uipc_socket.c revision 162204
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 2004 The FreeBSD Foundation
5 * Copyright (c) 2004-2006 Robert N. M. Watson
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
32 */
33
34/*
35 * Comments on the socket life cycle:
36 *
37 * soalloc() sets of socket layer state for a socket, called only by
38 * socreate() and sonewconn().  Socket layer private.
39 *
40 * sodealloc() tears down socket layer state for a socket, called only by
41 * sofree() and sonewconn().  Socket layer private.
42 *
43 * pru_attach() associates protocol layer state with an allocated socket;
44 * called only once, may fail, aborting socket allocation.  This is called
45 * from socreate() and sonewconn().  Socket layer private.
46 *
47 * pru_detach() disassociates protocol layer state from an attached socket,
48 * and will be called exactly once for sockets in which pru_attach() has
49 * been successfully called.  If pru_attach() returned an error,
50 * pru_detach() will not be called.  Socket layer private.
51 *
52 * pru_abort() and pru_close() notify the protocol layer that the last
53 * consumer of a socket is starting to tear down the socket, and that the
54 * protocol should terminate the connection.  Historically, pru_abort() also
55 * detached protocol state from the socket state, but this is no longer the
56 * case.
57 *
58 * socreate() creates a socket and attaches protocol state.  This is a public
59 * interface that may be used by socket layer consumers to create new
60 * sockets.
61 *
62 * sonewconn() creates a socket and attaches protocol state.  This is a
63 * public interface  that may be used by protocols to create new sockets when
64 * a new connection is received and will be available for accept() on a
65 * listen socket.
66 *
67 * soclose() destroys a socket after possibly waiting for it to disconnect.
68 * This is a public interface that socket consumers should use to close and
69 * release a socket when done with it.
70 *
71 * soabort() destroys a socket without waiting for it to disconnect (used
72 * only for incoming connections that are already partially or fully
73 * connected).  This is used internally by the socket layer when clearing
74 * listen socket queues (due to overflow or close on the listen socket), but
75 * is also a public interface protocols may use to abort connections in
76 * their incomplete listen queues should they no longer be required.  Sockets
77 * placed in completed connection listen queues should not be aborted for
78 * reasons described in the comment above the soclose() implementation.  This
79 * is not a general purpose close routine, and except in the specific
80 * circumstances described here, should not be used.
81 *
82 * sofree() will free a socket and its protocol state if all references on
83 * the socket have been released, and is the public interface to attempt to
84 * free a socket when a reference is removed.  This is a socket layer private
85 * interface.
86 *
87 * NOTE: In addition to socreate() and soclose(), which provide a single
88 * socket reference to the consumer to be managed as required, there are two
89 * calls to explicitly manage socket references, soref(), and sorele().
90 * Currently, these are generally required only when transitioning a socket
91 * from a listen queue to a file descriptor, in order to prevent garbage
92 * collection of the socket at an untimely moment.  For a number of reasons,
93 * these interfaces are not preferred, and should be avoided.
94 */
95
96#include <sys/cdefs.h>
97__FBSDID("$FreeBSD: head/sys/kern/uipc_socket.c 162204 2006-09-10 17:08:06Z andre $");
98
99#include "opt_inet.h"
100#include "opt_mac.h"
101#include "opt_zero.h"
102#include "opt_compat.h"
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/fcntl.h>
107#include <sys/limits.h>
108#include <sys/lock.h>
109#include <sys/mac.h>
110#include <sys/malloc.h>
111#include <sys/mbuf.h>
112#include <sys/mutex.h>
113#include <sys/domain.h>
114#include <sys/file.h>			/* for struct knote */
115#include <sys/kernel.h>
116#include <sys/event.h>
117#include <sys/eventhandler.h>
118#include <sys/poll.h>
119#include <sys/proc.h>
120#include <sys/protosw.h>
121#include <sys/socket.h>
122#include <sys/socketvar.h>
123#include <sys/resourcevar.h>
124#include <sys/signalvar.h>
125#include <sys/sysctl.h>
126#include <sys/uio.h>
127#include <sys/jail.h>
128
129#include <vm/uma.h>
130
131#ifdef COMPAT_IA32
132#include <sys/mount.h>
133#include <compat/freebsd32/freebsd32.h>
134
135extern struct sysentvec ia32_freebsd_sysvec;
136#endif
137
138static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
139		    int flags);
140
141static void	filt_sordetach(struct knote *kn);
142static int	filt_soread(struct knote *kn, long hint);
143static void	filt_sowdetach(struct knote *kn);
144static int	filt_sowrite(struct knote *kn, long hint);
145static int	filt_solisten(struct knote *kn, long hint);
146
147static struct filterops solisten_filtops =
148	{ 1, NULL, filt_sordetach, filt_solisten };
149static struct filterops soread_filtops =
150	{ 1, NULL, filt_sordetach, filt_soread };
151static struct filterops sowrite_filtops =
152	{ 1, NULL, filt_sowdetach, filt_sowrite };
153
154uma_zone_t socket_zone;
155so_gen_t	so_gencnt;	/* generation count for sockets */
156
157int	maxsockets;
158
159MALLOC_DEFINE(M_SONAME, "soname", "socket name");
160MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
161
162static int somaxconn = SOMAXCONN;
163static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS);
164/* XXX: we dont have SYSCTL_USHORT */
165SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
166    0, sizeof(int), somaxconn_sysctl, "I", "Maximum pending socket connection "
167    "queue size");
168static int numopensockets;
169SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
170    &numopensockets, 0, "Number of open sockets");
171#ifdef ZERO_COPY_SOCKETS
172/* These aren't static because they're used in other files. */
173int so_zero_copy_send = 1;
174int so_zero_copy_receive = 1;
175SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
176    "Zero copy controls");
177SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
178    &so_zero_copy_receive, 0, "Enable zero copy receive");
179SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
180    &so_zero_copy_send, 0, "Enable zero copy send");
181#endif /* ZERO_COPY_SOCKETS */
182
183/*
184 * accept_mtx locks down per-socket fields relating to accept queues.  See
185 * socketvar.h for an annotation of the protected fields of struct socket.
186 */
187struct mtx accept_mtx;
188MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
189
190/*
191 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
192 * so_gencnt field.
193 */
194static struct mtx so_global_mtx;
195MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
196
197/*
198 * General IPC sysctl name space, used by sockets and a variety of other IPC
199 * types.
200 */
201SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
202
203/*
204 * Sysctl to get and set the maximum global sockets limit.  Notify protocols
205 * of the change so that they can update their dependent limits as required.
206 */
207static int
208sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
209{
210	int error, newmaxsockets;
211
212	newmaxsockets = maxsockets;
213	error = sysctl_handle_int(oidp, &newmaxsockets, sizeof(int), req);
214	if (error == 0 && req->newptr) {
215		if (newmaxsockets > maxsockets) {
216			maxsockets = newmaxsockets;
217			if (maxsockets > ((maxfiles / 4) * 3)) {
218				maxfiles = (maxsockets * 5) / 4;
219				maxfilesperproc = (maxfiles * 9) / 10;
220			}
221			EVENTHANDLER_INVOKE(maxsockets_change);
222		} else
223			error = EINVAL;
224	}
225	return (error);
226}
227
228SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
229    &maxsockets, 0, sysctl_maxsockets, "IU",
230    "Maximum number of sockets avaliable");
231
232/*
233 * Initialise maxsockets.
234 */
235static void init_maxsockets(void *ignored)
236{
237	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
238	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
239}
240SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
241
242/*
243 * Socket operation routines.  These routines are called by the routines in
244 * sys_socket.c or from a system process, and implement the semantics of
245 * socket operations by switching out to the protocol specific routines.
246 */
247
248/*
249 * Get a socket structure from our zone, and initialize it.  Note that it
250 * would probably be better to allocate socket and PCB at the same time, but
251 * I'm not convinced that all the protocols can be easily modified to do
252 * this.
253 *
254 * soalloc() returns a socket with a ref count of 0.
255 */
256static struct socket *
257soalloc(int mflags)
258{
259	struct socket *so;
260
261	so = uma_zalloc(socket_zone, mflags | M_ZERO);
262	if (so == NULL)
263		return (NULL);
264#ifdef MAC
265	if (mac_init_socket(so, mflags) != 0) {
266		uma_zfree(socket_zone, so);
267		return (NULL);
268	}
269#endif
270	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
271	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
272	TAILQ_INIT(&so->so_aiojobq);
273	mtx_lock(&so_global_mtx);
274	so->so_gencnt = ++so_gencnt;
275	++numopensockets;
276	mtx_unlock(&so_global_mtx);
277	return (so);
278}
279
280/*
281 * Free the storage associated with a socket at the socket layer, tear down
282 * locks, labels, etc.  All protocol state is assumed already to have been
283 * torn down (and possibly never set up) by the caller.
284 */
285static void
286sodealloc(struct socket *so)
287{
288
289	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
290	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
291
292	mtx_lock(&so_global_mtx);
293	so->so_gencnt = ++so_gencnt;
294	--numopensockets;	/* Could be below, but faster here. */
295	mtx_unlock(&so_global_mtx);
296	if (so->so_rcv.sb_hiwat)
297		(void)chgsbsize(so->so_cred->cr_uidinfo,
298		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
299	if (so->so_snd.sb_hiwat)
300		(void)chgsbsize(so->so_cred->cr_uidinfo,
301		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
302#ifdef INET
303	/* remove acccept filter if one is present. */
304	if (so->so_accf != NULL)
305		do_setopt_accept_filter(so, NULL);
306#endif
307#ifdef MAC
308	mac_destroy_socket(so);
309#endif
310	crfree(so->so_cred);
311	SOCKBUF_LOCK_DESTROY(&so->so_snd);
312	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
313	uma_zfree(socket_zone, so);
314}
315
316/*
317 * socreate returns a socket with a ref count of 1.  The socket should be
318 * closed with soclose().
319 */
320int
321socreate(dom, aso, type, proto, cred, td)
322	int dom;
323	struct socket **aso;
324	int type;
325	int proto;
326	struct ucred *cred;
327	struct thread *td;
328{
329	struct protosw *prp;
330	struct socket *so;
331	int error;
332
333	if (proto)
334		prp = pffindproto(dom, proto, type);
335	else
336		prp = pffindtype(dom, type);
337
338	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
339	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
340		return (EPROTONOSUPPORT);
341
342	if (jailed(cred) && jail_socket_unixiproute_only &&
343	    prp->pr_domain->dom_family != PF_LOCAL &&
344	    prp->pr_domain->dom_family != PF_INET &&
345	    prp->pr_domain->dom_family != PF_ROUTE) {
346		return (EPROTONOSUPPORT);
347	}
348
349	if (prp->pr_type != type)
350		return (EPROTOTYPE);
351	so = soalloc(M_WAITOK);
352	if (so == NULL)
353		return (ENOBUFS);
354
355	TAILQ_INIT(&so->so_incomp);
356	TAILQ_INIT(&so->so_comp);
357	so->so_type = type;
358	so->so_cred = crhold(cred);
359	so->so_proto = prp;
360#ifdef MAC
361	mac_create_socket(cred, so);
362#endif
363	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
364	    NULL, NULL, NULL);
365	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
366	    NULL, NULL, NULL);
367	so->so_count = 1;
368	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
369	if (error) {
370		KASSERT(so->so_count == 1, ("socreate: so_count %d",
371		    so->so_count));
372		so->so_count = 0;
373		sodealloc(so);
374		return (error);
375	}
376	*aso = so;
377	return (0);
378}
379
380#ifdef REGRESSION
381static int regression_sonewconn_earlytest = 1;
382SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
383    &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
384#endif
385
386/*
387 * When an attempt at a new connection is noted on a socket which accepts
388 * connections, sonewconn is called.  If the connection is possible (subject
389 * to space constraints, etc.) then we allocate a new structure, propoerly
390 * linked into the data structure of the original socket, and return this.
391 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
392 *
393 * Note: the ref count on the socket is 0 on return.
394 */
395struct socket *
396sonewconn(head, connstatus)
397	register struct socket *head;
398	int connstatus;
399{
400	register struct socket *so;
401	int over;
402
403	ACCEPT_LOCK();
404	over = (head->so_qlen > 3 * head->so_qlimit / 2);
405	ACCEPT_UNLOCK();
406#ifdef REGRESSION
407	if (regression_sonewconn_earlytest && over)
408#else
409	if (over)
410#endif
411		return (NULL);
412	so = soalloc(M_NOWAIT);
413	if (so == NULL)
414		return (NULL);
415	if ((head->so_options & SO_ACCEPTFILTER) != 0)
416		connstatus = 0;
417	so->so_head = head;
418	so->so_type = head->so_type;
419	so->so_options = head->so_options &~ SO_ACCEPTCONN;
420	so->so_linger = head->so_linger;
421	so->so_state = head->so_state | SS_NOFDREF;
422	so->so_proto = head->so_proto;
423	so->so_cred = crhold(head->so_cred);
424#ifdef MAC
425	SOCK_LOCK(head);
426	mac_create_socket_from_socket(head, so);
427	SOCK_UNLOCK(head);
428#endif
429	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
430	    NULL, NULL, NULL);
431	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
432	    NULL, NULL, NULL);
433	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
434	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
435		sodealloc(so);
436		return (NULL);
437	}
438	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
439	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
440	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
441	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
442	so->so_state |= connstatus;
443	ACCEPT_LOCK();
444	if (connstatus) {
445		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
446		so->so_qstate |= SQ_COMP;
447		head->so_qlen++;
448	} else {
449		/*
450		 * Keep removing sockets from the head until there's room for
451		 * us to insert on the tail.  In pre-locking revisions, this
452		 * was a simple if(), but as we could be racing with other
453		 * threads and soabort() requires dropping locks, we must
454		 * loop waiting for the condition to be true.
455		 */
456		while (head->so_incqlen > head->so_qlimit) {
457			struct socket *sp;
458			sp = TAILQ_FIRST(&head->so_incomp);
459			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
460			head->so_incqlen--;
461			sp->so_qstate &= ~SQ_INCOMP;
462			sp->so_head = NULL;
463			ACCEPT_UNLOCK();
464			soabort(sp);
465			ACCEPT_LOCK();
466		}
467		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
468		so->so_qstate |= SQ_INCOMP;
469		head->so_incqlen++;
470	}
471	ACCEPT_UNLOCK();
472	if (connstatus) {
473		sorwakeup(head);
474		wakeup_one(&head->so_timeo);
475	}
476	return (so);
477}
478
479int
480sobind(so, nam, td)
481	struct socket *so;
482	struct sockaddr *nam;
483	struct thread *td;
484{
485
486	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
487}
488
489/*
490 * solisten() transitions a socket from a non-listening state to a listening
491 * state, but can also be used to update the listen queue depth on an
492 * existing listen socket.  The protocol will call back into the sockets
493 * layer using solisten_proto_check() and solisten_proto() to check and set
494 * socket-layer listen state.  Call backs are used so that the protocol can
495 * acquire both protocol and socket layer locks in whatever order is required
496 * by the protocol.
497 *
498 * Protocol implementors are advised to hold the socket lock across the
499 * socket-layer test and set to avoid races at the socket layer.
500 */
501int
502solisten(so, backlog, td)
503	struct socket *so;
504	int backlog;
505	struct thread *td;
506{
507
508	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
509}
510
511int
512solisten_proto_check(so)
513	struct socket *so;
514{
515
516	SOCK_LOCK_ASSERT(so);
517
518	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
519	    SS_ISDISCONNECTING))
520		return (EINVAL);
521	return (0);
522}
523
524void
525solisten_proto(so, backlog)
526	struct socket *so;
527	int backlog;
528{
529
530	SOCK_LOCK_ASSERT(so);
531
532	if (backlog < 0 || backlog > somaxconn)
533		backlog = somaxconn;
534	so->so_qlimit = backlog;
535	so->so_options |= SO_ACCEPTCONN;
536}
537
538/*
539 * Attempt to free a socket.  This should really be sotryfree().
540 *
541 * sofree() will succeed if:
542 *
543 * - There are no outstanding file descriptor references or related consumers
544 *   (so_count == 0).
545 *
546 * - The socket has been closed by user space, if ever open (SS_NOFDREF).
547 *
548 * - The protocol does not have an outstanding strong reference on the socket
549 *   (SS_PROTOREF).
550 *
551 * - The socket is not in a completed connection queue, so a process has been
552 *   notified that it is present.  If it is removed, the user process may
553 *   block in accept() despite select() saying the socket was ready.
554 *
555 * Otherwise, it will quietly abort so that a future call to sofree(), when
556 * conditions are right, can succeed.
557 */
558void
559sofree(so)
560	struct socket *so;
561{
562	struct protosw *pr = so->so_proto;
563	struct socket *head;
564
565	ACCEPT_LOCK_ASSERT();
566	SOCK_LOCK_ASSERT(so);
567
568	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
569	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
570		SOCK_UNLOCK(so);
571		ACCEPT_UNLOCK();
572		return;
573	}
574
575	head = so->so_head;
576	if (head != NULL) {
577		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
578		    (so->so_qstate & SQ_INCOMP) != 0,
579		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
580		    "SQ_INCOMP"));
581		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
582		    (so->so_qstate & SQ_INCOMP) == 0,
583		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
584		TAILQ_REMOVE(&head->so_incomp, so, so_list);
585		head->so_incqlen--;
586		so->so_qstate &= ~SQ_INCOMP;
587		so->so_head = NULL;
588	}
589	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
590	    (so->so_qstate & SQ_INCOMP) == 0,
591	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
592	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
593	SOCK_UNLOCK(so);
594	ACCEPT_UNLOCK();
595
596	/*
597	 * From this point on, we assume that no other references to this
598	 * socket exist anywhere else in the stack.  Therefore, no locks need
599	 * to be acquired or held.
600	 *
601	 * We used to do a lot of socket buffer and socket locking here, as
602	 * well as invoke sorflush() and perform wakeups.  The direct call to
603	 * dom_dispose() and sbrelease_internal() are an inlining of what was
604	 * necessary from sorflush().
605	 *
606	 * Notice that the socket buffer and kqueue state are torn down
607	 * before calling pru_detach.  This means that protocols shold not
608	 * assume they can perform socket wakeups, etc, in their detach
609	 * code.
610	 */
611	KASSERT((so->so_snd.sb_flags & SB_LOCK) == 0, ("sofree: snd sblock"));
612	KASSERT((so->so_rcv.sb_flags & SB_LOCK) == 0, ("sofree: rcv sblock"));
613	sbdestroy(&so->so_snd, so);
614	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
615		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
616	sbdestroy(&so->so_rcv, so);
617	if (pr->pr_usrreqs->pru_detach != NULL)
618		(*pr->pr_usrreqs->pru_detach)(so);
619	knlist_destroy(&so->so_rcv.sb_sel.si_note);
620	knlist_destroy(&so->so_snd.sb_sel.si_note);
621	sodealloc(so);
622}
623
624/*
625 * Close a socket on last file table reference removal.  Initiate disconnect
626 * if connected.  Free socket when disconnect complete.
627 *
628 * This function will sorele() the socket.  Note that soclose() may be called
629 * prior to the ref count reaching zero.  The actual socket structure will
630 * not be freed until the ref count reaches zero.
631 */
632int
633soclose(so)
634	struct socket *so;
635{
636	int error = 0;
637
638	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
639
640	funsetown(&so->so_sigio);
641	if (so->so_options & SO_ACCEPTCONN) {
642		struct socket *sp;
643		ACCEPT_LOCK();
644		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
645			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
646			so->so_incqlen--;
647			sp->so_qstate &= ~SQ_INCOMP;
648			sp->so_head = NULL;
649			ACCEPT_UNLOCK();
650			soabort(sp);
651			ACCEPT_LOCK();
652		}
653		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
654			TAILQ_REMOVE(&so->so_comp, sp, so_list);
655			so->so_qlen--;
656			sp->so_qstate &= ~SQ_COMP;
657			sp->so_head = NULL;
658			ACCEPT_UNLOCK();
659			soabort(sp);
660			ACCEPT_LOCK();
661		}
662		ACCEPT_UNLOCK();
663	}
664	if (so->so_state & SS_ISCONNECTED) {
665		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
666			error = sodisconnect(so);
667			if (error)
668				goto drop;
669		}
670		if (so->so_options & SO_LINGER) {
671			if ((so->so_state & SS_ISDISCONNECTING) &&
672			    (so->so_state & SS_NBIO))
673				goto drop;
674			while (so->so_state & SS_ISCONNECTED) {
675				error = tsleep(&so->so_timeo,
676				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
677				if (error)
678					break;
679			}
680		}
681	}
682
683drop:
684	if (so->so_proto->pr_usrreqs->pru_close != NULL)
685		(*so->so_proto->pr_usrreqs->pru_close)(so);
686	ACCEPT_LOCK();
687	SOCK_LOCK(so);
688	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
689	so->so_state |= SS_NOFDREF;
690	sorele(so);
691	return (error);
692}
693
694/*
695 * soabort() is used to abruptly tear down a connection, such as when a
696 * resource limit is reached (listen queue depth exceeded), or if a listen
697 * socket is closed while there are sockets waiting to be accepted.
698 *
699 * This interface is tricky, because it is called on an unreferenced socket,
700 * and must be called only by a thread that has actually removed the socket
701 * from the listen queue it was on, or races with other threads are risked.
702 *
703 * This interface will call into the protocol code, so must not be called
704 * with any socket locks held.  Protocols do call it while holding their own
705 * recursible protocol mutexes, but this is something that should be subject
706 * to review in the future.
707 */
708void
709soabort(so)
710	struct socket *so;
711{
712
713	/*
714	 * In as much as is possible, assert that no references to this
715	 * socket are held.  This is not quite the same as asserting that the
716	 * current thread is responsible for arranging for no references, but
717	 * is as close as we can get for now.
718	 */
719	KASSERT(so->so_count == 0, ("soabort: so_count"));
720	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
721	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
722	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
723	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
724
725	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
726		(*so->so_proto->pr_usrreqs->pru_abort)(so);
727	ACCEPT_LOCK();
728	SOCK_LOCK(so);
729	sofree(so);
730}
731
732int
733soaccept(so, nam)
734	struct socket *so;
735	struct sockaddr **nam;
736{
737	int error;
738
739	SOCK_LOCK(so);
740	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
741	so->so_state &= ~SS_NOFDREF;
742	SOCK_UNLOCK(so);
743	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
744	return (error);
745}
746
747int
748soconnect(so, nam, td)
749	struct socket *so;
750	struct sockaddr *nam;
751	struct thread *td;
752{
753	int error;
754
755	if (so->so_options & SO_ACCEPTCONN)
756		return (EOPNOTSUPP);
757	/*
758	 * If protocol is connection-based, can only connect once.
759	 * Otherwise, if connected, try to disconnect first.  This allows
760	 * user to disconnect by connecting to, e.g., a null address.
761	 */
762	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
763	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
764	    (error = sodisconnect(so)))) {
765		error = EISCONN;
766	} else {
767		/*
768		 * Prevent accumulated error from previous connection from
769		 * biting us.
770		 */
771		so->so_error = 0;
772		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
773	}
774
775	return (error);
776}
777
778int
779soconnect2(so1, so2)
780	struct socket *so1;
781	struct socket *so2;
782{
783
784	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
785}
786
787int
788sodisconnect(so)
789	struct socket *so;
790{
791	int error;
792
793	if ((so->so_state & SS_ISCONNECTED) == 0)
794		return (ENOTCONN);
795	if (so->so_state & SS_ISDISCONNECTING)
796		return (EALREADY);
797	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
798	return (error);
799}
800
801#ifdef ZERO_COPY_SOCKETS
802struct so_zerocopy_stats{
803	int size_ok;
804	int align_ok;
805	int found_ifp;
806};
807struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
808#include <netinet/in.h>
809#include <net/route.h>
810#include <netinet/in_pcb.h>
811#include <vm/vm.h>
812#include <vm/vm_page.h>
813#include <vm/vm_object.h>
814#endif /*ZERO_COPY_SOCKETS*/
815
816/*
817 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
818 * all of the data referenced by the uio.  If desired, it uses zero-copy.
819 * *space will be updated to reflect data copied in.
820 *
821 * NB: If atomic I/O is requested, the caller must already have checked that
822 * space can hold resid bytes.
823 *
824 * NB: In the event of an error, the caller may need to free the partial
825 * chain pointed to by *mpp.  The contents of both *uio and *space may be
826 * modified even in the case of an error.
827 */
828static int
829sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
830    int flags)
831{
832	struct mbuf *m, **mp, *top;
833	long len, resid;
834	int error;
835#ifdef ZERO_COPY_SOCKETS
836	int cow_send;
837#endif
838
839	*retmp = top = NULL;
840	mp = &top;
841	len = 0;
842	resid = uio->uio_resid;
843	error = 0;
844	do {
845#ifdef ZERO_COPY_SOCKETS
846		cow_send = 0;
847#endif /* ZERO_COPY_SOCKETS */
848		if (resid >= MINCLSIZE) {
849#ifdef ZERO_COPY_SOCKETS
850			if (top == NULL) {
851				MGETHDR(m, M_TRYWAIT, MT_DATA);
852				if (m == NULL) {
853					error = ENOBUFS;
854					goto out;
855				}
856				m->m_pkthdr.len = 0;
857				m->m_pkthdr.rcvif = NULL;
858			} else {
859				MGET(m, M_TRYWAIT, MT_DATA);
860				if (m == NULL) {
861					error = ENOBUFS;
862					goto out;
863				}
864			}
865			if (so_zero_copy_send &&
866			    resid>=PAGE_SIZE &&
867			    *space>=PAGE_SIZE &&
868			    uio->uio_iov->iov_len>=PAGE_SIZE) {
869				so_zerocp_stats.size_ok++;
870				so_zerocp_stats.align_ok++;
871				cow_send = socow_setup(m, uio);
872				len = cow_send;
873			}
874			if (!cow_send) {
875				MCLGET(m, M_TRYWAIT);
876				if ((m->m_flags & M_EXT) == 0) {
877					m_free(m);
878					m = NULL;
879				} else {
880					len = min(min(MCLBYTES, resid),
881					    *space);
882				}
883			}
884#else /* ZERO_COPY_SOCKETS */
885			if (top == NULL) {
886				m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
887				m->m_pkthdr.len = 0;
888				m->m_pkthdr.rcvif = NULL;
889			} else
890				m = m_getcl(M_TRYWAIT, MT_DATA, 0);
891			len = min(min(MCLBYTES, resid), *space);
892#endif /* ZERO_COPY_SOCKETS */
893		} else {
894			if (top == NULL) {
895				m = m_gethdr(M_TRYWAIT, MT_DATA);
896				m->m_pkthdr.len = 0;
897				m->m_pkthdr.rcvif = NULL;
898
899				len = min(min(MHLEN, resid), *space);
900				/*
901				 * For datagram protocols, leave room
902				 * for protocol headers in first mbuf.
903				 */
904				if (atomic && m && len < MHLEN)
905					MH_ALIGN(m, len);
906			} else {
907				m = m_get(M_TRYWAIT, MT_DATA);
908				len = min(min(MLEN, resid), *space);
909			}
910		}
911		if (m == NULL) {
912			error = ENOBUFS;
913			goto out;
914		}
915
916		*space -= len;
917#ifdef ZERO_COPY_SOCKETS
918		if (cow_send)
919			error = 0;
920		else
921#endif /* ZERO_COPY_SOCKETS */
922		error = uiomove(mtod(m, void *), (int)len, uio);
923		resid = uio->uio_resid;
924		m->m_len = len;
925		*mp = m;
926		top->m_pkthdr.len += len;
927		if (error)
928			goto out;
929		mp = &m->m_next;
930		if (resid <= 0) {
931			if (flags & MSG_EOR)
932				top->m_flags |= M_EOR;
933			break;
934		}
935	} while (*space > 0 && atomic);
936out:
937	*retmp = top;
938	return (error);
939}
940
941#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
942
943int
944sosend_dgram(so, addr, uio, top, control, flags, td)
945	struct socket *so;
946	struct sockaddr *addr;
947	struct uio *uio;
948	struct mbuf *top;
949	struct mbuf *control;
950	int flags;
951	struct thread *td;
952{
953	long space, resid;
954	int clen = 0, error, dontroute;
955	int atomic = sosendallatonce(so) || top;
956
957	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
958	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
959	    ("sodgram_send: !PR_ATOMIC"));
960
961	if (uio != NULL)
962		resid = uio->uio_resid;
963	else
964		resid = top->m_pkthdr.len;
965	/*
966	 * In theory resid should be unsigned.  However, space must be
967	 * signed, as it might be less than 0 if we over-committed, and we
968	 * must use a signed comparison of space and resid.  On the other
969	 * hand, a negative resid causes us to loop sending 0-length
970	 * segments to the protocol.
971	 *
972	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
973	 * type sockets since that's an error.
974	 */
975	if (resid < 0) {
976		error = EINVAL;
977		goto out;
978	}
979
980	dontroute =
981	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
982	if (td != NULL)
983		td->td_proc->p_stats->p_ru.ru_msgsnd++;
984	if (control != NULL)
985		clen = control->m_len;
986
987	SOCKBUF_LOCK(&so->so_snd);
988	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
989		SOCKBUF_UNLOCK(&so->so_snd);
990		error = EPIPE;
991		goto out;
992	}
993	if (so->so_error) {
994		error = so->so_error;
995		so->so_error = 0;
996		SOCKBUF_UNLOCK(&so->so_snd);
997		goto out;
998	}
999	if ((so->so_state & SS_ISCONNECTED) == 0) {
1000		/*
1001		 * `sendto' and `sendmsg' is allowed on a connection-based
1002		 * socket if it supports implied connect.  Return ENOTCONN if
1003		 * not connected and no address is supplied.
1004		 */
1005		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1006		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1007			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1008			    !(resid == 0 && clen != 0)) {
1009				SOCKBUF_UNLOCK(&so->so_snd);
1010				error = ENOTCONN;
1011				goto out;
1012			}
1013		} else if (addr == NULL) {
1014			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1015				error = ENOTCONN;
1016			else
1017				error = EDESTADDRREQ;
1018			SOCKBUF_UNLOCK(&so->so_snd);
1019			goto out;
1020		}
1021	}
1022
1023	/*
1024	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1025	 * problem and need fixing.
1026	 */
1027	space = sbspace(&so->so_snd);
1028	if (flags & MSG_OOB)
1029		space += 1024;
1030	space -= clen;
1031	if (resid > space) {
1032		error = EMSGSIZE;
1033		goto out;
1034	}
1035	SOCKBUF_UNLOCK(&so->so_snd);
1036	if (uio == NULL) {
1037		resid = 0;
1038		if (flags & MSG_EOR)
1039			top->m_flags |= M_EOR;
1040	} else {
1041		error = sosend_copyin(uio, &top, atomic, &space, flags);
1042		if (error)
1043			goto out;
1044		resid = uio->uio_resid;
1045	}
1046	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1047	/*
1048	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1049	 * than with.
1050	 */
1051	if (dontroute) {
1052		SOCK_LOCK(so);
1053		so->so_options |= SO_DONTROUTE;
1054		SOCK_UNLOCK(so);
1055	}
1056	/*
1057	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1058	 * of date.  We could have recieved a reset packet in an interrupt or
1059	 * maybe we slept while doing page faults in uiomove() etc.  We could
1060	 * probably recheck again inside the locking protection here, but
1061	 * there are probably other places that this also happens.  We must
1062	 * rethink this.
1063	 */
1064	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1065	    (flags & MSG_OOB) ? PRUS_OOB :
1066	/*
1067	 * If the user set MSG_EOF, the protocol understands this flag and
1068	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1069	 */
1070	    ((flags & MSG_EOF) &&
1071	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1072	     (resid <= 0)) ?
1073		PRUS_EOF :
1074		/* If there is more to send set PRUS_MORETOCOME */
1075		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1076		top, addr, control, td);
1077	if (dontroute) {
1078		SOCK_LOCK(so);
1079		so->so_options &= ~SO_DONTROUTE;
1080		SOCK_UNLOCK(so);
1081	}
1082	clen = 0;
1083	control = NULL;
1084	top = NULL;
1085out:
1086	if (top != NULL)
1087		m_freem(top);
1088	if (control != NULL)
1089		m_freem(control);
1090	return (error);
1091}
1092
1093/*
1094 * Send on a socket.  If send must go all at once and message is larger than
1095 * send buffering, then hard error.  Lock against other senders.  If must go
1096 * all at once and not enough room now, then inform user that this would
1097 * block and do nothing.  Otherwise, if nonblocking, send as much as
1098 * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1099 * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1100 * in mbuf chain must be small enough to send all at once.
1101 *
1102 * Returns nonzero on error, timeout or signal; callers must check for short
1103 * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1104 * on return.
1105 */
1106#define	snderr(errno)	{ error = (errno); goto release; }
1107int
1108sosend_generic(so, addr, uio, top, control, flags, td)
1109	struct socket *so;
1110	struct sockaddr *addr;
1111	struct uio *uio;
1112	struct mbuf *top;
1113	struct mbuf *control;
1114	int flags;
1115	struct thread *td;
1116{
1117	long space, resid;
1118	int clen = 0, error, dontroute;
1119	int atomic = sosendallatonce(so) || top;
1120
1121	if (uio != NULL)
1122		resid = uio->uio_resid;
1123	else
1124		resid = top->m_pkthdr.len;
1125	/*
1126	 * In theory resid should be unsigned.  However, space must be
1127	 * signed, as it might be less than 0 if we over-committed, and we
1128	 * must use a signed comparison of space and resid.  On the other
1129	 * hand, a negative resid causes us to loop sending 0-length
1130	 * segments to the protocol.
1131	 *
1132	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1133	 * type sockets since that's an error.
1134	 */
1135	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1136		error = EINVAL;
1137		goto out;
1138	}
1139
1140	dontroute =
1141	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1142	    (so->so_proto->pr_flags & PR_ATOMIC);
1143	if (td != NULL)
1144		td->td_proc->p_stats->p_ru.ru_msgsnd++;
1145	if (control != NULL)
1146		clen = control->m_len;
1147
1148	SOCKBUF_LOCK(&so->so_snd);
1149restart:
1150	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1151	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1152	if (error)
1153		goto out_locked;
1154	do {
1155		SOCKBUF_LOCK_ASSERT(&so->so_snd);
1156		if (so->so_snd.sb_state & SBS_CANTSENDMORE)
1157			snderr(EPIPE);
1158		if (so->so_error) {
1159			error = so->so_error;
1160			so->so_error = 0;
1161			goto release;
1162		}
1163		if ((so->so_state & SS_ISCONNECTED) == 0) {
1164			/*
1165			 * `sendto' and `sendmsg' is allowed on a connection-
1166			 * based socket if it supports implied connect.
1167			 * Return ENOTCONN if not connected and no address is
1168			 * supplied.
1169			 */
1170			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1171			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1172				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1173				    !(resid == 0 && clen != 0))
1174					snderr(ENOTCONN);
1175			} else if (addr == NULL)
1176			    snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
1177				   ENOTCONN : EDESTADDRREQ);
1178		}
1179		space = sbspace(&so->so_snd);
1180		if (flags & MSG_OOB)
1181			space += 1024;
1182		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1183		    clen > so->so_snd.sb_hiwat)
1184			snderr(EMSGSIZE);
1185		if (space < resid + clen &&
1186		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1187			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO))
1188				snderr(EWOULDBLOCK);
1189			sbunlock(&so->so_snd);
1190			error = sbwait(&so->so_snd);
1191			if (error)
1192				goto out_locked;
1193			goto restart;
1194		}
1195		SOCKBUF_UNLOCK(&so->so_snd);
1196		space -= clen;
1197		do {
1198			if (uio == NULL) {
1199				resid = 0;
1200				if (flags & MSG_EOR)
1201					top->m_flags |= M_EOR;
1202			} else {
1203				error = sosend_copyin(uio, &top, atomic,
1204				    &space, flags);
1205				if (error != 0) {
1206					SOCKBUF_LOCK(&so->so_snd);
1207					goto release;
1208				}
1209				resid = uio->uio_resid;
1210			}
1211			if (dontroute) {
1212				SOCK_LOCK(so);
1213				so->so_options |= SO_DONTROUTE;
1214				SOCK_UNLOCK(so);
1215			}
1216			/*
1217			 * XXX all the SBS_CANTSENDMORE checks previously
1218			 * done could be out of date.  We could have recieved
1219			 * a reset packet in an interrupt or maybe we slept
1220			 * while doing page faults in uiomove() etc.  We
1221			 * could probably recheck again inside the locking
1222			 * protection here, but there are probably other
1223			 * places that this also happens.  We must rethink
1224			 * this.
1225			 */
1226			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1227			    (flags & MSG_OOB) ? PRUS_OOB :
1228			/*
1229			 * If the user set MSG_EOF, the protocol understands
1230			 * this flag and nothing left to send then use
1231			 * PRU_SEND_EOF instead of PRU_SEND.
1232			 */
1233			    ((flags & MSG_EOF) &&
1234			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1235			     (resid <= 0)) ?
1236				PRUS_EOF :
1237			/* If there is more to send set PRUS_MORETOCOME. */
1238			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1239			    top, addr, control, td);
1240			if (dontroute) {
1241				SOCK_LOCK(so);
1242				so->so_options &= ~SO_DONTROUTE;
1243				SOCK_UNLOCK(so);
1244			}
1245			clen = 0;
1246			control = NULL;
1247			top = NULL;
1248			if (error) {
1249				SOCKBUF_LOCK(&so->so_snd);
1250				goto release;
1251			}
1252		} while (resid && space > 0);
1253		SOCKBUF_LOCK(&so->so_snd);
1254	} while (resid);
1255
1256release:
1257	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1258	sbunlock(&so->so_snd);
1259out_locked:
1260	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1261	SOCKBUF_UNLOCK(&so->so_snd);
1262out:
1263	if (top != NULL)
1264		m_freem(top);
1265	if (control != NULL)
1266		m_freem(control);
1267	return (error);
1268}
1269#undef snderr
1270
1271int
1272sosend(so, addr, uio, top, control, flags, td)
1273	struct socket *so;
1274	struct sockaddr *addr;
1275	struct uio *uio;
1276	struct mbuf *top;
1277	struct mbuf *control;
1278	int flags;
1279	struct thread *td;
1280{
1281
1282	/* XXXRW: Temporary debugging. */
1283	KASSERT(so->so_proto->pr_usrreqs->pru_sosend != sosend,
1284	    ("sosend: protocol calls sosend"));
1285
1286	return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1287	    control, flags, td));
1288}
1289
1290/*
1291 * The part of soreceive() that implements reading non-inline out-of-band
1292 * data from a socket.  For more complete comments, see soreceive(), from
1293 * which this code originated.
1294 *
1295 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1296 * unable to return an mbuf chain to the caller.
1297 */
1298static int
1299soreceive_rcvoob(so, uio, flags)
1300	struct socket *so;
1301	struct uio *uio;
1302	int flags;
1303{
1304	struct protosw *pr = so->so_proto;
1305	struct mbuf *m;
1306	int error;
1307
1308	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1309
1310	m = m_get(M_TRYWAIT, MT_DATA);
1311	if (m == NULL)
1312		return (ENOBUFS);
1313	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1314	if (error)
1315		goto bad;
1316	do {
1317#ifdef ZERO_COPY_SOCKETS
1318		if (so_zero_copy_receive) {
1319			int disposable;
1320
1321			if ((m->m_flags & M_EXT)
1322			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1323				disposable = 1;
1324			else
1325				disposable = 0;
1326
1327			error = uiomoveco(mtod(m, void *),
1328					  min(uio->uio_resid, m->m_len),
1329					  uio, disposable);
1330		} else
1331#endif /* ZERO_COPY_SOCKETS */
1332		error = uiomove(mtod(m, void *),
1333		    (int) min(uio->uio_resid, m->m_len), uio);
1334		m = m_free(m);
1335	} while (uio->uio_resid && error == 0 && m);
1336bad:
1337	if (m != NULL)
1338		m_freem(m);
1339	return (error);
1340}
1341
1342/*
1343 * Following replacement or removal of the first mbuf on the first mbuf chain
1344 * of a socket buffer, push necessary state changes back into the socket
1345 * buffer so that other consumers see the values consistently.  'nextrecord'
1346 * is the callers locally stored value of the original value of
1347 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1348 * NOTE: 'nextrecord' may be NULL.
1349 */
1350static __inline void
1351sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1352{
1353
1354	SOCKBUF_LOCK_ASSERT(sb);
1355	/*
1356	 * First, update for the new value of nextrecord.  If necessary, make
1357	 * it the first record.
1358	 */
1359	if (sb->sb_mb != NULL)
1360		sb->sb_mb->m_nextpkt = nextrecord;
1361	else
1362		sb->sb_mb = nextrecord;
1363
1364        /*
1365         * Now update any dependent socket buffer fields to reflect the new
1366         * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1367	 * addition of a second clause that takes care of the case where
1368	 * sb_mb has been updated, but remains the last record.
1369         */
1370        if (sb->sb_mb == NULL) {
1371                sb->sb_mbtail = NULL;
1372                sb->sb_lastrecord = NULL;
1373        } else if (sb->sb_mb->m_nextpkt == NULL)
1374                sb->sb_lastrecord = sb->sb_mb;
1375}
1376
1377
1378/*
1379 * Implement receive operations on a socket.  We depend on the way that
1380 * records are added to the sockbuf by sbappend.  In particular, each record
1381 * (mbufs linked through m_next) must begin with an address if the protocol
1382 * so specifies, followed by an optional mbuf or mbufs containing ancillary
1383 * data, and then zero or more mbufs of data.  In order to allow parallelism
1384 * between network receive and copying to user space, as well as avoid
1385 * sleeping with a mutex held, we release the socket buffer mutex during the
1386 * user space copy.  Although the sockbuf is locked, new data may still be
1387 * appended, and thus we must maintain consistency of the sockbuf during that
1388 * time.
1389 *
1390 * The caller may receive the data as a single mbuf chain by supplying an
1391 * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1392 * the count in uio_resid.
1393 */
1394int
1395soreceive_generic(so, psa, uio, mp0, controlp, flagsp)
1396	struct socket *so;
1397	struct sockaddr **psa;
1398	struct uio *uio;
1399	struct mbuf **mp0;
1400	struct mbuf **controlp;
1401	int *flagsp;
1402{
1403	struct mbuf *m, **mp;
1404	int flags, len, error, offset;
1405	struct protosw *pr = so->so_proto;
1406	struct mbuf *nextrecord;
1407	int moff, type = 0;
1408	int orig_resid = uio->uio_resid;
1409
1410	mp = mp0;
1411	if (psa != NULL)
1412		*psa = NULL;
1413	if (controlp != NULL)
1414		*controlp = NULL;
1415	if (flagsp != NULL)
1416		flags = *flagsp &~ MSG_EOR;
1417	else
1418		flags = 0;
1419	if (flags & MSG_OOB)
1420		return (soreceive_rcvoob(so, uio, flags));
1421	if (mp != NULL)
1422		*mp = NULL;
1423	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1424	    && uio->uio_resid)
1425		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1426
1427	SOCKBUF_LOCK(&so->so_rcv);
1428restart:
1429	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1430	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1431	if (error)
1432		goto out;
1433
1434	m = so->so_rcv.sb_mb;
1435	/*
1436	 * If we have less data than requested, block awaiting more (subject
1437	 * to any timeout) if:
1438	 *   1. the current count is less than the low water mark, or
1439	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1440	 *	receive operation at once if we block (resid <= hiwat).
1441	 *   3. MSG_DONTWAIT is not set
1442	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1443	 * we have to do the receive in sections, and thus risk returning a
1444	 * short count if a timeout or signal occurs after we start.
1445	 */
1446	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1447	    so->so_rcv.sb_cc < uio->uio_resid) &&
1448	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1449	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1450	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1451		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1452		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1453		    m, so->so_rcv.sb_cc));
1454		if (so->so_error) {
1455			if (m != NULL)
1456				goto dontblock;
1457			error = so->so_error;
1458			if ((flags & MSG_PEEK) == 0)
1459				so->so_error = 0;
1460			goto release;
1461		}
1462		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1463		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1464			if (m)
1465				goto dontblock;
1466			else
1467				goto release;
1468		}
1469		for (; m != NULL; m = m->m_next)
1470			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1471				m = so->so_rcv.sb_mb;
1472				goto dontblock;
1473			}
1474		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1475		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1476			error = ENOTCONN;
1477			goto release;
1478		}
1479		if (uio->uio_resid == 0)
1480			goto release;
1481		if ((so->so_state & SS_NBIO) ||
1482		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1483			error = EWOULDBLOCK;
1484			goto release;
1485		}
1486		SBLASTRECORDCHK(&so->so_rcv);
1487		SBLASTMBUFCHK(&so->so_rcv);
1488		sbunlock(&so->so_rcv);
1489		error = sbwait(&so->so_rcv);
1490		if (error)
1491			goto out;
1492		goto restart;
1493	}
1494dontblock:
1495	/*
1496	 * From this point onward, we maintain 'nextrecord' as a cache of the
1497	 * pointer to the next record in the socket buffer.  We must keep the
1498	 * various socket buffer pointers and local stack versions of the
1499	 * pointers in sync, pushing out modifications before dropping the
1500	 * socket buffer mutex, and re-reading them when picking it up.
1501	 *
1502	 * Otherwise, we will race with the network stack appending new data
1503	 * or records onto the socket buffer by using inconsistent/stale
1504	 * versions of the field, possibly resulting in socket buffer
1505	 * corruption.
1506	 *
1507	 * By holding the high-level sblock(), we prevent simultaneous
1508	 * readers from pulling off the front of the socket buffer.
1509	 */
1510	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1511	if (uio->uio_td)
1512		uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++;
1513	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1514	SBLASTRECORDCHK(&so->so_rcv);
1515	SBLASTMBUFCHK(&so->so_rcv);
1516	nextrecord = m->m_nextpkt;
1517	if (pr->pr_flags & PR_ADDR) {
1518		KASSERT(m->m_type == MT_SONAME,
1519		    ("m->m_type == %d", m->m_type));
1520		orig_resid = 0;
1521		if (psa != NULL)
1522			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1523			    M_NOWAIT);
1524		if (flags & MSG_PEEK) {
1525			m = m->m_next;
1526		} else {
1527			sbfree(&so->so_rcv, m);
1528			so->so_rcv.sb_mb = m_free(m);
1529			m = so->so_rcv.sb_mb;
1530			sockbuf_pushsync(&so->so_rcv, nextrecord);
1531		}
1532	}
1533
1534	/*
1535	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1536	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1537	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1538	 * perform externalization (or freeing if controlp == NULL).
1539	 */
1540	if (m != NULL && m->m_type == MT_CONTROL) {
1541		struct mbuf *cm = NULL, *cmn;
1542		struct mbuf **cme = &cm;
1543
1544		do {
1545			if (flags & MSG_PEEK) {
1546				if (controlp != NULL) {
1547					*controlp = m_copy(m, 0, m->m_len);
1548					controlp = &(*controlp)->m_next;
1549				}
1550				m = m->m_next;
1551			} else {
1552				sbfree(&so->so_rcv, m);
1553				so->so_rcv.sb_mb = m->m_next;
1554				m->m_next = NULL;
1555				*cme = m;
1556				cme = &(*cme)->m_next;
1557				m = so->so_rcv.sb_mb;
1558			}
1559		} while (m != NULL && m->m_type == MT_CONTROL);
1560		if ((flags & MSG_PEEK) == 0)
1561			sockbuf_pushsync(&so->so_rcv, nextrecord);
1562		while (cm != NULL) {
1563			cmn = cm->m_next;
1564			cm->m_next = NULL;
1565			if (pr->pr_domain->dom_externalize != NULL) {
1566				SOCKBUF_UNLOCK(&so->so_rcv);
1567				error = (*pr->pr_domain->dom_externalize)
1568				    (cm, controlp);
1569				SOCKBUF_LOCK(&so->so_rcv);
1570			} else if (controlp != NULL)
1571				*controlp = cm;
1572			else
1573				m_freem(cm);
1574			if (controlp != NULL) {
1575				orig_resid = 0;
1576				while (*controlp != NULL)
1577					controlp = &(*controlp)->m_next;
1578			}
1579			cm = cmn;
1580		}
1581		if (m != NULL)
1582			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1583		else
1584			nextrecord = so->so_rcv.sb_mb;
1585		orig_resid = 0;
1586	}
1587	if (m != NULL) {
1588		if ((flags & MSG_PEEK) == 0) {
1589			KASSERT(m->m_nextpkt == nextrecord,
1590			    ("soreceive: post-control, nextrecord !sync"));
1591			if (nextrecord == NULL) {
1592				KASSERT(so->so_rcv.sb_mb == m,
1593				    ("soreceive: post-control, sb_mb!=m"));
1594				KASSERT(so->so_rcv.sb_lastrecord == m,
1595				    ("soreceive: post-control, lastrecord!=m"));
1596			}
1597		}
1598		type = m->m_type;
1599		if (type == MT_OOBDATA)
1600			flags |= MSG_OOB;
1601	} else {
1602		if ((flags & MSG_PEEK) == 0) {
1603			KASSERT(so->so_rcv.sb_mb == nextrecord,
1604			    ("soreceive: sb_mb != nextrecord"));
1605			if (so->so_rcv.sb_mb == NULL) {
1606				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1607				    ("soreceive: sb_lastercord != NULL"));
1608			}
1609		}
1610	}
1611	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1612	SBLASTRECORDCHK(&so->so_rcv);
1613	SBLASTMBUFCHK(&so->so_rcv);
1614
1615	/*
1616	 * Now continue to read any data mbufs off of the head of the socket
1617	 * buffer until the read request is satisfied.  Note that 'type' is
1618	 * used to store the type of any mbuf reads that have happened so far
1619	 * such that soreceive() can stop reading if the type changes, which
1620	 * causes soreceive() to return only one of regular data and inline
1621	 * out-of-band data in a single socket receive operation.
1622	 */
1623	moff = 0;
1624	offset = 0;
1625	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1626		/*
1627		 * If the type of mbuf has changed since the last mbuf
1628		 * examined ('type'), end the receive operation.
1629	 	 */
1630		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1631		if (m->m_type == MT_OOBDATA) {
1632			if (type != MT_OOBDATA)
1633				break;
1634		} else if (type == MT_OOBDATA)
1635			break;
1636		else
1637		    KASSERT(m->m_type == MT_DATA,
1638			("m->m_type == %d", m->m_type));
1639		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1640		len = uio->uio_resid;
1641		if (so->so_oobmark && len > so->so_oobmark - offset)
1642			len = so->so_oobmark - offset;
1643		if (len > m->m_len - moff)
1644			len = m->m_len - moff;
1645		/*
1646		 * If mp is set, just pass back the mbufs.  Otherwise copy
1647		 * them out via the uio, then free.  Sockbuf must be
1648		 * consistent here (points to current mbuf, it points to next
1649		 * record) when we drop priority; we must note any additions
1650		 * to the sockbuf when we block interrupts again.
1651		 */
1652		if (mp == NULL) {
1653			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1654			SBLASTRECORDCHK(&so->so_rcv);
1655			SBLASTMBUFCHK(&so->so_rcv);
1656			SOCKBUF_UNLOCK(&so->so_rcv);
1657#ifdef ZERO_COPY_SOCKETS
1658			if (so_zero_copy_receive) {
1659				int disposable;
1660
1661				if ((m->m_flags & M_EXT)
1662				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1663					disposable = 1;
1664				else
1665					disposable = 0;
1666
1667				error = uiomoveco(mtod(m, char *) + moff,
1668						  (int)len, uio,
1669						  disposable);
1670			} else
1671#endif /* ZERO_COPY_SOCKETS */
1672			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1673			SOCKBUF_LOCK(&so->so_rcv);
1674			if (error)
1675				goto release;
1676		} else
1677			uio->uio_resid -= len;
1678		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1679		if (len == m->m_len - moff) {
1680			if (m->m_flags & M_EOR)
1681				flags |= MSG_EOR;
1682			if (flags & MSG_PEEK) {
1683				m = m->m_next;
1684				moff = 0;
1685			} else {
1686				nextrecord = m->m_nextpkt;
1687				sbfree(&so->so_rcv, m);
1688				if (mp != NULL) {
1689					*mp = m;
1690					mp = &m->m_next;
1691					so->so_rcv.sb_mb = m = m->m_next;
1692					*mp = NULL;
1693				} else {
1694					so->so_rcv.sb_mb = m_free(m);
1695					m = so->so_rcv.sb_mb;
1696				}
1697				sockbuf_pushsync(&so->so_rcv, nextrecord);
1698				SBLASTRECORDCHK(&so->so_rcv);
1699				SBLASTMBUFCHK(&so->so_rcv);
1700			}
1701		} else {
1702			if (flags & MSG_PEEK)
1703				moff += len;
1704			else {
1705				if (mp != NULL) {
1706					int copy_flag;
1707
1708					if (flags & MSG_DONTWAIT)
1709						copy_flag = M_DONTWAIT;
1710					else
1711						copy_flag = M_TRYWAIT;
1712					if (copy_flag == M_TRYWAIT)
1713						SOCKBUF_UNLOCK(&so->so_rcv);
1714					*mp = m_copym(m, 0, len, copy_flag);
1715					if (copy_flag == M_TRYWAIT)
1716						SOCKBUF_LOCK(&so->so_rcv);
1717 					if (*mp == NULL) {
1718 						/*
1719 						 * m_copym() couldn't
1720						 * allocate an mbuf.  Adjust
1721						 * uio_resid back (it was
1722						 * adjusted down by len
1723						 * bytes, which we didn't end
1724						 * up "copying" over).
1725 						 */
1726 						uio->uio_resid += len;
1727 						break;
1728 					}
1729				}
1730				m->m_data += len;
1731				m->m_len -= len;
1732				so->so_rcv.sb_cc -= len;
1733			}
1734		}
1735		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1736		if (so->so_oobmark) {
1737			if ((flags & MSG_PEEK) == 0) {
1738				so->so_oobmark -= len;
1739				if (so->so_oobmark == 0) {
1740					so->so_rcv.sb_state |= SBS_RCVATMARK;
1741					break;
1742				}
1743			} else {
1744				offset += len;
1745				if (offset == so->so_oobmark)
1746					break;
1747			}
1748		}
1749		if (flags & MSG_EOR)
1750			break;
1751		/*
1752		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1753		 * must not quit until "uio->uio_resid == 0" or an error
1754		 * termination.  If a signal/timeout occurs, return with a
1755		 * short count but without error.  Keep sockbuf locked
1756		 * against other readers.
1757		 */
1758		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1759		    !sosendallatonce(so) && nextrecord == NULL) {
1760			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1761			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1762				break;
1763			/*
1764			 * Notify the protocol that some data has been
1765			 * drained before blocking.
1766			 */
1767			if (pr->pr_flags & PR_WANTRCVD) {
1768				SOCKBUF_UNLOCK(&so->so_rcv);
1769				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1770				SOCKBUF_LOCK(&so->so_rcv);
1771			}
1772			SBLASTRECORDCHK(&so->so_rcv);
1773			SBLASTMBUFCHK(&so->so_rcv);
1774			error = sbwait(&so->so_rcv);
1775			if (error)
1776				goto release;
1777			m = so->so_rcv.sb_mb;
1778			if (m != NULL)
1779				nextrecord = m->m_nextpkt;
1780		}
1781	}
1782
1783	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1784	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1785		flags |= MSG_TRUNC;
1786		if ((flags & MSG_PEEK) == 0)
1787			(void) sbdroprecord_locked(&so->so_rcv);
1788	}
1789	if ((flags & MSG_PEEK) == 0) {
1790		if (m == NULL) {
1791			/*
1792			 * First part is an inline SB_EMPTY_FIXUP().  Second
1793			 * part makes sure sb_lastrecord is up-to-date if
1794			 * there is still data in the socket buffer.
1795			 */
1796			so->so_rcv.sb_mb = nextrecord;
1797			if (so->so_rcv.sb_mb == NULL) {
1798				so->so_rcv.sb_mbtail = NULL;
1799				so->so_rcv.sb_lastrecord = NULL;
1800			} else if (nextrecord->m_nextpkt == NULL)
1801				so->so_rcv.sb_lastrecord = nextrecord;
1802		}
1803		SBLASTRECORDCHK(&so->so_rcv);
1804		SBLASTMBUFCHK(&so->so_rcv);
1805		/*
1806		 * If soreceive() is being done from the socket callback,
1807		 * then don't need to generate ACK to peer to update window,
1808		 * since ACK will be generated on return to TCP.
1809		 */
1810		if (!(flags & MSG_SOCALLBCK) &&
1811		    (pr->pr_flags & PR_WANTRCVD)) {
1812			SOCKBUF_UNLOCK(&so->so_rcv);
1813			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1814			SOCKBUF_LOCK(&so->so_rcv);
1815		}
1816	}
1817	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1818	if (orig_resid == uio->uio_resid && orig_resid &&
1819	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1820		sbunlock(&so->so_rcv);
1821		goto restart;
1822	}
1823
1824	if (flagsp != NULL)
1825		*flagsp |= flags;
1826release:
1827	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1828	sbunlock(&so->so_rcv);
1829out:
1830	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1831	SOCKBUF_UNLOCK(&so->so_rcv);
1832	return (error);
1833}
1834
1835int
1836soreceive(so, psa, uio, mp0, controlp, flagsp)
1837	struct socket *so;
1838	struct sockaddr **psa;
1839	struct uio *uio;
1840	struct mbuf **mp0;
1841	struct mbuf **controlp;
1842	int *flagsp;
1843{
1844
1845	/* XXXRW: Temporary debugging. */
1846	KASSERT(so->so_proto->pr_usrreqs->pru_soreceive != soreceive,
1847	    ("soreceive: protocol calls soreceive"));
1848
1849	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
1850	    controlp, flagsp));
1851}
1852
1853int
1854soshutdown(so, how)
1855	struct socket *so;
1856	int how;
1857{
1858	struct protosw *pr = so->so_proto;
1859
1860	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1861		return (EINVAL);
1862
1863	if (how != SHUT_WR)
1864		sorflush(so);
1865	if (how != SHUT_RD)
1866		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1867	return (0);
1868}
1869
1870void
1871sorflush(so)
1872	struct socket *so;
1873{
1874	struct sockbuf *sb = &so->so_rcv;
1875	struct protosw *pr = so->so_proto;
1876	struct sockbuf asb;
1877
1878	/*
1879	 * XXXRW: This is quite ugly.  Previously, this code made a copy of
1880	 * the socket buffer, then zero'd the original to clear the buffer
1881	 * fields.  However, with mutexes in the socket buffer, this causes
1882	 * problems.  We only clear the zeroable bits of the original;
1883	 * however, we have to initialize and destroy the mutex in the copy
1884	 * so that dom_dispose() and sbrelease() can lock t as needed.
1885	 */
1886	SOCKBUF_LOCK(sb);
1887	sb->sb_flags |= SB_NOINTR;
1888	(void) sblock(sb, M_WAITOK);
1889	/*
1890	 * socantrcvmore_locked() drops the socket buffer mutex so that it
1891	 * can safely perform wakeups.  Re-acquire the mutex before
1892	 * continuing.
1893	 */
1894	socantrcvmore_locked(so);
1895	SOCKBUF_LOCK(sb);
1896	sbunlock(sb);
1897	/*
1898	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
1899	 * and mutex data unchanged.
1900	 */
1901	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1902	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1903	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1904	bzero(&sb->sb_startzero,
1905	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1906	SOCKBUF_UNLOCK(sb);
1907
1908	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1909	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1910		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1911	sbrelease(&asb, so);
1912	SOCKBUF_LOCK_DESTROY(&asb);
1913}
1914
1915/*
1916 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
1917 * additional variant to handle the case where the option value needs to be
1918 * some kind of integer, but not a specific size.  In addition to their use
1919 * here, these functions are also called by the protocol-level pr_ctloutput()
1920 * routines.
1921 */
1922int
1923sooptcopyin(sopt, buf, len, minlen)
1924	struct	sockopt *sopt;
1925	void	*buf;
1926	size_t	len;
1927	size_t	minlen;
1928{
1929	size_t	valsize;
1930
1931	/*
1932	 * If the user gives us more than we wanted, we ignore it, but if we
1933	 * don't get the minimum length the caller wants, we return EINVAL.
1934	 * On success, sopt->sopt_valsize is set to however much we actually
1935	 * retrieved.
1936	 */
1937	if ((valsize = sopt->sopt_valsize) < minlen)
1938		return EINVAL;
1939	if (valsize > len)
1940		sopt->sopt_valsize = valsize = len;
1941
1942	if (sopt->sopt_td != NULL)
1943		return (copyin(sopt->sopt_val, buf, valsize));
1944
1945	bcopy(sopt->sopt_val, buf, valsize);
1946	return (0);
1947}
1948
1949/*
1950 * Kernel version of setsockopt(2).
1951 *
1952 * XXX: optlen is size_t, not socklen_t
1953 */
1954int
1955so_setsockopt(struct socket *so, int level, int optname, void *optval,
1956    size_t optlen)
1957{
1958	struct sockopt sopt;
1959
1960	sopt.sopt_level = level;
1961	sopt.sopt_name = optname;
1962	sopt.sopt_dir = SOPT_SET;
1963	sopt.sopt_val = optval;
1964	sopt.sopt_valsize = optlen;
1965	sopt.sopt_td = NULL;
1966	return (sosetopt(so, &sopt));
1967}
1968
1969int
1970sosetopt(so, sopt)
1971	struct socket *so;
1972	struct sockopt *sopt;
1973{
1974	int	error, optval;
1975	struct	linger l;
1976	struct	timeval tv;
1977	u_long  val;
1978#ifdef MAC
1979	struct mac extmac;
1980#endif
1981
1982	error = 0;
1983	if (sopt->sopt_level != SOL_SOCKET) {
1984		if (so->so_proto && so->so_proto->pr_ctloutput)
1985			return ((*so->so_proto->pr_ctloutput)
1986				  (so, sopt));
1987		error = ENOPROTOOPT;
1988	} else {
1989		switch (sopt->sopt_name) {
1990#ifdef INET
1991		case SO_ACCEPTFILTER:
1992			error = do_setopt_accept_filter(so, sopt);
1993			if (error)
1994				goto bad;
1995			break;
1996#endif
1997		case SO_LINGER:
1998			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1999			if (error)
2000				goto bad;
2001
2002			SOCK_LOCK(so);
2003			so->so_linger = l.l_linger;
2004			if (l.l_onoff)
2005				so->so_options |= SO_LINGER;
2006			else
2007				so->so_options &= ~SO_LINGER;
2008			SOCK_UNLOCK(so);
2009			break;
2010
2011		case SO_DEBUG:
2012		case SO_KEEPALIVE:
2013		case SO_DONTROUTE:
2014		case SO_USELOOPBACK:
2015		case SO_BROADCAST:
2016		case SO_REUSEADDR:
2017		case SO_REUSEPORT:
2018		case SO_OOBINLINE:
2019		case SO_TIMESTAMP:
2020		case SO_BINTIME:
2021		case SO_NOSIGPIPE:
2022			error = sooptcopyin(sopt, &optval, sizeof optval,
2023					    sizeof optval);
2024			if (error)
2025				goto bad;
2026			SOCK_LOCK(so);
2027			if (optval)
2028				so->so_options |= sopt->sopt_name;
2029			else
2030				so->so_options &= ~sopt->sopt_name;
2031			SOCK_UNLOCK(so);
2032			break;
2033
2034		case SO_SNDBUF:
2035		case SO_RCVBUF:
2036		case SO_SNDLOWAT:
2037		case SO_RCVLOWAT:
2038			error = sooptcopyin(sopt, &optval, sizeof optval,
2039					    sizeof optval);
2040			if (error)
2041				goto bad;
2042
2043			/*
2044			 * Values < 1 make no sense for any of these options,
2045			 * so disallow them.
2046			 */
2047			if (optval < 1) {
2048				error = EINVAL;
2049				goto bad;
2050			}
2051
2052			switch (sopt->sopt_name) {
2053			case SO_SNDBUF:
2054			case SO_RCVBUF:
2055				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2056				    &so->so_snd : &so->so_rcv, (u_long)optval,
2057				    so, curthread) == 0) {
2058					error = ENOBUFS;
2059					goto bad;
2060				}
2061				break;
2062
2063			/*
2064			 * Make sure the low-water is never greater than the
2065			 * high-water.
2066			 */
2067			case SO_SNDLOWAT:
2068				SOCKBUF_LOCK(&so->so_snd);
2069				so->so_snd.sb_lowat =
2070				    (optval > so->so_snd.sb_hiwat) ?
2071				    so->so_snd.sb_hiwat : optval;
2072				SOCKBUF_UNLOCK(&so->so_snd);
2073				break;
2074			case SO_RCVLOWAT:
2075				SOCKBUF_LOCK(&so->so_rcv);
2076				so->so_rcv.sb_lowat =
2077				    (optval > so->so_rcv.sb_hiwat) ?
2078				    so->so_rcv.sb_hiwat : optval;
2079				SOCKBUF_UNLOCK(&so->so_rcv);
2080				break;
2081			}
2082			break;
2083
2084		case SO_SNDTIMEO:
2085		case SO_RCVTIMEO:
2086#ifdef COMPAT_IA32
2087			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2088				struct timeval32 tv32;
2089
2090				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2091				    sizeof tv32);
2092				CP(tv32, tv, tv_sec);
2093				CP(tv32, tv, tv_usec);
2094			} else
2095#endif
2096				error = sooptcopyin(sopt, &tv, sizeof tv,
2097				    sizeof tv);
2098			if (error)
2099				goto bad;
2100
2101			/* assert(hz > 0); */
2102			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2103			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2104				error = EDOM;
2105				goto bad;
2106			}
2107			/* assert(tick > 0); */
2108			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2109			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2110			if (val > INT_MAX) {
2111				error = EDOM;
2112				goto bad;
2113			}
2114			if (val == 0 && tv.tv_usec != 0)
2115				val = 1;
2116
2117			switch (sopt->sopt_name) {
2118			case SO_SNDTIMEO:
2119				so->so_snd.sb_timeo = val;
2120				break;
2121			case SO_RCVTIMEO:
2122				so->so_rcv.sb_timeo = val;
2123				break;
2124			}
2125			break;
2126
2127		case SO_LABEL:
2128#ifdef MAC
2129			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2130			    sizeof extmac);
2131			if (error)
2132				goto bad;
2133			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2134			    so, &extmac);
2135#else
2136			error = EOPNOTSUPP;
2137#endif
2138			break;
2139
2140		default:
2141			error = ENOPROTOOPT;
2142			break;
2143		}
2144		if (error == 0 && so->so_proto != NULL &&
2145		    so->so_proto->pr_ctloutput != NULL) {
2146			(void) ((*so->so_proto->pr_ctloutput)
2147				  (so, sopt));
2148		}
2149	}
2150bad:
2151	return (error);
2152}
2153
2154/*
2155 * Helper routine for getsockopt.
2156 */
2157int
2158sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2159{
2160	int	error;
2161	size_t	valsize;
2162
2163	error = 0;
2164
2165	/*
2166	 * Documented get behavior is that we always return a value, possibly
2167	 * truncated to fit in the user's buffer.  Traditional behavior is
2168	 * that we always tell the user precisely how much we copied, rather
2169	 * than something useful like the total amount we had available for
2170	 * her.  Note that this interface is not idempotent; the entire
2171	 * answer must generated ahead of time.
2172	 */
2173	valsize = min(len, sopt->sopt_valsize);
2174	sopt->sopt_valsize = valsize;
2175	if (sopt->sopt_val != NULL) {
2176		if (sopt->sopt_td != NULL)
2177			error = copyout(buf, sopt->sopt_val, valsize);
2178		else
2179			bcopy(buf, sopt->sopt_val, valsize);
2180	}
2181	return (error);
2182}
2183
2184int
2185sogetopt(so, sopt)
2186	struct socket *so;
2187	struct sockopt *sopt;
2188{
2189	int	error, optval;
2190	struct	linger l;
2191	struct	timeval tv;
2192#ifdef MAC
2193	struct mac extmac;
2194#endif
2195
2196	error = 0;
2197	if (sopt->sopt_level != SOL_SOCKET) {
2198		if (so->so_proto && so->so_proto->pr_ctloutput) {
2199			return ((*so->so_proto->pr_ctloutput)
2200				  (so, sopt));
2201		} else
2202			return (ENOPROTOOPT);
2203	} else {
2204		switch (sopt->sopt_name) {
2205#ifdef INET
2206		case SO_ACCEPTFILTER:
2207			error = do_getopt_accept_filter(so, sopt);
2208			break;
2209#endif
2210		case SO_LINGER:
2211			SOCK_LOCK(so);
2212			l.l_onoff = so->so_options & SO_LINGER;
2213			l.l_linger = so->so_linger;
2214			SOCK_UNLOCK(so);
2215			error = sooptcopyout(sopt, &l, sizeof l);
2216			break;
2217
2218		case SO_USELOOPBACK:
2219		case SO_DONTROUTE:
2220		case SO_DEBUG:
2221		case SO_KEEPALIVE:
2222		case SO_REUSEADDR:
2223		case SO_REUSEPORT:
2224		case SO_BROADCAST:
2225		case SO_OOBINLINE:
2226		case SO_ACCEPTCONN:
2227		case SO_TIMESTAMP:
2228		case SO_BINTIME:
2229		case SO_NOSIGPIPE:
2230			optval = so->so_options & sopt->sopt_name;
2231integer:
2232			error = sooptcopyout(sopt, &optval, sizeof optval);
2233			break;
2234
2235		case SO_TYPE:
2236			optval = so->so_type;
2237			goto integer;
2238
2239		case SO_ERROR:
2240			SOCK_LOCK(so);
2241			optval = so->so_error;
2242			so->so_error = 0;
2243			SOCK_UNLOCK(so);
2244			goto integer;
2245
2246		case SO_SNDBUF:
2247			optval = so->so_snd.sb_hiwat;
2248			goto integer;
2249
2250		case SO_RCVBUF:
2251			optval = so->so_rcv.sb_hiwat;
2252			goto integer;
2253
2254		case SO_SNDLOWAT:
2255			optval = so->so_snd.sb_lowat;
2256			goto integer;
2257
2258		case SO_RCVLOWAT:
2259			optval = so->so_rcv.sb_lowat;
2260			goto integer;
2261
2262		case SO_SNDTIMEO:
2263		case SO_RCVTIMEO:
2264			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2265				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2266
2267			tv.tv_sec = optval / hz;
2268			tv.tv_usec = (optval % hz) * tick;
2269#ifdef COMPAT_IA32
2270			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2271				struct timeval32 tv32;
2272
2273				CP(tv, tv32, tv_sec);
2274				CP(tv, tv32, tv_usec);
2275				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2276			} else
2277#endif
2278				error = sooptcopyout(sopt, &tv, sizeof tv);
2279			break;
2280
2281		case SO_LABEL:
2282#ifdef MAC
2283			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2284			    sizeof(extmac));
2285			if (error)
2286				return (error);
2287			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2288			    so, &extmac);
2289			if (error)
2290				return (error);
2291			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2292#else
2293			error = EOPNOTSUPP;
2294#endif
2295			break;
2296
2297		case SO_PEERLABEL:
2298#ifdef MAC
2299			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2300			    sizeof(extmac));
2301			if (error)
2302				return (error);
2303			error = mac_getsockopt_peerlabel(
2304			    sopt->sopt_td->td_ucred, so, &extmac);
2305			if (error)
2306				return (error);
2307			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2308#else
2309			error = EOPNOTSUPP;
2310#endif
2311			break;
2312
2313		case SO_LISTENQLIMIT:
2314			optval = so->so_qlimit;
2315			goto integer;
2316
2317		case SO_LISTENQLEN:
2318			optval = so->so_qlen;
2319			goto integer;
2320
2321		case SO_LISTENINCQLEN:
2322			optval = so->so_incqlen;
2323			goto integer;
2324
2325		default:
2326			error = ENOPROTOOPT;
2327			break;
2328		}
2329		return (error);
2330	}
2331}
2332
2333/* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2334int
2335soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2336{
2337	struct mbuf *m, *m_prev;
2338	int sopt_size = sopt->sopt_valsize;
2339
2340	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2341	if (m == NULL)
2342		return ENOBUFS;
2343	if (sopt_size > MLEN) {
2344		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
2345		if ((m->m_flags & M_EXT) == 0) {
2346			m_free(m);
2347			return ENOBUFS;
2348		}
2349		m->m_len = min(MCLBYTES, sopt_size);
2350	} else {
2351		m->m_len = min(MLEN, sopt_size);
2352	}
2353	sopt_size -= m->m_len;
2354	*mp = m;
2355	m_prev = m;
2356
2357	while (sopt_size) {
2358		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2359		if (m == NULL) {
2360			m_freem(*mp);
2361			return ENOBUFS;
2362		}
2363		if (sopt_size > MLEN) {
2364			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
2365			    M_DONTWAIT);
2366			if ((m->m_flags & M_EXT) == 0) {
2367				m_freem(m);
2368				m_freem(*mp);
2369				return ENOBUFS;
2370			}
2371			m->m_len = min(MCLBYTES, sopt_size);
2372		} else {
2373			m->m_len = min(MLEN, sopt_size);
2374		}
2375		sopt_size -= m->m_len;
2376		m_prev->m_next = m;
2377		m_prev = m;
2378	}
2379	return (0);
2380}
2381
2382/* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2383int
2384soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2385{
2386	struct mbuf *m0 = m;
2387
2388	if (sopt->sopt_val == NULL)
2389		return (0);
2390	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2391		if (sopt->sopt_td != NULL) {
2392			int error;
2393
2394			error = copyin(sopt->sopt_val, mtod(m, char *),
2395				       m->m_len);
2396			if (error != 0) {
2397				m_freem(m0);
2398				return(error);
2399			}
2400		} else
2401			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2402		sopt->sopt_valsize -= m->m_len;
2403		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2404		m = m->m_next;
2405	}
2406	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2407		panic("ip6_sooptmcopyin");
2408	return (0);
2409}
2410
2411/* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2412int
2413soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2414{
2415	struct mbuf *m0 = m;
2416	size_t valsize = 0;
2417
2418	if (sopt->sopt_val == NULL)
2419		return (0);
2420	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2421		if (sopt->sopt_td != NULL) {
2422			int error;
2423
2424			error = copyout(mtod(m, char *), sopt->sopt_val,
2425				       m->m_len);
2426			if (error != 0) {
2427				m_freem(m0);
2428				return(error);
2429			}
2430		} else
2431			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2432	       sopt->sopt_valsize -= m->m_len;
2433	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2434	       valsize += m->m_len;
2435	       m = m->m_next;
2436	}
2437	if (m != NULL) {
2438		/* enough soopt buffer should be given from user-land */
2439		m_freem(m0);
2440		return(EINVAL);
2441	}
2442	sopt->sopt_valsize = valsize;
2443	return (0);
2444}
2445
2446/*
2447 * sohasoutofband(): protocol notifies socket layer of the arrival of new
2448 * out-of-band data, which will then notify socket consumers.
2449 */
2450void
2451sohasoutofband(so)
2452	struct socket *so;
2453{
2454	if (so->so_sigio != NULL)
2455		pgsigio(&so->so_sigio, SIGURG, 0);
2456	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2457}
2458
2459int
2460sopoll(struct socket *so, int events, struct ucred *active_cred,
2461    struct thread *td)
2462{
2463
2464	/* XXXRW: Temporary debugging. */
2465	KASSERT(so->so_proto->pr_usrreqs->pru_sopoll != sopoll,
2466	    ("sopoll: protocol calls sopoll"));
2467
2468	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2469	    td));
2470}
2471
2472int
2473sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2474    struct thread *td)
2475{
2476	int revents = 0;
2477
2478	SOCKBUF_LOCK(&so->so_snd);
2479	SOCKBUF_LOCK(&so->so_rcv);
2480	if (events & (POLLIN | POLLRDNORM))
2481		if (soreadable(so))
2482			revents |= events & (POLLIN | POLLRDNORM);
2483
2484	if (events & POLLINIGNEOF)
2485		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2486		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2487			revents |= POLLINIGNEOF;
2488
2489	if (events & (POLLOUT | POLLWRNORM))
2490		if (sowriteable(so))
2491			revents |= events & (POLLOUT | POLLWRNORM);
2492
2493	if (events & (POLLPRI | POLLRDBAND))
2494		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2495			revents |= events & (POLLPRI | POLLRDBAND);
2496
2497	if (revents == 0) {
2498		if (events &
2499		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2500		     POLLRDBAND)) {
2501			selrecord(td, &so->so_rcv.sb_sel);
2502			so->so_rcv.sb_flags |= SB_SEL;
2503		}
2504
2505		if (events & (POLLOUT | POLLWRNORM)) {
2506			selrecord(td, &so->so_snd.sb_sel);
2507			so->so_snd.sb_flags |= SB_SEL;
2508		}
2509	}
2510
2511	SOCKBUF_UNLOCK(&so->so_rcv);
2512	SOCKBUF_UNLOCK(&so->so_snd);
2513	return (revents);
2514}
2515
2516int
2517soo_kqfilter(struct file *fp, struct knote *kn)
2518{
2519	struct socket *so = kn->kn_fp->f_data;
2520	struct sockbuf *sb;
2521
2522	switch (kn->kn_filter) {
2523	case EVFILT_READ:
2524		if (so->so_options & SO_ACCEPTCONN)
2525			kn->kn_fop = &solisten_filtops;
2526		else
2527			kn->kn_fop = &soread_filtops;
2528		sb = &so->so_rcv;
2529		break;
2530	case EVFILT_WRITE:
2531		kn->kn_fop = &sowrite_filtops;
2532		sb = &so->so_snd;
2533		break;
2534	default:
2535		return (EINVAL);
2536	}
2537
2538	SOCKBUF_LOCK(sb);
2539	knlist_add(&sb->sb_sel.si_note, kn, 1);
2540	sb->sb_flags |= SB_KNOTE;
2541	SOCKBUF_UNLOCK(sb);
2542	return (0);
2543}
2544
2545static void
2546filt_sordetach(struct knote *kn)
2547{
2548	struct socket *so = kn->kn_fp->f_data;
2549
2550	SOCKBUF_LOCK(&so->so_rcv);
2551	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2552	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2553		so->so_rcv.sb_flags &= ~SB_KNOTE;
2554	SOCKBUF_UNLOCK(&so->so_rcv);
2555}
2556
2557/*ARGSUSED*/
2558static int
2559filt_soread(struct knote *kn, long hint)
2560{
2561	struct socket *so;
2562
2563	so = kn->kn_fp->f_data;
2564	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2565
2566	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2567	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2568		kn->kn_flags |= EV_EOF;
2569		kn->kn_fflags = so->so_error;
2570		return (1);
2571	} else if (so->so_error)	/* temporary udp error */
2572		return (1);
2573	else if (kn->kn_sfflags & NOTE_LOWAT)
2574		return (kn->kn_data >= kn->kn_sdata);
2575	else
2576		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2577}
2578
2579static void
2580filt_sowdetach(struct knote *kn)
2581{
2582	struct socket *so = kn->kn_fp->f_data;
2583
2584	SOCKBUF_LOCK(&so->so_snd);
2585	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2586	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2587		so->so_snd.sb_flags &= ~SB_KNOTE;
2588	SOCKBUF_UNLOCK(&so->so_snd);
2589}
2590
2591/*ARGSUSED*/
2592static int
2593filt_sowrite(struct knote *kn, long hint)
2594{
2595	struct socket *so;
2596
2597	so = kn->kn_fp->f_data;
2598	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2599	kn->kn_data = sbspace(&so->so_snd);
2600	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2601		kn->kn_flags |= EV_EOF;
2602		kn->kn_fflags = so->so_error;
2603		return (1);
2604	} else if (so->so_error)	/* temporary udp error */
2605		return (1);
2606	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2607	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2608		return (0);
2609	else if (kn->kn_sfflags & NOTE_LOWAT)
2610		return (kn->kn_data >= kn->kn_sdata);
2611	else
2612		return (kn->kn_data >= so->so_snd.sb_lowat);
2613}
2614
2615/*ARGSUSED*/
2616static int
2617filt_solisten(struct knote *kn, long hint)
2618{
2619	struct socket *so = kn->kn_fp->f_data;
2620
2621	kn->kn_data = so->so_qlen;
2622	return (! TAILQ_EMPTY(&so->so_comp));
2623}
2624
2625int
2626socheckuid(struct socket *so, uid_t uid)
2627{
2628
2629	if (so == NULL)
2630		return (EPERM);
2631	if (so->so_cred->cr_uid != uid)
2632		return (EPERM);
2633	return (0);
2634}
2635
2636static int
2637somaxconn_sysctl(SYSCTL_HANDLER_ARGS)
2638{
2639	int error;
2640	int val;
2641
2642	val = somaxconn;
2643	error = sysctl_handle_int(oidp, &val, sizeof(int), req);
2644	if (error || !req->newptr )
2645		return (error);
2646
2647	if (val < 1 || val > USHRT_MAX)
2648		return (EINVAL);
2649
2650	somaxconn = val;
2651	return (0);
2652}
2653