uipc_socket.c revision 175968
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004 The FreeBSD Foundation
5 * Copyright (c) 2004-2007 Robert N. M. Watson
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33 */
34
35/*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn().  Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn().  Socket layer private.
43 *
44 * pru_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation.  This is called
46 * from socreate() and sonewconn().  Socket layer private.
47 *
48 * pru_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pru_attach() has
50 * been successfully called.  If pru_attach() returned an error,
51 * pru_detach() will not be called.  Socket layer private.
52 *
53 * pru_abort() and pru_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection.  Historically, pru_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state.  This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state.  This is a
64 * public interface  that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected).  This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required.  Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation.  This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed.  This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment.  For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 */
96
97#include <sys/cdefs.h>
98__FBSDID("$FreeBSD: head/sys/kern/uipc_socket.c 175968 2008-02-04 12:25:13Z rwatson $");
99
100#include "opt_inet.h"
101#include "opt_mac.h"
102#include "opt_zero.h"
103#include "opt_compat.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/fcntl.h>
108#include <sys/limits.h>
109#include <sys/lock.h>
110#include <sys/mac.h>
111#include <sys/malloc.h>
112#include <sys/mbuf.h>
113#include <sys/mutex.h>
114#include <sys/domain.h>
115#include <sys/file.h>			/* for struct knote */
116#include <sys/kernel.h>
117#include <sys/event.h>
118#include <sys/eventhandler.h>
119#include <sys/poll.h>
120#include <sys/proc.h>
121#include <sys/protosw.h>
122#include <sys/socket.h>
123#include <sys/socketvar.h>
124#include <sys/resourcevar.h>
125#include <sys/signalvar.h>
126#include <sys/stat.h>
127#include <sys/sx.h>
128#include <sys/sysctl.h>
129#include <sys/uio.h>
130#include <sys/jail.h>
131
132#include <security/mac/mac_framework.h>
133
134#include <vm/uma.h>
135
136#ifdef COMPAT_IA32
137#include <sys/mount.h>
138#include <compat/freebsd32/freebsd32.h>
139
140extern struct sysentvec ia32_freebsd_sysvec;
141#endif
142
143static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
144		    int flags);
145
146static void	filt_sordetach(struct knote *kn);
147static int	filt_soread(struct knote *kn, long hint);
148static void	filt_sowdetach(struct knote *kn);
149static int	filt_sowrite(struct knote *kn, long hint);
150static int	filt_solisten(struct knote *kn, long hint);
151
152static struct filterops solisten_filtops =
153	{ 1, NULL, filt_sordetach, filt_solisten };
154static struct filterops soread_filtops =
155	{ 1, NULL, filt_sordetach, filt_soread };
156static struct filterops sowrite_filtops =
157	{ 1, NULL, filt_sowdetach, filt_sowrite };
158
159uma_zone_t socket_zone;
160so_gen_t	so_gencnt;	/* generation count for sockets */
161
162int	maxsockets;
163
164MALLOC_DEFINE(M_SONAME, "soname", "socket name");
165MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
166
167static int somaxconn = SOMAXCONN;
168static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
169/* XXX: we dont have SYSCTL_USHORT */
170SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
171    0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
172    "queue size");
173static int numopensockets;
174SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
175    &numopensockets, 0, "Number of open sockets");
176#ifdef ZERO_COPY_SOCKETS
177/* These aren't static because they're used in other files. */
178int so_zero_copy_send = 1;
179int so_zero_copy_receive = 1;
180SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
181    "Zero copy controls");
182SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
183    &so_zero_copy_receive, 0, "Enable zero copy receive");
184SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
185    &so_zero_copy_send, 0, "Enable zero copy send");
186#endif /* ZERO_COPY_SOCKETS */
187
188/*
189 * accept_mtx locks down per-socket fields relating to accept queues.  See
190 * socketvar.h for an annotation of the protected fields of struct socket.
191 */
192struct mtx accept_mtx;
193MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
194
195/*
196 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
197 * so_gencnt field.
198 */
199static struct mtx so_global_mtx;
200MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
201
202/*
203 * General IPC sysctl name space, used by sockets and a variety of other IPC
204 * types.
205 */
206SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
207
208/*
209 * Sysctl to get and set the maximum global sockets limit.  Notify protocols
210 * of the change so that they can update their dependent limits as required.
211 */
212static int
213sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
214{
215	int error, newmaxsockets;
216
217	newmaxsockets = maxsockets;
218	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
219	if (error == 0 && req->newptr) {
220		if (newmaxsockets > maxsockets) {
221			maxsockets = newmaxsockets;
222			if (maxsockets > ((maxfiles / 4) * 3)) {
223				maxfiles = (maxsockets * 5) / 4;
224				maxfilesperproc = (maxfiles * 9) / 10;
225			}
226			EVENTHANDLER_INVOKE(maxsockets_change);
227		} else
228			error = EINVAL;
229	}
230	return (error);
231}
232
233SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
234    &maxsockets, 0, sysctl_maxsockets, "IU",
235    "Maximum number of sockets avaliable");
236
237/*
238 * Initialise maxsockets.
239 */
240static void init_maxsockets(void *ignored)
241{
242	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
243	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
244}
245SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
246
247/*
248 * Socket operation routines.  These routines are called by the routines in
249 * sys_socket.c or from a system process, and implement the semantics of
250 * socket operations by switching out to the protocol specific routines.
251 */
252
253/*
254 * Get a socket structure from our zone, and initialize it.  Note that it
255 * would probably be better to allocate socket and PCB at the same time, but
256 * I'm not convinced that all the protocols can be easily modified to do
257 * this.
258 *
259 * soalloc() returns a socket with a ref count of 0.
260 */
261static struct socket *
262soalloc(void)
263{
264	struct socket *so;
265
266	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
267	if (so == NULL)
268		return (NULL);
269#ifdef MAC
270	if (mac_socket_init(so, M_NOWAIT) != 0) {
271		uma_zfree(socket_zone, so);
272		return (NULL);
273	}
274#endif
275	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
276	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
277	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
278	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
279	TAILQ_INIT(&so->so_aiojobq);
280	mtx_lock(&so_global_mtx);
281	so->so_gencnt = ++so_gencnt;
282	++numopensockets;
283	mtx_unlock(&so_global_mtx);
284	return (so);
285}
286
287/*
288 * Free the storage associated with a socket at the socket layer, tear down
289 * locks, labels, etc.  All protocol state is assumed already to have been
290 * torn down (and possibly never set up) by the caller.
291 */
292static void
293sodealloc(struct socket *so)
294{
295
296	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
297	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
298
299	mtx_lock(&so_global_mtx);
300	so->so_gencnt = ++so_gencnt;
301	--numopensockets;	/* Could be below, but faster here. */
302	mtx_unlock(&so_global_mtx);
303	if (so->so_rcv.sb_hiwat)
304		(void)chgsbsize(so->so_cred->cr_uidinfo,
305		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
306	if (so->so_snd.sb_hiwat)
307		(void)chgsbsize(so->so_cred->cr_uidinfo,
308		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
309#ifdef INET
310	/* remove acccept filter if one is present. */
311	if (so->so_accf != NULL)
312		do_setopt_accept_filter(so, NULL);
313#endif
314#ifdef MAC
315	mac_socket_destroy(so);
316#endif
317	crfree(so->so_cred);
318	sx_destroy(&so->so_snd.sb_sx);
319	sx_destroy(&so->so_rcv.sb_sx);
320	SOCKBUF_LOCK_DESTROY(&so->so_snd);
321	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
322	uma_zfree(socket_zone, so);
323}
324
325/*
326 * socreate returns a socket with a ref count of 1.  The socket should be
327 * closed with soclose().
328 */
329int
330socreate(int dom, struct socket **aso, int type, int proto,
331    struct ucred *cred, struct thread *td)
332{
333	struct protosw *prp;
334	struct socket *so;
335	int error;
336
337	if (proto)
338		prp = pffindproto(dom, proto, type);
339	else
340		prp = pffindtype(dom, type);
341
342	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
343	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
344		return (EPROTONOSUPPORT);
345
346	if (jailed(cred) && jail_socket_unixiproute_only &&
347	    prp->pr_domain->dom_family != PF_LOCAL &&
348	    prp->pr_domain->dom_family != PF_INET &&
349	    prp->pr_domain->dom_family != PF_ROUTE) {
350		return (EPROTONOSUPPORT);
351	}
352
353	if (prp->pr_type != type)
354		return (EPROTOTYPE);
355	so = soalloc();
356	if (so == NULL)
357		return (ENOBUFS);
358
359	TAILQ_INIT(&so->so_incomp);
360	TAILQ_INIT(&so->so_comp);
361	so->so_type = type;
362	so->so_cred = crhold(cred);
363	so->so_proto = prp;
364#ifdef MAC
365	mac_socket_create(cred, so);
366#endif
367	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
368	    NULL, NULL, NULL);
369	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
370	    NULL, NULL, NULL);
371	so->so_count = 1;
372	/*
373	 * Auto-sizing of socket buffers is managed by the protocols and
374	 * the appropriate flags must be set in the pru_attach function.
375	 */
376	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
377	if (error) {
378		KASSERT(so->so_count == 1, ("socreate: so_count %d",
379		    so->so_count));
380		so->so_count = 0;
381		sodealloc(so);
382		return (error);
383	}
384	*aso = so;
385	return (0);
386}
387
388#ifdef REGRESSION
389static int regression_sonewconn_earlytest = 1;
390SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
391    &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
392#endif
393
394/*
395 * When an attempt at a new connection is noted on a socket which accepts
396 * connections, sonewconn is called.  If the connection is possible (subject
397 * to space constraints, etc.) then we allocate a new structure, propoerly
398 * linked into the data structure of the original socket, and return this.
399 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
400 *
401 * Note: the ref count on the socket is 0 on return.
402 */
403struct socket *
404sonewconn(struct socket *head, int connstatus)
405{
406	struct socket *so;
407	int over;
408
409	ACCEPT_LOCK();
410	over = (head->so_qlen > 3 * head->so_qlimit / 2);
411	ACCEPT_UNLOCK();
412#ifdef REGRESSION
413	if (regression_sonewconn_earlytest && over)
414#else
415	if (over)
416#endif
417		return (NULL);
418	so = soalloc();
419	if (so == NULL)
420		return (NULL);
421	if ((head->so_options & SO_ACCEPTFILTER) != 0)
422		connstatus = 0;
423	so->so_head = head;
424	so->so_type = head->so_type;
425	so->so_options = head->so_options &~ SO_ACCEPTCONN;
426	so->so_linger = head->so_linger;
427	so->so_state = head->so_state | SS_NOFDREF;
428	so->so_proto = head->so_proto;
429	so->so_cred = crhold(head->so_cred);
430#ifdef MAC
431	SOCK_LOCK(head);
432	mac_socket_newconn(head, so);
433	SOCK_UNLOCK(head);
434#endif
435	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
436	    NULL, NULL, NULL);
437	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
438	    NULL, NULL, NULL);
439	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
440	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
441		sodealloc(so);
442		return (NULL);
443	}
444	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
445	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
446	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
447	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
448	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
449	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
450	so->so_state |= connstatus;
451	ACCEPT_LOCK();
452	if (connstatus) {
453		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
454		so->so_qstate |= SQ_COMP;
455		head->so_qlen++;
456	} else {
457		/*
458		 * Keep removing sockets from the head until there's room for
459		 * us to insert on the tail.  In pre-locking revisions, this
460		 * was a simple if(), but as we could be racing with other
461		 * threads and soabort() requires dropping locks, we must
462		 * loop waiting for the condition to be true.
463		 */
464		while (head->so_incqlen > head->so_qlimit) {
465			struct socket *sp;
466			sp = TAILQ_FIRST(&head->so_incomp);
467			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
468			head->so_incqlen--;
469			sp->so_qstate &= ~SQ_INCOMP;
470			sp->so_head = NULL;
471			ACCEPT_UNLOCK();
472			soabort(sp);
473			ACCEPT_LOCK();
474		}
475		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
476		so->so_qstate |= SQ_INCOMP;
477		head->so_incqlen++;
478	}
479	ACCEPT_UNLOCK();
480	if (connstatus) {
481		sorwakeup(head);
482		wakeup_one(&head->so_timeo);
483	}
484	return (so);
485}
486
487int
488sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
489{
490
491	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
492}
493
494/*
495 * solisten() transitions a socket from a non-listening state to a listening
496 * state, but can also be used to update the listen queue depth on an
497 * existing listen socket.  The protocol will call back into the sockets
498 * layer using solisten_proto_check() and solisten_proto() to check and set
499 * socket-layer listen state.  Call backs are used so that the protocol can
500 * acquire both protocol and socket layer locks in whatever order is required
501 * by the protocol.
502 *
503 * Protocol implementors are advised to hold the socket lock across the
504 * socket-layer test and set to avoid races at the socket layer.
505 */
506int
507solisten(struct socket *so, int backlog, struct thread *td)
508{
509
510	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
511}
512
513int
514solisten_proto_check(struct socket *so)
515{
516
517	SOCK_LOCK_ASSERT(so);
518
519	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
520	    SS_ISDISCONNECTING))
521		return (EINVAL);
522	return (0);
523}
524
525void
526solisten_proto(struct socket *so, int backlog)
527{
528
529	SOCK_LOCK_ASSERT(so);
530
531	if (backlog < 0 || backlog > somaxconn)
532		backlog = somaxconn;
533	so->so_qlimit = backlog;
534	so->so_options |= SO_ACCEPTCONN;
535}
536
537/*
538 * Attempt to free a socket.  This should really be sotryfree().
539 *
540 * sofree() will succeed if:
541 *
542 * - There are no outstanding file descriptor references or related consumers
543 *   (so_count == 0).
544 *
545 * - The socket has been closed by user space, if ever open (SS_NOFDREF).
546 *
547 * - The protocol does not have an outstanding strong reference on the socket
548 *   (SS_PROTOREF).
549 *
550 * - The socket is not in a completed connection queue, so a process has been
551 *   notified that it is present.  If it is removed, the user process may
552 *   block in accept() despite select() saying the socket was ready.
553 *
554 * Otherwise, it will quietly abort so that a future call to sofree(), when
555 * conditions are right, can succeed.
556 */
557void
558sofree(struct socket *so)
559{
560	struct protosw *pr = so->so_proto;
561	struct socket *head;
562
563	ACCEPT_LOCK_ASSERT();
564	SOCK_LOCK_ASSERT(so);
565
566	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
567	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
568		SOCK_UNLOCK(so);
569		ACCEPT_UNLOCK();
570		return;
571	}
572
573	head = so->so_head;
574	if (head != NULL) {
575		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
576		    (so->so_qstate & SQ_INCOMP) != 0,
577		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
578		    "SQ_INCOMP"));
579		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
580		    (so->so_qstate & SQ_INCOMP) == 0,
581		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
582		TAILQ_REMOVE(&head->so_incomp, so, so_list);
583		head->so_incqlen--;
584		so->so_qstate &= ~SQ_INCOMP;
585		so->so_head = NULL;
586	}
587	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
588	    (so->so_qstate & SQ_INCOMP) == 0,
589	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
590	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
591	if (so->so_options & SO_ACCEPTCONN) {
592		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
593		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
594	}
595	SOCK_UNLOCK(so);
596	ACCEPT_UNLOCK();
597
598	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
599		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
600	if (pr->pr_usrreqs->pru_detach != NULL)
601		(*pr->pr_usrreqs->pru_detach)(so);
602
603	/*
604	 * From this point on, we assume that no other references to this
605	 * socket exist anywhere else in the stack.  Therefore, no locks need
606	 * to be acquired or held.
607	 *
608	 * We used to do a lot of socket buffer and socket locking here, as
609	 * well as invoke sorflush() and perform wakeups.  The direct call to
610	 * dom_dispose() and sbrelease_internal() are an inlining of what was
611	 * necessary from sorflush().
612	 *
613	 * Notice that the socket buffer and kqueue state are torn down
614	 * before calling pru_detach.  This means that protocols shold not
615	 * assume they can perform socket wakeups, etc, in their detach code.
616	 */
617	sbdestroy(&so->so_snd, so);
618	sbdestroy(&so->so_rcv, so);
619	knlist_destroy(&so->so_rcv.sb_sel.si_note);
620	knlist_destroy(&so->so_snd.sb_sel.si_note);
621	sodealloc(so);
622}
623
624/*
625 * Close a socket on last file table reference removal.  Initiate disconnect
626 * if connected.  Free socket when disconnect complete.
627 *
628 * This function will sorele() the socket.  Note that soclose() may be called
629 * prior to the ref count reaching zero.  The actual socket structure will
630 * not be freed until the ref count reaches zero.
631 */
632int
633soclose(struct socket *so)
634{
635	int error = 0;
636
637	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
638
639	funsetown(&so->so_sigio);
640	if (so->so_state & SS_ISCONNECTED) {
641		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
642			error = sodisconnect(so);
643			if (error)
644				goto drop;
645		}
646		if (so->so_options & SO_LINGER) {
647			if ((so->so_state & SS_ISDISCONNECTING) &&
648			    (so->so_state & SS_NBIO))
649				goto drop;
650			while (so->so_state & SS_ISCONNECTED) {
651				error = tsleep(&so->so_timeo,
652				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
653				if (error)
654					break;
655			}
656		}
657	}
658
659drop:
660	if (so->so_proto->pr_usrreqs->pru_close != NULL)
661		(*so->so_proto->pr_usrreqs->pru_close)(so);
662	if (so->so_options & SO_ACCEPTCONN) {
663		struct socket *sp;
664		ACCEPT_LOCK();
665		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
666			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
667			so->so_incqlen--;
668			sp->so_qstate &= ~SQ_INCOMP;
669			sp->so_head = NULL;
670			ACCEPT_UNLOCK();
671			soabort(sp);
672			ACCEPT_LOCK();
673		}
674		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
675			TAILQ_REMOVE(&so->so_comp, sp, so_list);
676			so->so_qlen--;
677			sp->so_qstate &= ~SQ_COMP;
678			sp->so_head = NULL;
679			ACCEPT_UNLOCK();
680			soabort(sp);
681			ACCEPT_LOCK();
682		}
683		ACCEPT_UNLOCK();
684	}
685	ACCEPT_LOCK();
686	SOCK_LOCK(so);
687	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
688	so->so_state |= SS_NOFDREF;
689	sorele(so);
690	return (error);
691}
692
693/*
694 * soabort() is used to abruptly tear down a connection, such as when a
695 * resource limit is reached (listen queue depth exceeded), or if a listen
696 * socket is closed while there are sockets waiting to be accepted.
697 *
698 * This interface is tricky, because it is called on an unreferenced socket,
699 * and must be called only by a thread that has actually removed the socket
700 * from the listen queue it was on, or races with other threads are risked.
701 *
702 * This interface will call into the protocol code, so must not be called
703 * with any socket locks held.  Protocols do call it while holding their own
704 * recursible protocol mutexes, but this is something that should be subject
705 * to review in the future.
706 */
707void
708soabort(struct socket *so)
709{
710
711	/*
712	 * In as much as is possible, assert that no references to this
713	 * socket are held.  This is not quite the same as asserting that the
714	 * current thread is responsible for arranging for no references, but
715	 * is as close as we can get for now.
716	 */
717	KASSERT(so->so_count == 0, ("soabort: so_count"));
718	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
719	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
720	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
721	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
722
723	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
724		(*so->so_proto->pr_usrreqs->pru_abort)(so);
725	ACCEPT_LOCK();
726	SOCK_LOCK(so);
727	sofree(so);
728}
729
730int
731soaccept(struct socket *so, struct sockaddr **nam)
732{
733	int error;
734
735	SOCK_LOCK(so);
736	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
737	so->so_state &= ~SS_NOFDREF;
738	SOCK_UNLOCK(so);
739	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
740	return (error);
741}
742
743int
744soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
745{
746	int error;
747
748	if (so->so_options & SO_ACCEPTCONN)
749		return (EOPNOTSUPP);
750	/*
751	 * If protocol is connection-based, can only connect once.
752	 * Otherwise, if connected, try to disconnect first.  This allows
753	 * user to disconnect by connecting to, e.g., a null address.
754	 */
755	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
756	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
757	    (error = sodisconnect(so)))) {
758		error = EISCONN;
759	} else {
760		/*
761		 * Prevent accumulated error from previous connection from
762		 * biting us.
763		 */
764		so->so_error = 0;
765		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
766	}
767
768	return (error);
769}
770
771int
772soconnect2(struct socket *so1, struct socket *so2)
773{
774
775	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
776}
777
778int
779sodisconnect(struct socket *so)
780{
781	int error;
782
783	if ((so->so_state & SS_ISCONNECTED) == 0)
784		return (ENOTCONN);
785	if (so->so_state & SS_ISDISCONNECTING)
786		return (EALREADY);
787	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
788	return (error);
789}
790
791#ifdef ZERO_COPY_SOCKETS
792struct so_zerocopy_stats{
793	int size_ok;
794	int align_ok;
795	int found_ifp;
796};
797struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
798#include <netinet/in.h>
799#include <net/route.h>
800#include <netinet/in_pcb.h>
801#include <vm/vm.h>
802#include <vm/vm_page.h>
803#include <vm/vm_object.h>
804
805/*
806 * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
807 * sosend_dgram() and sosend_generic() use m_uiotombuf().
808 *
809 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
810 * all of the data referenced by the uio.  If desired, it uses zero-copy.
811 * *space will be updated to reflect data copied in.
812 *
813 * NB: If atomic I/O is requested, the caller must already have checked that
814 * space can hold resid bytes.
815 *
816 * NB: In the event of an error, the caller may need to free the partial
817 * chain pointed to by *mpp.  The contents of both *uio and *space may be
818 * modified even in the case of an error.
819 */
820static int
821sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
822    int flags)
823{
824	struct mbuf *m, **mp, *top;
825	long len, resid;
826	int error;
827#ifdef ZERO_COPY_SOCKETS
828	int cow_send;
829#endif
830
831	*retmp = top = NULL;
832	mp = &top;
833	len = 0;
834	resid = uio->uio_resid;
835	error = 0;
836	do {
837#ifdef ZERO_COPY_SOCKETS
838		cow_send = 0;
839#endif /* ZERO_COPY_SOCKETS */
840		if (resid >= MINCLSIZE) {
841#ifdef ZERO_COPY_SOCKETS
842			if (top == NULL) {
843				m = m_gethdr(M_WAITOK, MT_DATA);
844				m->m_pkthdr.len = 0;
845				m->m_pkthdr.rcvif = NULL;
846			} else
847				m = m_get(M_WAITOK, MT_DATA);
848			if (so_zero_copy_send &&
849			    resid>=PAGE_SIZE &&
850			    *space>=PAGE_SIZE &&
851			    uio->uio_iov->iov_len>=PAGE_SIZE) {
852				so_zerocp_stats.size_ok++;
853				so_zerocp_stats.align_ok++;
854				cow_send = socow_setup(m, uio);
855				len = cow_send;
856			}
857			if (!cow_send) {
858				m_clget(m, M_WAITOK);
859				len = min(min(MCLBYTES, resid), *space);
860			}
861#else /* ZERO_COPY_SOCKETS */
862			if (top == NULL) {
863				m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
864				m->m_pkthdr.len = 0;
865				m->m_pkthdr.rcvif = NULL;
866			} else
867				m = m_getcl(M_TRYWAIT, MT_DATA, 0);
868			len = min(min(MCLBYTES, resid), *space);
869#endif /* ZERO_COPY_SOCKETS */
870		} else {
871			if (top == NULL) {
872				m = m_gethdr(M_TRYWAIT, MT_DATA);
873				m->m_pkthdr.len = 0;
874				m->m_pkthdr.rcvif = NULL;
875
876				len = min(min(MHLEN, resid), *space);
877				/*
878				 * For datagram protocols, leave room
879				 * for protocol headers in first mbuf.
880				 */
881				if (atomic && m && len < MHLEN)
882					MH_ALIGN(m, len);
883			} else {
884				m = m_get(M_TRYWAIT, MT_DATA);
885				len = min(min(MLEN, resid), *space);
886			}
887		}
888		if (m == NULL) {
889			error = ENOBUFS;
890			goto out;
891		}
892
893		*space -= len;
894#ifdef ZERO_COPY_SOCKETS
895		if (cow_send)
896			error = 0;
897		else
898#endif /* ZERO_COPY_SOCKETS */
899		error = uiomove(mtod(m, void *), (int)len, uio);
900		resid = uio->uio_resid;
901		m->m_len = len;
902		*mp = m;
903		top->m_pkthdr.len += len;
904		if (error)
905			goto out;
906		mp = &m->m_next;
907		if (resid <= 0) {
908			if (flags & MSG_EOR)
909				top->m_flags |= M_EOR;
910			break;
911		}
912	} while (*space > 0 && atomic);
913out:
914	*retmp = top;
915	return (error);
916}
917#endif /*ZERO_COPY_SOCKETS*/
918
919#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
920
921int
922sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
923    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
924{
925	long space, resid;
926	int clen = 0, error, dontroute;
927#ifdef ZERO_COPY_SOCKETS
928	int atomic = sosendallatonce(so) || top;
929#endif
930
931	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
932	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
933	    ("sodgram_send: !PR_ATOMIC"));
934
935	if (uio != NULL)
936		resid = uio->uio_resid;
937	else
938		resid = top->m_pkthdr.len;
939	/*
940	 * In theory resid should be unsigned.  However, space must be
941	 * signed, as it might be less than 0 if we over-committed, and we
942	 * must use a signed comparison of space and resid.  On the other
943	 * hand, a negative resid causes us to loop sending 0-length
944	 * segments to the protocol.
945	 *
946	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
947	 * type sockets since that's an error.
948	 */
949	if (resid < 0) {
950		error = EINVAL;
951		goto out;
952	}
953
954	dontroute =
955	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
956	if (td != NULL)
957		td->td_ru.ru_msgsnd++;
958	if (control != NULL)
959		clen = control->m_len;
960
961	SOCKBUF_LOCK(&so->so_snd);
962	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
963		SOCKBUF_UNLOCK(&so->so_snd);
964		error = EPIPE;
965		goto out;
966	}
967	if (so->so_error) {
968		error = so->so_error;
969		so->so_error = 0;
970		SOCKBUF_UNLOCK(&so->so_snd);
971		goto out;
972	}
973	if ((so->so_state & SS_ISCONNECTED) == 0) {
974		/*
975		 * `sendto' and `sendmsg' is allowed on a connection-based
976		 * socket if it supports implied connect.  Return ENOTCONN if
977		 * not connected and no address is supplied.
978		 */
979		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
980		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
981			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
982			    !(resid == 0 && clen != 0)) {
983				SOCKBUF_UNLOCK(&so->so_snd);
984				error = ENOTCONN;
985				goto out;
986			}
987		} else if (addr == NULL) {
988			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
989				error = ENOTCONN;
990			else
991				error = EDESTADDRREQ;
992			SOCKBUF_UNLOCK(&so->so_snd);
993			goto out;
994		}
995	}
996
997	/*
998	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
999	 * problem and need fixing.
1000	 */
1001	space = sbspace(&so->so_snd);
1002	if (flags & MSG_OOB)
1003		space += 1024;
1004	space -= clen;
1005	SOCKBUF_UNLOCK(&so->so_snd);
1006	if (resid > space) {
1007		error = EMSGSIZE;
1008		goto out;
1009	}
1010	if (uio == NULL) {
1011		resid = 0;
1012		if (flags & MSG_EOR)
1013			top->m_flags |= M_EOR;
1014	} else {
1015#ifdef ZERO_COPY_SOCKETS
1016		error = sosend_copyin(uio, &top, atomic, &space, flags);
1017		if (error)
1018			goto out;
1019#else
1020		/*
1021		 * Copy the data from userland into a mbuf chain.
1022		 * If no data is to be copied in, a single empty mbuf
1023		 * is returned.
1024		 */
1025		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1026		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1027		if (top == NULL) {
1028			error = EFAULT;	/* only possible error */
1029			goto out;
1030		}
1031		space -= resid - uio->uio_resid;
1032#endif
1033		resid = uio->uio_resid;
1034	}
1035	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1036	/*
1037	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1038	 * than with.
1039	 */
1040	if (dontroute) {
1041		SOCK_LOCK(so);
1042		so->so_options |= SO_DONTROUTE;
1043		SOCK_UNLOCK(so);
1044	}
1045	/*
1046	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1047	 * of date.  We could have recieved a reset packet in an interrupt or
1048	 * maybe we slept while doing page faults in uiomove() etc.  We could
1049	 * probably recheck again inside the locking protection here, but
1050	 * there are probably other places that this also happens.  We must
1051	 * rethink this.
1052	 */
1053	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1054	    (flags & MSG_OOB) ? PRUS_OOB :
1055	/*
1056	 * If the user set MSG_EOF, the protocol understands this flag and
1057	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1058	 */
1059	    ((flags & MSG_EOF) &&
1060	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1061	     (resid <= 0)) ?
1062		PRUS_EOF :
1063		/* If there is more to send set PRUS_MORETOCOME */
1064		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1065		top, addr, control, td);
1066	if (dontroute) {
1067		SOCK_LOCK(so);
1068		so->so_options &= ~SO_DONTROUTE;
1069		SOCK_UNLOCK(so);
1070	}
1071	clen = 0;
1072	control = NULL;
1073	top = NULL;
1074out:
1075	if (top != NULL)
1076		m_freem(top);
1077	if (control != NULL)
1078		m_freem(control);
1079	return (error);
1080}
1081
1082/*
1083 * Send on a socket.  If send must go all at once and message is larger than
1084 * send buffering, then hard error.  Lock against other senders.  If must go
1085 * all at once and not enough room now, then inform user that this would
1086 * block and do nothing.  Otherwise, if nonblocking, send as much as
1087 * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1088 * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1089 * in mbuf chain must be small enough to send all at once.
1090 *
1091 * Returns nonzero on error, timeout or signal; callers must check for short
1092 * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1093 * on return.
1094 */
1095int
1096sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1097    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1098{
1099	long space, resid;
1100	int clen = 0, error, dontroute;
1101	int atomic = sosendallatonce(so) || top;
1102
1103	if (uio != NULL)
1104		resid = uio->uio_resid;
1105	else
1106		resid = top->m_pkthdr.len;
1107	/*
1108	 * In theory resid should be unsigned.  However, space must be
1109	 * signed, as it might be less than 0 if we over-committed, and we
1110	 * must use a signed comparison of space and resid.  On the other
1111	 * hand, a negative resid causes us to loop sending 0-length
1112	 * segments to the protocol.
1113	 *
1114	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1115	 * type sockets since that's an error.
1116	 */
1117	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1118		error = EINVAL;
1119		goto out;
1120	}
1121
1122	dontroute =
1123	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1124	    (so->so_proto->pr_flags & PR_ATOMIC);
1125	if (td != NULL)
1126		td->td_ru.ru_msgsnd++;
1127	if (control != NULL)
1128		clen = control->m_len;
1129
1130	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1131	if (error)
1132		goto out;
1133
1134restart:
1135	do {
1136		SOCKBUF_LOCK(&so->so_snd);
1137		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1138			SOCKBUF_UNLOCK(&so->so_snd);
1139			error = EPIPE;
1140			goto release;
1141		}
1142		if (so->so_error) {
1143			error = so->so_error;
1144			so->so_error = 0;
1145			SOCKBUF_UNLOCK(&so->so_snd);
1146			goto release;
1147		}
1148		if ((so->so_state & SS_ISCONNECTED) == 0) {
1149			/*
1150			 * `sendto' and `sendmsg' is allowed on a connection-
1151			 * based socket if it supports implied connect.
1152			 * Return ENOTCONN if not connected and no address is
1153			 * supplied.
1154			 */
1155			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1156			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1157				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1158				    !(resid == 0 && clen != 0)) {
1159					SOCKBUF_UNLOCK(&so->so_snd);
1160					error = ENOTCONN;
1161					goto release;
1162				}
1163			} else if (addr == NULL) {
1164				SOCKBUF_UNLOCK(&so->so_snd);
1165				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1166					error = ENOTCONN;
1167				else
1168					error = EDESTADDRREQ;
1169				goto release;
1170			}
1171		}
1172		space = sbspace(&so->so_snd);
1173		if (flags & MSG_OOB)
1174			space += 1024;
1175		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1176		    clen > so->so_snd.sb_hiwat) {
1177			SOCKBUF_UNLOCK(&so->so_snd);
1178			error = EMSGSIZE;
1179			goto release;
1180		}
1181		if (space < resid + clen &&
1182		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1183			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1184				SOCKBUF_UNLOCK(&so->so_snd);
1185				error = EWOULDBLOCK;
1186				goto release;
1187			}
1188			error = sbwait(&so->so_snd);
1189			SOCKBUF_UNLOCK(&so->so_snd);
1190			if (error)
1191				goto release;
1192			goto restart;
1193		}
1194		SOCKBUF_UNLOCK(&so->so_snd);
1195		space -= clen;
1196		do {
1197			if (uio == NULL) {
1198				resid = 0;
1199				if (flags & MSG_EOR)
1200					top->m_flags |= M_EOR;
1201			} else {
1202#ifdef ZERO_COPY_SOCKETS
1203				error = sosend_copyin(uio, &top, atomic,
1204				    &space, flags);
1205				if (error != 0)
1206					goto release;
1207#else
1208				/*
1209				 * Copy the data from userland into a mbuf
1210				 * chain.  If no data is to be copied in,
1211				 * a single empty mbuf is returned.
1212				 */
1213				top = m_uiotombuf(uio, M_WAITOK, space,
1214				    (atomic ? max_hdr : 0),
1215				    (atomic ? M_PKTHDR : 0) |
1216				    ((flags & MSG_EOR) ? M_EOR : 0));
1217				if (top == NULL) {
1218					error = EFAULT; /* only possible error */
1219					goto release;
1220				}
1221				space -= resid - uio->uio_resid;
1222#endif
1223				resid = uio->uio_resid;
1224			}
1225			if (dontroute) {
1226				SOCK_LOCK(so);
1227				so->so_options |= SO_DONTROUTE;
1228				SOCK_UNLOCK(so);
1229			}
1230			/*
1231			 * XXX all the SBS_CANTSENDMORE checks previously
1232			 * done could be out of date.  We could have recieved
1233			 * a reset packet in an interrupt or maybe we slept
1234			 * while doing page faults in uiomove() etc.  We
1235			 * could probably recheck again inside the locking
1236			 * protection here, but there are probably other
1237			 * places that this also happens.  We must rethink
1238			 * this.
1239			 */
1240			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1241			    (flags & MSG_OOB) ? PRUS_OOB :
1242			/*
1243			 * If the user set MSG_EOF, the protocol understands
1244			 * this flag and nothing left to send then use
1245			 * PRU_SEND_EOF instead of PRU_SEND.
1246			 */
1247			    ((flags & MSG_EOF) &&
1248			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1249			     (resid <= 0)) ?
1250				PRUS_EOF :
1251			/* If there is more to send set PRUS_MORETOCOME. */
1252			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1253			    top, addr, control, td);
1254			if (dontroute) {
1255				SOCK_LOCK(so);
1256				so->so_options &= ~SO_DONTROUTE;
1257				SOCK_UNLOCK(so);
1258			}
1259			clen = 0;
1260			control = NULL;
1261			top = NULL;
1262			if (error)
1263				goto release;
1264		} while (resid && space > 0);
1265	} while (resid);
1266
1267release:
1268	sbunlock(&so->so_snd);
1269out:
1270	if (top != NULL)
1271		m_freem(top);
1272	if (control != NULL)
1273		m_freem(control);
1274	return (error);
1275}
1276
1277int
1278sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1279    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1280{
1281
1282	/* XXXRW: Temporary debugging. */
1283	KASSERT(so->so_proto->pr_usrreqs->pru_sosend != sosend,
1284	    ("sosend: protocol calls sosend"));
1285
1286	return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1287	    control, flags, td));
1288}
1289
1290/*
1291 * The part of soreceive() that implements reading non-inline out-of-band
1292 * data from a socket.  For more complete comments, see soreceive(), from
1293 * which this code originated.
1294 *
1295 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1296 * unable to return an mbuf chain to the caller.
1297 */
1298static int
1299soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1300{
1301	struct protosw *pr = so->so_proto;
1302	struct mbuf *m;
1303	int error;
1304
1305	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1306
1307	m = m_get(M_TRYWAIT, MT_DATA);
1308	if (m == NULL)
1309		return (ENOBUFS);
1310	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1311	if (error)
1312		goto bad;
1313	do {
1314#ifdef ZERO_COPY_SOCKETS
1315		if (so_zero_copy_receive) {
1316			int disposable;
1317
1318			if ((m->m_flags & M_EXT)
1319			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1320				disposable = 1;
1321			else
1322				disposable = 0;
1323
1324			error = uiomoveco(mtod(m, void *),
1325					  min(uio->uio_resid, m->m_len),
1326					  uio, disposable);
1327		} else
1328#endif /* ZERO_COPY_SOCKETS */
1329		error = uiomove(mtod(m, void *),
1330		    (int) min(uio->uio_resid, m->m_len), uio);
1331		m = m_free(m);
1332	} while (uio->uio_resid && error == 0 && m);
1333bad:
1334	if (m != NULL)
1335		m_freem(m);
1336	return (error);
1337}
1338
1339/*
1340 * Following replacement or removal of the first mbuf on the first mbuf chain
1341 * of a socket buffer, push necessary state changes back into the socket
1342 * buffer so that other consumers see the values consistently.  'nextrecord'
1343 * is the callers locally stored value of the original value of
1344 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1345 * NOTE: 'nextrecord' may be NULL.
1346 */
1347static __inline void
1348sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1349{
1350
1351	SOCKBUF_LOCK_ASSERT(sb);
1352	/*
1353	 * First, update for the new value of nextrecord.  If necessary, make
1354	 * it the first record.
1355	 */
1356	if (sb->sb_mb != NULL)
1357		sb->sb_mb->m_nextpkt = nextrecord;
1358	else
1359		sb->sb_mb = nextrecord;
1360
1361        /*
1362         * Now update any dependent socket buffer fields to reflect the new
1363         * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1364	 * addition of a second clause that takes care of the case where
1365	 * sb_mb has been updated, but remains the last record.
1366         */
1367        if (sb->sb_mb == NULL) {
1368                sb->sb_mbtail = NULL;
1369                sb->sb_lastrecord = NULL;
1370        } else if (sb->sb_mb->m_nextpkt == NULL)
1371                sb->sb_lastrecord = sb->sb_mb;
1372}
1373
1374
1375/*
1376 * Implement receive operations on a socket.  We depend on the way that
1377 * records are added to the sockbuf by sbappend.  In particular, each record
1378 * (mbufs linked through m_next) must begin with an address if the protocol
1379 * so specifies, followed by an optional mbuf or mbufs containing ancillary
1380 * data, and then zero or more mbufs of data.  In order to allow parallelism
1381 * between network receive and copying to user space, as well as avoid
1382 * sleeping with a mutex held, we release the socket buffer mutex during the
1383 * user space copy.  Although the sockbuf is locked, new data may still be
1384 * appended, and thus we must maintain consistency of the sockbuf during that
1385 * time.
1386 *
1387 * The caller may receive the data as a single mbuf chain by supplying an
1388 * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1389 * the count in uio_resid.
1390 */
1391int
1392soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1393    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1394{
1395	struct mbuf *m, **mp;
1396	int flags, len, error, offset;
1397	struct protosw *pr = so->so_proto;
1398	struct mbuf *nextrecord;
1399	int moff, type = 0;
1400	int orig_resid = uio->uio_resid;
1401
1402	mp = mp0;
1403	if (psa != NULL)
1404		*psa = NULL;
1405	if (controlp != NULL)
1406		*controlp = NULL;
1407	if (flagsp != NULL)
1408		flags = *flagsp &~ MSG_EOR;
1409	else
1410		flags = 0;
1411	if (flags & MSG_OOB)
1412		return (soreceive_rcvoob(so, uio, flags));
1413	if (mp != NULL)
1414		*mp = NULL;
1415	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1416	    && uio->uio_resid)
1417		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1418
1419	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1420	if (error)
1421		return (error);
1422
1423restart:
1424	SOCKBUF_LOCK(&so->so_rcv);
1425	m = so->so_rcv.sb_mb;
1426	/*
1427	 * If we have less data than requested, block awaiting more (subject
1428	 * to any timeout) if:
1429	 *   1. the current count is less than the low water mark, or
1430	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1431	 *	receive operation at once if we block (resid <= hiwat).
1432	 *   3. MSG_DONTWAIT is not set
1433	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1434	 * we have to do the receive in sections, and thus risk returning a
1435	 * short count if a timeout or signal occurs after we start.
1436	 */
1437	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1438	    so->so_rcv.sb_cc < uio->uio_resid) &&
1439	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1440	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1441	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1442		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1443		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1444		    m, so->so_rcv.sb_cc));
1445		if (so->so_error) {
1446			if (m != NULL)
1447				goto dontblock;
1448			error = so->so_error;
1449			if ((flags & MSG_PEEK) == 0)
1450				so->so_error = 0;
1451			SOCKBUF_UNLOCK(&so->so_rcv);
1452			goto release;
1453		}
1454		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1455		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1456			if (m == NULL) {
1457				SOCKBUF_UNLOCK(&so->so_rcv);
1458				goto release;
1459			} else
1460				goto dontblock;
1461		}
1462		for (; m != NULL; m = m->m_next)
1463			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1464				m = so->so_rcv.sb_mb;
1465				goto dontblock;
1466			}
1467		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1468		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1469			SOCKBUF_UNLOCK(&so->so_rcv);
1470			error = ENOTCONN;
1471			goto release;
1472		}
1473		if (uio->uio_resid == 0) {
1474			SOCKBUF_UNLOCK(&so->so_rcv);
1475			goto release;
1476		}
1477		if ((so->so_state & SS_NBIO) ||
1478		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1479			SOCKBUF_UNLOCK(&so->so_rcv);
1480			error = EWOULDBLOCK;
1481			goto release;
1482		}
1483		SBLASTRECORDCHK(&so->so_rcv);
1484		SBLASTMBUFCHK(&so->so_rcv);
1485		error = sbwait(&so->so_rcv);
1486		SOCKBUF_UNLOCK(&so->so_rcv);
1487		if (error)
1488			goto release;
1489		goto restart;
1490	}
1491dontblock:
1492	/*
1493	 * From this point onward, we maintain 'nextrecord' as a cache of the
1494	 * pointer to the next record in the socket buffer.  We must keep the
1495	 * various socket buffer pointers and local stack versions of the
1496	 * pointers in sync, pushing out modifications before dropping the
1497	 * socket buffer mutex, and re-reading them when picking it up.
1498	 *
1499	 * Otherwise, we will race with the network stack appending new data
1500	 * or records onto the socket buffer by using inconsistent/stale
1501	 * versions of the field, possibly resulting in socket buffer
1502	 * corruption.
1503	 *
1504	 * By holding the high-level sblock(), we prevent simultaneous
1505	 * readers from pulling off the front of the socket buffer.
1506	 */
1507	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1508	if (uio->uio_td)
1509		uio->uio_td->td_ru.ru_msgrcv++;
1510	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1511	SBLASTRECORDCHK(&so->so_rcv);
1512	SBLASTMBUFCHK(&so->so_rcv);
1513	nextrecord = m->m_nextpkt;
1514	if (pr->pr_flags & PR_ADDR) {
1515		KASSERT(m->m_type == MT_SONAME,
1516		    ("m->m_type == %d", m->m_type));
1517		orig_resid = 0;
1518		if (psa != NULL)
1519			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1520			    M_NOWAIT);
1521		if (flags & MSG_PEEK) {
1522			m = m->m_next;
1523		} else {
1524			sbfree(&so->so_rcv, m);
1525			so->so_rcv.sb_mb = m_free(m);
1526			m = so->so_rcv.sb_mb;
1527			sockbuf_pushsync(&so->so_rcv, nextrecord);
1528		}
1529	}
1530
1531	/*
1532	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1533	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1534	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1535	 * perform externalization (or freeing if controlp == NULL).
1536	 */
1537	if (m != NULL && m->m_type == MT_CONTROL) {
1538		struct mbuf *cm = NULL, *cmn;
1539		struct mbuf **cme = &cm;
1540
1541		do {
1542			if (flags & MSG_PEEK) {
1543				if (controlp != NULL) {
1544					*controlp = m_copy(m, 0, m->m_len);
1545					controlp = &(*controlp)->m_next;
1546				}
1547				m = m->m_next;
1548			} else {
1549				sbfree(&so->so_rcv, m);
1550				so->so_rcv.sb_mb = m->m_next;
1551				m->m_next = NULL;
1552				*cme = m;
1553				cme = &(*cme)->m_next;
1554				m = so->so_rcv.sb_mb;
1555			}
1556		} while (m != NULL && m->m_type == MT_CONTROL);
1557		if ((flags & MSG_PEEK) == 0)
1558			sockbuf_pushsync(&so->so_rcv, nextrecord);
1559		while (cm != NULL) {
1560			cmn = cm->m_next;
1561			cm->m_next = NULL;
1562			if (pr->pr_domain->dom_externalize != NULL) {
1563				SOCKBUF_UNLOCK(&so->so_rcv);
1564				error = (*pr->pr_domain->dom_externalize)
1565				    (cm, controlp);
1566				SOCKBUF_LOCK(&so->so_rcv);
1567			} else if (controlp != NULL)
1568				*controlp = cm;
1569			else
1570				m_freem(cm);
1571			if (controlp != NULL) {
1572				orig_resid = 0;
1573				while (*controlp != NULL)
1574					controlp = &(*controlp)->m_next;
1575			}
1576			cm = cmn;
1577		}
1578		if (m != NULL)
1579			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1580		else
1581			nextrecord = so->so_rcv.sb_mb;
1582		orig_resid = 0;
1583	}
1584	if (m != NULL) {
1585		if ((flags & MSG_PEEK) == 0) {
1586			KASSERT(m->m_nextpkt == nextrecord,
1587			    ("soreceive: post-control, nextrecord !sync"));
1588			if (nextrecord == NULL) {
1589				KASSERT(so->so_rcv.sb_mb == m,
1590				    ("soreceive: post-control, sb_mb!=m"));
1591				KASSERT(so->so_rcv.sb_lastrecord == m,
1592				    ("soreceive: post-control, lastrecord!=m"));
1593			}
1594		}
1595		type = m->m_type;
1596		if (type == MT_OOBDATA)
1597			flags |= MSG_OOB;
1598	} else {
1599		if ((flags & MSG_PEEK) == 0) {
1600			KASSERT(so->so_rcv.sb_mb == nextrecord,
1601			    ("soreceive: sb_mb != nextrecord"));
1602			if (so->so_rcv.sb_mb == NULL) {
1603				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1604				    ("soreceive: sb_lastercord != NULL"));
1605			}
1606		}
1607	}
1608	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1609	SBLASTRECORDCHK(&so->so_rcv);
1610	SBLASTMBUFCHK(&so->so_rcv);
1611
1612	/*
1613	 * Now continue to read any data mbufs off of the head of the socket
1614	 * buffer until the read request is satisfied.  Note that 'type' is
1615	 * used to store the type of any mbuf reads that have happened so far
1616	 * such that soreceive() can stop reading if the type changes, which
1617	 * causes soreceive() to return only one of regular data and inline
1618	 * out-of-band data in a single socket receive operation.
1619	 */
1620	moff = 0;
1621	offset = 0;
1622	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1623		/*
1624		 * If the type of mbuf has changed since the last mbuf
1625		 * examined ('type'), end the receive operation.
1626	 	 */
1627		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1628		if (m->m_type == MT_OOBDATA) {
1629			if (type != MT_OOBDATA)
1630				break;
1631		} else if (type == MT_OOBDATA)
1632			break;
1633		else
1634		    KASSERT(m->m_type == MT_DATA,
1635			("m->m_type == %d", m->m_type));
1636		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1637		len = uio->uio_resid;
1638		if (so->so_oobmark && len > so->so_oobmark - offset)
1639			len = so->so_oobmark - offset;
1640		if (len > m->m_len - moff)
1641			len = m->m_len - moff;
1642		/*
1643		 * If mp is set, just pass back the mbufs.  Otherwise copy
1644		 * them out via the uio, then free.  Sockbuf must be
1645		 * consistent here (points to current mbuf, it points to next
1646		 * record) when we drop priority; we must note any additions
1647		 * to the sockbuf when we block interrupts again.
1648		 */
1649		if (mp == NULL) {
1650			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1651			SBLASTRECORDCHK(&so->so_rcv);
1652			SBLASTMBUFCHK(&so->so_rcv);
1653			SOCKBUF_UNLOCK(&so->so_rcv);
1654#ifdef ZERO_COPY_SOCKETS
1655			if (so_zero_copy_receive) {
1656				int disposable;
1657
1658				if ((m->m_flags & M_EXT)
1659				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1660					disposable = 1;
1661				else
1662					disposable = 0;
1663
1664				error = uiomoveco(mtod(m, char *) + moff,
1665						  (int)len, uio,
1666						  disposable);
1667			} else
1668#endif /* ZERO_COPY_SOCKETS */
1669			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1670			SOCKBUF_LOCK(&so->so_rcv);
1671			if (error) {
1672				/*
1673				 * The MT_SONAME mbuf has already been removed
1674				 * from the record, so it is necessary to
1675				 * remove the data mbufs, if any, to preserve
1676				 * the invariant in the case of PR_ADDR that
1677				 * requires MT_SONAME mbufs at the head of
1678				 * each record.
1679				 */
1680				if (m && pr->pr_flags & PR_ATOMIC &&
1681				    ((flags & MSG_PEEK) == 0))
1682					(void)sbdroprecord_locked(&so->so_rcv);
1683				SOCKBUF_UNLOCK(&so->so_rcv);
1684				goto release;
1685			}
1686		} else
1687			uio->uio_resid -= len;
1688		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1689		if (len == m->m_len - moff) {
1690			if (m->m_flags & M_EOR)
1691				flags |= MSG_EOR;
1692			if (flags & MSG_PEEK) {
1693				m = m->m_next;
1694				moff = 0;
1695			} else {
1696				nextrecord = m->m_nextpkt;
1697				sbfree(&so->so_rcv, m);
1698				if (mp != NULL) {
1699					*mp = m;
1700					mp = &m->m_next;
1701					so->so_rcv.sb_mb = m = m->m_next;
1702					*mp = NULL;
1703				} else {
1704					so->so_rcv.sb_mb = m_free(m);
1705					m = so->so_rcv.sb_mb;
1706				}
1707				sockbuf_pushsync(&so->so_rcv, nextrecord);
1708				SBLASTRECORDCHK(&so->so_rcv);
1709				SBLASTMBUFCHK(&so->so_rcv);
1710			}
1711		} else {
1712			if (flags & MSG_PEEK)
1713				moff += len;
1714			else {
1715				if (mp != NULL) {
1716					int copy_flag;
1717
1718					if (flags & MSG_DONTWAIT)
1719						copy_flag = M_DONTWAIT;
1720					else
1721						copy_flag = M_TRYWAIT;
1722					if (copy_flag == M_TRYWAIT)
1723						SOCKBUF_UNLOCK(&so->so_rcv);
1724					*mp = m_copym(m, 0, len, copy_flag);
1725					if (copy_flag == M_TRYWAIT)
1726						SOCKBUF_LOCK(&so->so_rcv);
1727 					if (*mp == NULL) {
1728 						/*
1729 						 * m_copym() couldn't
1730						 * allocate an mbuf.  Adjust
1731						 * uio_resid back (it was
1732						 * adjusted down by len
1733						 * bytes, which we didn't end
1734						 * up "copying" over).
1735 						 */
1736 						uio->uio_resid += len;
1737 						break;
1738 					}
1739				}
1740				m->m_data += len;
1741				m->m_len -= len;
1742				so->so_rcv.sb_cc -= len;
1743			}
1744		}
1745		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1746		if (so->so_oobmark) {
1747			if ((flags & MSG_PEEK) == 0) {
1748				so->so_oobmark -= len;
1749				if (so->so_oobmark == 0) {
1750					so->so_rcv.sb_state |= SBS_RCVATMARK;
1751					break;
1752				}
1753			} else {
1754				offset += len;
1755				if (offset == so->so_oobmark)
1756					break;
1757			}
1758		}
1759		if (flags & MSG_EOR)
1760			break;
1761		/*
1762		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1763		 * must not quit until "uio->uio_resid == 0" or an error
1764		 * termination.  If a signal/timeout occurs, return with a
1765		 * short count but without error.  Keep sockbuf locked
1766		 * against other readers.
1767		 */
1768		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1769		    !sosendallatonce(so) && nextrecord == NULL) {
1770			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1771			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1772				break;
1773			/*
1774			 * Notify the protocol that some data has been
1775			 * drained before blocking.
1776			 */
1777			if (pr->pr_flags & PR_WANTRCVD) {
1778				SOCKBUF_UNLOCK(&so->so_rcv);
1779				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1780				SOCKBUF_LOCK(&so->so_rcv);
1781			}
1782			SBLASTRECORDCHK(&so->so_rcv);
1783			SBLASTMBUFCHK(&so->so_rcv);
1784			error = sbwait(&so->so_rcv);
1785			if (error) {
1786				SOCKBUF_UNLOCK(&so->so_rcv);
1787				goto release;
1788			}
1789			m = so->so_rcv.sb_mb;
1790			if (m != NULL)
1791				nextrecord = m->m_nextpkt;
1792		}
1793	}
1794
1795	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1796	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1797		flags |= MSG_TRUNC;
1798		if ((flags & MSG_PEEK) == 0)
1799			(void) sbdroprecord_locked(&so->so_rcv);
1800	}
1801	if ((flags & MSG_PEEK) == 0) {
1802		if (m == NULL) {
1803			/*
1804			 * First part is an inline SB_EMPTY_FIXUP().  Second
1805			 * part makes sure sb_lastrecord is up-to-date if
1806			 * there is still data in the socket buffer.
1807			 */
1808			so->so_rcv.sb_mb = nextrecord;
1809			if (so->so_rcv.sb_mb == NULL) {
1810				so->so_rcv.sb_mbtail = NULL;
1811				so->so_rcv.sb_lastrecord = NULL;
1812			} else if (nextrecord->m_nextpkt == NULL)
1813				so->so_rcv.sb_lastrecord = nextrecord;
1814		}
1815		SBLASTRECORDCHK(&so->so_rcv);
1816		SBLASTMBUFCHK(&so->so_rcv);
1817		/*
1818		 * If soreceive() is being done from the socket callback,
1819		 * then don't need to generate ACK to peer to update window,
1820		 * since ACK will be generated on return to TCP.
1821		 */
1822		if (!(flags & MSG_SOCALLBCK) &&
1823		    (pr->pr_flags & PR_WANTRCVD)) {
1824			SOCKBUF_UNLOCK(&so->so_rcv);
1825			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1826			SOCKBUF_LOCK(&so->so_rcv);
1827		}
1828	}
1829	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1830	if (orig_resid == uio->uio_resid && orig_resid &&
1831	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1832		SOCKBUF_UNLOCK(&so->so_rcv);
1833		goto restart;
1834	}
1835	SOCKBUF_UNLOCK(&so->so_rcv);
1836
1837	if (flagsp != NULL)
1838		*flagsp |= flags;
1839release:
1840	sbunlock(&so->so_rcv);
1841	return (error);
1842}
1843
1844int
1845soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
1846    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1847{
1848
1849	/* XXXRW: Temporary debugging. */
1850	KASSERT(so->so_proto->pr_usrreqs->pru_soreceive != soreceive,
1851	    ("soreceive: protocol calls soreceive"));
1852
1853	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
1854	    controlp, flagsp));
1855}
1856
1857int
1858soshutdown(struct socket *so, int how)
1859{
1860	struct protosw *pr = so->so_proto;
1861
1862	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1863		return (EINVAL);
1864
1865	if (how != SHUT_WR)
1866		sorflush(so);
1867	if (how != SHUT_RD)
1868		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1869	return (0);
1870}
1871
1872void
1873sorflush(struct socket *so)
1874{
1875	struct sockbuf *sb = &so->so_rcv;
1876	struct protosw *pr = so->so_proto;
1877	struct sockbuf asb;
1878
1879	/*
1880	 * In order to avoid calling dom_dispose with the socket buffer mutex
1881	 * held, and in order to generally avoid holding the lock for a long
1882	 * time, we make a copy of the socket buffer and clear the original
1883	 * (except locks, state).  The new socket buffer copy won't have
1884	 * initialized locks so we can only call routines that won't use or
1885	 * assert those locks.
1886	 *
1887	 * Dislodge threads currently blocked in receive and wait to acquire
1888	 * a lock against other simultaneous readers before clearing the
1889	 * socket buffer.  Don't let our acquire be interrupted by a signal
1890	 * despite any existing socket disposition on interruptable waiting.
1891	 */
1892	socantrcvmore(so);
1893	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
1894
1895	/*
1896	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
1897	 * and mutex data unchanged.
1898	 */
1899	SOCKBUF_LOCK(sb);
1900	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1901	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1902	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1903	bzero(&sb->sb_startzero,
1904	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1905	SOCKBUF_UNLOCK(sb);
1906	sbunlock(sb);
1907
1908	/*
1909	 * Dispose of special rights and flush the socket buffer.  Don't call
1910	 * any unsafe routines (that rely on locks being initialized) on asb.
1911	 */
1912	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1913		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1914	sbrelease_internal(&asb, so);
1915}
1916
1917/*
1918 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
1919 * additional variant to handle the case where the option value needs to be
1920 * some kind of integer, but not a specific size.  In addition to their use
1921 * here, these functions are also called by the protocol-level pr_ctloutput()
1922 * routines.
1923 */
1924int
1925sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
1926{
1927	size_t	valsize;
1928
1929	/*
1930	 * If the user gives us more than we wanted, we ignore it, but if we
1931	 * don't get the minimum length the caller wants, we return EINVAL.
1932	 * On success, sopt->sopt_valsize is set to however much we actually
1933	 * retrieved.
1934	 */
1935	if ((valsize = sopt->sopt_valsize) < minlen)
1936		return EINVAL;
1937	if (valsize > len)
1938		sopt->sopt_valsize = valsize = len;
1939
1940	if (sopt->sopt_td != NULL)
1941		return (copyin(sopt->sopt_val, buf, valsize));
1942
1943	bcopy(sopt->sopt_val, buf, valsize);
1944	return (0);
1945}
1946
1947/*
1948 * Kernel version of setsockopt(2).
1949 *
1950 * XXX: optlen is size_t, not socklen_t
1951 */
1952int
1953so_setsockopt(struct socket *so, int level, int optname, void *optval,
1954    size_t optlen)
1955{
1956	struct sockopt sopt;
1957
1958	sopt.sopt_level = level;
1959	sopt.sopt_name = optname;
1960	sopt.sopt_dir = SOPT_SET;
1961	sopt.sopt_val = optval;
1962	sopt.sopt_valsize = optlen;
1963	sopt.sopt_td = NULL;
1964	return (sosetopt(so, &sopt));
1965}
1966
1967int
1968sosetopt(struct socket *so, struct sockopt *sopt)
1969{
1970	int	error, optval;
1971	struct	linger l;
1972	struct	timeval tv;
1973	u_long  val;
1974#ifdef MAC
1975	struct mac extmac;
1976#endif
1977
1978	error = 0;
1979	if (sopt->sopt_level != SOL_SOCKET) {
1980		if (so->so_proto && so->so_proto->pr_ctloutput)
1981			return ((*so->so_proto->pr_ctloutput)
1982				  (so, sopt));
1983		error = ENOPROTOOPT;
1984	} else {
1985		switch (sopt->sopt_name) {
1986#ifdef INET
1987		case SO_ACCEPTFILTER:
1988			error = do_setopt_accept_filter(so, sopt);
1989			if (error)
1990				goto bad;
1991			break;
1992#endif
1993		case SO_LINGER:
1994			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1995			if (error)
1996				goto bad;
1997
1998			SOCK_LOCK(so);
1999			so->so_linger = l.l_linger;
2000			if (l.l_onoff)
2001				so->so_options |= SO_LINGER;
2002			else
2003				so->so_options &= ~SO_LINGER;
2004			SOCK_UNLOCK(so);
2005			break;
2006
2007		case SO_DEBUG:
2008		case SO_KEEPALIVE:
2009		case SO_DONTROUTE:
2010		case SO_USELOOPBACK:
2011		case SO_BROADCAST:
2012		case SO_REUSEADDR:
2013		case SO_REUSEPORT:
2014		case SO_OOBINLINE:
2015		case SO_TIMESTAMP:
2016		case SO_BINTIME:
2017		case SO_NOSIGPIPE:
2018			error = sooptcopyin(sopt, &optval, sizeof optval,
2019					    sizeof optval);
2020			if (error)
2021				goto bad;
2022			SOCK_LOCK(so);
2023			if (optval)
2024				so->so_options |= sopt->sopt_name;
2025			else
2026				so->so_options &= ~sopt->sopt_name;
2027			SOCK_UNLOCK(so);
2028			break;
2029
2030		case SO_SNDBUF:
2031		case SO_RCVBUF:
2032		case SO_SNDLOWAT:
2033		case SO_RCVLOWAT:
2034			error = sooptcopyin(sopt, &optval, sizeof optval,
2035					    sizeof optval);
2036			if (error)
2037				goto bad;
2038
2039			/*
2040			 * Values < 1 make no sense for any of these options,
2041			 * so disallow them.
2042			 */
2043			if (optval < 1) {
2044				error = EINVAL;
2045				goto bad;
2046			}
2047
2048			switch (sopt->sopt_name) {
2049			case SO_SNDBUF:
2050			case SO_RCVBUF:
2051				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2052				    &so->so_snd : &so->so_rcv, (u_long)optval,
2053				    so, curthread) == 0) {
2054					error = ENOBUFS;
2055					goto bad;
2056				}
2057				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2058				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2059				break;
2060
2061			/*
2062			 * Make sure the low-water is never greater than the
2063			 * high-water.
2064			 */
2065			case SO_SNDLOWAT:
2066				SOCKBUF_LOCK(&so->so_snd);
2067				so->so_snd.sb_lowat =
2068				    (optval > so->so_snd.sb_hiwat) ?
2069				    so->so_snd.sb_hiwat : optval;
2070				SOCKBUF_UNLOCK(&so->so_snd);
2071				break;
2072			case SO_RCVLOWAT:
2073				SOCKBUF_LOCK(&so->so_rcv);
2074				so->so_rcv.sb_lowat =
2075				    (optval > so->so_rcv.sb_hiwat) ?
2076				    so->so_rcv.sb_hiwat : optval;
2077				SOCKBUF_UNLOCK(&so->so_rcv);
2078				break;
2079			}
2080			break;
2081
2082		case SO_SNDTIMEO:
2083		case SO_RCVTIMEO:
2084#ifdef COMPAT_IA32
2085			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2086				struct timeval32 tv32;
2087
2088				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2089				    sizeof tv32);
2090				CP(tv32, tv, tv_sec);
2091				CP(tv32, tv, tv_usec);
2092			} else
2093#endif
2094				error = sooptcopyin(sopt, &tv, sizeof tv,
2095				    sizeof tv);
2096			if (error)
2097				goto bad;
2098
2099			/* assert(hz > 0); */
2100			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2101			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2102				error = EDOM;
2103				goto bad;
2104			}
2105			/* assert(tick > 0); */
2106			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2107			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2108			if (val > INT_MAX) {
2109				error = EDOM;
2110				goto bad;
2111			}
2112			if (val == 0 && tv.tv_usec != 0)
2113				val = 1;
2114
2115			switch (sopt->sopt_name) {
2116			case SO_SNDTIMEO:
2117				so->so_snd.sb_timeo = val;
2118				break;
2119			case SO_RCVTIMEO:
2120				so->so_rcv.sb_timeo = val;
2121				break;
2122			}
2123			break;
2124
2125		case SO_LABEL:
2126#ifdef MAC
2127			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2128			    sizeof extmac);
2129			if (error)
2130				goto bad;
2131			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2132			    so, &extmac);
2133#else
2134			error = EOPNOTSUPP;
2135#endif
2136			break;
2137
2138		default:
2139			error = ENOPROTOOPT;
2140			break;
2141		}
2142		if (error == 0 && so->so_proto != NULL &&
2143		    so->so_proto->pr_ctloutput != NULL) {
2144			(void) ((*so->so_proto->pr_ctloutput)
2145				  (so, sopt));
2146		}
2147	}
2148bad:
2149	return (error);
2150}
2151
2152/*
2153 * Helper routine for getsockopt.
2154 */
2155int
2156sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2157{
2158	int	error;
2159	size_t	valsize;
2160
2161	error = 0;
2162
2163	/*
2164	 * Documented get behavior is that we always return a value, possibly
2165	 * truncated to fit in the user's buffer.  Traditional behavior is
2166	 * that we always tell the user precisely how much we copied, rather
2167	 * than something useful like the total amount we had available for
2168	 * her.  Note that this interface is not idempotent; the entire
2169	 * answer must generated ahead of time.
2170	 */
2171	valsize = min(len, sopt->sopt_valsize);
2172	sopt->sopt_valsize = valsize;
2173	if (sopt->sopt_val != NULL) {
2174		if (sopt->sopt_td != NULL)
2175			error = copyout(buf, sopt->sopt_val, valsize);
2176		else
2177			bcopy(buf, sopt->sopt_val, valsize);
2178	}
2179	return (error);
2180}
2181
2182int
2183sogetopt(struct socket *so, struct sockopt *sopt)
2184{
2185	int	error, optval;
2186	struct	linger l;
2187	struct	timeval tv;
2188#ifdef MAC
2189	struct mac extmac;
2190#endif
2191
2192	error = 0;
2193	if (sopt->sopt_level != SOL_SOCKET) {
2194		if (so->so_proto && so->so_proto->pr_ctloutput) {
2195			return ((*so->so_proto->pr_ctloutput)
2196				  (so, sopt));
2197		} else
2198			return (ENOPROTOOPT);
2199	} else {
2200		switch (sopt->sopt_name) {
2201#ifdef INET
2202		case SO_ACCEPTFILTER:
2203			error = do_getopt_accept_filter(so, sopt);
2204			break;
2205#endif
2206		case SO_LINGER:
2207			SOCK_LOCK(so);
2208			l.l_onoff = so->so_options & SO_LINGER;
2209			l.l_linger = so->so_linger;
2210			SOCK_UNLOCK(so);
2211			error = sooptcopyout(sopt, &l, sizeof l);
2212			break;
2213
2214		case SO_USELOOPBACK:
2215		case SO_DONTROUTE:
2216		case SO_DEBUG:
2217		case SO_KEEPALIVE:
2218		case SO_REUSEADDR:
2219		case SO_REUSEPORT:
2220		case SO_BROADCAST:
2221		case SO_OOBINLINE:
2222		case SO_ACCEPTCONN:
2223		case SO_TIMESTAMP:
2224		case SO_BINTIME:
2225		case SO_NOSIGPIPE:
2226			optval = so->so_options & sopt->sopt_name;
2227integer:
2228			error = sooptcopyout(sopt, &optval, sizeof optval);
2229			break;
2230
2231		case SO_TYPE:
2232			optval = so->so_type;
2233			goto integer;
2234
2235		case SO_ERROR:
2236			SOCK_LOCK(so);
2237			optval = so->so_error;
2238			so->so_error = 0;
2239			SOCK_UNLOCK(so);
2240			goto integer;
2241
2242		case SO_SNDBUF:
2243			optval = so->so_snd.sb_hiwat;
2244			goto integer;
2245
2246		case SO_RCVBUF:
2247			optval = so->so_rcv.sb_hiwat;
2248			goto integer;
2249
2250		case SO_SNDLOWAT:
2251			optval = so->so_snd.sb_lowat;
2252			goto integer;
2253
2254		case SO_RCVLOWAT:
2255			optval = so->so_rcv.sb_lowat;
2256			goto integer;
2257
2258		case SO_SNDTIMEO:
2259		case SO_RCVTIMEO:
2260			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2261				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2262
2263			tv.tv_sec = optval / hz;
2264			tv.tv_usec = (optval % hz) * tick;
2265#ifdef COMPAT_IA32
2266			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2267				struct timeval32 tv32;
2268
2269				CP(tv, tv32, tv_sec);
2270				CP(tv, tv32, tv_usec);
2271				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2272			} else
2273#endif
2274				error = sooptcopyout(sopt, &tv, sizeof tv);
2275			break;
2276
2277		case SO_LABEL:
2278#ifdef MAC
2279			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2280			    sizeof(extmac));
2281			if (error)
2282				return (error);
2283			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2284			    so, &extmac);
2285			if (error)
2286				return (error);
2287			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2288#else
2289			error = EOPNOTSUPP;
2290#endif
2291			break;
2292
2293		case SO_PEERLABEL:
2294#ifdef MAC
2295			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2296			    sizeof(extmac));
2297			if (error)
2298				return (error);
2299			error = mac_getsockopt_peerlabel(
2300			    sopt->sopt_td->td_ucred, so, &extmac);
2301			if (error)
2302				return (error);
2303			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2304#else
2305			error = EOPNOTSUPP;
2306#endif
2307			break;
2308
2309		case SO_LISTENQLIMIT:
2310			optval = so->so_qlimit;
2311			goto integer;
2312
2313		case SO_LISTENQLEN:
2314			optval = so->so_qlen;
2315			goto integer;
2316
2317		case SO_LISTENINCQLEN:
2318			optval = so->so_incqlen;
2319			goto integer;
2320
2321		default:
2322			error = ENOPROTOOPT;
2323			break;
2324		}
2325		return (error);
2326	}
2327}
2328
2329/* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2330int
2331soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2332{
2333	struct mbuf *m, *m_prev;
2334	int sopt_size = sopt->sopt_valsize;
2335
2336	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2337	if (m == NULL)
2338		return ENOBUFS;
2339	if (sopt_size > MLEN) {
2340		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
2341		if ((m->m_flags & M_EXT) == 0) {
2342			m_free(m);
2343			return ENOBUFS;
2344		}
2345		m->m_len = min(MCLBYTES, sopt_size);
2346	} else {
2347		m->m_len = min(MLEN, sopt_size);
2348	}
2349	sopt_size -= m->m_len;
2350	*mp = m;
2351	m_prev = m;
2352
2353	while (sopt_size) {
2354		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2355		if (m == NULL) {
2356			m_freem(*mp);
2357			return ENOBUFS;
2358		}
2359		if (sopt_size > MLEN) {
2360			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
2361			    M_DONTWAIT);
2362			if ((m->m_flags & M_EXT) == 0) {
2363				m_freem(m);
2364				m_freem(*mp);
2365				return ENOBUFS;
2366			}
2367			m->m_len = min(MCLBYTES, sopt_size);
2368		} else {
2369			m->m_len = min(MLEN, sopt_size);
2370		}
2371		sopt_size -= m->m_len;
2372		m_prev->m_next = m;
2373		m_prev = m;
2374	}
2375	return (0);
2376}
2377
2378/* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2379int
2380soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2381{
2382	struct mbuf *m0 = m;
2383
2384	if (sopt->sopt_val == NULL)
2385		return (0);
2386	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2387		if (sopt->sopt_td != NULL) {
2388			int error;
2389
2390			error = copyin(sopt->sopt_val, mtod(m, char *),
2391				       m->m_len);
2392			if (error != 0) {
2393				m_freem(m0);
2394				return(error);
2395			}
2396		} else
2397			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2398		sopt->sopt_valsize -= m->m_len;
2399		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2400		m = m->m_next;
2401	}
2402	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2403		panic("ip6_sooptmcopyin");
2404	return (0);
2405}
2406
2407/* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2408int
2409soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2410{
2411	struct mbuf *m0 = m;
2412	size_t valsize = 0;
2413
2414	if (sopt->sopt_val == NULL)
2415		return (0);
2416	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2417		if (sopt->sopt_td != NULL) {
2418			int error;
2419
2420			error = copyout(mtod(m, char *), sopt->sopt_val,
2421				       m->m_len);
2422			if (error != 0) {
2423				m_freem(m0);
2424				return(error);
2425			}
2426		} else
2427			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2428	       sopt->sopt_valsize -= m->m_len;
2429	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2430	       valsize += m->m_len;
2431	       m = m->m_next;
2432	}
2433	if (m != NULL) {
2434		/* enough soopt buffer should be given from user-land */
2435		m_freem(m0);
2436		return(EINVAL);
2437	}
2438	sopt->sopt_valsize = valsize;
2439	return (0);
2440}
2441
2442/*
2443 * sohasoutofband(): protocol notifies socket layer of the arrival of new
2444 * out-of-band data, which will then notify socket consumers.
2445 */
2446void
2447sohasoutofband(struct socket *so)
2448{
2449
2450	if (so->so_sigio != NULL)
2451		pgsigio(&so->so_sigio, SIGURG, 0);
2452	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2453}
2454
2455int
2456sopoll(struct socket *so, int events, struct ucred *active_cred,
2457    struct thread *td)
2458{
2459
2460	/* XXXRW: Temporary debugging. */
2461	KASSERT(so->so_proto->pr_usrreqs->pru_sopoll != sopoll,
2462	    ("sopoll: protocol calls sopoll"));
2463
2464	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2465	    td));
2466}
2467
2468int
2469sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2470    struct thread *td)
2471{
2472	int revents = 0;
2473
2474	SOCKBUF_LOCK(&so->so_snd);
2475	SOCKBUF_LOCK(&so->so_rcv);
2476	if (events & (POLLIN | POLLRDNORM))
2477		if (soreadable(so))
2478			revents |= events & (POLLIN | POLLRDNORM);
2479
2480	if (events & POLLINIGNEOF)
2481		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2482		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2483			revents |= POLLINIGNEOF;
2484
2485	if (events & (POLLOUT | POLLWRNORM))
2486		if (sowriteable(so))
2487			revents |= events & (POLLOUT | POLLWRNORM);
2488
2489	if (events & (POLLPRI | POLLRDBAND))
2490		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2491			revents |= events & (POLLPRI | POLLRDBAND);
2492
2493	if (revents == 0) {
2494		if (events &
2495		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2496		     POLLRDBAND)) {
2497			selrecord(td, &so->so_rcv.sb_sel);
2498			so->so_rcv.sb_flags |= SB_SEL;
2499		}
2500
2501		if (events & (POLLOUT | POLLWRNORM)) {
2502			selrecord(td, &so->so_snd.sb_sel);
2503			so->so_snd.sb_flags |= SB_SEL;
2504		}
2505	}
2506
2507	SOCKBUF_UNLOCK(&so->so_rcv);
2508	SOCKBUF_UNLOCK(&so->so_snd);
2509	return (revents);
2510}
2511
2512int
2513soo_kqfilter(struct file *fp, struct knote *kn)
2514{
2515	struct socket *so = kn->kn_fp->f_data;
2516	struct sockbuf *sb;
2517
2518	switch (kn->kn_filter) {
2519	case EVFILT_READ:
2520		if (so->so_options & SO_ACCEPTCONN)
2521			kn->kn_fop = &solisten_filtops;
2522		else
2523			kn->kn_fop = &soread_filtops;
2524		sb = &so->so_rcv;
2525		break;
2526	case EVFILT_WRITE:
2527		kn->kn_fop = &sowrite_filtops;
2528		sb = &so->so_snd;
2529		break;
2530	default:
2531		return (EINVAL);
2532	}
2533
2534	SOCKBUF_LOCK(sb);
2535	knlist_add(&sb->sb_sel.si_note, kn, 1);
2536	sb->sb_flags |= SB_KNOTE;
2537	SOCKBUF_UNLOCK(sb);
2538	return (0);
2539}
2540
2541/*
2542 * Some routines that return EOPNOTSUPP for entry points that are not
2543 * supported by a protocol.  Fill in as needed.
2544 */
2545int
2546pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2547{
2548
2549	return EOPNOTSUPP;
2550}
2551
2552int
2553pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
2554{
2555
2556	return EOPNOTSUPP;
2557}
2558
2559int
2560pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2561{
2562
2563	return EOPNOTSUPP;
2564}
2565
2566int
2567pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2568{
2569
2570	return EOPNOTSUPP;
2571}
2572
2573int
2574pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2575{
2576
2577	return EOPNOTSUPP;
2578}
2579
2580int
2581pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2582    struct ifnet *ifp, struct thread *td)
2583{
2584
2585	return EOPNOTSUPP;
2586}
2587
2588int
2589pru_disconnect_notsupp(struct socket *so)
2590{
2591
2592	return EOPNOTSUPP;
2593}
2594
2595int
2596pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
2597{
2598
2599	return EOPNOTSUPP;
2600}
2601
2602int
2603pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2604{
2605
2606	return EOPNOTSUPP;
2607}
2608
2609int
2610pru_rcvd_notsupp(struct socket *so, int flags)
2611{
2612
2613	return EOPNOTSUPP;
2614}
2615
2616int
2617pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2618{
2619
2620	return EOPNOTSUPP;
2621}
2622
2623int
2624pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2625    struct sockaddr *addr, struct mbuf *control, struct thread *td)
2626{
2627
2628	return EOPNOTSUPP;
2629}
2630
2631/*
2632 * This isn't really a ``null'' operation, but it's the default one and
2633 * doesn't do anything destructive.
2634 */
2635int
2636pru_sense_null(struct socket *so, struct stat *sb)
2637{
2638
2639	sb->st_blksize = so->so_snd.sb_hiwat;
2640	return 0;
2641}
2642
2643int
2644pru_shutdown_notsupp(struct socket *so)
2645{
2646
2647	return EOPNOTSUPP;
2648}
2649
2650int
2651pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2652{
2653
2654	return EOPNOTSUPP;
2655}
2656
2657int
2658pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2659    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2660{
2661
2662	return EOPNOTSUPP;
2663}
2664
2665int
2666pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2667    struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2668{
2669
2670	return EOPNOTSUPP;
2671}
2672
2673int
2674pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
2675    struct thread *td)
2676{
2677
2678	return EOPNOTSUPP;
2679}
2680
2681static void
2682filt_sordetach(struct knote *kn)
2683{
2684	struct socket *so = kn->kn_fp->f_data;
2685
2686	SOCKBUF_LOCK(&so->so_rcv);
2687	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2688	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2689		so->so_rcv.sb_flags &= ~SB_KNOTE;
2690	SOCKBUF_UNLOCK(&so->so_rcv);
2691}
2692
2693/*ARGSUSED*/
2694static int
2695filt_soread(struct knote *kn, long hint)
2696{
2697	struct socket *so;
2698
2699	so = kn->kn_fp->f_data;
2700	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2701
2702	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2703	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2704		kn->kn_flags |= EV_EOF;
2705		kn->kn_fflags = so->so_error;
2706		return (1);
2707	} else if (so->so_error)	/* temporary udp error */
2708		return (1);
2709	else if (kn->kn_sfflags & NOTE_LOWAT)
2710		return (kn->kn_data >= kn->kn_sdata);
2711	else
2712		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2713}
2714
2715static void
2716filt_sowdetach(struct knote *kn)
2717{
2718	struct socket *so = kn->kn_fp->f_data;
2719
2720	SOCKBUF_LOCK(&so->so_snd);
2721	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2722	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2723		so->so_snd.sb_flags &= ~SB_KNOTE;
2724	SOCKBUF_UNLOCK(&so->so_snd);
2725}
2726
2727/*ARGSUSED*/
2728static int
2729filt_sowrite(struct knote *kn, long hint)
2730{
2731	struct socket *so;
2732
2733	so = kn->kn_fp->f_data;
2734	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2735	kn->kn_data = sbspace(&so->so_snd);
2736	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2737		kn->kn_flags |= EV_EOF;
2738		kn->kn_fflags = so->so_error;
2739		return (1);
2740	} else if (so->so_error)	/* temporary udp error */
2741		return (1);
2742	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2743	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2744		return (0);
2745	else if (kn->kn_sfflags & NOTE_LOWAT)
2746		return (kn->kn_data >= kn->kn_sdata);
2747	else
2748		return (kn->kn_data >= so->so_snd.sb_lowat);
2749}
2750
2751/*ARGSUSED*/
2752static int
2753filt_solisten(struct knote *kn, long hint)
2754{
2755	struct socket *so = kn->kn_fp->f_data;
2756
2757	kn->kn_data = so->so_qlen;
2758	return (! TAILQ_EMPTY(&so->so_comp));
2759}
2760
2761int
2762socheckuid(struct socket *so, uid_t uid)
2763{
2764
2765	if (so == NULL)
2766		return (EPERM);
2767	if (so->so_cred->cr_uid != uid)
2768		return (EPERM);
2769	return (0);
2770}
2771
2772static int
2773sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
2774{
2775	int error;
2776	int val;
2777
2778	val = somaxconn;
2779	error = sysctl_handle_int(oidp, &val, 0, req);
2780	if (error || !req->newptr )
2781		return (error);
2782
2783	if (val < 1 || val > USHRT_MAX)
2784		return (EINVAL);
2785
2786	somaxconn = val;
2787	return (0);
2788}
2789
2790/*
2791 * These functions are used by protocols to notify the socket layer (and its
2792 * consumers) of state changes in the sockets driven by protocol-side events.
2793 */
2794
2795/*
2796 * Procedures to manipulate state flags of socket and do appropriate wakeups.
2797 *
2798 * Normal sequence from the active (originating) side is that
2799 * soisconnecting() is called during processing of connect() call, resulting
2800 * in an eventual call to soisconnected() if/when the connection is
2801 * established.  When the connection is torn down soisdisconnecting() is
2802 * called during processing of disconnect() call, and soisdisconnected() is
2803 * called when the connection to the peer is totally severed.  The semantics
2804 * of these routines are such that connectionless protocols can call
2805 * soisconnected() and soisdisconnected() only, bypassing the in-progress
2806 * calls when setting up a ``connection'' takes no time.
2807 *
2808 * From the passive side, a socket is created with two queues of sockets:
2809 * so_incomp for connections in progress and so_comp for connections already
2810 * made and awaiting user acceptance.  As a protocol is preparing incoming
2811 * connections, it creates a socket structure queued on so_incomp by calling
2812 * sonewconn().  When the connection is established, soisconnected() is
2813 * called, and transfers the socket structure to so_comp, making it available
2814 * to accept().
2815 *
2816 * If a socket is closed with sockets on either so_incomp or so_comp, these
2817 * sockets are dropped.
2818 *
2819 * If higher-level protocols are implemented in the kernel, the wakeups done
2820 * here will sometimes cause software-interrupt process scheduling.
2821 */
2822void
2823soisconnecting(struct socket *so)
2824{
2825
2826	SOCK_LOCK(so);
2827	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
2828	so->so_state |= SS_ISCONNECTING;
2829	SOCK_UNLOCK(so);
2830}
2831
2832void
2833soisconnected(struct socket *so)
2834{
2835	struct socket *head;
2836
2837	ACCEPT_LOCK();
2838	SOCK_LOCK(so);
2839	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
2840	so->so_state |= SS_ISCONNECTED;
2841	head = so->so_head;
2842	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
2843		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
2844			SOCK_UNLOCK(so);
2845			TAILQ_REMOVE(&head->so_incomp, so, so_list);
2846			head->so_incqlen--;
2847			so->so_qstate &= ~SQ_INCOMP;
2848			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
2849			head->so_qlen++;
2850			so->so_qstate |= SQ_COMP;
2851			ACCEPT_UNLOCK();
2852			sorwakeup(head);
2853			wakeup_one(&head->so_timeo);
2854		} else {
2855			ACCEPT_UNLOCK();
2856			so->so_upcall =
2857			    head->so_accf->so_accept_filter->accf_callback;
2858			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
2859			so->so_rcv.sb_flags |= SB_UPCALL;
2860			so->so_options &= ~SO_ACCEPTFILTER;
2861			SOCK_UNLOCK(so);
2862			so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
2863		}
2864		return;
2865	}
2866	SOCK_UNLOCK(so);
2867	ACCEPT_UNLOCK();
2868	wakeup(&so->so_timeo);
2869	sorwakeup(so);
2870	sowwakeup(so);
2871}
2872
2873void
2874soisdisconnecting(struct socket *so)
2875{
2876
2877	/*
2878	 * Note: This code assumes that SOCK_LOCK(so) and
2879	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
2880	 */
2881	SOCKBUF_LOCK(&so->so_rcv);
2882	so->so_state &= ~SS_ISCONNECTING;
2883	so->so_state |= SS_ISDISCONNECTING;
2884	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
2885	sorwakeup_locked(so);
2886	SOCKBUF_LOCK(&so->so_snd);
2887	so->so_snd.sb_state |= SBS_CANTSENDMORE;
2888	sowwakeup_locked(so);
2889	wakeup(&so->so_timeo);
2890}
2891
2892void
2893soisdisconnected(struct socket *so)
2894{
2895
2896	/*
2897	 * Note: This code assumes that SOCK_LOCK(so) and
2898	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
2899	 */
2900	SOCKBUF_LOCK(&so->so_rcv);
2901	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
2902	so->so_state |= SS_ISDISCONNECTED;
2903	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
2904	sorwakeup_locked(so);
2905	SOCKBUF_LOCK(&so->so_snd);
2906	so->so_snd.sb_state |= SBS_CANTSENDMORE;
2907	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
2908	sowwakeup_locked(so);
2909	wakeup(&so->so_timeo);
2910}
2911
2912/*
2913 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
2914 */
2915struct sockaddr *
2916sodupsockaddr(const struct sockaddr *sa, int mflags)
2917{
2918	struct sockaddr *sa2;
2919
2920	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
2921	if (sa2)
2922		bcopy(sa, sa2, sa->sa_len);
2923	return sa2;
2924}
2925
2926/*
2927 * Create an external-format (``xsocket'') structure using the information in
2928 * the kernel-format socket structure pointed to by so.  This is done to
2929 * reduce the spew of irrelevant information over this interface, to isolate
2930 * user code from changes in the kernel structure, and potentially to provide
2931 * information-hiding if we decide that some of this information should be
2932 * hidden from users.
2933 */
2934void
2935sotoxsocket(struct socket *so, struct xsocket *xso)
2936{
2937
2938	xso->xso_len = sizeof *xso;
2939	xso->xso_so = so;
2940	xso->so_type = so->so_type;
2941	xso->so_options = so->so_options;
2942	xso->so_linger = so->so_linger;
2943	xso->so_state = so->so_state;
2944	xso->so_pcb = so->so_pcb;
2945	xso->xso_protocol = so->so_proto->pr_protocol;
2946	xso->xso_family = so->so_proto->pr_domain->dom_family;
2947	xso->so_qlen = so->so_qlen;
2948	xso->so_incqlen = so->so_incqlen;
2949	xso->so_qlimit = so->so_qlimit;
2950	xso->so_timeo = so->so_timeo;
2951	xso->so_error = so->so_error;
2952	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
2953	xso->so_oobmark = so->so_oobmark;
2954	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
2955	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
2956	xso->so_uid = so->so_cred->cr_uid;
2957}
2958