m->m_next;
1550				m->m_next = NULL;
1551				*cme = m;
1552				cme = &(*cme)->m_next;
1553				m = so->so_rcv.sb_mb;
1554			}
1555		} while (m != NULL && m->m_type == MT_CONTROL);
1556		if ((flags & MSG_PEEK) == 0)
1557			sockbuf_pushsync(&so->so_rcv, nextrecord);
1558		while (cm != NULL) {
1559			cmn = cm->m_next;
1560			cm->m_next = NULL;
1561			if (pr->pr_domain->dom_externalize != NULL) {
1562				SOCKBUF_UNLOCK(&so->so_rcv);
1563				error = (*pr->pr_domain->dom_externalize)
1564				    (cm, controlp);
1565				SOCKBUF_LOCK(&so->so_rcv);
1566			} else if (controlp != NULL)
1567				*controlp = cm;
1568			else
1569				m_freem(cm);
1570			if (controlp != NULL) {
1571				orig_resid = 0;
1572				while (*controlp != NULL)
1573					controlp = &(*controlp)->m_next;
1574			}
1575			cm = cmn;
1576		}
1577		if (m != NULL)
1578			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1579		else
1580			nextrecord = so->so_rcv.sb_mb;
1581		orig_resid = 0;
1582	}
1583	if (m != NULL) {
1584		if ((flags & MSG_PEEK) == 0) {
1585			KASSERT(m->m_nextpkt == nextrecord,
1586			    ("soreceive: post-control, nextrecord !sync"));
1587			if (nextrecord == NULL) {
1588				KASSERT(so->so_rcv.sb_mb == m,
1589				    ("soreceive: post-control, sb_mb!=m"));
1590				KASSERT(so->so_rcv.sb_lastrecord == m,
1591				    ("soreceive: post-control, lastrecord!=m"));
1592			}
1593		}
1594		type = m->m_type;
1595		if (type == MT_OOBDATA)
1596			flags |= MSG_OOB;
1597	} else {
1598		if ((flags & MSG_PEEK) == 0) {
1599			KASSERT(so->so_rcv.sb_mb == nextrecord,
1600			    ("soreceive: sb_mb != nextrecord"));
1601			if (so->so_rcv.sb_mb == NULL) {
1602				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1603				    ("soreceive: sb_lastercord != NULL"));
1604			}
1605		}
1606	}
1607	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1608	SBLASTRECORDCHK(&so->so_rcv);
1609	SBLASTMBUFCHK(&so->so_rcv);
1610
1611	/*
1612	 * Now continue to read any data mbufs off of the head of the socket
1613	 * buffer until the read request is satisfied.  Note that 'type' is
1614	 * used to store the type of any mbuf reads that have happened so far
1615	 * such that soreceive() can stop reading if the type changes, which
1616	 * causes soreceive() to return only one of regular data and inline
1617	 * out-of-band data in a single socket receive operation.
1618	 */
1619	moff = 0;
1620	offset = 0;
1621	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1622		/*
1623		 * If the type of mbuf has changed since the last mbuf
1624		 * examined ('type'), end the receive operation.
1625	 	 */
1626		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1627		if (m->m_type == MT_OOBDATA) {
1628			if (type != MT_OOBDATA)
1629				break;
1630		} else if (type == MT_OOBDATA)
1631			break;
1632		else
1633		    KASSERT(m->m_type == MT_DATA,
1634			("m->m_type == %d", m->m_type));
1635		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1636		len = uio->uio_resid;
1637		if (so->so_oobmark && len > so->so_oobmark - offset)
1638			len = so->so_oobmark - offset;
1639		if (len > m->m_len - moff)
1640			len = m->m_len - moff;
1641		/*
1642		 * If mp is set, just pass back the mbufs.  Otherwise copy
1643		 * them out via the uio, then free.  Sockbuf must be
1644		 * consistent here (points to current mbuf, it points to next
1645		 * record) when we drop priority; we must note any additions
1646		 * to the sockbuf when we block interrupts again.
1647		 */
1648		if (mp == NULL) {
1649			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1650			SBLASTRECORDCHK(&so->so_rcv);
1651			SBLASTMBUFCHK(&so->so_rcv);
1652			SOCKBUF_UNLOCK(&so->so_rcv);
1653#ifdef ZERO_COPY_SOCKETS
1654			if (so_zero_copy_receive) {
1655				int disposable;
1656
1657				if ((m->m_flags & M_EXT)
1658				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1659					disposable = 1;
1660				else
1661					disposable = 0;
1662
1663				error = uiomoveco(mtod(m, char *) + moff,
1664						  (int)len, uio,
1665						  disposable);
1666			} else
1667#endif /* ZERO_COPY_SOCKETS */
1668			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1669			SOCKBUF_LOCK(&so->so_rcv);
1670			if (error) {
1671				/*
1672				 * The MT_SONAME mbuf has already been removed
1673				 * from the record, so it is necessary to
1674				 * remove the data mbufs, if any, to preserve
1675				 * the invariant in the case of PR_ADDR that
1676				 * requires MT_SONAME mbufs at the head of
1677				 * each record.
1678				 */
1679				if (m && pr->pr_flags & PR_ATOMIC &&
1680				    ((flags & MSG_PEEK) == 0))
1681					(void)sbdroprecord_locked(&so->so_rcv);
1682				SOCKBUF_UNLOCK(&so->so_rcv);
1683				goto release;
1684			}
1685		} else
1686			uio->uio_resid -= len;
1687		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1688		if (len == m->m_len - moff) {
1689			if (m->m_flags & M_EOR)
1690				flags |= MSG_EOR;
1691			if (flags & MSG_PEEK) {
1692				m = m->m_next;
1693				moff = 0;
1694			} else {
1695				nextrecord = m->m_nextpkt;
1696				sbfree(&so->so_rcv, m);
1697				if (mp != NULL) {
1698					*mp = m;
1699					mp = &m->m_next;
1700					so->so_rcv.sb_mb = m = m->m_next;
1701					*mp = NULL;
1702				} else {
1703					so->so_rcv.sb_mb = m_free(m);
1704					m = so->so_rcv.sb_mb;
1705				}
1706				sockbuf_pushsync(&so->so_rcv, nextrecord);
1707				SBLASTRECORDCHK(&so->so_rcv);
1708				SBLASTMBUFCHK(&so->so_rcv);
1709			}
1710		} else {
1711			if (flags & MSG_PEEK)
1712				moff += len;
1713			else {
1714				if (mp != NULL) {
1715					int copy_flag;
1716
1717					if (flags & MSG_DONTWAIT)
1718						copy_flag = M_DONTWAIT;
1719					else
1720						copy_flag = M_WAIT;
1721					if (copy_flag == M_WAIT)
1722						SOCKBUF_UNLOCK(&so->so_rcv);
1723					*mp = m_copym(m, 0, len, copy_flag);
1724					if (copy_flag == M_WAIT)
1725						SOCKBUF_LOCK(&so->so_rcv);
1726 					if (*mp == NULL) {
1727 						/*
1728 						 * m_copym() couldn't
1729						 * allocate an mbuf.  Adjust
1730						 * uio_resid back (it was
1731						 * adjusted down by len
1732						 * bytes, which we didn't end
1733						 * up "copying" over).
1734 						 */
1735 						uio->uio_resid += len;
1736 						break;
1737 					}
1738				}
1739				m->m_data += len;
1740				m->m_len -= len;
1741				so->so_rcv.sb_cc -= len;
1742			}
1743		}
1744		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1745		if (so->so_oobmark) {
1746			if ((flags & MSG_PEEK) == 0) {
1747				so->so_oobmark -= len;
1748				if (so->so_oobmark == 0) {
1749					so->so_rcv.sb_state |= SBS_RCVATMARK;
1750					break;
1751				}
1752			} else {
1753				offset += len;
1754				if (offset == so->so_oobmark)
1755					break;
1756			}
1757		}
1758		if (flags & MSG_EOR)
1759			break;
1760		/*
1761		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1762		 * must not quit until "uio->uio_resid == 0" or an error
1763		 * termination.  If a signal/timeout occurs, return with a
1764		 * short count but without error.  Keep sockbuf locked
1765		 * against other readers.
1766		 */
1767		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1768		    !sosendallatonce(so) && nextrecord == NULL) {
1769			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1770			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1771				break;
1772			/*
1773			 * Notify the protocol that some data has been
1774			 * drained before blocking.
1775			 */
1776			if (pr->pr_flags & PR_WANTRCVD) {
1777				SOCKBUF_UNLOCK(&so->so_rcv);
1778				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1779				SOCKBUF_LOCK(&so->so_rcv);
1780			}
1781			SBLASTRECORDCHK(&so->so_rcv);
1782			SBLASTMBUFCHK(&so->so_rcv);
1783			error = sbwait(&so->so_rcv);
1784			if (error) {
1785				SOCKBUF_UNLOCK(&so->so_rcv);
1786				goto release;
1787			}
1788			m = so->so_rcv.sb_mb;
1789			if (m != NULL)
1790				nextrecord = m->m_nextpkt;
1791		}
1792	}
1793
1794	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1795	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1796		flags |= MSG_TRUNC;
1797		if ((flags & MSG_PEEK) == 0)
1798			(void) sbdroprecord_locked(&so->so_rcv);
1799	}
1800	if ((flags & MSG_PEEK) == 0) {
1801		if (m == NULL) {
1802			/*
1803			 * First part is an inline SB_EMPTY_FIXUP().  Second
1804			 * part makes sure sb_lastrecord is up-to-date if
1805			 * there is still data in the socket buffer.
1806			 */
1807			so->so_rcv.sb_mb = nextrecord;
1808			if (so->so_rcv.sb_mb == NULL) {
1809				so->so_rcv.sb_mbtail = NULL;
1810				so->so_rcv.sb_lastrecord = NULL;
1811			} else if (nextrecord->m_nextpkt == NULL)
1812				so->so_rcv.sb_lastrecord = nextrecord;
1813		}
1814		SBLASTRECORDCHK(&so->so_rcv);
1815		SBLASTMBUFCHK(&so->so_rcv);
1816		/*
1817		 * If soreceive() is being done from the socket callback,
1818		 * then don't need to generate ACK to peer to update window,
1819		 * since ACK will be generated on return to TCP.
1820		 */
1821		if (!(flags & MSG_SOCALLBCK) &&
1822		    (pr->pr_flags & PR_WANTRCVD)) {
1823			SOCKBUF_UNLOCK(&so->so_rcv);
1824			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1825			SOCKBUF_LOCK(&so->so_rcv);
1826		}
1827	}
1828	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1829	if (orig_resid == uio->uio_resid && orig_resid &&
1830	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1831		SOCKBUF_UNLOCK(&so->so_rcv);
1832		goto restart;
1833	}
1834	SOCKBUF_UNLOCK(&so->so_rcv);
1835
1836	if (flagsp != NULL)
1837		*flagsp |= flags;
1838release:
1839	sbunlock(&so->so_rcv);
1840	return (error);
1841}
1842
1843/*
1844 * Optimized version of soreceive() for simple datagram cases from userspace.
1845 * Unlike in the stream case, we're able to drop a datagram if copyout()
1846 * fails, and because we handle datagrams atomically, we don't need to use a
1847 * sleep lock to prevent I/O interlacing.
1848 */
1849int
1850soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1851    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1852{
1853	struct mbuf *m, *m2;
1854	int flags, len, error;
1855	struct protosw *pr = so->so_proto;
1856	struct mbuf *nextrecord;
1857
1858	if (psa != NULL)
1859		*psa = NULL;
1860	if (controlp != NULL)
1861		*controlp = NULL;
1862	if (flagsp != NULL)
1863		flags = *flagsp &~ MSG_EOR;
1864	else
1865		flags = 0;
1866
1867	/*
1868	 * For any complicated cases, fall back to the full
1869	 * soreceive_generic().
1870	 */
1871	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
1872		return (soreceive_generic(so, psa, uio, mp0, controlp,
1873		    flagsp));
1874
1875	/*
1876	 * Enforce restrictions on use.
1877	 */
1878	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
1879	    ("soreceive_dgram: wantrcvd"));
1880	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
1881	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
1882	    ("soreceive_dgram: SBS_RCVATMARK"));
1883	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
1884	    ("soreceive_dgram: P_CONNREQUIRED"));
1885
1886	/*
1887	 * Loop blocking while waiting for a datagram.
1888	 */
1889	SOCKBUF_LOCK(&so->so_rcv);
1890	while ((m = so->so_rcv.sb_mb) == NULL) {
1891		KASSERT(so->so_rcv.sb_cc == 0,
1892		    ("soreceive_dgram: sb_mb NULL but sb_cc %u",
1893		    so->so_rcv.sb_cc));
1894		if (so->so_error) {
1895			error = so->so_error;
1896			so->so_error = 0;
1897			SOCKBUF_UNLOCK(&so->so_rcv);
1898			return (error);
1899		}
1900		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1901		    uio->uio_resid == 0) {
1902			SOCKBUF_UNLOCK(&so->so_rcv);
1903			return (0);
1904		}
1905		if ((so->so_state & SS_NBIO) ||
1906		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1907			SOCKBUF_UNLOCK(&so->so_rcv);
1908			return (EWOULDBLOCK);
1909		}
1910		SBLASTRECORDCHK(&so->so_rcv);
1911		SBLASTMBUFCHK(&so->so_rcv);
1912		error = sbwait(&so->so_rcv);
1913		if (error) {
1914			SOCKBUF_UNLOCK(&so->so_rcv);
1915			return (error);
1916		}
1917	}
1918	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1919
1920	if (uio->uio_td)
1921		uio->uio_td->td_ru.ru_msgrcv++;
1922	SBLASTRECORDCHK(&so->so_rcv);
1923	SBLASTMBUFCHK(&so->so_rcv);
1924	nextrecord = m->m_nextpkt;
1925	if (nextrecord == NULL) {
1926		KASSERT(so->so_rcv.sb_lastrecord == m,
1927		    ("soreceive_dgram: lastrecord != m"));
1928	}
1929
1930	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
1931	    ("soreceive_dgram: m_nextpkt != nextrecord"));
1932
1933	/*
1934	 * Pull 'm' and its chain off the front of the packet queue.
1935	 */
1936	so->so_rcv.sb_mb = NULL;
1937	sockbuf_pushsync(&so->so_rcv, nextrecord);
1938
1939	/*
1940	 * Walk 'm's chain and free that many bytes from the socket buffer.
1941	 */
1942	for (m2 = m; m2 != NULL; m2 = m2->m_next)
1943		sbfree(&so->so_rcv, m2);
1944
1945	/*
1946	 * Do a few last checks before we let go of the lock.
1947	 */
1948	SBLASTRECORDCHK(&so->so_rcv);
1949	SBLASTMBUFCHK(&so->so_rcv);
1950	SOCKBUF_UNLOCK(&so->so_rcv);
1951
1952	if (pr->pr_flags & PR_ADDR) {
1953		KASSERT(m->m_type == MT_SONAME,
1954		    ("m->m_type == %d", m->m_type));
1955		if (psa != NULL)
1956			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1957			    M_NOWAIT);
1958		m = m_free(m);
1959	}
1960	if (m == NULL) {
1961		/* XXXRW: Can this happen? */
1962		return (0);
1963	}
1964
1965	/*
1966	 * Packet to copyout() is now in 'm' and it is disconnected from the
1967	 * queue.
1968	 *
1969	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1970	 * in the first mbuf chain on the socket buffer.  We call into the
1971	 * protocol to perform externalization (or freeing if controlp ==
1972	 * NULL).
1973	 */
1974	if (m->m_type == MT_CONTROL) {
1975		struct mbuf *cm = NULL, *cmn;
1976		struct mbuf **cme = &cm;
1977
1978		do {
1979			m2 = m->m_next;
1980			m->m_next = NULL;
1981			*cme = m;
1982			cme = &(*cme)->m_next;
1983			m = m2;
1984		} while (m != NULL && m->m_type == MT_CONTROL);
1985		while (cm != NULL) {
1986			cmn = cm->m_next;
1987			cm->m_next = NULL;
1988			if (pr->pr_domain->dom_externalize != NULL) {
1989				error = (*pr->pr_domain->dom_externalize)
1990				    (cm, controlp);
1991			} else if (controlp != NULL)
1992				*controlp = cm;
1993			else
1994				m_freem(cm);
1995			if (controlp != NULL) {
1996				while (*controlp != NULL)
1997					controlp = &(*controlp)->m_next;
1998			}
1999			cm = cmn;
2000		}
2001	}
2002	KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
2003
2004	while (m != NULL && uio->uio_resid > 0) {
2005		len = uio->uio_resid;
2006		if (len > m->m_len)
2007			len = m->m_len;
2008		error = uiomove(mtod(m, char *), (int)len, uio);
2009		if (error) {
2010			m_freem(m);
2011			return (error);
2012		}
2013		m = m_free(m);
2014	}
2015	if (m != NULL)
2016		flags |= MSG_TRUNC;
2017	m_freem(m);
2018	if (flagsp != NULL)
2019		*flagsp |= flags;
2020	return (0);
2021}
2022
2023int
2024soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2025    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2026{
2027
2028	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2029	    controlp, flagsp));
2030}
2031
2032int
2033soshutdown(struct socket *so, int how)
2034{
2035	struct protosw *pr = so->so_proto;
2036
2037	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2038		return (EINVAL);
2039	if (pr->pr_usrreqs->pru_flush != NULL) {
2040	        (*pr->pr_usrreqs->pru_flush)(so, how);
2041	}
2042	if (how != SHUT_WR)
2043		sorflush(so);
2044	if (how != SHUT_RD)
2045		return ((*pr->pr_usrreqs->pru_shutdown)(so));
2046	return (0);
2047}
2048
2049void
2050sorflush(struct socket *so)
2051{
2052	struct sockbuf *sb = &so->so_rcv;
2053	struct protosw *pr = so->so_proto;
2054	struct sockbuf asb;
2055
2056	/*
2057	 * In order to avoid calling dom_dispose with the socket buffer mutex
2058	 * held, and in order to generally avoid holding the lock for a long
2059	 * time, we make a copy of the socket buffer and clear the original
2060	 * (except locks, state).  The new socket buffer copy won't have
2061	 * initialized locks so we can only call routines that won't use or
2062	 * assert those locks.
2063	 *
2064	 * Dislodge threads currently blocked in receive and wait to acquire
2065	 * a lock against other simultaneous readers before clearing the
2066	 * socket buffer.  Don't let our acquire be interrupted by a signal
2067	 * despite any existing socket disposition on interruptable waiting.
2068	 */
2069	socantrcvmore(so);
2070	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2071
2072	/*
2073	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2074	 * and mutex data unchanged.
2075	 */
2076	SOCKBUF_LOCK(sb);
2077	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2078	bcopy(&sb->sb_startzero, &asb.sb_startzero,
2079	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2080	bzero(&sb->sb_startzero,
2081	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2082	SOCKBUF_UNLOCK(sb);
2083	sbunlock(sb);
2084
2085	/*
2086	 * Dispose of special rights and flush the socket buffer.  Don't call
2087	 * any unsafe routines (that rely on locks being initialized) on asb.
2088	 */
2089	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2090		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
2091	sbrelease_internal(&asb, so);
2092}
2093
2094/*
2095 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2096 * additional variant to handle the case where the option value needs to be
2097 * some kind of integer, but not a specific size.  In addition to their use
2098 * here, these functions are also called by the protocol-level pr_ctloutput()
2099 * routines.
2100 */
2101int
2102sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2103{
2104	size_t	valsize;
2105
2106	/*
2107	 * If the user gives us more than we wanted, we ignore it, but if we
2108	 * don't get the minimum length the caller wants, we return EINVAL.
2109	 * On success, sopt->sopt_valsize is set to however much we actually
2110	 * retrieved.
2111	 */
2112	if ((valsize = sopt->sopt_valsize) < minlen)
2113		return EINVAL;
2114	if (valsize > len)
2115		sopt->sopt_valsize = valsize = len;
2116
2117	if (sopt->sopt_td != NULL)
2118		return (copyin(sopt->sopt_val, buf, valsize));
2119
2120	bcopy(sopt->sopt_val, buf, valsize);
2121	return (0);
2122}
2123
2124/*
2125 * Kernel version of setsockopt(2).
2126 *
2127 * XXX: optlen is size_t, not socklen_t
2128 */
2129int
2130so_setsockopt(struct socket *so, int level, int optname, void *optval,
2131    size_t optlen)
2132{
2133	struct sockopt sopt;
2134
2135	sopt.sopt_level = level;
2136	sopt.sopt_name = optname;
2137	sopt.sopt_dir = SOPT_SET;
2138	sopt.sopt_val = optval;
2139	sopt.sopt_valsize = optlen;
2140	sopt.sopt_td = NULL;
2141	return (sosetopt(so, &sopt));
2142}
2143
2144int
2145sosetopt(struct socket *so, struct sockopt *sopt)
2146{
2147	int	error, optval;
2148	struct	linger l;
2149	struct	timeval tv;
2150	u_long  val;
2151#ifdef MAC
2152	struct mac extmac;
2153#endif
2154
2155	error = 0;
2156	if (sopt->sopt_level != SOL_SOCKET) {
2157		if (so->so_proto && so->so_proto->pr_ctloutput)
2158			return ((*so->so_proto->pr_ctloutput)
2159				  (so, sopt));
2160		error = ENOPROTOOPT;
2161	} else {
2162		switch (sopt->sopt_name) {
2163#ifdef INET
2164		case SO_ACCEPTFILTER:
2165			error = do_setopt_accept_filter(so, sopt);
2166			if (error)
2167				goto bad;
2168			break;
2169#endif
2170		case SO_LINGER:
2171			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2172			if (error)
2173				goto bad;
2174
2175			SOCK_LOCK(so);
2176			so->so_linger = l.l_linger;
2177			if (l.l_onoff)
2178				so->so_options |= SO_LINGER;
2179			else
2180				so->so_options &= ~SO_LINGER;
2181			SOCK_UNLOCK(so);
2182			break;
2183
2184		case SO_DEBUG:
2185		case SO_KEEPALIVE:
2186		case SO_DONTROUTE:
2187		case SO_USELOOPBACK:
2188		case SO_BROADCAST:
2189		case SO_REUSEADDR:
2190		case SO_REUSEPORT:
2191		case SO_OOBINLINE:
2192		case SO_TIMESTAMP:
2193		case SO_BINTIME:
2194		case SO_NOSIGPIPE:
2195		case SO_NO_DDP:
2196		case SO_NO_OFFLOAD:
2197			error = sooptcopyin(sopt, &optval, sizeof optval,
2198					    sizeof optval);
2199			if (error)
2200				goto bad;
2201			SOCK_LOCK(so);
2202			if (optval)
2203				so->so_options |= sopt->sopt_name;
2204			else
2205				so->so_options &= ~sopt->sopt_name;
2206			SOCK_UNLOCK(so);
2207			break;
2208
2209		case SO_SETFIB:
2210			error = sooptcopyin(sopt, &optval, sizeof optval,
2211					    sizeof optval);
2212			if (optval < 1 || optval > rt_numfibs) {
2213				error = EINVAL;
2214				goto bad;
2215			}
2216			if ((so->so_proto->pr_domain->dom_family == PF_INET) ||
2217			    (so->so_proto->pr_domain->dom_family == PF_ROUTE)) {
2218				so->so_fibnum = optval;
2219				/* Note: ignore error */
2220				if (so->so_proto && so->so_proto->pr_ctloutput)
2221					(*so->so_proto->pr_ctloutput)(so, sopt);
2222			} else {
2223				so->so_fibnum = 0;
2224			}
2225			break;
2226		case SO_SNDBUF:
2227		case SO_RCVBUF:
2228		case SO_SNDLOWAT:
2229		case SO_RCVLOWAT:
2230			error = sooptcopyin(sopt, &optval, sizeof optval,
2231					    sizeof optval);
2232			if (error)
2233				goto bad;
2234
2235			/*
2236			 * Values < 1 make no sense for any of these options,
2237			 * so disallow them.
2238			 */
2239			if (optval < 1) {
2240				error = EINVAL;
2241				goto bad;
2242			}
2243
2244			switch (sopt->sopt_name) {
2245			case SO_SNDBUF:
2246			case SO_RCVBUF:
2247				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2248				    &so->so_snd : &so->so_rcv, (u_long)optval,
2249				    so, curthread) == 0) {
2250					error = ENOBUFS;
2251					goto bad;
2252				}
2253				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2254				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2255				break;
2256
2257			/*
2258			 * Make sure the low-water is never greater than the
2259			 * high-water.
2260			 */
2261			case SO_SNDLOWAT:
2262				SOCKBUF_LOCK(&so->so_snd);
2263				so->so_snd.sb_lowat =
2264				    (optval > so->so_snd.sb_hiwat) ?
2265				    so->so_snd.sb_hiwat : optval;
2266				SOCKBUF_UNLOCK(&so->so_snd);
2267				break;
2268			case SO_RCVLOWAT:
2269				SOCKBUF_LOCK(&so->so_rcv);
2270				so->so_rcv.sb_lowat =
2271				    (optval > so->so_rcv.sb_hiwat) ?
2272				    so->so_rcv.sb_hiwat : optval;
2273				SOCKBUF_UNLOCK(&so->so_rcv);
2274				break;
2275			}
2276			break;
2277
2278		case SO_SNDTIMEO:
2279		case SO_RCVTIMEO:
2280#ifdef COMPAT_IA32
2281			if (SV_CURPROC_FLAG(SV_ILP32)) {
2282				struct timeval32 tv32;
2283
2284				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2285				    sizeof tv32);
2286				CP(tv32, tv, tv_sec);
2287				CP(tv32, tv, tv_usec);
2288			} else
2289#endif
2290				error = sooptcopyin(sopt, &tv, sizeof tv,
2291				    sizeof tv);
2292			if (error)
2293				goto bad;
2294
2295			/* assert(hz > 0); */
2296			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2297			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2298				error = EDOM;
2299				goto bad;
2300			}
2301			/* assert(tick > 0); */
2302			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2303			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2304			if (val > INT_MAX) {
2305				error = EDOM;
2306				goto bad;
2307			}
2308			if (val == 0 && tv.tv_usec != 0)
2309				val = 1;
2310
2311			switch (sopt->sopt_name) {
2312			case SO_SNDTIMEO:
2313				so->so_snd.sb_timeo = val;
2314				break;
2315			case SO_RCVTIMEO:
2316				so->so_rcv.sb_timeo = val;
2317				break;
2318			}
2319			break;
2320
2321		case SO_LABEL:
2322#ifdef MAC
2323			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2324			    sizeof extmac);
2325			if (error)
2326				goto bad;
2327			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2328			    so, &extmac);
2329#else
2330			error = EOPNOTSUPP;
2331#endif
2332			break;
2333
2334		default:
2335			error = ENOPROTOOPT;
2336			break;
2337		}
2338		if (error == 0 && so->so_proto != NULL &&
2339		    so->so_proto->pr_ctloutput != NULL) {
2340			(void) ((*so->so_proto->pr_ctloutput)
2341				  (so, sopt));
2342		}
2343	}
2344bad:
2345	return (error);
2346}
2347
2348/*
2349 * Helper routine for getsockopt.
2350 */
2351int
2352sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2353{
2354	int	error;
2355	size_t	valsize;
2356
2357	error = 0;
2358
2359	/*
2360	 * Documented get behavior is that we always return a value, possibly
2361	 * truncated to fit in the user's buffer.  Traditional behavior is
2362	 * that we always tell the user precisely how much we copied, rather
2363	 * than something useful like the total amount we had available for
2364	 * her.  Note that this interface is not idempotent; the entire
2365	 * answer must generated ahead of time.
2366	 */
2367	valsize = min(len, sopt->sopt_valsize);
2368	sopt->sopt_valsize = valsize;
2369	if (sopt->sopt_val != NULL) {
2370		if (sopt->sopt_td != NULL)
2371			error = copyout(buf, sopt->sopt_val, valsize);
2372		else
2373			bcopy(buf, sopt->sopt_val, valsize);
2374	}
2375	return (error);
2376}
2377
2378int
2379sogetopt(struct socket *so, struct sockopt *sopt)
2380{
2381	int	error, optval;
2382	struct	linger l;
2383	struct	timeval tv;
2384#ifdef MAC
2385	struct mac extmac;
2386#endif
2387
2388	error = 0;
2389	if (sopt->sopt_level != SOL_SOCKET) {
2390		if (so->so_proto && so->so_proto->pr_ctloutput) {
2391			return ((*so->so_proto->pr_ctloutput)
2392				  (so, sopt));
2393		} else
2394			return (ENOPROTOOPT);
2395	} else {
2396		switch (sopt->sopt_name) {
2397#ifdef INET
2398		case SO_ACCEPTFILTER:
2399			error = do_getopt_accept_filter(so, sopt);
2400			break;
2401#endif
2402		case SO_LINGER:
2403			SOCK_LOCK(so);
2404			l.l_onoff = so->so_options & SO_LINGER;
2405			l.l_linger = so->so_linger;
2406			SOCK_UNLOCK(so);
2407			error = sooptcopyout(sopt, &l, sizeof l);
2408			break;
2409
2410		case SO_USELOOPBACK:
2411		case SO_DONTROUTE:
2412		case SO_DEBUG:
2413		case SO_KEEPALIVE:
2414		case SO_REUSEADDR:
2415		case SO_REUSEPORT:
2416		case SO_BROADCAST:
2417		case SO_OOBINLINE:
2418		case SO_ACCEPTCONN:
2419		case SO_TIMESTAMP:
2420		case SO_BINTIME:
2421		case SO_NOSIGPIPE:
2422			optval = so->so_options & sopt->sopt_name;
2423integer:
2424			error = sooptcopyout(sopt, &optval, sizeof optval);
2425			break;
2426
2427		case SO_TYPE:
2428			optval = so->so_type;
2429			goto integer;
2430
2431		case SO_ERROR:
2432			SOCK_LOCK(so);
2433			optval = so->so_error;
2434			so->so_error = 0;
2435			SOCK_UNLOCK(so);
2436			goto integer;
2437
2438		case SO_SNDBUF:
2439			optval = so->so_snd.sb_hiwat;
2440			goto integer;
2441
2442		case SO_RCVBUF:
2443			optval = so->so_rcv.sb_hiwat;
2444			goto integer;
2445
2446		case SO_SNDLOWAT:
2447			optval = so->so_snd.sb_lowat;
2448			goto integer;
2449
2450		case SO_RCVLOWAT:
2451			optval = so->so_rcv.sb_lowat;
2452			goto integer;
2453
2454		case SO_SNDTIMEO:
2455		case SO_RCVTIMEO:
2456			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2457				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2458
2459			tv.tv_sec = optval / hz;
2460			tv.tv_usec = (optval % hz) * tick;
2461#ifdef COMPAT_IA32
2462			if (SV_CURPROC_FLAG(SV_ILP32)) {
2463				struct timeval32 tv32;
2464
2465				CP(tv, tv32, tv_sec);
2466				CP(tv, tv32, tv_usec);
2467				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2468			} else
2469#endif
2470				error = sooptcopyout(sopt, &tv, sizeof tv);
2471			break;
2472
2473		case SO_LABEL:
2474#ifdef MAC
2475			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2476			    sizeof(extmac));
2477			if (error)
2478				return (error);
2479			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2480			    so, &extmac);
2481			if (error)
2482				return (error);
2483			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2484#else
2485			error = EOPNOTSUPP;
2486#endif
2487			break;
2488
2489		case SO_PEERLABEL:
2490#ifdef MAC
2491			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2492			    sizeof(extmac));
2493			if (error)
2494				return (error);
2495			error = mac_getsockopt_peerlabel(
2496			    sopt->sopt_td->td_ucred, so, &extmac);
2497			if (error)
2498				return (error);
2499			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2500#else
2501			error = EOPNOTSUPP;
2502#endif
2503			break;
2504
2505		case SO_LISTENQLIMIT:
2506			optval = so->so_qlimit;
2507			goto integer;
2508
2509		case SO_LISTENQLEN:
2510			optval = so->so_qlen;
2511			goto integer;
2512
2513		case SO_LISTENINCQLEN:
2514			optval = so->so_incqlen;
2515			goto integer;
2516
2517		default:
2518			error = ENOPROTOOPT;
2519			break;
2520		}
2521		return (error);
2522	}
2523}
2524
2525/* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2526int
2527soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2528{
2529	struct mbuf *m, *m_prev;
2530	int sopt_size = sopt->sopt_valsize;
2531
2532	MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2533	if (m == NULL)
2534		return ENOBUFS;
2535	if (sopt_size > MLEN) {
2536		MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
2537		if ((m->m_flags & M_EXT) == 0) {
2538			m_free(m);
2539			return ENOBUFS;
2540		}
2541		m->m_len = min(MCLBYTES, sopt_size);
2542	} else {
2543		m->m_len = min(MLEN, sopt_size);
2544	}
2545	sopt_size -= m->m_len;
2546	*mp = m;
2547	m_prev = m;
2548
2549	while (sopt_size) {
2550		MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2551		if (m == NULL) {
2552			m_freem(*mp);
2553			return ENOBUFS;
2554		}
2555		if (sopt_size > MLEN) {
2556			MCLGET(m, sopt->sopt_td != NULL ? M_WAIT :
2557			    M_DONTWAIT);
2558			if ((m->m_flags & M_EXT) == 0) {
2559				m_freem(m);
2560				m_freem(*mp);
2561				return ENOBUFS;
2562			}
2563			m->m_len = min(MCLBYTES, sopt_size);
2564		} else {
2565			m->m_len = min(MLEN, sopt_size);
2566		}
2567		sopt_size -= m->m_len;
2568		m_prev->m_next = m;
2569		m_prev = m;
2570	}
2571	return (0);
2572}
2573
2574/* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2575int
2576soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2577{
2578	struct mbuf *m0 = m;
2579
2580	if (sopt->sopt_val == NULL)
2581		return (0);
2582	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2583		if (sopt->sopt_td != NULL) {
2584			int error;
2585
2586			error = copyin(sopt->sopt_val, mtod(m, char *),
2587				       m->m_len);
2588			if (error != 0) {
2589				m_freem(m0);
2590				return(error);
2591			}
2592		} else
2593			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2594		sopt->sopt_valsize -= m->m_len;
2595		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2596		m = m->m_next;
2597	}
2598	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2599		panic("ip6_sooptmcopyin");
2600	return (0);
2601}
2602
2603/* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2604int
2605soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2606{
2607	struct mbuf *m0 = m;
2608	size_t valsize = 0;
2609
2610	if (sopt->sopt_val == NULL)
2611		return (0);
2612	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2613		if (sopt->sopt_td != NULL) {
2614			int error;
2615
2616			error = copyout(mtod(m, char *), sopt->sopt_val,
2617				       m->m_len);
2618			if (error != 0) {
2619				m_freem(m0);
2620				return(error);
2621			}
2622		} else
2623			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2624	       sopt->sopt_valsize -= m->m_len;
2625	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2626	       valsize += m->m_len;
2627	       m = m->m_next;
2628	}
2629	if (m != NULL) {
2630		/* enough soopt buffer should be given from user-land */
2631		m_freem(m0);
2632		return(EINVAL);
2633	}
2634	sopt->sopt_valsize = valsize;
2635	return (0);
2636}
2637
2638/*
2639 * sohasoutofband(): protocol notifies socket layer of the arrival of new
2640 * out-of-band data, which will then notify socket consumers.
2641 */
2642void
2643sohasoutofband(struct socket *so)
2644{
2645
2646	if (so->so_sigio != NULL)
2647		pgsigio(&so->so_sigio, SIGURG, 0);
2648	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2649}
2650
2651int
2652sopoll(struct socket *so, int events, struct ucred *active_cred,
2653    struct thread *td)
2654{
2655
2656	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2657	    td));
2658}
2659
2660int
2661sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2662    struct thread *td)
2663{
2664	int revents = 0;
2665
2666	SOCKBUF_LOCK(&so->so_snd);
2667	SOCKBUF_LOCK(&so->so_rcv);
2668	if (events & (POLLIN | POLLRDNORM))
2669		if (soreadable(so))
2670			revents |= events & (POLLIN | POLLRDNORM);
2671
2672	if (events & POLLINIGNEOF)
2673		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2674		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2675			revents |= POLLINIGNEOF;
2676
2677	if (events & (POLLOUT | POLLWRNORM))
2678		if (sowriteable(so))
2679			revents |= events & (POLLOUT | POLLWRNORM);
2680
2681	if (events & (POLLPRI | POLLRDBAND))
2682		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2683			revents |= events & (POLLPRI | POLLRDBAND);
2684
2685	if (revents == 0) {
2686		if (events &
2687		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2688		     POLLRDBAND)) {
2689			selrecord(td, &so->so_rcv.sb_sel);
2690			so->so_rcv.sb_flags |= SB_SEL;
2691		}
2692
2693		if (events & (POLLOUT | POLLWRNORM)) {
2694			selrecord(td, &so->so_snd.sb_sel);
2695			so->so_snd.sb_flags |= SB_SEL;
2696		}
2697	}
2698
2699	SOCKBUF_UNLOCK(&so->so_rcv);
2700	SOCKBUF_UNLOCK(&so->so_snd);
2701	return (revents);
2702}
2703
2704int
2705soo_kqfilter(struct file *fp, struct knote *kn)
2706{
2707	struct socket *so = kn->kn_fp->f_data;
2708	struct sockbuf *sb;
2709
2710	switch (kn->kn_filter) {
2711	case EVFILT_READ:
2712		if (so->so_options & SO_ACCEPTCONN)
2713			kn->kn_fop = &solisten_filtops;
2714		else
2715			kn->kn_fop = &soread_filtops;
2716		sb = &so->so_rcv;
2717		break;
2718	case EVFILT_WRITE:
2719		kn->kn_fop = &sowrite_filtops;
2720		sb = &so->so_snd;
2721		break;
2722	default:
2723		return (EINVAL);
2724	}
2725
2726	SOCKBUF_LOCK(sb);
2727	knlist_add(&sb->sb_sel.si_note, kn, 1);
2728	sb->sb_flags |= SB_KNOTE;
2729	SOCKBUF_UNLOCK(sb);
2730	return (0);
2731}
2732
2733/*
2734 * Some routines that return EOPNOTSUPP for entry points that are not
2735 * supported by a protocol.  Fill in as needed.
2736 */
2737int
2738pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2739{
2740
2741	return EOPNOTSUPP;
2742}
2743
2744int
2745pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
2746{
2747
2748	return EOPNOTSUPP;
2749}
2750
2751int
2752pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2753{
2754
2755	return EOPNOTSUPP;
2756}
2757
2758int
2759pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2760{
2761
2762	return EOPNOTSUPP;
2763}
2764
2765int
2766pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2767{
2768
2769	return EOPNOTSUPP;
2770}
2771
2772int
2773pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2774    struct ifnet *ifp, struct thread *td)
2775{
2776
2777	return EOPNOTSUPP;
2778}
2779
2780int
2781pru_disconnect_notsupp(struct socket *so)
2782{
2783
2784	return EOPNOTSUPP;
2785}
2786
2787int
2788pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
2789{
2790
2791	return EOPNOTSUPP;
2792}
2793
2794int
2795pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2796{
2797
2798	return EOPNOTSUPP;
2799}
2800
2801int
2802pru_rcvd_notsupp(struct socket *so, int flags)
2803{
2804
2805	return EOPNOTSUPP;
2806}
2807
2808int
2809pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2810{
2811
2812	return EOPNOTSUPP;
2813}
2814
2815int
2816pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2817    struct sockaddr *addr, struct mbuf *control, struct thread *td)
2818{
2819
2820	return EOPNOTSUPP;
2821}
2822
2823/*
2824 * This isn't really a ``null'' operation, but it's the default one and
2825 * doesn't do anything destructive.
2826 */
2827int
2828pru_sense_null(struct socket *so, struct stat *sb)
2829{
2830
2831	sb->st_blksize = so->so_snd.sb_hiwat;
2832	return 0;
2833}
2834
2835int
2836pru_shutdown_notsupp(struct socket *so)
2837{
2838
2839	return EOPNOTSUPP;
2840}
2841
2842int
2843pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2844{
2845
2846	return EOPNOTSUPP;
2847}
2848
2849int
2850pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2851    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2852{
2853
2854	return EOPNOTSUPP;
2855}
2856
2857int
2858pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2859    struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2860{
2861
2862	return EOPNOTSUPP;
2863}
2864
2865int
2866pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
2867    struct thread *td)
2868{
2869
2870	return EOPNOTSUPP;
2871}
2872
2873static void
2874filt_sordetach(struct knote *kn)
2875{
2876	struct socket *so = kn->kn_fp->f_data;
2877
2878	SOCKBUF_LOCK(&so->so_rcv);
2879	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2880	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2881		so->so_rcv.sb_flags &= ~SB_KNOTE;
2882	SOCKBUF_UNLOCK(&so->so_rcv);
2883}
2884
2885/*ARGSUSED*/
2886static int
2887filt_soread(struct knote *kn, long hint)
2888{
2889	struct socket *so;
2890
2891	so = kn->kn_fp->f_data;
2892	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2893
2894	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2895	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2896		kn->kn_flags |= EV_EOF;
2897		kn->kn_fflags = so->so_error;
2898		return (1);
2899	} else if (so->so_error)	/* temporary udp error */
2900		return (1);
2901	else if (kn->kn_sfflags & NOTE_LOWAT)
2902		return (kn->kn_data >= kn->kn_sdata);
2903	else
2904		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2905}
2906
2907static void
2908filt_sowdetach(struct knote *kn)
2909{
2910	struct socket *so = kn->kn_fp->f_data;
2911
2912	SOCKBUF_LOCK(&so->so_snd);
2913	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2914	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2915		so->so_snd.sb_flags &= ~SB_KNOTE;
2916	SOCKBUF_UNLOCK(&so->so_snd);
2917}
2918
2919/*ARGSUSED*/
2920static int
2921filt_sowrite(struct knote *kn, long hint)
2922{
2923	struct socket *so;
2924
2925	so = kn->kn_fp->f_data;
2926	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2927	kn->kn_data = sbspace(&so->so_snd);
2928	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2929		kn->kn_flags |= EV_EOF;
2930		kn->kn_fflags = so->so_error;
2931		return (1);
2932	} else if (so->so_error)	/* temporary udp error */
2933		return (1);
2934	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2935	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2936		return (0);
2937	else if (kn->kn_sfflags & NOTE_LOWAT)
2938		return (kn->kn_data >= kn->kn_sdata);
2939	else
2940		return (kn->kn_data >= so->so_snd.sb_lowat);
2941}
2942
2943/*ARGSUSED*/
2944static int
2945filt_solisten(struct knote *kn, long hint)
2946{
2947	struct socket *so = kn->kn_fp->f_data;
2948
2949	kn->kn_data = so->so_qlen;
2950	return (! TAILQ_EMPTY(&so->so_comp));
2951}
2952
2953int
2954socheckuid(struct socket *so, uid_t uid)
2955{
2956
2957	if (so == NULL)
2958		return (EPERM);
2959	if (so->so_cred->cr_uid != uid)
2960		return (EPERM);
2961	return (0);
2962}
2963
2964static int
2965sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
2966{
2967	int error;
2968	int val;
2969
2970	val = somaxconn;
2971	error = sysctl_handle_int(oidp, &val, 0, req);
2972	if (error || !req->newptr )
2973		return (error);
2974
2975	if (val < 1 || val > USHRT_MAX)
2976		return (EINVAL);
2977
2978	somaxconn = val;
2979	return (0);
2980}
2981
2982/*
2983 * These functions are used by protocols to notify the socket layer (and its
2984 * consumers) of state changes in the sockets driven by protocol-side events.
2985 */
2986
2987/*
2988 * Procedures to manipulate state flags of socket and do appropriate wakeups.
2989 *
2990 * Normal sequence from the active (originating) side is that
2991 * soisconnecting() is called during processing of connect() call, resulting
2992 * in an eventual call to soisconnected() if/when the connection is
2993 * established.  When the connection is torn down soisdisconnecting() is
2994 * called during processing of disconnect() call, and soisdisconnected() is
2995 * called when the connection to the peer is totally severed.  The semantics
2996 * of these routines are such that connectionless protocols can call
2997 * soisconnected() and soisdisconnected() only, bypassing the in-progress
2998 * calls when setting up a ``connection'' takes no time.
2999 *
3000 * From the passive side, a socket is created with two queues of sockets:
3001 * so_incomp for connections in progress and so_comp for connections already
3002 * made and awaiting user acceptance.  As a protocol is preparing incoming
3003 * connections, it creates a socket structure queued on so_incomp by calling
3004 * sonewconn().  When the connection is established, soisconnected() is
3005 * called, and transfers the socket structure to so_comp, making it available
3006 * to accept().
3007 *
3008 * If a socket is closed with sockets on either so_incomp or so_comp, these
3009 * sockets are dropped.
3010 *
3011 * If higher-level protocols are implemented in the kernel, the wakeups done
3012 * here will sometimes cause software-interrupt process scheduling.
3013 */
3014void
3015soisconnecting(struct socket *so)
3016{
3017
3018	SOCK_LOCK(so);
3019	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3020	so->so_state |= SS_ISCONNECTING;
3021	SOCK_UNLOCK(so);
3022}
3023
3024void
3025soisconnected(struct socket *so)
3026{
3027	struct socket *head;
3028
3029	ACCEPT_LOCK();
3030	SOCK_LOCK(so);
3031	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3032	so->so_state |= SS_ISCONNECTED;
3033	head = so->so_head;
3034	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3035		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3036			SOCK_UNLOCK(so);
3037			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3038			head->so_incqlen--;
3039			so->so_qstate &= ~SQ_INCOMP;
3040			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3041			head->so_qlen++;
3042			so->so_qstate |= SQ_COMP;
3043			ACCEPT_UNLOCK();
3044			sorwakeup(head);
3045			wakeup_one(&head->so_timeo);
3046		} else {
3047			ACCEPT_UNLOCK();
3048			so->so_upcall =
3049			    head->so_accf->so_accept_filter->accf_callback;
3050			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
3051			so->so_rcv.sb_flags |= SB_UPCALL;
3052			so->so_options &= ~SO_ACCEPTFILTER;
3053			SOCK_UNLOCK(so);
3054			so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
3055		}
3056		return;
3057	}
3058	SOCK_UNLOCK(so);
3059	ACCEPT_UNLOCK();
3060	wakeup(&so->so_timeo);
3061	sorwakeup(so);
3062	sowwakeup(so);
3063}
3064
3065void
3066soisdisconnecting(struct socket *so)
3067{
3068
3069	/*
3070	 * Note: This code assumes that SOCK_LOCK(so) and
3071	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3072	 */
3073	SOCKBUF_LOCK(&so->so_rcv);
3074	so->so_state &= ~SS_ISCONNECTING;
3075	so->so_state |= SS_ISDISCONNECTING;
3076	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3077	sorwakeup_locked(so);
3078	SOCKBUF_LOCK(&so->so_snd);
3079	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3080	sowwakeup_locked(so);
3081	wakeup(&so->so_timeo);
3082}
3083
3084void
3085soisdisconnected(struct socket *so)
3086{
3087
3088	/*
3089	 * Note: This code assumes that SOCK_LOCK(so) and
3090	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3091	 */
3092	SOCKBUF_LOCK(&so->so_rcv);
3093	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3094	so->so_state |= SS_ISDISCONNECTED;
3095	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3096	sorwakeup_locked(so);
3097	SOCKBUF_LOCK(&so->so_snd);
3098	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3099	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3100	sowwakeup_locked(so);
3101	wakeup(&so->so_timeo);
3102}
3103
3104/*
3105 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3106 */
3107struct sockaddr *
3108sodupsockaddr(const struct sockaddr *sa, int mflags)
3109{
3110	struct sockaddr *sa2;
3111
3112	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3113	if (sa2)
3114		bcopy(sa, sa2, sa->sa_len);
3115	return sa2;
3116}
3117
3118/*
3119 * Create an external-format (``xsocket'') structure using the information in
3120 * the kernel-format socket structure pointed to by so.  This is done to
3121 * reduce the spew of irrelevant information over this interface, to isolate
3122 * user code from changes in the kernel structure, and potentially to provide
3123 * information-hiding if we decide that some of this information should be
3124 * hidden from users.
3125 */
3126void
3127sotoxsocket(struct socket *so, struct xsocket *xso)
3128{
3129
3130	xso->xso_len = sizeof *xso;
3131	xso->xso_so = so;
3132	xso->so_type = so->so_type;
3133	xso->so_options = so->so_options;
3134	xso->so_linger = so->so_linger;
3135	xso->so_state = so->so_state;
3136	xso->so_pcb = so->so_pcb;
3137	xso->xso_protocol = so->so_proto->pr_protocol;
3138	xso->xso_family = so->so_proto->pr_domain->dom_family;
3139	xso->so_qlen = so->so_qlen;
3140	xso->so_incqlen = so->so_incqlen;
3141	xso->so_qlimit = so->so_qlimit;
3142	xso->so_timeo = so->so_timeo;
3143	xso->so_error = so->so_error;
3144	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3145	xso->so_oobmark = so->so_oobmark;
3146	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3147	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3148	xso->so_uid = so->so_cred->cr_uid;
3149}
3150
3151
3152/*
3153 * Socket accessor functions to provide external consumers with
3154 * a safe interface to socket state
3155 *
3156 */
3157
3158void
3159so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg)
3160{
3161
3162	TAILQ_FOREACH(so, &so->so_comp, so_list)
3163		func(so, arg);
3164}
3165
3166struct sockbuf *
3167so_sockbuf_rcv(struct socket *so)
3168{
3169
3170	return (&so->so_rcv);
3171}
3172
3173struct sockbuf *
3174so_sockbuf_snd(struct socket *so)
3175{
3176
3177	return (&so->so_snd);
3178}
3179
3180int
3181so_state_get(const struct socket *so)
3182{
3183
3184	return (so->so_state);
3185}
3186
3187void
3188so_state_set(struct socket *so, int val)
3189{
3190
3191	so->so_state = val;
3192}
3193
3194int
3195so_options_get(const struct socket *so)
3196{
3197
3198	return (so->so_options);
3199}
3200
3201void
3202so_options_set(struct socket *so, int val)
3203{
3204
3205	so->so_options = val;
3206}
3207
3208int
3209so_error_get(const struct socket *so)
3210{
3211
3212	return (so->so_error);
3213}
3214
3215void
3216so_error_set(struct socket *so, int val)
3217{
3218
3219	so->so_error = val;
3220}
3221
3222int
3223so_linger_get(const struct socket *so)
3224{
3225
3226	return (so->so_linger);
3227}
3228
3229void
3230so_linger_set(struct socket *so, int val)
3231{
3232
3233	so->so_linger = val;
3234}
3235
3236struct protosw *
3237so_protosw_get(const struct socket *so)
3238{
3239
3240	return (so->so_proto);
3241}
3242
3243void
3244so_protosw_set(struct socket *so, struct protosw *val)
3245{
3246
3247	so->so_proto = val;
3248}
3249
3250void
3251so_sorwakeup(struct socket *so)
3252{
3253
3254	sorwakeup(so);
3255}
3256
3257void
3258so_sowwakeup(struct socket *so)
3259{
3260
3261	sowwakeup(so);
3262}
3263
3264void
3265so_sorwakeup_locked(struct socket *so)
3266{
3267
3268	sorwakeup_locked(so);
3269}
3270
3271void
3272so_sowwakeup_locked(struct socket *so)
3273{
3274
3275	sowwakeup_locked(so);
3276}
3277
3278void
3279so_lock(struct socket *so)
3280{
3281	SOCK_LOCK(so);
3282}
3283
3284void
3285so_unlock(struct socket *so)
3286{
3287	SOCK_UNLOCK(so);
3288}
3289