uipc_socket.c revision 166745
198038Sache/*-
2131447Stjr * Copyright (c) 1982, 1986, 1988, 1990, 1993
398038Sache *	The Regents of the University of California.
498038Sache * Copyright (c) 2004 The FreeBSD Foundation
598038Sache * Copyright (c) 2004-2006 Robert N. M. Watson
698038Sache * All rights reserved.
798038Sache *
898038Sache * Redistribution and use in source and binary forms, with or without
998038Sache * modification, are permitted provided that the following conditions
1098038Sache * are met:
1198038Sache * 1. Redistributions of source code must retain the above copyright
1298038Sache *    notice, this list of conditions and the following disclaimer.
1398038Sache * 2. Redistributions in binary form must reproduce the above copyright
1498038Sache *    notice, this list of conditions and the following disclaimer in the
1598038Sache *    documentation and/or other materials provided with the distribution.
1698038Sache * 4. Neither the name of the University nor the names of its contributors
1798038Sache *    may be used to endorse or promote products derived from this software
1898038Sache *    without specific prior written permission.
1998038Sache *
2098038Sache * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2198038Sache * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2298038Sache * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2398038Sache * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
2498038Sache * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2598038Sache * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2698038Sache * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2798038Sache * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2898038Sache * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2998038Sache * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3098038Sache * SUCH DAMAGE.
3198038Sache *
3298038Sache *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
3398038Sache */
34131447Stjr
35131447Stjr/*
36131447Stjr * Comments on the socket life cycle:
37131447Stjr *
38131447Stjr * soalloc() sets of socket layer state for a socket, called only by
39131447Stjr * socreate() and sonewconn().  Socket layer private.
40131447Stjr *
41131447Stjr * sodealloc() tears down socket layer state for a socket, called only by
42131447Stjr * sofree() and sonewconn().  Socket layer private.
43131447Stjr *
44131447Stjr * pru_attach() associates protocol layer state with an allocated socket;
45131447Stjr * called only once, may fail, aborting socket allocation.  This is called
46131447Stjr * from socreate() and sonewconn().  Socket layer private.
47131447Stjr *
48131447Stjr * pru_detach() disassociates protocol layer state from an attached socket,
49131447Stjr * and will be called exactly once for sockets in which pru_attach() has
50131447Stjr * been successfully called.  If pru_attach() returned an error,
51131447Stjr * pru_detach() will not be called.  Socket layer private.
52131447Stjr *
53131447Stjr * pru_abort() and pru_close() notify the protocol layer that the last
54131447Stjr * consumer of a socket is starting to tear down the socket, and that the
55131447Stjr * protocol should terminate the connection.  Historically, pru_abort() also
56131447Stjr * detached protocol state from the socket state, but this is no longer the
57131447Stjr * case.
58131447Stjr *
59131447Stjr * socreate() creates a socket and attaches protocol state.  This is a public
60131447Stjr * interface that may be used by socket layer consumers to create new
61131447Stjr * sockets.
62131447Stjr *
63131447Stjr * sonewconn() creates a socket and attaches protocol state.  This is a
64131447Stjr * public interface  that may be used by protocols to create new sockets when
65131447Stjr * a new connection is received and will be available for accept() on a
66131447Stjr * listen socket.
67131447Stjr *
68131447Stjr * soclose() destroys a socket after possibly waiting for it to disconnect.
69131447Stjr * This is a public interface that socket consumers should use to close and
70131447Stjr * release a socket when done with it.
71131447Stjr *
72131447Stjr * soabort() destroys a socket without waiting for it to disconnect (used
73131447Stjr * only for incoming connections that are already partially or fully
74131447Stjr * connected).  This is used internally by the socket layer when clearing
75131447Stjr * listen socket queues (due to overflow or close on the listen socket), but
76131447Stjr * is also a public interface protocols may use to abort connections in
77131447Stjr * their incomplete listen queues should they no longer be required.  Sockets
78131447Stjr * placed in completed connection listen queues should not be aborted for
79131447Stjr * reasons described in the comment above the soclose() implementation.  This
80131447Stjr * is not a general purpose close routine, and except in the specific
81131447Stjr * circumstances described here, should not be used.
82131447Stjr *
8398038Sache * sofree() will free a socket and its protocol state if all references on
8498038Sache * the socket have been released, and is the public interface to attempt to
8598038Sache * free a socket when a reference is removed.  This is a socket layer private
8698038Sache * interface.
8798038Sache *
88131447Stjr * NOTE: In addition to socreate() and soclose(), which provide a single
8998038Sache * socket reference to the consumer to be managed as required, there are two
9098038Sache * calls to explicitly manage socket references, soref(), and sorele().
9198038Sache * Currently, these are generally required only when transitioning a socket
9298038Sache * from a listen queue to a file descriptor, in order to prevent garbage
9398038Sache * collection of the socket at an untimely moment.  For a number of reasons,
9498038Sache * these interfaces are not preferred, and should be avoided.
9598038Sache */
9698038Sache
97131447Stjr#include <sys/cdefs.h>
9898038Sache__FBSDID("$FreeBSD: head/sys/kern/uipc_socket.c 166745 2007-02-15 10:11:00Z rwatson $");
9998038Sache
10098038Sache#include "opt_inet.h"
10198038Sache#include "opt_mac.h"
10298038Sache#include "opt_zero.h"
10398038Sache#include "opt_compat.h"
10498038Sache
10598038Sache#include <sys/param.h>
10698038Sache#include <sys/systm.h>
10798038Sache#include <sys/fcntl.h>
10898038Sache#include <sys/limits.h>
109131447Stjr#include <sys/lock.h>
110131447Stjr#include <sys/mac.h>
111131447Stjr#include <sys/malloc.h>
112131447Stjr#include <sys/mbuf.h>
113131447Stjr#include <sys/mutex.h>
114131447Stjr#include <sys/domain.h>
115131447Stjr#include <sys/file.h>			/* for struct knote */
116131447Stjr#include <sys/kernel.h>
117131447Stjr#include <sys/event.h>
118131447Stjr#include <sys/eventhandler.h>
119131447Stjr#include <sys/poll.h>
120131447Stjr#include <sys/proc.h>
121131447Stjr#include <sys/protosw.h>
122131447Stjr#include <sys/socket.h>
123131447Stjr#include <sys/socketvar.h>
124131447Stjr#include <sys/resourcevar.h>
125131447Stjr#include <sys/signalvar.h>
126131447Stjr#include <sys/sysctl.h>
127131447Stjr#include <sys/uio.h>
128131447Stjr#include <sys/jail.h>
129131447Stjr
130131447Stjr#include <security/mac/mac_framework.h>
131131447Stjr
132131447Stjr#include <vm/uma.h>
133131447Stjr
134131447Stjr#ifdef COMPAT_IA32
135131447Stjr#include <sys/mount.h>
136131447Stjr#include <compat/freebsd32/freebsd32.h>
137131447Stjr
138131447Stjrextern struct sysentvec ia32_freebsd_sysvec;
139131447Stjr#endif
140131447Stjr
141131447Stjrstatic int	soreceive_rcvoob(struct socket *so, struct uio *uio,
142131447Stjr		    int flags);
143131447Stjr
144131447Stjrstatic void	filt_sordetach(struct knote *kn);
145131447Stjrstatic int	filt_soread(struct knote *kn, long hint);
146131447Stjrstatic void	filt_sowdetach(struct knote *kn);
147131447Stjrstatic int	filt_sowrite(struct knote *kn, long hint);
148131447Stjrstatic int	filt_solisten(struct knote *kn, long hint);
149131447Stjr
150131447Stjrstatic struct filterops solisten_filtops =
151131447Stjr	{ 1, NULL, filt_sordetach, filt_solisten };
152131447Stjrstatic struct filterops soread_filtops =
153131447Stjr	{ 1, NULL, filt_sordetach, filt_soread };
154131447Stjrstatic struct filterops sowrite_filtops =
155131447Stjr	{ 1, NULL, filt_sowdetach, filt_sowrite };
156131447Stjr
157131447Stjruma_zone_t socket_zone;
158131447Stjrso_gen_t	so_gencnt;	/* generation count for sockets */
159131447Stjr
160131447Stjrint	maxsockets;
161131447Stjr
162131447StjrMALLOC_DEFINE(M_SONAME, "soname", "socket name");
163131447StjrMALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
164131447Stjr
165131447Stjrstatic int somaxconn = SOMAXCONN;
166131447Stjrstatic int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
167131447Stjr/* XXX: we dont have SYSCTL_USHORT */
168131447StjrSYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
169131447Stjr    0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
170131447Stjr    "queue size");
171131447Stjrstatic int numopensockets;
172131447StjrSYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
173131447Stjr    &numopensockets, 0, "Number of open sockets");
174131447Stjr#ifdef ZERO_COPY_SOCKETS
175131447Stjr/* These aren't static because they're used in other files. */
176131447Stjrint so_zero_copy_send = 1;
177131447Stjrint so_zero_copy_receive = 1;
178131447StjrSYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
179131447Stjr    "Zero copy controls");
180131447StjrSYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
181131447Stjr    &so_zero_copy_receive, 0, "Enable zero copy receive");
182131447StjrSYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
18398038Sache    &so_zero_copy_send, 0, "Enable zero copy send");
18498038Sache#endif /* ZERO_COPY_SOCKETS */
18598038Sache
18698038Sache/*
18798038Sache * accept_mtx locks down per-socket fields relating to accept queues.  See
18898038Sache * socketvar.h for an annotation of the protected fields of struct socket.
18998038Sache */
19098038Sachestruct mtx accept_mtx;
19198038SacheMTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
192131447Stjr
19398038Sache/*
19498038Sache * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
19598038Sache * so_gencnt field.
19698038Sache */
19798038Sachestatic struct mtx so_global_mtx;
19898038SacheMTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
19998038Sache
20098038Sache/*
201131447Stjr * General IPC sysctl name space, used by sockets and a variety of other IPC
20298038Sache * types.
20398038Sache */
20498038SacheSYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
20598038Sache
20698038Sache/*
20798038Sache * Sysctl to get and set the maximum global sockets limit.  Notify protocols
20898038Sache * of the change so that they can update their dependent limits as required.
20998038Sache */
21098038Sachestatic int
21198038Sachesysctl_maxsockets(SYSCTL_HANDLER_ARGS)
21298038Sache{
21398038Sache	int error, newmaxsockets;
21498038Sache
215131447Stjr	newmaxsockets = maxsockets;
216131447Stjr	error = sysctl_handle_int(oidp, &newmaxsockets, sizeof(int), req);
217131447Stjr	if (error == 0 && req->newptr) {
218131447Stjr		if (newmaxsockets > maxsockets) {
219131447Stjr			maxsockets = newmaxsockets;
220131447Stjr			if (maxsockets > ((maxfiles / 4) * 3)) {
221131447Stjr				maxfiles = (maxsockets * 5) / 4;
222131447Stjr				maxfilesperproc = (maxfiles * 9) / 10;
223131447Stjr			}
224131447Stjr			EVENTHANDLER_INVOKE(maxsockets_change);
225131447Stjr		} else
226131447Stjr			error = EINVAL;
227131447Stjr	}
228131447Stjr	return (error);
229131447Stjr}
230131447Stjr
231131447StjrSYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
232131447Stjr    &maxsockets, 0, sysctl_maxsockets, "IU",
233131447Stjr    "Maximum number of sockets avaliable");
234131447Stjr
235131447Stjr/*
236131447Stjr * Initialise maxsockets.
237131447Stjr */
238131447Stjrstatic void init_maxsockets(void *ignored)
239131447Stjr{
240131447Stjr	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
241131447Stjr	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
242131447Stjr}
243131447StjrSYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
244131447Stjr
245131447Stjr/*
246131447Stjr * Socket operation routines.  These routines are called by the routines in
247131447Stjr * sys_socket.c or from a system process, and implement the semantics of
248131447Stjr * socket operations by switching out to the protocol specific routines.
249131447Stjr */
250131447Stjr
251131447Stjr/*
252131447Stjr * Get a socket structure from our zone, and initialize it.  Note that it
253131447Stjr * would probably be better to allocate socket and PCB at the same time, but
254131447Stjr * I'm not convinced that all the protocols can be easily modified to do
255131447Stjr * this.
256131447Stjr *
257131447Stjr * soalloc() returns a socket with a ref count of 0.
258131447Stjr */
259131447Stjrstatic struct socket *
260131447Stjrsoalloc(int mflags)
261131447Stjr{
262131447Stjr	struct socket *so;
263131447Stjr
264131447Stjr	so = uma_zalloc(socket_zone, mflags | M_ZERO);
265131447Stjr	if (so == NULL)
266131447Stjr		return (NULL);
267131447Stjr#ifdef MAC
268131447Stjr	if (mac_init_socket(so, mflags) != 0) {
269131447Stjr		uma_zfree(socket_zone, so);
270131447Stjr		return (NULL);
271131447Stjr	}
272131447Stjr#endif
273131447Stjr	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
274131447Stjr	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
275131447Stjr	TAILQ_INIT(&so->so_aiojobq);
276131447Stjr	mtx_lock(&so_global_mtx);
277131447Stjr	so->so_gencnt = ++so_gencnt;
278131447Stjr	++numopensockets;
279131447Stjr	mtx_unlock(&so_global_mtx);
280131447Stjr	return (so);
281131447Stjr}
282131447Stjr
283131447Stjr/*
28498038Sache * Free the storage associated with a socket at the socket layer, tear down
28598038Sache * locks, labels, etc.  All protocol state is assumed already to have been
28698038Sache * torn down (and possibly never set up) by the caller.
287131447Stjr */
288131447Stjrstatic void
289131447Stjrsodealloc(struct socket *so)
290131447Stjr{
291131447Stjr
292131447Stjr	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
293131447Stjr	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
294131447Stjr
295131447Stjr	mtx_lock(&so_global_mtx);
296131447Stjr	so->so_gencnt = ++so_gencnt;
297131447Stjr	--numopensockets;	/* Could be below, but faster here. */
298131447Stjr	mtx_unlock(&so_global_mtx);
299131447Stjr	if (so->so_rcv.sb_hiwat)
300131447Stjr		(void)chgsbsize(so->so_cred->cr_uidinfo,
301131447Stjr		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
302131447Stjr	if (so->so_snd.sb_hiwat)
303131447Stjr		(void)chgsbsize(so->so_cred->cr_uidinfo,
304131447Stjr		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
305131447Stjr#ifdef INET
306131447Stjr	/* remove acccept filter if one is present. */
307131447Stjr	if (so->so_accf != NULL)
308		do_setopt_accept_filter(so, NULL);
309#endif
310#ifdef MAC
311	mac_destroy_socket(so);
312#endif
313	crfree(so->so_cred);
314	SOCKBUF_LOCK_DESTROY(&so->so_snd);
315	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
316	uma_zfree(socket_zone, so);
317}
318
319/*
320 * socreate returns a socket with a ref count of 1.  The socket should be
321 * closed with soclose().
322 */
323int
324socreate(dom, aso, type, proto, cred, td)
325	int dom;
326	struct socket **aso;
327	int type;
328	int proto;
329	struct ucred *cred;
330	struct thread *td;
331{
332	struct protosw *prp;
333	struct socket *so;
334	int error;
335
336	if (proto)
337		prp = pffindproto(dom, proto, type);
338	else
339		prp = pffindtype(dom, type);
340
341	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
342	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
343		return (EPROTONOSUPPORT);
344
345	if (jailed(cred) && jail_socket_unixiproute_only &&
346	    prp->pr_domain->dom_family != PF_LOCAL &&
347	    prp->pr_domain->dom_family != PF_INET &&
348	    prp->pr_domain->dom_family != PF_ROUTE) {
349		return (EPROTONOSUPPORT);
350	}
351
352	if (prp->pr_type != type)
353		return (EPROTOTYPE);
354	so = soalloc(M_WAITOK);
355	if (so == NULL)
356		return (ENOBUFS);
357
358	TAILQ_INIT(&so->so_incomp);
359	TAILQ_INIT(&so->so_comp);
360	so->so_type = type;
361	so->so_cred = crhold(cred);
362	so->so_proto = prp;
363#ifdef MAC
364	mac_create_socket(cred, so);
365#endif
366	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
367	    NULL, NULL, NULL);
368	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
369	    NULL, NULL, NULL);
370	so->so_count = 1;
371	/*
372	 * Auto-sizing of socket buffers is managed by the protocols and
373	 * the appropriate flags must be set in the pru_attach function.
374	 */
375	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
376	if (error) {
377		KASSERT(so->so_count == 1, ("socreate: so_count %d",
378		    so->so_count));
379		so->so_count = 0;
380		sodealloc(so);
381		return (error);
382	}
383	*aso = so;
384	return (0);
385}
386
387#ifdef REGRESSION
388static int regression_sonewconn_earlytest = 1;
389SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
390    &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
391#endif
392
393/*
394 * When an attempt at a new connection is noted on a socket which accepts
395 * connections, sonewconn is called.  If the connection is possible (subject
396 * to space constraints, etc.) then we allocate a new structure, propoerly
397 * linked into the data structure of the original socket, and return this.
398 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
399 *
400 * Note: the ref count on the socket is 0 on return.
401 */
402struct socket *
403sonewconn(head, connstatus)
404	register struct socket *head;
405	int connstatus;
406{
407	register struct socket *so;
408	int over;
409
410	ACCEPT_LOCK();
411	over = (head->so_qlen > 3 * head->so_qlimit / 2);
412	ACCEPT_UNLOCK();
413#ifdef REGRESSION
414	if (regression_sonewconn_earlytest && over)
415#else
416	if (over)
417#endif
418		return (NULL);
419	so = soalloc(M_NOWAIT);
420	if (so == NULL)
421		return (NULL);
422	if ((head->so_options & SO_ACCEPTFILTER) != 0)
423		connstatus = 0;
424	so->so_head = head;
425	so->so_type = head->so_type;
426	so->so_options = head->so_options &~ SO_ACCEPTCONN;
427	so->so_linger = head->so_linger;
428	so->so_state = head->so_state | SS_NOFDREF;
429	so->so_proto = head->so_proto;
430	so->so_cred = crhold(head->so_cred);
431#ifdef MAC
432	SOCK_LOCK(head);
433	mac_create_socket_from_socket(head, so);
434	SOCK_UNLOCK(head);
435#endif
436	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
437	    NULL, NULL, NULL);
438	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
439	    NULL, NULL, NULL);
440	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
441	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
442		sodealloc(so);
443		return (NULL);
444	}
445	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
446	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
447	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
448	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
449	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
450	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
451	so->so_state |= connstatus;
452	ACCEPT_LOCK();
453	if (connstatus) {
454		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
455		so->so_qstate |= SQ_COMP;
456		head->so_qlen++;
457	} else {
458		/*
459		 * Keep removing sockets from the head until there's room for
460		 * us to insert on the tail.  In pre-locking revisions, this
461		 * was a simple if(), but as we could be racing with other
462		 * threads and soabort() requires dropping locks, we must
463		 * loop waiting for the condition to be true.
464		 */
465		while (head->so_incqlen > head->so_qlimit) {
466			struct socket *sp;
467			sp = TAILQ_FIRST(&head->so_incomp);
468			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
469			head->so_incqlen--;
470			sp->so_qstate &= ~SQ_INCOMP;
471			sp->so_head = NULL;
472			ACCEPT_UNLOCK();
473			soabort(sp);
474			ACCEPT_LOCK();
475		}
476		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
477		so->so_qstate |= SQ_INCOMP;
478		head->so_incqlen++;
479	}
480	ACCEPT_UNLOCK();
481	if (connstatus) {
482		sorwakeup(head);
483		wakeup_one(&head->so_timeo);
484	}
485	return (so);
486}
487
488int
489sobind(so, nam, td)
490	struct socket *so;
491	struct sockaddr *nam;
492	struct thread *td;
493{
494
495	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
496}
497
498/*
499 * solisten() transitions a socket from a non-listening state to a listening
500 * state, but can also be used to update the listen queue depth on an
501 * existing listen socket.  The protocol will call back into the sockets
502 * layer using solisten_proto_check() and solisten_proto() to check and set
503 * socket-layer listen state.  Call backs are used so that the protocol can
504 * acquire both protocol and socket layer locks in whatever order is required
505 * by the protocol.
506 *
507 * Protocol implementors are advised to hold the socket lock across the
508 * socket-layer test and set to avoid races at the socket layer.
509 */
510int
511solisten(so, backlog, td)
512	struct socket *so;
513	int backlog;
514	struct thread *td;
515{
516
517	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
518}
519
520int
521solisten_proto_check(so)
522	struct socket *so;
523{
524
525	SOCK_LOCK_ASSERT(so);
526
527	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
528	    SS_ISDISCONNECTING))
529		return (EINVAL);
530	return (0);
531}
532
533void
534solisten_proto(so, backlog)
535	struct socket *so;
536	int backlog;
537{
538
539	SOCK_LOCK_ASSERT(so);
540
541	if (backlog < 0 || backlog > somaxconn)
542		backlog = somaxconn;
543	so->so_qlimit = backlog;
544	so->so_options |= SO_ACCEPTCONN;
545}
546
547/*
548 * Attempt to free a socket.  This should really be sotryfree().
549 *
550 * sofree() will succeed if:
551 *
552 * - There are no outstanding file descriptor references or related consumers
553 *   (so_count == 0).
554 *
555 * - The socket has been closed by user space, if ever open (SS_NOFDREF).
556 *
557 * - The protocol does not have an outstanding strong reference on the socket
558 *   (SS_PROTOREF).
559 *
560 * - The socket is not in a completed connection queue, so a process has been
561 *   notified that it is present.  If it is removed, the user process may
562 *   block in accept() despite select() saying the socket was ready.
563 *
564 * Otherwise, it will quietly abort so that a future call to sofree(), when
565 * conditions are right, can succeed.
566 */
567void
568sofree(so)
569	struct socket *so;
570{
571	struct protosw *pr = so->so_proto;
572	struct socket *head;
573
574	ACCEPT_LOCK_ASSERT();
575	SOCK_LOCK_ASSERT(so);
576
577	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
578	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
579		SOCK_UNLOCK(so);
580		ACCEPT_UNLOCK();
581		return;
582	}
583
584	head = so->so_head;
585	if (head != NULL) {
586		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
587		    (so->so_qstate & SQ_INCOMP) != 0,
588		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
589		    "SQ_INCOMP"));
590		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
591		    (so->so_qstate & SQ_INCOMP) == 0,
592		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
593		TAILQ_REMOVE(&head->so_incomp, so, so_list);
594		head->so_incqlen--;
595		so->so_qstate &= ~SQ_INCOMP;
596		so->so_head = NULL;
597	}
598	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
599	    (so->so_qstate & SQ_INCOMP) == 0,
600	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
601	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
602	if (so->so_options & SO_ACCEPTCONN) {
603		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
604		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
605	}
606	SOCK_UNLOCK(so);
607	ACCEPT_UNLOCK();
608
609	/*
610	 * From this point on, we assume that no other references to this
611	 * socket exist anywhere else in the stack.  Therefore, no locks need
612	 * to be acquired or held.
613	 *
614	 * We used to do a lot of socket buffer and socket locking here, as
615	 * well as invoke sorflush() and perform wakeups.  The direct call to
616	 * dom_dispose() and sbrelease_internal() are an inlining of what was
617	 * necessary from sorflush().
618	 *
619	 * Notice that the socket buffer and kqueue state are torn down
620	 * before calling pru_detach.  This means that protocols shold not
621	 * assume they can perform socket wakeups, etc, in their detach
622	 * code.
623	 */
624	KASSERT((so->so_snd.sb_flags & SB_LOCK) == 0, ("sofree: snd sblock"));
625	KASSERT((so->so_rcv.sb_flags & SB_LOCK) == 0, ("sofree: rcv sblock"));
626	sbdestroy(&so->so_snd, so);
627	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
628		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
629	sbdestroy(&so->so_rcv, so);
630	if (pr->pr_usrreqs->pru_detach != NULL)
631		(*pr->pr_usrreqs->pru_detach)(so);
632	knlist_destroy(&so->so_rcv.sb_sel.si_note);
633	knlist_destroy(&so->so_snd.sb_sel.si_note);
634	sodealloc(so);
635}
636
637/*
638 * Close a socket on last file table reference removal.  Initiate disconnect
639 * if connected.  Free socket when disconnect complete.
640 *
641 * This function will sorele() the socket.  Note that soclose() may be called
642 * prior to the ref count reaching zero.  The actual socket structure will
643 * not be freed until the ref count reaches zero.
644 */
645int
646soclose(so)
647	struct socket *so;
648{
649	int error = 0;
650
651	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
652
653	funsetown(&so->so_sigio);
654	if (so->so_state & SS_ISCONNECTED) {
655		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
656			error = sodisconnect(so);
657			if (error)
658				goto drop;
659		}
660		if (so->so_options & SO_LINGER) {
661			if ((so->so_state & SS_ISDISCONNECTING) &&
662			    (so->so_state & SS_NBIO))
663				goto drop;
664			while (so->so_state & SS_ISCONNECTED) {
665				error = tsleep(&so->so_timeo,
666				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
667				if (error)
668					break;
669			}
670		}
671	}
672
673drop:
674	if (so->so_proto->pr_usrreqs->pru_close != NULL)
675		(*so->so_proto->pr_usrreqs->pru_close)(so);
676	if (so->so_options & SO_ACCEPTCONN) {
677		struct socket *sp;
678		ACCEPT_LOCK();
679		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
680			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
681			so->so_incqlen--;
682			sp->so_qstate &= ~SQ_INCOMP;
683			sp->so_head = NULL;
684			ACCEPT_UNLOCK();
685			soabort(sp);
686			ACCEPT_LOCK();
687		}
688		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
689			TAILQ_REMOVE(&so->so_comp, sp, so_list);
690			so->so_qlen--;
691			sp->so_qstate &= ~SQ_COMP;
692			sp->so_head = NULL;
693			ACCEPT_UNLOCK();
694			soabort(sp);
695			ACCEPT_LOCK();
696		}
697		ACCEPT_UNLOCK();
698	}
699	ACCEPT_LOCK();
700	SOCK_LOCK(so);
701	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
702	so->so_state |= SS_NOFDREF;
703	sorele(so);
704	return (error);
705}
706
707/*
708 * soabort() is used to abruptly tear down a connection, such as when a
709 * resource limit is reached (listen queue depth exceeded), or if a listen
710 * socket is closed while there are sockets waiting to be accepted.
711 *
712 * This interface is tricky, because it is called on an unreferenced socket,
713 * and must be called only by a thread that has actually removed the socket
714 * from the listen queue it was on, or races with other threads are risked.
715 *
716 * This interface will call into the protocol code, so must not be called
717 * with any socket locks held.  Protocols do call it while holding their own
718 * recursible protocol mutexes, but this is something that should be subject
719 * to review in the future.
720 */
721void
722soabort(so)
723	struct socket *so;
724{
725
726	/*
727	 * In as much as is possible, assert that no references to this
728	 * socket are held.  This is not quite the same as asserting that the
729	 * current thread is responsible for arranging for no references, but
730	 * is as close as we can get for now.
731	 */
732	KASSERT(so->so_count == 0, ("soabort: so_count"));
733	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
734	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
735	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
736	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
737
738	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
739		(*so->so_proto->pr_usrreqs->pru_abort)(so);
740	ACCEPT_LOCK();
741	SOCK_LOCK(so);
742	sofree(so);
743}
744
745int
746soaccept(so, nam)
747	struct socket *so;
748	struct sockaddr **nam;
749{
750	int error;
751
752	SOCK_LOCK(so);
753	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
754	so->so_state &= ~SS_NOFDREF;
755	SOCK_UNLOCK(so);
756	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
757	return (error);
758}
759
760int
761soconnect(so, nam, td)
762	struct socket *so;
763	struct sockaddr *nam;
764	struct thread *td;
765{
766	int error;
767
768	if (so->so_options & SO_ACCEPTCONN)
769		return (EOPNOTSUPP);
770	/*
771	 * If protocol is connection-based, can only connect once.
772	 * Otherwise, if connected, try to disconnect first.  This allows
773	 * user to disconnect by connecting to, e.g., a null address.
774	 */
775	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
776	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
777	    (error = sodisconnect(so)))) {
778		error = EISCONN;
779	} else {
780		/*
781		 * Prevent accumulated error from previous connection from
782		 * biting us.
783		 */
784		so->so_error = 0;
785		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
786	}
787
788	return (error);
789}
790
791int
792soconnect2(so1, so2)
793	struct socket *so1;
794	struct socket *so2;
795{
796
797	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
798}
799
800int
801sodisconnect(so)
802	struct socket *so;
803{
804	int error;
805
806	if ((so->so_state & SS_ISCONNECTED) == 0)
807		return (ENOTCONN);
808	if (so->so_state & SS_ISDISCONNECTING)
809		return (EALREADY);
810	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
811	return (error);
812}
813
814#ifdef ZERO_COPY_SOCKETS
815struct so_zerocopy_stats{
816	int size_ok;
817	int align_ok;
818	int found_ifp;
819};
820struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
821#include <netinet/in.h>
822#include <net/route.h>
823#include <netinet/in_pcb.h>
824#include <vm/vm.h>
825#include <vm/vm_page.h>
826#include <vm/vm_object.h>
827
828/*
829 * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
830 * sosend_dgram() and sosend_generic() use m_uiotombuf().
831 *
832 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
833 * all of the data referenced by the uio.  If desired, it uses zero-copy.
834 * *space will be updated to reflect data copied in.
835 *
836 * NB: If atomic I/O is requested, the caller must already have checked that
837 * space can hold resid bytes.
838 *
839 * NB: In the event of an error, the caller may need to free the partial
840 * chain pointed to by *mpp.  The contents of both *uio and *space may be
841 * modified even in the case of an error.
842 */
843static int
844sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
845    int flags)
846{
847	struct mbuf *m, **mp, *top;
848	long len, resid;
849	int error;
850#ifdef ZERO_COPY_SOCKETS
851	int cow_send;
852#endif
853
854	*retmp = top = NULL;
855	mp = &top;
856	len = 0;
857	resid = uio->uio_resid;
858	error = 0;
859	do {
860#ifdef ZERO_COPY_SOCKETS
861		cow_send = 0;
862#endif /* ZERO_COPY_SOCKETS */
863		if (resid >= MINCLSIZE) {
864#ifdef ZERO_COPY_SOCKETS
865			if (top == NULL) {
866				MGETHDR(m, M_TRYWAIT, MT_DATA);
867				if (m == NULL) {
868					error = ENOBUFS;
869					goto out;
870				}
871				m->m_pkthdr.len = 0;
872				m->m_pkthdr.rcvif = NULL;
873			} else {
874				MGET(m, M_TRYWAIT, MT_DATA);
875				if (m == NULL) {
876					error = ENOBUFS;
877					goto out;
878				}
879			}
880			if (so_zero_copy_send &&
881			    resid>=PAGE_SIZE &&
882			    *space>=PAGE_SIZE &&
883			    uio->uio_iov->iov_len>=PAGE_SIZE) {
884				so_zerocp_stats.size_ok++;
885				so_zerocp_stats.align_ok++;
886				cow_send = socow_setup(m, uio);
887				len = cow_send;
888			}
889			if (!cow_send) {
890				MCLGET(m, M_TRYWAIT);
891				if ((m->m_flags & M_EXT) == 0) {
892					m_free(m);
893					m = NULL;
894				} else {
895					len = min(min(MCLBYTES, resid),
896					    *space);
897				}
898			}
899#else /* ZERO_COPY_SOCKETS */
900			if (top == NULL) {
901				m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
902				m->m_pkthdr.len = 0;
903				m->m_pkthdr.rcvif = NULL;
904			} else
905				m = m_getcl(M_TRYWAIT, MT_DATA, 0);
906			len = min(min(MCLBYTES, resid), *space);
907#endif /* ZERO_COPY_SOCKETS */
908		} else {
909			if (top == NULL) {
910				m = m_gethdr(M_TRYWAIT, MT_DATA);
911				m->m_pkthdr.len = 0;
912				m->m_pkthdr.rcvif = NULL;
913
914				len = min(min(MHLEN, resid), *space);
915				/*
916				 * For datagram protocols, leave room
917				 * for protocol headers in first mbuf.
918				 */
919				if (atomic && m && len < MHLEN)
920					MH_ALIGN(m, len);
921			} else {
922				m = m_get(M_TRYWAIT, MT_DATA);
923				len = min(min(MLEN, resid), *space);
924			}
925		}
926		if (m == NULL) {
927			error = ENOBUFS;
928			goto out;
929		}
930
931		*space -= len;
932#ifdef ZERO_COPY_SOCKETS
933		if (cow_send)
934			error = 0;
935		else
936#endif /* ZERO_COPY_SOCKETS */
937		error = uiomove(mtod(m, void *), (int)len, uio);
938		resid = uio->uio_resid;
939		m->m_len = len;
940		*mp = m;
941		top->m_pkthdr.len += len;
942		if (error)
943			goto out;
944		mp = &m->m_next;
945		if (resid <= 0) {
946			if (flags & MSG_EOR)
947				top->m_flags |= M_EOR;
948			break;
949		}
950	} while (*space > 0 && atomic);
951out:
952	*retmp = top;
953	return (error);
954}
955#endif /*ZERO_COPY_SOCKETS*/
956
957#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
958
959int
960sosend_dgram(so, addr, uio, top, control, flags, td)
961	struct socket *so;
962	struct sockaddr *addr;
963	struct uio *uio;
964	struct mbuf *top;
965	struct mbuf *control;
966	int flags;
967	struct thread *td;
968{
969	long space, resid;
970	int clen = 0, error, dontroute;
971#ifdef ZERO_COPY_SOCKETS
972	int atomic = sosendallatonce(so) || top;
973#endif
974
975	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
976	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
977	    ("sodgram_send: !PR_ATOMIC"));
978
979	if (uio != NULL)
980		resid = uio->uio_resid;
981	else
982		resid = top->m_pkthdr.len;
983	/*
984	 * In theory resid should be unsigned.  However, space must be
985	 * signed, as it might be less than 0 if we over-committed, and we
986	 * must use a signed comparison of space and resid.  On the other
987	 * hand, a negative resid causes us to loop sending 0-length
988	 * segments to the protocol.
989	 *
990	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
991	 * type sockets since that's an error.
992	 */
993	if (resid < 0) {
994		error = EINVAL;
995		goto out;
996	}
997
998	dontroute =
999	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1000	if (td != NULL)
1001		td->td_proc->p_stats->p_ru.ru_msgsnd++;
1002	if (control != NULL)
1003		clen = control->m_len;
1004
1005	SOCKBUF_LOCK(&so->so_snd);
1006	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1007		SOCKBUF_UNLOCK(&so->so_snd);
1008		error = EPIPE;
1009		goto out;
1010	}
1011	if (so->so_error) {
1012		error = so->so_error;
1013		so->so_error = 0;
1014		SOCKBUF_UNLOCK(&so->so_snd);
1015		goto out;
1016	}
1017	if ((so->so_state & SS_ISCONNECTED) == 0) {
1018		/*
1019		 * `sendto' and `sendmsg' is allowed on a connection-based
1020		 * socket if it supports implied connect.  Return ENOTCONN if
1021		 * not connected and no address is supplied.
1022		 */
1023		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1024		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1025			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1026			    !(resid == 0 && clen != 0)) {
1027				SOCKBUF_UNLOCK(&so->so_snd);
1028				error = ENOTCONN;
1029				goto out;
1030			}
1031		} else if (addr == NULL) {
1032			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1033				error = ENOTCONN;
1034			else
1035				error = EDESTADDRREQ;
1036			SOCKBUF_UNLOCK(&so->so_snd);
1037			goto out;
1038		}
1039	}
1040
1041	/*
1042	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1043	 * problem and need fixing.
1044	 */
1045	space = sbspace(&so->so_snd);
1046	if (flags & MSG_OOB)
1047		space += 1024;
1048	space -= clen;
1049	SOCKBUF_UNLOCK(&so->so_snd);
1050	if (resid > space) {
1051		error = EMSGSIZE;
1052		goto out;
1053	}
1054	if (uio == NULL) {
1055		resid = 0;
1056		if (flags & MSG_EOR)
1057			top->m_flags |= M_EOR;
1058	} else {
1059#ifdef ZERO_COPY_SOCKETS
1060		error = sosend_copyin(uio, &top, atomic, &space, flags);
1061		if (error)
1062			goto out;
1063#else
1064		/*
1065		 * Copy the data from userland into a mbuf chain.
1066		 * If no data is to be copied in, a single empty mbuf
1067		 * is returned.
1068		 */
1069		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1070		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1071		if (top == NULL) {
1072			error = EFAULT;	/* only possible error */
1073			goto out;
1074		}
1075		space -= resid - uio->uio_resid;
1076#endif
1077		resid = uio->uio_resid;
1078	}
1079	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1080	/*
1081	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1082	 * than with.
1083	 */
1084	if (dontroute) {
1085		SOCK_LOCK(so);
1086		so->so_options |= SO_DONTROUTE;
1087		SOCK_UNLOCK(so);
1088	}
1089	/*
1090	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1091	 * of date.  We could have recieved a reset packet in an interrupt or
1092	 * maybe we slept while doing page faults in uiomove() etc.  We could
1093	 * probably recheck again inside the locking protection here, but
1094	 * there are probably other places that this also happens.  We must
1095	 * rethink this.
1096	 */
1097	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1098	    (flags & MSG_OOB) ? PRUS_OOB :
1099	/*
1100	 * If the user set MSG_EOF, the protocol understands this flag and
1101	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1102	 */
1103	    ((flags & MSG_EOF) &&
1104	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1105	     (resid <= 0)) ?
1106		PRUS_EOF :
1107		/* If there is more to send set PRUS_MORETOCOME */
1108		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1109		top, addr, control, td);
1110	if (dontroute) {
1111		SOCK_LOCK(so);
1112		so->so_options &= ~SO_DONTROUTE;
1113		SOCK_UNLOCK(so);
1114	}
1115	clen = 0;
1116	control = NULL;
1117	top = NULL;
1118out:
1119	if (top != NULL)
1120		m_freem(top);
1121	if (control != NULL)
1122		m_freem(control);
1123	return (error);
1124}
1125
1126/*
1127 * Send on a socket.  If send must go all at once and message is larger than
1128 * send buffering, then hard error.  Lock against other senders.  If must go
1129 * all at once and not enough room now, then inform user that this would
1130 * block and do nothing.  Otherwise, if nonblocking, send as much as
1131 * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1132 * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1133 * in mbuf chain must be small enough to send all at once.
1134 *
1135 * Returns nonzero on error, timeout or signal; callers must check for short
1136 * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1137 * on return.
1138 */
1139#define	snderr(errno)	{ error = (errno); goto release; }
1140int
1141sosend_generic(so, addr, uio, top, control, flags, td)
1142	struct socket *so;
1143	struct sockaddr *addr;
1144	struct uio *uio;
1145	struct mbuf *top;
1146	struct mbuf *control;
1147	int flags;
1148	struct thread *td;
1149{
1150	long space, resid;
1151	int clen = 0, error, dontroute;
1152	int atomic = sosendallatonce(so) || top;
1153
1154	if (uio != NULL)
1155		resid = uio->uio_resid;
1156	else
1157		resid = top->m_pkthdr.len;
1158	/*
1159	 * In theory resid should be unsigned.  However, space must be
1160	 * signed, as it might be less than 0 if we over-committed, and we
1161	 * must use a signed comparison of space and resid.  On the other
1162	 * hand, a negative resid causes us to loop sending 0-length
1163	 * segments to the protocol.
1164	 *
1165	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1166	 * type sockets since that's an error.
1167	 */
1168	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1169		error = EINVAL;
1170		goto out;
1171	}
1172
1173	dontroute =
1174	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1175	    (so->so_proto->pr_flags & PR_ATOMIC);
1176	if (td != NULL)
1177		td->td_proc->p_stats->p_ru.ru_msgsnd++;
1178	if (control != NULL)
1179		clen = control->m_len;
1180
1181	SOCKBUF_LOCK(&so->so_snd);
1182restart:
1183	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1184	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1185	if (error)
1186		goto out_locked;
1187	do {
1188		SOCKBUF_LOCK_ASSERT(&so->so_snd);
1189		if (so->so_snd.sb_state & SBS_CANTSENDMORE)
1190			snderr(EPIPE);
1191		if (so->so_error) {
1192			error = so->so_error;
1193			so->so_error = 0;
1194			goto release;
1195		}
1196		if ((so->so_state & SS_ISCONNECTED) == 0) {
1197			/*
1198			 * `sendto' and `sendmsg' is allowed on a connection-
1199			 * based socket if it supports implied connect.
1200			 * Return ENOTCONN if not connected and no address is
1201			 * supplied.
1202			 */
1203			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1204			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1205				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1206				    !(resid == 0 && clen != 0))
1207					snderr(ENOTCONN);
1208			} else if (addr == NULL)
1209			    snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
1210				   ENOTCONN : EDESTADDRREQ);
1211		}
1212		space = sbspace(&so->so_snd);
1213		if (flags & MSG_OOB)
1214			space += 1024;
1215		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1216		    clen > so->so_snd.sb_hiwat)
1217			snderr(EMSGSIZE);
1218		if (space < resid + clen &&
1219		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1220			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO))
1221				snderr(EWOULDBLOCK);
1222			sbunlock(&so->so_snd);
1223			error = sbwait(&so->so_snd);
1224			if (error)
1225				goto out_locked;
1226			goto restart;
1227		}
1228		SOCKBUF_UNLOCK(&so->so_snd);
1229		space -= clen;
1230		do {
1231			if (uio == NULL) {
1232				resid = 0;
1233				if (flags & MSG_EOR)
1234					top->m_flags |= M_EOR;
1235			} else {
1236#ifdef ZERO_COPY_SOCKETS
1237				error = sosend_copyin(uio, &top, atomic,
1238				    &space, flags);
1239				if (error != 0) {
1240					SOCKBUF_LOCK(&so->so_snd);
1241					goto release;
1242				}
1243#else
1244				/*
1245				 * Copy the data from userland into a mbuf
1246				 * chain.  If no data is to be copied in,
1247				 * a single empty mbuf is returned.
1248				 */
1249				top = m_uiotombuf(uio, M_WAITOK, space,
1250				    (atomic ? max_hdr : 0),
1251				    (atomic ? M_PKTHDR : 0) |
1252				    ((flags & MSG_EOR) ? M_EOR : 0));
1253				if (top == NULL) {
1254					SOCKBUF_LOCK(&so->so_snd);
1255					error = EFAULT; /* only possible error */
1256					goto release;
1257				}
1258				space -= resid - uio->uio_resid;
1259#endif
1260				resid = uio->uio_resid;
1261			}
1262			if (dontroute) {
1263				SOCK_LOCK(so);
1264				so->so_options |= SO_DONTROUTE;
1265				SOCK_UNLOCK(so);
1266			}
1267			/*
1268			 * XXX all the SBS_CANTSENDMORE checks previously
1269			 * done could be out of date.  We could have recieved
1270			 * a reset packet in an interrupt or maybe we slept
1271			 * while doing page faults in uiomove() etc.  We
1272			 * could probably recheck again inside the locking
1273			 * protection here, but there are probably other
1274			 * places that this also happens.  We must rethink
1275			 * this.
1276			 */
1277			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1278			    (flags & MSG_OOB) ? PRUS_OOB :
1279			/*
1280			 * If the user set MSG_EOF, the protocol understands
1281			 * this flag and nothing left to send then use
1282			 * PRU_SEND_EOF instead of PRU_SEND.
1283			 */
1284			    ((flags & MSG_EOF) &&
1285			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1286			     (resid <= 0)) ?
1287				PRUS_EOF :
1288			/* If there is more to send set PRUS_MORETOCOME. */
1289			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1290			    top, addr, control, td);
1291			if (dontroute) {
1292				SOCK_LOCK(so);
1293				so->so_options &= ~SO_DONTROUTE;
1294				SOCK_UNLOCK(so);
1295			}
1296			clen = 0;
1297			control = NULL;
1298			top = NULL;
1299			if (error) {
1300				SOCKBUF_LOCK(&so->so_snd);
1301				goto release;
1302			}
1303		} while (resid && space > 0);
1304		SOCKBUF_LOCK(&so->so_snd);
1305	} while (resid);
1306
1307release:
1308	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1309	sbunlock(&so->so_snd);
1310out_locked:
1311	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1312	SOCKBUF_UNLOCK(&so->so_snd);
1313out:
1314	if (top != NULL)
1315		m_freem(top);
1316	if (control != NULL)
1317		m_freem(control);
1318	return (error);
1319}
1320#undef snderr
1321
1322int
1323sosend(so, addr, uio, top, control, flags, td)
1324	struct socket *so;
1325	struct sockaddr *addr;
1326	struct uio *uio;
1327	struct mbuf *top;
1328	struct mbuf *control;
1329	int flags;
1330	struct thread *td;
1331{
1332
1333	/* XXXRW: Temporary debugging. */
1334	KASSERT(so->so_proto->pr_usrreqs->pru_sosend != sosend,
1335	    ("sosend: protocol calls sosend"));
1336
1337	return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1338	    control, flags, td));
1339}
1340
1341/*
1342 * The part of soreceive() that implements reading non-inline out-of-band
1343 * data from a socket.  For more complete comments, see soreceive(), from
1344 * which this code originated.
1345 *
1346 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1347 * unable to return an mbuf chain to the caller.
1348 */
1349static int
1350soreceive_rcvoob(so, uio, flags)
1351	struct socket *so;
1352	struct uio *uio;
1353	int flags;
1354{
1355	struct protosw *pr = so->so_proto;
1356	struct mbuf *m;
1357	int error;
1358
1359	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1360
1361	m = m_get(M_TRYWAIT, MT_DATA);
1362	if (m == NULL)
1363		return (ENOBUFS);
1364	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1365	if (error)
1366		goto bad;
1367	do {
1368#ifdef ZERO_COPY_SOCKETS
1369		if (so_zero_copy_receive) {
1370			int disposable;
1371
1372			if ((m->m_flags & M_EXT)
1373			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1374				disposable = 1;
1375			else
1376				disposable = 0;
1377
1378			error = uiomoveco(mtod(m, void *),
1379					  min(uio->uio_resid, m->m_len),
1380					  uio, disposable);
1381		} else
1382#endif /* ZERO_COPY_SOCKETS */
1383		error = uiomove(mtod(m, void *),
1384		    (int) min(uio->uio_resid, m->m_len), uio);
1385		m = m_free(m);
1386	} while (uio->uio_resid && error == 0 && m);
1387bad:
1388	if (m != NULL)
1389		m_freem(m);
1390	return (error);
1391}
1392
1393/*
1394 * Following replacement or removal of the first mbuf on the first mbuf chain
1395 * of a socket buffer, push necessary state changes back into the socket
1396 * buffer so that other consumers see the values consistently.  'nextrecord'
1397 * is the callers locally stored value of the original value of
1398 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1399 * NOTE: 'nextrecord' may be NULL.
1400 */
1401static __inline void
1402sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1403{
1404
1405	SOCKBUF_LOCK_ASSERT(sb);
1406	/*
1407	 * First, update for the new value of nextrecord.  If necessary, make
1408	 * it the first record.
1409	 */
1410	if (sb->sb_mb != NULL)
1411		sb->sb_mb->m_nextpkt = nextrecord;
1412	else
1413		sb->sb_mb = nextrecord;
1414
1415        /*
1416         * Now update any dependent socket buffer fields to reflect the new
1417         * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1418	 * addition of a second clause that takes care of the case where
1419	 * sb_mb has been updated, but remains the last record.
1420         */
1421        if (sb->sb_mb == NULL) {
1422                sb->sb_mbtail = NULL;
1423                sb->sb_lastrecord = NULL;
1424        } else if (sb->sb_mb->m_nextpkt == NULL)
1425                sb->sb_lastrecord = sb->sb_mb;
1426}
1427
1428
1429/*
1430 * Implement receive operations on a socket.  We depend on the way that
1431 * records are added to the sockbuf by sbappend.  In particular, each record
1432 * (mbufs linked through m_next) must begin with an address if the protocol
1433 * so specifies, followed by an optional mbuf or mbufs containing ancillary
1434 * data, and then zero or more mbufs of data.  In order to allow parallelism
1435 * between network receive and copying to user space, as well as avoid
1436 * sleeping with a mutex held, we release the socket buffer mutex during the
1437 * user space copy.  Although the sockbuf is locked, new data may still be
1438 * appended, and thus we must maintain consistency of the sockbuf during that
1439 * time.
1440 *
1441 * The caller may receive the data as a single mbuf chain by supplying an
1442 * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1443 * the count in uio_resid.
1444 */
1445int
1446soreceive_generic(so, psa, uio, mp0, controlp, flagsp)
1447	struct socket *so;
1448	struct sockaddr **psa;
1449	struct uio *uio;
1450	struct mbuf **mp0;
1451	struct mbuf **controlp;
1452	int *flagsp;
1453{
1454	struct mbuf *m, **mp;
1455	int flags, len, error, offset;
1456	struct protosw *pr = so->so_proto;
1457	struct mbuf *nextrecord;
1458	int moff, type = 0;
1459	int orig_resid = uio->uio_resid;
1460
1461	mp = mp0;
1462	if (psa != NULL)
1463		*psa = NULL;
1464	if (controlp != NULL)
1465		*controlp = NULL;
1466	if (flagsp != NULL)
1467		flags = *flagsp &~ MSG_EOR;
1468	else
1469		flags = 0;
1470	if (flags & MSG_OOB)
1471		return (soreceive_rcvoob(so, uio, flags));
1472	if (mp != NULL)
1473		*mp = NULL;
1474	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1475	    && uio->uio_resid)
1476		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1477
1478	SOCKBUF_LOCK(&so->so_rcv);
1479restart:
1480	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1481	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1482	if (error)
1483		goto out;
1484
1485	m = so->so_rcv.sb_mb;
1486	/*
1487	 * If we have less data than requested, block awaiting more (subject
1488	 * to any timeout) if:
1489	 *   1. the current count is less than the low water mark, or
1490	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1491	 *	receive operation at once if we block (resid <= hiwat).
1492	 *   3. MSG_DONTWAIT is not set
1493	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1494	 * we have to do the receive in sections, and thus risk returning a
1495	 * short count if a timeout or signal occurs after we start.
1496	 */
1497	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1498	    so->so_rcv.sb_cc < uio->uio_resid) &&
1499	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1500	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1501	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1502		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1503		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1504		    m, so->so_rcv.sb_cc));
1505		if (so->so_error) {
1506			if (m != NULL)
1507				goto dontblock;
1508			error = so->so_error;
1509			if ((flags & MSG_PEEK) == 0)
1510				so->so_error = 0;
1511			goto release;
1512		}
1513		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1514		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1515			if (m)
1516				goto dontblock;
1517			else
1518				goto release;
1519		}
1520		for (; m != NULL; m = m->m_next)
1521			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1522				m = so->so_rcv.sb_mb;
1523				goto dontblock;
1524			}
1525		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1526		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1527			error = ENOTCONN;
1528			goto release;
1529		}
1530		if (uio->uio_resid == 0)
1531			goto release;
1532		if ((so->so_state & SS_NBIO) ||
1533		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1534			error = EWOULDBLOCK;
1535			goto release;
1536		}
1537		SBLASTRECORDCHK(&so->so_rcv);
1538		SBLASTMBUFCHK(&so->so_rcv);
1539		sbunlock(&so->so_rcv);
1540		error = sbwait(&so->so_rcv);
1541		if (error)
1542			goto out;
1543		goto restart;
1544	}
1545dontblock:
1546	/*
1547	 * From this point onward, we maintain 'nextrecord' as a cache of the
1548	 * pointer to the next record in the socket buffer.  We must keep the
1549	 * various socket buffer pointers and local stack versions of the
1550	 * pointers in sync, pushing out modifications before dropping the
1551	 * socket buffer mutex, and re-reading them when picking it up.
1552	 *
1553	 * Otherwise, we will race with the network stack appending new data
1554	 * or records onto the socket buffer by using inconsistent/stale
1555	 * versions of the field, possibly resulting in socket buffer
1556	 * corruption.
1557	 *
1558	 * By holding the high-level sblock(), we prevent simultaneous
1559	 * readers from pulling off the front of the socket buffer.
1560	 */
1561	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1562	if (uio->uio_td)
1563		uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++;
1564	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1565	SBLASTRECORDCHK(&so->so_rcv);
1566	SBLASTMBUFCHK(&so->so_rcv);
1567	nextrecord = m->m_nextpkt;
1568	if (pr->pr_flags & PR_ADDR) {
1569		KASSERT(m->m_type == MT_SONAME,
1570		    ("m->m_type == %d", m->m_type));
1571		orig_resid = 0;
1572		if (psa != NULL)
1573			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1574			    M_NOWAIT);
1575		if (flags & MSG_PEEK) {
1576			m = m->m_next;
1577		} else {
1578			sbfree(&so->so_rcv, m);
1579			so->so_rcv.sb_mb = m_free(m);
1580			m = so->so_rcv.sb_mb;
1581			sockbuf_pushsync(&so->so_rcv, nextrecord);
1582		}
1583	}
1584
1585	/*
1586	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1587	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1588	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1589	 * perform externalization (or freeing if controlp == NULL).
1590	 */
1591	if (m != NULL && m->m_type == MT_CONTROL) {
1592		struct mbuf *cm = NULL, *cmn;
1593		struct mbuf **cme = &cm;
1594
1595		do {
1596			if (flags & MSG_PEEK) {
1597				if (controlp != NULL) {
1598					*controlp = m_copy(m, 0, m->m_len);
1599					controlp = &(*controlp)->m_next;
1600				}
1601				m = m->m_next;
1602			} else {
1603				sbfree(&so->so_rcv, m);
1604				so->so_rcv.sb_mb = m->m_next;
1605				m->m_next = NULL;
1606				*cme = m;
1607				cme = &(*cme)->m_next;
1608				m = so->so_rcv.sb_mb;
1609			}
1610		} while (m != NULL && m->m_type == MT_CONTROL);
1611		if ((flags & MSG_PEEK) == 0)
1612			sockbuf_pushsync(&so->so_rcv, nextrecord);
1613		while (cm != NULL) {
1614			cmn = cm->m_next;
1615			cm->m_next = NULL;
1616			if (pr->pr_domain->dom_externalize != NULL) {
1617				SOCKBUF_UNLOCK(&so->so_rcv);
1618				error = (*pr->pr_domain->dom_externalize)
1619				    (cm, controlp);
1620				SOCKBUF_LOCK(&so->so_rcv);
1621			} else if (controlp != NULL)
1622				*controlp = cm;
1623			else
1624				m_freem(cm);
1625			if (controlp != NULL) {
1626				orig_resid = 0;
1627				while (*controlp != NULL)
1628					controlp = &(*controlp)->m_next;
1629			}
1630			cm = cmn;
1631		}
1632		if (m != NULL)
1633			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1634		else
1635			nextrecord = so->so_rcv.sb_mb;
1636		orig_resid = 0;
1637	}
1638	if (m != NULL) {
1639		if ((flags & MSG_PEEK) == 0) {
1640			KASSERT(m->m_nextpkt == nextrecord,
1641			    ("soreceive: post-control, nextrecord !sync"));
1642			if (nextrecord == NULL) {
1643				KASSERT(so->so_rcv.sb_mb == m,
1644				    ("soreceive: post-control, sb_mb!=m"));
1645				KASSERT(so->so_rcv.sb_lastrecord == m,
1646				    ("soreceive: post-control, lastrecord!=m"));
1647			}
1648		}
1649		type = m->m_type;
1650		if (type == MT_OOBDATA)
1651			flags |= MSG_OOB;
1652	} else {
1653		if ((flags & MSG_PEEK) == 0) {
1654			KASSERT(so->so_rcv.sb_mb == nextrecord,
1655			    ("soreceive: sb_mb != nextrecord"));
1656			if (so->so_rcv.sb_mb == NULL) {
1657				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1658				    ("soreceive: sb_lastercord != NULL"));
1659			}
1660		}
1661	}
1662	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1663	SBLASTRECORDCHK(&so->so_rcv);
1664	SBLASTMBUFCHK(&so->so_rcv);
1665
1666	/*
1667	 * Now continue to read any data mbufs off of the head of the socket
1668	 * buffer until the read request is satisfied.  Note that 'type' is
1669	 * used to store the type of any mbuf reads that have happened so far
1670	 * such that soreceive() can stop reading if the type changes, which
1671	 * causes soreceive() to return only one of regular data and inline
1672	 * out-of-band data in a single socket receive operation.
1673	 */
1674	moff = 0;
1675	offset = 0;
1676	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1677		/*
1678		 * If the type of mbuf has changed since the last mbuf
1679		 * examined ('type'), end the receive operation.
1680	 	 */
1681		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1682		if (m->m_type == MT_OOBDATA) {
1683			if (type != MT_OOBDATA)
1684				break;
1685		} else if (type == MT_OOBDATA)
1686			break;
1687		else
1688		    KASSERT(m->m_type == MT_DATA,
1689			("m->m_type == %d", m->m_type));
1690		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1691		len = uio->uio_resid;
1692		if (so->so_oobmark && len > so->so_oobmark - offset)
1693			len = so->so_oobmark - offset;
1694		if (len > m->m_len - moff)
1695			len = m->m_len - moff;
1696		/*
1697		 * If mp is set, just pass back the mbufs.  Otherwise copy
1698		 * them out via the uio, then free.  Sockbuf must be
1699		 * consistent here (points to current mbuf, it points to next
1700		 * record) when we drop priority; we must note any additions
1701		 * to the sockbuf when we block interrupts again.
1702		 */
1703		if (mp == NULL) {
1704			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1705			SBLASTRECORDCHK(&so->so_rcv);
1706			SBLASTMBUFCHK(&so->so_rcv);
1707			SOCKBUF_UNLOCK(&so->so_rcv);
1708#ifdef ZERO_COPY_SOCKETS
1709			if (so_zero_copy_receive) {
1710				int disposable;
1711
1712				if ((m->m_flags & M_EXT)
1713				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1714					disposable = 1;
1715				else
1716					disposable = 0;
1717
1718				error = uiomoveco(mtod(m, char *) + moff,
1719						  (int)len, uio,
1720						  disposable);
1721			} else
1722#endif /* ZERO_COPY_SOCKETS */
1723			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1724			SOCKBUF_LOCK(&so->so_rcv);
1725			if (error) {
1726				/*
1727				 * The MT_SONAME mbuf has already been removed
1728				 * from the record, so it is necessary to
1729				 * remove the data mbufs, if any, to preserve
1730				 * the invariant in the case of PR_ADDR that
1731				 * requires MT_SONAME mbufs at the head of
1732				 * each record.
1733				 */
1734				if (m && pr->pr_flags & PR_ATOMIC &&
1735				    ((flags & MSG_PEEK) == 0))
1736					(void)sbdroprecord_locked(&so->so_rcv);
1737				goto release;
1738			}
1739		} else
1740			uio->uio_resid -= len;
1741		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1742		if (len == m->m_len - moff) {
1743			if (m->m_flags & M_EOR)
1744				flags |= MSG_EOR;
1745			if (flags & MSG_PEEK) {
1746				m = m->m_next;
1747				moff = 0;
1748			} else {
1749				nextrecord = m->m_nextpkt;
1750				sbfree(&so->so_rcv, m);
1751				if (mp != NULL) {
1752					*mp = m;
1753					mp = &m->m_next;
1754					so->so_rcv.sb_mb = m = m->m_next;
1755					*mp = NULL;
1756				} else {
1757					so->so_rcv.sb_mb = m_free(m);
1758					m = so->so_rcv.sb_mb;
1759				}
1760				sockbuf_pushsync(&so->so_rcv, nextrecord);
1761				SBLASTRECORDCHK(&so->so_rcv);
1762				SBLASTMBUFCHK(&so->so_rcv);
1763			}
1764		} else {
1765			if (flags & MSG_PEEK)
1766				moff += len;
1767			else {
1768				if (mp != NULL) {
1769					int copy_flag;
1770
1771					if (flags & MSG_DONTWAIT)
1772						copy_flag = M_DONTWAIT;
1773					else
1774						copy_flag = M_TRYWAIT;
1775					if (copy_flag == M_TRYWAIT)
1776						SOCKBUF_UNLOCK(&so->so_rcv);
1777					*mp = m_copym(m, 0, len, copy_flag);
1778					if (copy_flag == M_TRYWAIT)
1779						SOCKBUF_LOCK(&so->so_rcv);
1780 					if (*mp == NULL) {
1781 						/*
1782 						 * m_copym() couldn't
1783						 * allocate an mbuf.  Adjust
1784						 * uio_resid back (it was
1785						 * adjusted down by len
1786						 * bytes, which we didn't end
1787						 * up "copying" over).
1788 						 */
1789 						uio->uio_resid += len;
1790 						break;
1791 					}
1792				}
1793				m->m_data += len;
1794				m->m_len -= len;
1795				so->so_rcv.sb_cc -= len;
1796			}
1797		}
1798		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1799		if (so->so_oobmark) {
1800			if ((flags & MSG_PEEK) == 0) {
1801				so->so_oobmark -= len;
1802				if (so->so_oobmark == 0) {
1803					so->so_rcv.sb_state |= SBS_RCVATMARK;
1804					break;
1805				}
1806			} else {
1807				offset += len;
1808				if (offset == so->so_oobmark)
1809					break;
1810			}
1811		}
1812		if (flags & MSG_EOR)
1813			break;
1814		/*
1815		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1816		 * must not quit until "uio->uio_resid == 0" or an error
1817		 * termination.  If a signal/timeout occurs, return with a
1818		 * short count but without error.  Keep sockbuf locked
1819		 * against other readers.
1820		 */
1821		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1822		    !sosendallatonce(so) && nextrecord == NULL) {
1823			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1824			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1825				break;
1826			/*
1827			 * Notify the protocol that some data has been
1828			 * drained before blocking.
1829			 */
1830			if (pr->pr_flags & PR_WANTRCVD) {
1831				SOCKBUF_UNLOCK(&so->so_rcv);
1832				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1833				SOCKBUF_LOCK(&so->so_rcv);
1834			}
1835			SBLASTRECORDCHK(&so->so_rcv);
1836			SBLASTMBUFCHK(&so->so_rcv);
1837			error = sbwait(&so->so_rcv);
1838			if (error)
1839				goto release;
1840			m = so->so_rcv.sb_mb;
1841			if (m != NULL)
1842				nextrecord = m->m_nextpkt;
1843		}
1844	}
1845
1846	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1847	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1848		flags |= MSG_TRUNC;
1849		if ((flags & MSG_PEEK) == 0)
1850			(void) sbdroprecord_locked(&so->so_rcv);
1851	}
1852	if ((flags & MSG_PEEK) == 0) {
1853		if (m == NULL) {
1854			/*
1855			 * First part is an inline SB_EMPTY_FIXUP().  Second
1856			 * part makes sure sb_lastrecord is up-to-date if
1857			 * there is still data in the socket buffer.
1858			 */
1859			so->so_rcv.sb_mb = nextrecord;
1860			if (so->so_rcv.sb_mb == NULL) {
1861				so->so_rcv.sb_mbtail = NULL;
1862				so->so_rcv.sb_lastrecord = NULL;
1863			} else if (nextrecord->m_nextpkt == NULL)
1864				so->so_rcv.sb_lastrecord = nextrecord;
1865		}
1866		SBLASTRECORDCHK(&so->so_rcv);
1867		SBLASTMBUFCHK(&so->so_rcv);
1868		/*
1869		 * If soreceive() is being done from the socket callback,
1870		 * then don't need to generate ACK to peer to update window,
1871		 * since ACK will be generated on return to TCP.
1872		 */
1873		if (!(flags & MSG_SOCALLBCK) &&
1874		    (pr->pr_flags & PR_WANTRCVD)) {
1875			SOCKBUF_UNLOCK(&so->so_rcv);
1876			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1877			SOCKBUF_LOCK(&so->so_rcv);
1878		}
1879	}
1880	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1881	if (orig_resid == uio->uio_resid && orig_resid &&
1882	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1883		sbunlock(&so->so_rcv);
1884		goto restart;
1885	}
1886
1887	if (flagsp != NULL)
1888		*flagsp |= flags;
1889release:
1890	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1891	sbunlock(&so->so_rcv);
1892out:
1893	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1894	SOCKBUF_UNLOCK(&so->so_rcv);
1895	return (error);
1896}
1897
1898int
1899soreceive(so, psa, uio, mp0, controlp, flagsp)
1900	struct socket *so;
1901	struct sockaddr **psa;
1902	struct uio *uio;
1903	struct mbuf **mp0;
1904	struct mbuf **controlp;
1905	int *flagsp;
1906{
1907
1908	/* XXXRW: Temporary debugging. */
1909	KASSERT(so->so_proto->pr_usrreqs->pru_soreceive != soreceive,
1910	    ("soreceive: protocol calls soreceive"));
1911
1912	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
1913	    controlp, flagsp));
1914}
1915
1916int
1917soshutdown(so, how)
1918	struct socket *so;
1919	int how;
1920{
1921	struct protosw *pr = so->so_proto;
1922
1923	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1924		return (EINVAL);
1925
1926	if (how != SHUT_WR)
1927		sorflush(so);
1928	if (how != SHUT_RD)
1929		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1930	return (0);
1931}
1932
1933void
1934sorflush(so)
1935	struct socket *so;
1936{
1937	struct sockbuf *sb = &so->so_rcv;
1938	struct protosw *pr = so->so_proto;
1939	struct sockbuf asb;
1940
1941	/*
1942	 * XXXRW: This is quite ugly.  Previously, this code made a copy of
1943	 * the socket buffer, then zero'd the original to clear the buffer
1944	 * fields.  However, with mutexes in the socket buffer, this causes
1945	 * problems.  We only clear the zeroable bits of the original;
1946	 * however, we have to initialize and destroy the mutex in the copy
1947	 * so that dom_dispose() and sbrelease() can lock t as needed.
1948	 */
1949	SOCKBUF_LOCK(sb);
1950	sb->sb_flags |= SB_NOINTR;
1951	(void) sblock(sb, M_WAITOK);
1952	/*
1953	 * socantrcvmore_locked() drops the socket buffer mutex so that it
1954	 * can safely perform wakeups.  Re-acquire the mutex before
1955	 * continuing.
1956	 */
1957	socantrcvmore_locked(so);
1958	SOCKBUF_LOCK(sb);
1959	sbunlock(sb);
1960	/*
1961	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
1962	 * and mutex data unchanged.
1963	 */
1964	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1965	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1966	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1967	bzero(&sb->sb_startzero,
1968	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1969	SOCKBUF_UNLOCK(sb);
1970
1971	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1972	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1973		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1974	sbrelease(&asb, so);
1975	SOCKBUF_LOCK_DESTROY(&asb);
1976}
1977
1978/*
1979 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
1980 * additional variant to handle the case where the option value needs to be
1981 * some kind of integer, but not a specific size.  In addition to their use
1982 * here, these functions are also called by the protocol-level pr_ctloutput()
1983 * routines.
1984 */
1985int
1986sooptcopyin(sopt, buf, len, minlen)
1987	struct	sockopt *sopt;
1988	void	*buf;
1989	size_t	len;
1990	size_t	minlen;
1991{
1992	size_t	valsize;
1993
1994	/*
1995	 * If the user gives us more than we wanted, we ignore it, but if we
1996	 * don't get the minimum length the caller wants, we return EINVAL.
1997	 * On success, sopt->sopt_valsize is set to however much we actually
1998	 * retrieved.
1999	 */
2000	if ((valsize = sopt->sopt_valsize) < minlen)
2001		return EINVAL;
2002	if (valsize > len)
2003		sopt->sopt_valsize = valsize = len;
2004
2005	if (sopt->sopt_td != NULL)
2006		return (copyin(sopt->sopt_val, buf, valsize));
2007
2008	bcopy(sopt->sopt_val, buf, valsize);
2009	return (0);
2010}
2011
2012/*
2013 * Kernel version of setsockopt(2).
2014 *
2015 * XXX: optlen is size_t, not socklen_t
2016 */
2017int
2018so_setsockopt(struct socket *so, int level, int optname, void *optval,
2019    size_t optlen)
2020{
2021	struct sockopt sopt;
2022
2023	sopt.sopt_level = level;
2024	sopt.sopt_name = optname;
2025	sopt.sopt_dir = SOPT_SET;
2026	sopt.sopt_val = optval;
2027	sopt.sopt_valsize = optlen;
2028	sopt.sopt_td = NULL;
2029	return (sosetopt(so, &sopt));
2030}
2031
2032int
2033sosetopt(so, sopt)
2034	struct socket *so;
2035	struct sockopt *sopt;
2036{
2037	int	error, optval;
2038	struct	linger l;
2039	struct	timeval tv;
2040	u_long  val;
2041#ifdef MAC
2042	struct mac extmac;
2043#endif
2044
2045	error = 0;
2046	if (sopt->sopt_level != SOL_SOCKET) {
2047		if (so->so_proto && so->so_proto->pr_ctloutput)
2048			return ((*so->so_proto->pr_ctloutput)
2049				  (so, sopt));
2050		error = ENOPROTOOPT;
2051	} else {
2052		switch (sopt->sopt_name) {
2053#ifdef INET
2054		case SO_ACCEPTFILTER:
2055			error = do_setopt_accept_filter(so, sopt);
2056			if (error)
2057				goto bad;
2058			break;
2059#endif
2060		case SO_LINGER:
2061			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2062			if (error)
2063				goto bad;
2064
2065			SOCK_LOCK(so);
2066			so->so_linger = l.l_linger;
2067			if (l.l_onoff)
2068				so->so_options |= SO_LINGER;
2069			else
2070				so->so_options &= ~SO_LINGER;
2071			SOCK_UNLOCK(so);
2072			break;
2073
2074		case SO_DEBUG:
2075		case SO_KEEPALIVE:
2076		case SO_DONTROUTE:
2077		case SO_USELOOPBACK:
2078		case SO_BROADCAST:
2079		case SO_REUSEADDR:
2080		case SO_REUSEPORT:
2081		case SO_OOBINLINE:
2082		case SO_TIMESTAMP:
2083		case SO_BINTIME:
2084		case SO_NOSIGPIPE:
2085			error = sooptcopyin(sopt, &optval, sizeof optval,
2086					    sizeof optval);
2087			if (error)
2088				goto bad;
2089			SOCK_LOCK(so);
2090			if (optval)
2091				so->so_options |= sopt->sopt_name;
2092			else
2093				so->so_options &= ~sopt->sopt_name;
2094			SOCK_UNLOCK(so);
2095			break;
2096
2097		case SO_SNDBUF:
2098		case SO_RCVBUF:
2099		case SO_SNDLOWAT:
2100		case SO_RCVLOWAT:
2101			error = sooptcopyin(sopt, &optval, sizeof optval,
2102					    sizeof optval);
2103			if (error)
2104				goto bad;
2105
2106			/*
2107			 * Values < 1 make no sense for any of these options,
2108			 * so disallow them.
2109			 */
2110			if (optval < 1) {
2111				error = EINVAL;
2112				goto bad;
2113			}
2114
2115			switch (sopt->sopt_name) {
2116			case SO_SNDBUF:
2117			case SO_RCVBUF:
2118				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2119				    &so->so_snd : &so->so_rcv, (u_long)optval,
2120				    so, curthread) == 0) {
2121					error = ENOBUFS;
2122					goto bad;
2123				}
2124				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2125				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2126				break;
2127
2128			/*
2129			 * Make sure the low-water is never greater than the
2130			 * high-water.
2131			 */
2132			case SO_SNDLOWAT:
2133				SOCKBUF_LOCK(&so->so_snd);
2134				so->so_snd.sb_lowat =
2135				    (optval > so->so_snd.sb_hiwat) ?
2136				    so->so_snd.sb_hiwat : optval;
2137				SOCKBUF_UNLOCK(&so->so_snd);
2138				break;
2139			case SO_RCVLOWAT:
2140				SOCKBUF_LOCK(&so->so_rcv);
2141				so->so_rcv.sb_lowat =
2142				    (optval > so->so_rcv.sb_hiwat) ?
2143				    so->so_rcv.sb_hiwat : optval;
2144				SOCKBUF_UNLOCK(&so->so_rcv);
2145				break;
2146			}
2147			break;
2148
2149		case SO_SNDTIMEO:
2150		case SO_RCVTIMEO:
2151#ifdef COMPAT_IA32
2152			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2153				struct timeval32 tv32;
2154
2155				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2156				    sizeof tv32);
2157				CP(tv32, tv, tv_sec);
2158				CP(tv32, tv, tv_usec);
2159			} else
2160#endif
2161				error = sooptcopyin(sopt, &tv, sizeof tv,
2162				    sizeof tv);
2163			if (error)
2164				goto bad;
2165
2166			/* assert(hz > 0); */
2167			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2168			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2169				error = EDOM;
2170				goto bad;
2171			}
2172			/* assert(tick > 0); */
2173			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2174			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2175			if (val > INT_MAX) {
2176				error = EDOM;
2177				goto bad;
2178			}
2179			if (val == 0 && tv.tv_usec != 0)
2180				val = 1;
2181
2182			switch (sopt->sopt_name) {
2183			case SO_SNDTIMEO:
2184				so->so_snd.sb_timeo = val;
2185				break;
2186			case SO_RCVTIMEO:
2187				so->so_rcv.sb_timeo = val;
2188				break;
2189			}
2190			break;
2191
2192		case SO_LABEL:
2193#ifdef MAC
2194			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2195			    sizeof extmac);
2196			if (error)
2197				goto bad;
2198			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2199			    so, &extmac);
2200#else
2201			error = EOPNOTSUPP;
2202#endif
2203			break;
2204
2205		default:
2206			error = ENOPROTOOPT;
2207			break;
2208		}
2209		if (error == 0 && so->so_proto != NULL &&
2210		    so->so_proto->pr_ctloutput != NULL) {
2211			(void) ((*so->so_proto->pr_ctloutput)
2212				  (so, sopt));
2213		}
2214	}
2215bad:
2216	return (error);
2217}
2218
2219/*
2220 * Helper routine for getsockopt.
2221 */
2222int
2223sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2224{
2225	int	error;
2226	size_t	valsize;
2227
2228	error = 0;
2229
2230	/*
2231	 * Documented get behavior is that we always return a value, possibly
2232	 * truncated to fit in the user's buffer.  Traditional behavior is
2233	 * that we always tell the user precisely how much we copied, rather
2234	 * than something useful like the total amount we had available for
2235	 * her.  Note that this interface is not idempotent; the entire
2236	 * answer must generated ahead of time.
2237	 */
2238	valsize = min(len, sopt->sopt_valsize);
2239	sopt->sopt_valsize = valsize;
2240	if (sopt->sopt_val != NULL) {
2241		if (sopt->sopt_td != NULL)
2242			error = copyout(buf, sopt->sopt_val, valsize);
2243		else
2244			bcopy(buf, sopt->sopt_val, valsize);
2245	}
2246	return (error);
2247}
2248
2249int
2250sogetopt(so, sopt)
2251	struct socket *so;
2252	struct sockopt *sopt;
2253{
2254	int	error, optval;
2255	struct	linger l;
2256	struct	timeval tv;
2257#ifdef MAC
2258	struct mac extmac;
2259#endif
2260
2261	error = 0;
2262	if (sopt->sopt_level != SOL_SOCKET) {
2263		if (so->so_proto && so->so_proto->pr_ctloutput) {
2264			return ((*so->so_proto->pr_ctloutput)
2265				  (so, sopt));
2266		} else
2267			return (ENOPROTOOPT);
2268	} else {
2269		switch (sopt->sopt_name) {
2270#ifdef INET
2271		case SO_ACCEPTFILTER:
2272			error = do_getopt_accept_filter(so, sopt);
2273			break;
2274#endif
2275		case SO_LINGER:
2276			SOCK_LOCK(so);
2277			l.l_onoff = so->so_options & SO_LINGER;
2278			l.l_linger = so->so_linger;
2279			SOCK_UNLOCK(so);
2280			error = sooptcopyout(sopt, &l, sizeof l);
2281			break;
2282
2283		case SO_USELOOPBACK:
2284		case SO_DONTROUTE:
2285		case SO_DEBUG:
2286		case SO_KEEPALIVE:
2287		case SO_REUSEADDR:
2288		case SO_REUSEPORT:
2289		case SO_BROADCAST:
2290		case SO_OOBINLINE:
2291		case SO_ACCEPTCONN:
2292		case SO_TIMESTAMP:
2293		case SO_BINTIME:
2294		case SO_NOSIGPIPE:
2295			optval = so->so_options & sopt->sopt_name;
2296integer:
2297			error = sooptcopyout(sopt, &optval, sizeof optval);
2298			break;
2299
2300		case SO_TYPE:
2301			optval = so->so_type;
2302			goto integer;
2303
2304		case SO_ERROR:
2305			SOCK_LOCK(so);
2306			optval = so->so_error;
2307			so->so_error = 0;
2308			SOCK_UNLOCK(so);
2309			goto integer;
2310
2311		case SO_SNDBUF:
2312			optval = so->so_snd.sb_hiwat;
2313			goto integer;
2314
2315		case SO_RCVBUF:
2316			optval = so->so_rcv.sb_hiwat;
2317			goto integer;
2318
2319		case SO_SNDLOWAT:
2320			optval = so->so_snd.sb_lowat;
2321			goto integer;
2322
2323		case SO_RCVLOWAT:
2324			optval = so->so_rcv.sb_lowat;
2325			goto integer;
2326
2327		case SO_SNDTIMEO:
2328		case SO_RCVTIMEO:
2329			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2330				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2331
2332			tv.tv_sec = optval / hz;
2333			tv.tv_usec = (optval % hz) * tick;
2334#ifdef COMPAT_IA32
2335			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2336				struct timeval32 tv32;
2337
2338				CP(tv, tv32, tv_sec);
2339				CP(tv, tv32, tv_usec);
2340				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2341			} else
2342#endif
2343				error = sooptcopyout(sopt, &tv, sizeof tv);
2344			break;
2345
2346		case SO_LABEL:
2347#ifdef MAC
2348			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2349			    sizeof(extmac));
2350			if (error)
2351				return (error);
2352			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2353			    so, &extmac);
2354			if (error)
2355				return (error);
2356			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2357#else
2358			error = EOPNOTSUPP;
2359#endif
2360			break;
2361
2362		case SO_PEERLABEL:
2363#ifdef MAC
2364			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2365			    sizeof(extmac));
2366			if (error)
2367				return (error);
2368			error = mac_getsockopt_peerlabel(
2369			    sopt->sopt_td->td_ucred, so, &extmac);
2370			if (error)
2371				return (error);
2372			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2373#else
2374			error = EOPNOTSUPP;
2375#endif
2376			break;
2377
2378		case SO_LISTENQLIMIT:
2379			optval = so->so_qlimit;
2380			goto integer;
2381
2382		case SO_LISTENQLEN:
2383			optval = so->so_qlen;
2384			goto integer;
2385
2386		case SO_LISTENINCQLEN:
2387			optval = so->so_incqlen;
2388			goto integer;
2389
2390		default:
2391			error = ENOPROTOOPT;
2392			break;
2393		}
2394		return (error);
2395	}
2396}
2397
2398/* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2399int
2400soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2401{
2402	struct mbuf *m, *m_prev;
2403	int sopt_size = sopt->sopt_valsize;
2404
2405	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2406	if (m == NULL)
2407		return ENOBUFS;
2408	if (sopt_size > MLEN) {
2409		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
2410		if ((m->m_flags & M_EXT) == 0) {
2411			m_free(m);
2412			return ENOBUFS;
2413		}
2414		m->m_len = min(MCLBYTES, sopt_size);
2415	} else {
2416		m->m_len = min(MLEN, sopt_size);
2417	}
2418	sopt_size -= m->m_len;
2419	*mp = m;
2420	m_prev = m;
2421
2422	while (sopt_size) {
2423		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2424		if (m == NULL) {
2425			m_freem(*mp);
2426			return ENOBUFS;
2427		}
2428		if (sopt_size > MLEN) {
2429			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
2430			    M_DONTWAIT);
2431			if ((m->m_flags & M_EXT) == 0) {
2432				m_freem(m);
2433				m_freem(*mp);
2434				return ENOBUFS;
2435			}
2436			m->m_len = min(MCLBYTES, sopt_size);
2437		} else {
2438			m->m_len = min(MLEN, sopt_size);
2439		}
2440		sopt_size -= m->m_len;
2441		m_prev->m_next = m;
2442		m_prev = m;
2443	}
2444	return (0);
2445}
2446
2447/* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2448int
2449soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2450{
2451	struct mbuf *m0 = m;
2452
2453	if (sopt->sopt_val == NULL)
2454		return (0);
2455	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2456		if (sopt->sopt_td != NULL) {
2457			int error;
2458
2459			error = copyin(sopt->sopt_val, mtod(m, char *),
2460				       m->m_len);
2461			if (error != 0) {
2462				m_freem(m0);
2463				return(error);
2464			}
2465		} else
2466			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2467		sopt->sopt_valsize -= m->m_len;
2468		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2469		m = m->m_next;
2470	}
2471	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2472		panic("ip6_sooptmcopyin");
2473	return (0);
2474}
2475
2476/* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2477int
2478soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2479{
2480	struct mbuf *m0 = m;
2481	size_t valsize = 0;
2482
2483	if (sopt->sopt_val == NULL)
2484		return (0);
2485	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2486		if (sopt->sopt_td != NULL) {
2487			int error;
2488
2489			error = copyout(mtod(m, char *), sopt->sopt_val,
2490				       m->m_len);
2491			if (error != 0) {
2492				m_freem(m0);
2493				return(error);
2494			}
2495		} else
2496			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2497	       sopt->sopt_valsize -= m->m_len;
2498	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2499	       valsize += m->m_len;
2500	       m = m->m_next;
2501	}
2502	if (m != NULL) {
2503		/* enough soopt buffer should be given from user-land */
2504		m_freem(m0);
2505		return(EINVAL);
2506	}
2507	sopt->sopt_valsize = valsize;
2508	return (0);
2509}
2510
2511/*
2512 * sohasoutofband(): protocol notifies socket layer of the arrival of new
2513 * out-of-band data, which will then notify socket consumers.
2514 */
2515void
2516sohasoutofband(so)
2517	struct socket *so;
2518{
2519	if (so->so_sigio != NULL)
2520		pgsigio(&so->so_sigio, SIGURG, 0);
2521	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2522}
2523
2524int
2525sopoll(struct socket *so, int events, struct ucred *active_cred,
2526    struct thread *td)
2527{
2528
2529	/* XXXRW: Temporary debugging. */
2530	KASSERT(so->so_proto->pr_usrreqs->pru_sopoll != sopoll,
2531	    ("sopoll: protocol calls sopoll"));
2532
2533	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2534	    td));
2535}
2536
2537int
2538sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2539    struct thread *td)
2540{
2541	int revents = 0;
2542
2543	SOCKBUF_LOCK(&so->so_snd);
2544	SOCKBUF_LOCK(&so->so_rcv);
2545	if (events & (POLLIN | POLLRDNORM))
2546		if (soreadable(so))
2547			revents |= events & (POLLIN | POLLRDNORM);
2548
2549	if (events & POLLINIGNEOF)
2550		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2551		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2552			revents |= POLLINIGNEOF;
2553
2554	if (events & (POLLOUT | POLLWRNORM))
2555		if (sowriteable(so))
2556			revents |= events & (POLLOUT | POLLWRNORM);
2557
2558	if (events & (POLLPRI | POLLRDBAND))
2559		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2560			revents |= events & (POLLPRI | POLLRDBAND);
2561
2562	if (revents == 0) {
2563		if (events &
2564		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2565		     POLLRDBAND)) {
2566			selrecord(td, &so->so_rcv.sb_sel);
2567			so->so_rcv.sb_flags |= SB_SEL;
2568		}
2569
2570		if (events & (POLLOUT | POLLWRNORM)) {
2571			selrecord(td, &so->so_snd.sb_sel);
2572			so->so_snd.sb_flags |= SB_SEL;
2573		}
2574	}
2575
2576	SOCKBUF_UNLOCK(&so->so_rcv);
2577	SOCKBUF_UNLOCK(&so->so_snd);
2578	return (revents);
2579}
2580
2581int
2582soo_kqfilter(struct file *fp, struct knote *kn)
2583{
2584	struct socket *so = kn->kn_fp->f_data;
2585	struct sockbuf *sb;
2586
2587	switch (kn->kn_filter) {
2588	case EVFILT_READ:
2589		if (so->so_options & SO_ACCEPTCONN)
2590			kn->kn_fop = &solisten_filtops;
2591		else
2592			kn->kn_fop = &soread_filtops;
2593		sb = &so->so_rcv;
2594		break;
2595	case EVFILT_WRITE:
2596		kn->kn_fop = &sowrite_filtops;
2597		sb = &so->so_snd;
2598		break;
2599	default:
2600		return (EINVAL);
2601	}
2602
2603	SOCKBUF_LOCK(sb);
2604	knlist_add(&sb->sb_sel.si_note, kn, 1);
2605	sb->sb_flags |= SB_KNOTE;
2606	SOCKBUF_UNLOCK(sb);
2607	return (0);
2608}
2609
2610static void
2611filt_sordetach(struct knote *kn)
2612{
2613	struct socket *so = kn->kn_fp->f_data;
2614
2615	SOCKBUF_LOCK(&so->so_rcv);
2616	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2617	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2618		so->so_rcv.sb_flags &= ~SB_KNOTE;
2619	SOCKBUF_UNLOCK(&so->so_rcv);
2620}
2621
2622/*ARGSUSED*/
2623static int
2624filt_soread(struct knote *kn, long hint)
2625{
2626	struct socket *so;
2627
2628	so = kn->kn_fp->f_data;
2629	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2630
2631	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2632	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2633		kn->kn_flags |= EV_EOF;
2634		kn->kn_fflags = so->so_error;
2635		return (1);
2636	} else if (so->so_error)	/* temporary udp error */
2637		return (1);
2638	else if (kn->kn_sfflags & NOTE_LOWAT)
2639		return (kn->kn_data >= kn->kn_sdata);
2640	else
2641		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2642}
2643
2644static void
2645filt_sowdetach(struct knote *kn)
2646{
2647	struct socket *so = kn->kn_fp->f_data;
2648
2649	SOCKBUF_LOCK(&so->so_snd);
2650	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2651	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2652		so->so_snd.sb_flags &= ~SB_KNOTE;
2653	SOCKBUF_UNLOCK(&so->so_snd);
2654}
2655
2656/*ARGSUSED*/
2657static int
2658filt_sowrite(struct knote *kn, long hint)
2659{
2660	struct socket *so;
2661
2662	so = kn->kn_fp->f_data;
2663	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2664	kn->kn_data = sbspace(&so->so_snd);
2665	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2666		kn->kn_flags |= EV_EOF;
2667		kn->kn_fflags = so->so_error;
2668		return (1);
2669	} else if (so->so_error)	/* temporary udp error */
2670		return (1);
2671	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2672	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2673		return (0);
2674	else if (kn->kn_sfflags & NOTE_LOWAT)
2675		return (kn->kn_data >= kn->kn_sdata);
2676	else
2677		return (kn->kn_data >= so->so_snd.sb_lowat);
2678}
2679
2680/*ARGSUSED*/
2681static int
2682filt_solisten(struct knote *kn, long hint)
2683{
2684	struct socket *so = kn->kn_fp->f_data;
2685
2686	kn->kn_data = so->so_qlen;
2687	return (! TAILQ_EMPTY(&so->so_comp));
2688}
2689
2690int
2691socheckuid(struct socket *so, uid_t uid)
2692{
2693
2694	if (so == NULL)
2695		return (EPERM);
2696	if (so->so_cred->cr_uid != uid)
2697		return (EPERM);
2698	return (0);
2699}
2700
2701static int
2702sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
2703{
2704	int error;
2705	int val;
2706
2707	val = somaxconn;
2708	error = sysctl_handle_int(oidp, &val, sizeof(int), req);
2709	if (error || !req->newptr )
2710		return (error);
2711
2712	if (val < 1 || val > USHRT_MAX)
2713		return (EINVAL);
2714
2715	somaxconn = val;
2716	return (0);
2717}
2718