uipc_socket.c revision 151728
1/*-
2 * Copyright (c) 2004 The FreeBSD Foundation
3 * Copyright (c) 2004-2005 Robert N. M. Watson
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/kern/uipc_socket.c 151728 2005-10-27 04:26:35Z ps $");
36
37#include "opt_inet.h"
38#include "opt_mac.h"
39#include "opt_zero.h"
40#include "opt_compat.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/fcntl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mac.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/mutex.h>
51#include <sys/domain.h>
52#include <sys/file.h>			/* for struct knote */
53#include <sys/kernel.h>
54#include <sys/event.h>
55#include <sys/poll.h>
56#include <sys/proc.h>
57#include <sys/protosw.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/resourcevar.h>
61#include <sys/signalvar.h>
62#include <sys/sysctl.h>
63#include <sys/uio.h>
64#include <sys/jail.h>
65
66#include <vm/uma.h>
67
68#ifdef COMPAT_IA32
69#include <sys/mount.h>
70#include <compat/freebsd32/freebsd32.h>
71
72extern struct sysentvec ia32_freebsd_sysvec;
73#endif
74
75static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
76		    int flags);
77
78static void	filt_sordetach(struct knote *kn);
79static int	filt_soread(struct knote *kn, long hint);
80static void	filt_sowdetach(struct knote *kn);
81static int	filt_sowrite(struct knote *kn, long hint);
82static int	filt_solisten(struct knote *kn, long hint);
83
84static struct filterops solisten_filtops =
85	{ 1, NULL, filt_sordetach, filt_solisten };
86static struct filterops soread_filtops =
87	{ 1, NULL, filt_sordetach, filt_soread };
88static struct filterops sowrite_filtops =
89	{ 1, NULL, filt_sowdetach, filt_sowrite };
90
91uma_zone_t socket_zone;
92so_gen_t	so_gencnt;	/* generation count for sockets */
93
94MALLOC_DEFINE(M_SONAME, "soname", "socket name");
95MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
96
97SYSCTL_DECL(_kern_ipc);
98
99static int somaxconn = SOMAXCONN;
100static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS);
101/* XXX: we dont have SYSCTL_USHORT */
102SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
103    0, sizeof(int), somaxconn_sysctl, "I", "Maximum pending socket connection "
104    "queue size");
105static int numopensockets;
106SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
107    &numopensockets, 0, "Number of open sockets");
108#ifdef ZERO_COPY_SOCKETS
109/* These aren't static because they're used in other files. */
110int so_zero_copy_send = 1;
111int so_zero_copy_receive = 1;
112SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
113    "Zero copy controls");
114SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
115    &so_zero_copy_receive, 0, "Enable zero copy receive");
116SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
117    &so_zero_copy_send, 0, "Enable zero copy send");
118#endif /* ZERO_COPY_SOCKETS */
119
120/*
121 * accept_mtx locks down per-socket fields relating to accept queues.  See
122 * socketvar.h for an annotation of the protected fields of struct socket.
123 */
124struct mtx accept_mtx;
125MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
126
127/*
128 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
129 * so_gencnt field.
130 */
131static struct mtx so_global_mtx;
132MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
133
134/*
135 * Socket operation routines.
136 * These routines are called by the routines in
137 * sys_socket.c or from a system process, and
138 * implement the semantics of socket operations by
139 * switching out to the protocol specific routines.
140 */
141
142/*
143 * Get a socket structure from our zone, and initialize it.
144 * Note that it would probably be better to allocate socket
145 * and PCB at the same time, but I'm not convinced that all
146 * the protocols can be easily modified to do this.
147 *
148 * soalloc() returns a socket with a ref count of 0.
149 */
150struct socket *
151soalloc(int mflags)
152{
153	struct socket *so;
154
155	so = uma_zalloc(socket_zone, mflags | M_ZERO);
156	if (so != NULL) {
157#ifdef MAC
158		if (mac_init_socket(so, mflags) != 0) {
159			uma_zfree(socket_zone, so);
160			return (NULL);
161		}
162#endif
163		SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
164		SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
165		TAILQ_INIT(&so->so_aiojobq);
166		mtx_lock(&so_global_mtx);
167		so->so_gencnt = ++so_gencnt;
168		++numopensockets;
169		mtx_unlock(&so_global_mtx);
170	}
171	return (so);
172}
173
174/*
175 * socreate returns a socket with a ref count of 1.  The socket should be
176 * closed with soclose().
177 */
178int
179socreate(dom, aso, type, proto, cred, td)
180	int dom;
181	struct socket **aso;
182	int type;
183	int proto;
184	struct ucred *cred;
185	struct thread *td;
186{
187	struct protosw *prp;
188	struct socket *so;
189	int error;
190
191	if (proto)
192		prp = pffindproto(dom, proto, type);
193	else
194		prp = pffindtype(dom, type);
195
196	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
197	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
198		return (EPROTONOSUPPORT);
199
200	if (jailed(cred) && jail_socket_unixiproute_only &&
201	    prp->pr_domain->dom_family != PF_LOCAL &&
202	    prp->pr_domain->dom_family != PF_INET &&
203	    prp->pr_domain->dom_family != PF_ROUTE) {
204		return (EPROTONOSUPPORT);
205	}
206
207	if (prp->pr_type != type)
208		return (EPROTOTYPE);
209	so = soalloc(M_WAITOK);
210	if (so == NULL)
211		return (ENOBUFS);
212
213	TAILQ_INIT(&so->so_incomp);
214	TAILQ_INIT(&so->so_comp);
215	so->so_type = type;
216	so->so_cred = crhold(cred);
217	so->so_proto = prp;
218#ifdef MAC
219	mac_create_socket(cred, so);
220#endif
221	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
222	    NULL, NULL, NULL);
223	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
224	    NULL, NULL, NULL);
225	so->so_count = 1;
226	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
227	if (error) {
228		ACCEPT_LOCK();
229		SOCK_LOCK(so);
230		so->so_state |= SS_NOFDREF;
231		sorele(so);
232		return (error);
233	}
234	*aso = so;
235	return (0);
236}
237
238int
239sobind(so, nam, td)
240	struct socket *so;
241	struct sockaddr *nam;
242	struct thread *td;
243{
244
245	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
246}
247
248void
249sodealloc(struct socket *so)
250{
251
252	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
253	mtx_lock(&so_global_mtx);
254	so->so_gencnt = ++so_gencnt;
255	mtx_unlock(&so_global_mtx);
256	if (so->so_rcv.sb_hiwat)
257		(void)chgsbsize(so->so_cred->cr_uidinfo,
258		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
259	if (so->so_snd.sb_hiwat)
260		(void)chgsbsize(so->so_cred->cr_uidinfo,
261		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
262#ifdef INET
263	/* remove acccept filter if one is present. */
264	if (so->so_accf != NULL)
265		do_setopt_accept_filter(so, NULL);
266#endif
267#ifdef MAC
268	mac_destroy_socket(so);
269#endif
270	crfree(so->so_cred);
271	SOCKBUF_LOCK_DESTROY(&so->so_snd);
272	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
273	uma_zfree(socket_zone, so);
274	mtx_lock(&so_global_mtx);
275	--numopensockets;
276	mtx_unlock(&so_global_mtx);
277}
278
279/*
280 * solisten() transitions a socket from a non-listening state to a listening
281 * state, but can also be used to update the listen queue depth on an
282 * existing listen socket.  The protocol will call back into the sockets
283 * layer using solisten_proto_check() and solisten_proto() to check and set
284 * socket-layer listen state.  Call backs are used so that the protocol can
285 * acquire both protocol and socket layer locks in whatever order is required
286 * by the protocol.
287 *
288 * Protocol implementors are advised to hold the socket lock across the
289 * socket-layer test and set to avoid races at the socket layer.
290 */
291int
292solisten(so, backlog, td)
293	struct socket *so;
294	int backlog;
295	struct thread *td;
296{
297	int error;
298
299	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, td);
300	if (error)
301		return (error);
302
303	/*
304	 * XXXRW: The following state adjustment should occur in
305	 * solisten_proto(), but we don't currently pass the backlog request
306	 * to the protocol via pru_listen().
307	 */
308	if (backlog < 0 || backlog > somaxconn)
309		backlog = somaxconn;
310	so->so_qlimit = backlog;
311	return (0);
312}
313
314int
315solisten_proto_check(so)
316	struct socket *so;
317{
318
319	SOCK_LOCK_ASSERT(so);
320
321	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
322	    SS_ISDISCONNECTING))
323		return (EINVAL);
324	return (0);
325}
326
327void
328solisten_proto(so)
329	struct socket *so;
330{
331
332	SOCK_LOCK_ASSERT(so);
333
334	so->so_options |= SO_ACCEPTCONN;
335}
336
337/*
338 * Attempt to free a socket.  This should really be sotryfree().
339 *
340 * We free the socket if the protocol is no longer interested in the socket,
341 * there's no file descriptor reference, and the refcount is 0.  While the
342 * calling macro sotryfree() tests the refcount, sofree() has to test it
343 * again as it's possible to race with an accept()ing thread if the socket is
344 * in an listen queue of a listen socket, as being in the listen queue
345 * doesn't elevate the reference count.  sofree() acquires the accept mutex
346 * early for this test in order to avoid that race.
347 */
348void
349sofree(so)
350	struct socket *so;
351{
352	struct socket *head;
353
354	ACCEPT_LOCK_ASSERT();
355	SOCK_LOCK_ASSERT(so);
356
357	if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 ||
358	    so->so_count != 0) {
359		SOCK_UNLOCK(so);
360		ACCEPT_UNLOCK();
361		return;
362	}
363
364	head = so->so_head;
365	if (head != NULL) {
366		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
367		    (so->so_qstate & SQ_INCOMP) != 0,
368		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
369		    "SQ_INCOMP"));
370		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
371		    (so->so_qstate & SQ_INCOMP) == 0,
372		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
373		/*
374		 * accept(2) is responsible draining the completed
375		 * connection queue and freeing those sockets, so
376		 * we just return here if this socket is currently
377		 * on the completed connection queue.  Otherwise,
378		 * accept(2) may hang after select(2) has indicating
379		 * that a listening socket was ready.  If it's an
380		 * incomplete connection, we remove it from the queue
381		 * and free it; otherwise, it won't be released until
382		 * the listening socket is closed.
383		 */
384		if ((so->so_qstate & SQ_COMP) != 0) {
385			SOCK_UNLOCK(so);
386			ACCEPT_UNLOCK();
387			return;
388		}
389		TAILQ_REMOVE(&head->so_incomp, so, so_list);
390		head->so_incqlen--;
391		so->so_qstate &= ~SQ_INCOMP;
392		so->so_head = NULL;
393	}
394	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
395	    (so->so_qstate & SQ_INCOMP) == 0,
396	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
397	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
398	SOCK_UNLOCK(so);
399	ACCEPT_UNLOCK();
400	SOCKBUF_LOCK(&so->so_snd);
401	so->so_snd.sb_flags |= SB_NOINTR;
402	(void)sblock(&so->so_snd, M_WAITOK);
403	/*
404	 * socantsendmore_locked() drops the socket buffer mutex so that it
405	 * can safely perform wakeups.  Re-acquire the mutex before
406	 * continuing.
407	 */
408	socantsendmore_locked(so);
409	SOCKBUF_LOCK(&so->so_snd);
410	sbunlock(&so->so_snd);
411	sbrelease_locked(&so->so_snd, so);
412	SOCKBUF_UNLOCK(&so->so_snd);
413	sorflush(so);
414	knlist_destroy(&so->so_rcv.sb_sel.si_note);
415	knlist_destroy(&so->so_snd.sb_sel.si_note);
416	sodealloc(so);
417}
418
419/*
420 * Close a socket on last file table reference removal.
421 * Initiate disconnect if connected.
422 * Free socket when disconnect complete.
423 *
424 * This function will sorele() the socket.  Note that soclose() may be
425 * called prior to the ref count reaching zero.  The actual socket
426 * structure will not be freed until the ref count reaches zero.
427 */
428int
429soclose(so)
430	struct socket *so;
431{
432	int error = 0;
433
434	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
435
436	funsetown(&so->so_sigio);
437	if (so->so_options & SO_ACCEPTCONN) {
438		struct socket *sp;
439		ACCEPT_LOCK();
440		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
441			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
442			so->so_incqlen--;
443			sp->so_qstate &= ~SQ_INCOMP;
444			sp->so_head = NULL;
445			ACCEPT_UNLOCK();
446			(void) soabort(sp);
447			ACCEPT_LOCK();
448		}
449		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
450			TAILQ_REMOVE(&so->so_comp, sp, so_list);
451			so->so_qlen--;
452			sp->so_qstate &= ~SQ_COMP;
453			sp->so_head = NULL;
454			ACCEPT_UNLOCK();
455			(void) soabort(sp);
456			ACCEPT_LOCK();
457		}
458		ACCEPT_UNLOCK();
459	}
460	if (so->so_pcb == NULL)
461		goto discard;
462	if (so->so_state & SS_ISCONNECTED) {
463		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
464			error = sodisconnect(so);
465			if (error)
466				goto drop;
467		}
468		if (so->so_options & SO_LINGER) {
469			if ((so->so_state & SS_ISDISCONNECTING) &&
470			    (so->so_state & SS_NBIO))
471				goto drop;
472			while (so->so_state & SS_ISCONNECTED) {
473				error = tsleep(&so->so_timeo,
474				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
475				if (error)
476					break;
477			}
478		}
479	}
480drop:
481	if (so->so_pcb != NULL) {
482		int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so);
483		if (error == 0)
484			error = error2;
485	}
486discard:
487	ACCEPT_LOCK();
488	SOCK_LOCK(so);
489	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
490	so->so_state |= SS_NOFDREF;
491	sorele(so);
492	return (error);
493}
494
495/*
496 * soabort() must not be called with any socket locks held, as it calls
497 * into the protocol, which will call back into the socket code causing
498 * it to acquire additional socket locks that may cause recursion or lock
499 * order reversals.
500 */
501int
502soabort(so)
503	struct socket *so;
504{
505	int error;
506
507	error = (*so->so_proto->pr_usrreqs->pru_abort)(so);
508	if (error) {
509		ACCEPT_LOCK();
510		SOCK_LOCK(so);
511		sotryfree(so);	/* note: does not decrement the ref count */
512		return error;
513	}
514	return (0);
515}
516
517int
518soaccept(so, nam)
519	struct socket *so;
520	struct sockaddr **nam;
521{
522	int error;
523
524	SOCK_LOCK(so);
525	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
526	so->so_state &= ~SS_NOFDREF;
527	SOCK_UNLOCK(so);
528	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
529	return (error);
530}
531
532int
533soconnect(so, nam, td)
534	struct socket *so;
535	struct sockaddr *nam;
536	struct thread *td;
537{
538	int error;
539
540	if (so->so_options & SO_ACCEPTCONN)
541		return (EOPNOTSUPP);
542	/*
543	 * If protocol is connection-based, can only connect once.
544	 * Otherwise, if connected, try to disconnect first.
545	 * This allows user to disconnect by connecting to, e.g.,
546	 * a null address.
547	 */
548	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
549	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
550	    (error = sodisconnect(so)))) {
551		error = EISCONN;
552	} else {
553		/*
554		 * Prevent accumulated error from previous connection
555		 * from biting us.
556		 */
557		so->so_error = 0;
558		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
559	}
560
561	return (error);
562}
563
564int
565soconnect2(so1, so2)
566	struct socket *so1;
567	struct socket *so2;
568{
569
570	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
571}
572
573int
574sodisconnect(so)
575	struct socket *so;
576{
577	int error;
578
579	if ((so->so_state & SS_ISCONNECTED) == 0)
580		return (ENOTCONN);
581	if (so->so_state & SS_ISDISCONNECTING)
582		return (EALREADY);
583	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
584	return (error);
585}
586
587#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
588/*
589 * Send on a socket.
590 * If send must go all at once and message is larger than
591 * send buffering, then hard error.
592 * Lock against other senders.
593 * If must go all at once and not enough room now, then
594 * inform user that this would block and do nothing.
595 * Otherwise, if nonblocking, send as much as possible.
596 * The data to be sent is described by "uio" if nonzero,
597 * otherwise by the mbuf chain "top" (which must be null
598 * if uio is not).  Data provided in mbuf chain must be small
599 * enough to send all at once.
600 *
601 * Returns nonzero on error, timeout or signal; callers
602 * must check for short counts if EINTR/ERESTART are returned.
603 * Data and control buffers are freed on return.
604 */
605
606#ifdef ZERO_COPY_SOCKETS
607struct so_zerocopy_stats{
608	int size_ok;
609	int align_ok;
610	int found_ifp;
611};
612struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
613#include <netinet/in.h>
614#include <net/route.h>
615#include <netinet/in_pcb.h>
616#include <vm/vm.h>
617#include <vm/vm_page.h>
618#include <vm/vm_object.h>
619#endif /*ZERO_COPY_SOCKETS*/
620
621int
622sosend(so, addr, uio, top, control, flags, td)
623	struct socket *so;
624	struct sockaddr *addr;
625	struct uio *uio;
626	struct mbuf *top;
627	struct mbuf *control;
628	int flags;
629	struct thread *td;
630{
631	struct mbuf **mp;
632	struct mbuf *m;
633	long space, len = 0, resid;
634	int clen = 0, error, dontroute;
635	int atomic = sosendallatonce(so) || top;
636#ifdef ZERO_COPY_SOCKETS
637	int cow_send;
638#endif /* ZERO_COPY_SOCKETS */
639
640	if (uio != NULL)
641		resid = uio->uio_resid;
642	else
643		resid = top->m_pkthdr.len;
644	/*
645	 * In theory resid should be unsigned.
646	 * However, space must be signed, as it might be less than 0
647	 * if we over-committed, and we must use a signed comparison
648	 * of space and resid.  On the other hand, a negative resid
649	 * causes us to loop sending 0-length segments to the protocol.
650	 *
651	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
652	 * type sockets since that's an error.
653	 */
654	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
655		error = EINVAL;
656		goto out;
657	}
658
659	dontroute =
660	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
661	    (so->so_proto->pr_flags & PR_ATOMIC);
662	if (td != NULL)
663		td->td_proc->p_stats->p_ru.ru_msgsnd++;
664	if (control != NULL)
665		clen = control->m_len;
666#define	snderr(errno)	{ error = (errno); goto release; }
667
668	SOCKBUF_LOCK(&so->so_snd);
669restart:
670	SOCKBUF_LOCK_ASSERT(&so->so_snd);
671	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
672	if (error)
673		goto out_locked;
674	do {
675		SOCKBUF_LOCK_ASSERT(&so->so_snd);
676		if (so->so_snd.sb_state & SBS_CANTSENDMORE)
677			snderr(EPIPE);
678		if (so->so_error) {
679			error = so->so_error;
680			so->so_error = 0;
681			goto release;
682		}
683		if ((so->so_state & SS_ISCONNECTED) == 0) {
684			/*
685			 * `sendto' and `sendmsg' is allowed on a connection-
686			 * based socket if it supports implied connect.
687			 * Return ENOTCONN if not connected and no address is
688			 * supplied.
689			 */
690			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
691			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
692				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
693				    !(resid == 0 && clen != 0))
694					snderr(ENOTCONN);
695			} else if (addr == NULL)
696			    snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
697				   ENOTCONN : EDESTADDRREQ);
698		}
699		space = sbspace(&so->so_snd);
700		if (flags & MSG_OOB)
701			space += 1024;
702		if ((atomic && resid > so->so_snd.sb_hiwat) ||
703		    clen > so->so_snd.sb_hiwat)
704			snderr(EMSGSIZE);
705		if (space < resid + clen &&
706		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
707			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO))
708				snderr(EWOULDBLOCK);
709			sbunlock(&so->so_snd);
710			error = sbwait(&so->so_snd);
711			if (error)
712				goto out_locked;
713			goto restart;
714		}
715		SOCKBUF_UNLOCK(&so->so_snd);
716		mp = &top;
717		space -= clen;
718		do {
719		    if (uio == NULL) {
720			/*
721			 * Data is prepackaged in "top".
722			 */
723			resid = 0;
724			if (flags & MSG_EOR)
725				top->m_flags |= M_EOR;
726		    } else do {
727#ifdef ZERO_COPY_SOCKETS
728			cow_send = 0;
729#endif /* ZERO_COPY_SOCKETS */
730			if (resid >= MINCLSIZE) {
731#ifdef ZERO_COPY_SOCKETS
732				if (top == NULL) {
733					MGETHDR(m, M_TRYWAIT, MT_DATA);
734					if (m == NULL) {
735						error = ENOBUFS;
736						SOCKBUF_LOCK(&so->so_snd);
737						goto release;
738					}
739					m->m_pkthdr.len = 0;
740					m->m_pkthdr.rcvif = NULL;
741				} else {
742					MGET(m, M_TRYWAIT, MT_DATA);
743					if (m == NULL) {
744						error = ENOBUFS;
745						SOCKBUF_LOCK(&so->so_snd);
746						goto release;
747					}
748				}
749				if (so_zero_copy_send &&
750				    resid>=PAGE_SIZE &&
751				    space>=PAGE_SIZE &&
752				    uio->uio_iov->iov_len>=PAGE_SIZE) {
753					so_zerocp_stats.size_ok++;
754					so_zerocp_stats.align_ok++;
755					cow_send = socow_setup(m, uio);
756					len = cow_send;
757				}
758				if (!cow_send) {
759					MCLGET(m, M_TRYWAIT);
760					if ((m->m_flags & M_EXT) == 0) {
761						m_free(m);
762						m = NULL;
763					} else {
764						len = min(min(MCLBYTES, resid), space);
765					}
766				}
767#else /* ZERO_COPY_SOCKETS */
768				if (top == NULL) {
769					m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
770					m->m_pkthdr.len = 0;
771					m->m_pkthdr.rcvif = NULL;
772				} else
773					m = m_getcl(M_TRYWAIT, MT_DATA, 0);
774				len = min(min(MCLBYTES, resid), space);
775#endif /* ZERO_COPY_SOCKETS */
776			} else {
777				if (top == NULL) {
778					m = m_gethdr(M_TRYWAIT, MT_DATA);
779					m->m_pkthdr.len = 0;
780					m->m_pkthdr.rcvif = NULL;
781
782					len = min(min(MHLEN, resid), space);
783					/*
784					 * For datagram protocols, leave room
785					 * for protocol headers in first mbuf.
786					 */
787					if (atomic && m && len < MHLEN)
788						MH_ALIGN(m, len);
789				} else {
790					m = m_get(M_TRYWAIT, MT_DATA);
791					len = min(min(MLEN, resid), space);
792				}
793			}
794			if (m == NULL) {
795				error = ENOBUFS;
796				SOCKBUF_LOCK(&so->so_snd);
797				goto release;
798			}
799
800			space -= len;
801#ifdef ZERO_COPY_SOCKETS
802			if (cow_send)
803				error = 0;
804			else
805#endif /* ZERO_COPY_SOCKETS */
806			error = uiomove(mtod(m, void *), (int)len, uio);
807			resid = uio->uio_resid;
808			m->m_len = len;
809			*mp = m;
810			top->m_pkthdr.len += len;
811			if (error) {
812				SOCKBUF_LOCK(&so->so_snd);
813				goto release;
814			}
815			mp = &m->m_next;
816			if (resid <= 0) {
817				if (flags & MSG_EOR)
818					top->m_flags |= M_EOR;
819				break;
820			}
821		    } while (space > 0 && atomic);
822		    if (dontroute) {
823			    SOCK_LOCK(so);
824			    so->so_options |= SO_DONTROUTE;
825			    SOCK_UNLOCK(so);
826		    }
827		    /*
828		     * XXX all the SBS_CANTSENDMORE checks previously
829		     * done could be out of date.  We could have recieved
830		     * a reset packet in an interrupt or maybe we slept
831		     * while doing page faults in uiomove() etc. We could
832		     * probably recheck again inside the locking protection
833		     * here, but there are probably other places that this
834		     * also happens.  We must rethink this.
835		     */
836		    error = (*so->so_proto->pr_usrreqs->pru_send)(so,
837			(flags & MSG_OOB) ? PRUS_OOB :
838			/*
839			 * If the user set MSG_EOF, the protocol
840			 * understands this flag and nothing left to
841			 * send then use PRU_SEND_EOF instead of PRU_SEND.
842			 */
843			((flags & MSG_EOF) &&
844			 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
845			 (resid <= 0)) ?
846				PRUS_EOF :
847			/* If there is more to send set PRUS_MORETOCOME */
848			(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
849			top, addr, control, td);
850		    if (dontroute) {
851			    SOCK_LOCK(so);
852			    so->so_options &= ~SO_DONTROUTE;
853			    SOCK_UNLOCK(so);
854		    }
855		    clen = 0;
856		    control = NULL;
857		    top = NULL;
858		    mp = &top;
859		    if (error) {
860			SOCKBUF_LOCK(&so->so_snd);
861			goto release;
862		    }
863		} while (resid && space > 0);
864		SOCKBUF_LOCK(&so->so_snd);
865	} while (resid);
866
867release:
868	SOCKBUF_LOCK_ASSERT(&so->so_snd);
869	sbunlock(&so->so_snd);
870out_locked:
871	SOCKBUF_LOCK_ASSERT(&so->so_snd);
872	SOCKBUF_UNLOCK(&so->so_snd);
873out:
874	if (top != NULL)
875		m_freem(top);
876	if (control != NULL)
877		m_freem(control);
878	return (error);
879}
880
881/*
882 * The part of soreceive() that implements reading non-inline out-of-band
883 * data from a socket.  For more complete comments, see soreceive(), from
884 * which this code originated.
885 *
886 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
887 * unable to return an mbuf chain to the caller.
888 */
889static int
890soreceive_rcvoob(so, uio, flags)
891	struct socket *so;
892	struct uio *uio;
893	int flags;
894{
895	struct protosw *pr = so->so_proto;
896	struct mbuf *m;
897	int error;
898
899	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
900
901	m = m_get(M_TRYWAIT, MT_DATA);
902	if (m == NULL)
903		return (ENOBUFS);
904	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
905	if (error)
906		goto bad;
907	do {
908#ifdef ZERO_COPY_SOCKETS
909		if (so_zero_copy_receive) {
910			int disposable;
911
912			if ((m->m_flags & M_EXT)
913			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
914				disposable = 1;
915			else
916				disposable = 0;
917
918			error = uiomoveco(mtod(m, void *),
919					  min(uio->uio_resid, m->m_len),
920					  uio, disposable);
921		} else
922#endif /* ZERO_COPY_SOCKETS */
923		error = uiomove(mtod(m, void *),
924		    (int) min(uio->uio_resid, m->m_len), uio);
925		m = m_free(m);
926	} while (uio->uio_resid && error == 0 && m);
927bad:
928	if (m != NULL)
929		m_freem(m);
930	return (error);
931}
932
933/*
934 * Following replacement or removal of the first mbuf on the first mbuf chain
935 * of a socket buffer, push necessary state changes back into the socket
936 * buffer so that other consumers see the values consistently.  'nextrecord'
937 * is the callers locally stored value of the original value of
938 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
939 * NOTE: 'nextrecord' may be NULL.
940 */
941static __inline void
942sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
943{
944
945	SOCKBUF_LOCK_ASSERT(sb);
946	/*
947	 * First, update for the new value of nextrecord.  If necessary, make
948	 * it the first record.
949	 */
950	if (sb->sb_mb != NULL)
951		sb->sb_mb->m_nextpkt = nextrecord;
952	else
953		sb->sb_mb = nextrecord;
954
955        /*
956         * Now update any dependent socket buffer fields to reflect the new
957         * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
958	 * addition of a second clause that takes care of the case where
959	 * sb_mb has been updated, but remains the last record.
960         */
961        if (sb->sb_mb == NULL) {
962                sb->sb_mbtail = NULL;
963                sb->sb_lastrecord = NULL;
964        } else if (sb->sb_mb->m_nextpkt == NULL)
965                sb->sb_lastrecord = sb->sb_mb;
966}
967
968
969/*
970 * Implement receive operations on a socket.
971 * We depend on the way that records are added to the sockbuf
972 * by sbappend*.  In particular, each record (mbufs linked through m_next)
973 * must begin with an address if the protocol so specifies,
974 * followed by an optional mbuf or mbufs containing ancillary data,
975 * and then zero or more mbufs of data.
976 * In order to avoid blocking network interrupts for the entire time here,
977 * we splx() while doing the actual copy to user space.
978 * Although the sockbuf is locked, new data may still be appended,
979 * and thus we must maintain consistency of the sockbuf during that time.
980 *
981 * The caller may receive the data as a single mbuf chain by supplying
982 * an mbuf **mp0 for use in returning the chain.  The uio is then used
983 * only for the count in uio_resid.
984 */
985int
986soreceive(so, psa, uio, mp0, controlp, flagsp)
987	struct socket *so;
988	struct sockaddr **psa;
989	struct uio *uio;
990	struct mbuf **mp0;
991	struct mbuf **controlp;
992	int *flagsp;
993{
994	struct mbuf *m, **mp;
995	int flags, len, error, offset;
996	struct protosw *pr = so->so_proto;
997	struct mbuf *nextrecord;
998	int moff, type = 0;
999	int orig_resid = uio->uio_resid;
1000
1001	mp = mp0;
1002	if (psa != NULL)
1003		*psa = NULL;
1004	if (controlp != NULL)
1005		*controlp = NULL;
1006	if (flagsp != NULL)
1007		flags = *flagsp &~ MSG_EOR;
1008	else
1009		flags = 0;
1010	if (flags & MSG_OOB)
1011		return (soreceive_rcvoob(so, uio, flags));
1012	if (mp != NULL)
1013		*mp = NULL;
1014	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1015	    && uio->uio_resid)
1016		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1017
1018	SOCKBUF_LOCK(&so->so_rcv);
1019restart:
1020	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1021	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1022	if (error)
1023		goto out;
1024
1025	m = so->so_rcv.sb_mb;
1026	/*
1027	 * If we have less data than requested, block awaiting more
1028	 * (subject to any timeout) if:
1029	 *   1. the current count is less than the low water mark, or
1030	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1031	 *	receive operation at once if we block (resid <= hiwat).
1032	 *   3. MSG_DONTWAIT is not set
1033	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1034	 * we have to do the receive in sections, and thus risk returning
1035	 * a short count if a timeout or signal occurs after we start.
1036	 */
1037	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1038	    so->so_rcv.sb_cc < uio->uio_resid) &&
1039	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1040	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1041	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1042		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1043		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1044		    m, so->so_rcv.sb_cc));
1045		if (so->so_error) {
1046			if (m != NULL)
1047				goto dontblock;
1048			error = so->so_error;
1049			if ((flags & MSG_PEEK) == 0)
1050				so->so_error = 0;
1051			goto release;
1052		}
1053		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1054		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1055			if (m)
1056				goto dontblock;
1057			else
1058				goto release;
1059		}
1060		for (; m != NULL; m = m->m_next)
1061			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1062				m = so->so_rcv.sb_mb;
1063				goto dontblock;
1064			}
1065		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1066		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1067			error = ENOTCONN;
1068			goto release;
1069		}
1070		if (uio->uio_resid == 0)
1071			goto release;
1072		if ((so->so_state & SS_NBIO) ||
1073		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1074			error = EWOULDBLOCK;
1075			goto release;
1076		}
1077		SBLASTRECORDCHK(&so->so_rcv);
1078		SBLASTMBUFCHK(&so->so_rcv);
1079		sbunlock(&so->so_rcv);
1080		error = sbwait(&so->so_rcv);
1081		if (error)
1082			goto out;
1083		goto restart;
1084	}
1085dontblock:
1086	/*
1087	 * From this point onward, we maintain 'nextrecord' as a cache of the
1088	 * pointer to the next record in the socket buffer.  We must keep the
1089	 * various socket buffer pointers and local stack versions of the
1090	 * pointers in sync, pushing out modifications before dropping the
1091	 * socket buffer mutex, and re-reading them when picking it up.
1092	 *
1093	 * Otherwise, we will race with the network stack appending new data
1094	 * or records onto the socket buffer by using inconsistent/stale
1095	 * versions of the field, possibly resulting in socket buffer
1096	 * corruption.
1097	 *
1098	 * By holding the high-level sblock(), we prevent simultaneous
1099	 * readers from pulling off the front of the socket buffer.
1100	 */
1101	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1102	if (uio->uio_td)
1103		uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++;
1104	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1105	SBLASTRECORDCHK(&so->so_rcv);
1106	SBLASTMBUFCHK(&so->so_rcv);
1107	nextrecord = m->m_nextpkt;
1108	if (pr->pr_flags & PR_ADDR) {
1109		KASSERT(m->m_type == MT_SONAME,
1110		    ("m->m_type == %d", m->m_type));
1111		orig_resid = 0;
1112		if (psa != NULL)
1113			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1114			    M_NOWAIT);
1115		if (flags & MSG_PEEK) {
1116			m = m->m_next;
1117		} else {
1118			sbfree(&so->so_rcv, m);
1119			so->so_rcv.sb_mb = m_free(m);
1120			m = so->so_rcv.sb_mb;
1121			sockbuf_pushsync(&so->so_rcv, nextrecord);
1122		}
1123	}
1124
1125	/*
1126	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1127	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1128	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1129	 * perform externalization (or freeing if controlp == NULL).
1130	 */
1131	if (m != NULL && m->m_type == MT_CONTROL) {
1132		struct mbuf *cm = NULL, *cmn;
1133		struct mbuf **cme = &cm;
1134
1135		do {
1136			if (flags & MSG_PEEK) {
1137				if (controlp != NULL) {
1138					*controlp = m_copy(m, 0, m->m_len);
1139					controlp = &(*controlp)->m_next;
1140				}
1141				m = m->m_next;
1142			} else {
1143				sbfree(&so->so_rcv, m);
1144				so->so_rcv.sb_mb = m->m_next;
1145				m->m_next = NULL;
1146				*cme = m;
1147				cme = &(*cme)->m_next;
1148				m = so->so_rcv.sb_mb;
1149			}
1150		} while (m != NULL && m->m_type == MT_CONTROL);
1151		if ((flags & MSG_PEEK) == 0)
1152			sockbuf_pushsync(&so->so_rcv, nextrecord);
1153		while (cm != NULL) {
1154			cmn = cm->m_next;
1155			cm->m_next = NULL;
1156			if (pr->pr_domain->dom_externalize != NULL) {
1157				SOCKBUF_UNLOCK(&so->so_rcv);
1158				error = (*pr->pr_domain->dom_externalize)
1159				    (cm, controlp);
1160				SOCKBUF_LOCK(&so->so_rcv);
1161			} else if (controlp != NULL)
1162				*controlp = cm;
1163			else
1164				m_freem(cm);
1165			if (controlp != NULL) {
1166				orig_resid = 0;
1167				while (*controlp != NULL)
1168					controlp = &(*controlp)->m_next;
1169			}
1170			cm = cmn;
1171		}
1172		if (so->so_rcv.sb_mb)
1173			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1174		else
1175			nextrecord = NULL;
1176		orig_resid = 0;
1177	}
1178	if (m != NULL) {
1179		if ((flags & MSG_PEEK) == 0) {
1180			KASSERT(m->m_nextpkt == nextrecord,
1181			    ("soreceive: post-control, nextrecord !sync"));
1182			if (nextrecord == NULL) {
1183				KASSERT(so->so_rcv.sb_mb == m,
1184				    ("soreceive: post-control, sb_mb!=m"));
1185				KASSERT(so->so_rcv.sb_lastrecord == m,
1186				    ("soreceive: post-control, lastrecord!=m"));
1187			}
1188		}
1189		type = m->m_type;
1190		if (type == MT_OOBDATA)
1191			flags |= MSG_OOB;
1192	} else {
1193		if ((flags & MSG_PEEK) == 0) {
1194			KASSERT(so->so_rcv.sb_mb == nextrecord,
1195			    ("soreceive: sb_mb != nextrecord"));
1196			if (so->so_rcv.sb_mb == NULL) {
1197				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1198				    ("soreceive: sb_lastercord != NULL"));
1199			}
1200		}
1201	}
1202	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1203	SBLASTRECORDCHK(&so->so_rcv);
1204	SBLASTMBUFCHK(&so->so_rcv);
1205
1206	/*
1207	 * Now continue to read any data mbufs off of the head of the socket
1208	 * buffer until the read request is satisfied.  Note that 'type' is
1209	 * used to store the type of any mbuf reads that have happened so far
1210	 * such that soreceive() can stop reading if the type changes, which
1211	 * causes soreceive() to return only one of regular data and inline
1212	 * out-of-band data in a single socket receive operation.
1213	 */
1214	moff = 0;
1215	offset = 0;
1216	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1217		/*
1218		 * If the type of mbuf has changed since the last mbuf
1219		 * examined ('type'), end the receive operation.
1220	 	 */
1221		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1222		if (m->m_type == MT_OOBDATA) {
1223			if (type != MT_OOBDATA)
1224				break;
1225		} else if (type == MT_OOBDATA)
1226			break;
1227		else
1228		    KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1229			("m->m_type == %d", m->m_type));
1230		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1231		len = uio->uio_resid;
1232		if (so->so_oobmark && len > so->so_oobmark - offset)
1233			len = so->so_oobmark - offset;
1234		if (len > m->m_len - moff)
1235			len = m->m_len - moff;
1236		/*
1237		 * If mp is set, just pass back the mbufs.
1238		 * Otherwise copy them out via the uio, then free.
1239		 * Sockbuf must be consistent here (points to current mbuf,
1240		 * it points to next record) when we drop priority;
1241		 * we must note any additions to the sockbuf when we
1242		 * block interrupts again.
1243		 */
1244		if (mp == NULL) {
1245			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1246			SBLASTRECORDCHK(&so->so_rcv);
1247			SBLASTMBUFCHK(&so->so_rcv);
1248			SOCKBUF_UNLOCK(&so->so_rcv);
1249#ifdef ZERO_COPY_SOCKETS
1250			if (so_zero_copy_receive) {
1251				int disposable;
1252
1253				if ((m->m_flags & M_EXT)
1254				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1255					disposable = 1;
1256				else
1257					disposable = 0;
1258
1259				error = uiomoveco(mtod(m, char *) + moff,
1260						  (int)len, uio,
1261						  disposable);
1262			} else
1263#endif /* ZERO_COPY_SOCKETS */
1264			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1265			SOCKBUF_LOCK(&so->so_rcv);
1266			if (error)
1267				goto release;
1268		} else
1269			uio->uio_resid -= len;
1270		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1271		if (len == m->m_len - moff) {
1272			if (m->m_flags & M_EOR)
1273				flags |= MSG_EOR;
1274			if (flags & MSG_PEEK) {
1275				m = m->m_next;
1276				moff = 0;
1277			} else {
1278				nextrecord = m->m_nextpkt;
1279				sbfree(&so->so_rcv, m);
1280				if (mp != NULL) {
1281					*mp = m;
1282					mp = &m->m_next;
1283					so->so_rcv.sb_mb = m = m->m_next;
1284					*mp = NULL;
1285				} else {
1286					so->so_rcv.sb_mb = m_free(m);
1287					m = so->so_rcv.sb_mb;
1288				}
1289				sockbuf_pushsync(&so->so_rcv, nextrecord);
1290				SBLASTRECORDCHK(&so->so_rcv);
1291				SBLASTMBUFCHK(&so->so_rcv);
1292			}
1293		} else {
1294			if (flags & MSG_PEEK)
1295				moff += len;
1296			else {
1297				if (mp != NULL) {
1298					int copy_flag;
1299
1300					if (flags & MSG_DONTWAIT)
1301						copy_flag = M_DONTWAIT;
1302					else
1303						copy_flag = M_TRYWAIT;
1304					if (copy_flag == M_TRYWAIT)
1305						SOCKBUF_UNLOCK(&so->so_rcv);
1306					*mp = m_copym(m, 0, len, copy_flag);
1307					if (copy_flag == M_TRYWAIT)
1308						SOCKBUF_LOCK(&so->so_rcv);
1309 					if (*mp == NULL) {
1310 						/*
1311 						 * m_copym() couldn't allocate an mbuf.
1312						 * Adjust uio_resid back (it was adjusted
1313						 * down by len bytes, which we didn't end
1314						 * up "copying" over).
1315 						 */
1316 						uio->uio_resid += len;
1317 						break;
1318 					}
1319				}
1320				m->m_data += len;
1321				m->m_len -= len;
1322				so->so_rcv.sb_cc -= len;
1323			}
1324		}
1325		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1326		if (so->so_oobmark) {
1327			if ((flags & MSG_PEEK) == 0) {
1328				so->so_oobmark -= len;
1329				if (so->so_oobmark == 0) {
1330					so->so_rcv.sb_state |= SBS_RCVATMARK;
1331					break;
1332				}
1333			} else {
1334				offset += len;
1335				if (offset == so->so_oobmark)
1336					break;
1337			}
1338		}
1339		if (flags & MSG_EOR)
1340			break;
1341		/*
1342		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1343		 * we must not quit until "uio->uio_resid == 0" or an error
1344		 * termination.  If a signal/timeout occurs, return
1345		 * with a short count but without error.
1346		 * Keep sockbuf locked against other readers.
1347		 */
1348		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1349		    !sosendallatonce(so) && nextrecord == NULL) {
1350			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1351			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1352				break;
1353			/*
1354			 * Notify the protocol that some data has been
1355			 * drained before blocking.
1356			 */
1357			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) {
1358				SOCKBUF_UNLOCK(&so->so_rcv);
1359				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1360				SOCKBUF_LOCK(&so->so_rcv);
1361			}
1362			SBLASTRECORDCHK(&so->so_rcv);
1363			SBLASTMBUFCHK(&so->so_rcv);
1364			error = sbwait(&so->so_rcv);
1365			if (error)
1366				goto release;
1367			m = so->so_rcv.sb_mb;
1368			if (m != NULL)
1369				nextrecord = m->m_nextpkt;
1370		}
1371	}
1372
1373	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1374	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1375		flags |= MSG_TRUNC;
1376		if ((flags & MSG_PEEK) == 0)
1377			(void) sbdroprecord_locked(&so->so_rcv);
1378	}
1379	if ((flags & MSG_PEEK) == 0) {
1380		if (m == NULL) {
1381			/*
1382			 * First part is an inline SB_EMPTY_FIXUP().  Second
1383			 * part makes sure sb_lastrecord is up-to-date if
1384			 * there is still data in the socket buffer.
1385			 */
1386			so->so_rcv.sb_mb = nextrecord;
1387			if (so->so_rcv.sb_mb == NULL) {
1388				so->so_rcv.sb_mbtail = NULL;
1389				so->so_rcv.sb_lastrecord = NULL;
1390			} else if (nextrecord->m_nextpkt == NULL)
1391				so->so_rcv.sb_lastrecord = nextrecord;
1392		}
1393		SBLASTRECORDCHK(&so->so_rcv);
1394		SBLASTMBUFCHK(&so->so_rcv);
1395		/*
1396		 * If soreceive() is being done from the socket callback, then
1397		 * don't need to generate ACK to peer to update window, since
1398		 * ACK will be generated on return to TCP.
1399		 */
1400		if (!(flags & MSG_SOCALLBCK) &&
1401		    (pr->pr_flags & PR_WANTRCVD) && so->so_pcb) {
1402			SOCKBUF_UNLOCK(&so->so_rcv);
1403			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1404			SOCKBUF_LOCK(&so->so_rcv);
1405		}
1406	}
1407	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1408	if (orig_resid == uio->uio_resid && orig_resid &&
1409	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1410		sbunlock(&so->so_rcv);
1411		goto restart;
1412	}
1413
1414	if (flagsp != NULL)
1415		*flagsp |= flags;
1416release:
1417	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1418	sbunlock(&so->so_rcv);
1419out:
1420	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1421	SOCKBUF_UNLOCK(&so->so_rcv);
1422	return (error);
1423}
1424
1425int
1426soshutdown(so, how)
1427	struct socket *so;
1428	int how;
1429{
1430	struct protosw *pr = so->so_proto;
1431
1432	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1433		return (EINVAL);
1434
1435	if (how != SHUT_WR)
1436		sorflush(so);
1437	if (how != SHUT_RD)
1438		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1439	return (0);
1440}
1441
1442void
1443sorflush(so)
1444	struct socket *so;
1445{
1446	struct sockbuf *sb = &so->so_rcv;
1447	struct protosw *pr = so->so_proto;
1448	struct sockbuf asb;
1449
1450	/*
1451	 * XXXRW: This is quite ugly.  Previously, this code made a copy of
1452	 * the socket buffer, then zero'd the original to clear the buffer
1453	 * fields.  However, with mutexes in the socket buffer, this causes
1454	 * problems.  We only clear the zeroable bits of the original;
1455	 * however, we have to initialize and destroy the mutex in the copy
1456	 * so that dom_dispose() and sbrelease() can lock t as needed.
1457	 */
1458	SOCKBUF_LOCK(sb);
1459	sb->sb_flags |= SB_NOINTR;
1460	(void) sblock(sb, M_WAITOK);
1461	/*
1462	 * socantrcvmore_locked() drops the socket buffer mutex so that it
1463	 * can safely perform wakeups.  Re-acquire the mutex before
1464	 * continuing.
1465	 */
1466	socantrcvmore_locked(so);
1467	SOCKBUF_LOCK(sb);
1468	sbunlock(sb);
1469	/*
1470	 * Invalidate/clear most of the sockbuf structure, but leave
1471	 * selinfo and mutex data unchanged.
1472	 */
1473	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1474	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1475	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1476	bzero(&sb->sb_startzero,
1477	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1478	SOCKBUF_UNLOCK(sb);
1479
1480	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1481	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1482		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1483	sbrelease(&asb, so);
1484	SOCKBUF_LOCK_DESTROY(&asb);
1485}
1486
1487/*
1488 * Perhaps this routine, and sooptcopyout(), below, ought to come in
1489 * an additional variant to handle the case where the option value needs
1490 * to be some kind of integer, but not a specific size.
1491 * In addition to their use here, these functions are also called by the
1492 * protocol-level pr_ctloutput() routines.
1493 */
1494int
1495sooptcopyin(sopt, buf, len, minlen)
1496	struct	sockopt *sopt;
1497	void	*buf;
1498	size_t	len;
1499	size_t	minlen;
1500{
1501	size_t	valsize;
1502
1503	/*
1504	 * If the user gives us more than we wanted, we ignore it,
1505	 * but if we don't get the minimum length the caller
1506	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
1507	 * is set to however much we actually retrieved.
1508	 */
1509	if ((valsize = sopt->sopt_valsize) < minlen)
1510		return EINVAL;
1511	if (valsize > len)
1512		sopt->sopt_valsize = valsize = len;
1513
1514	if (sopt->sopt_td != NULL)
1515		return (copyin(sopt->sopt_val, buf, valsize));
1516
1517	bcopy(sopt->sopt_val, buf, valsize);
1518	return 0;
1519}
1520
1521/*
1522 * Kernel version of setsockopt(2)/
1523 * XXX: optlen is size_t, not socklen_t
1524 */
1525int
1526so_setsockopt(struct socket *so, int level, int optname, void *optval,
1527    size_t optlen)
1528{
1529	struct sockopt sopt;
1530
1531	sopt.sopt_level = level;
1532	sopt.sopt_name = optname;
1533	sopt.sopt_dir = SOPT_SET;
1534	sopt.sopt_val = optval;
1535	sopt.sopt_valsize = optlen;
1536	sopt.sopt_td = NULL;
1537	return (sosetopt(so, &sopt));
1538}
1539
1540int
1541sosetopt(so, sopt)
1542	struct socket *so;
1543	struct sockopt *sopt;
1544{
1545	int	error, optval;
1546	struct	linger l;
1547	struct	timeval tv;
1548	u_long  val;
1549#ifdef MAC
1550	struct mac extmac;
1551#endif
1552
1553	error = 0;
1554	if (sopt->sopt_level != SOL_SOCKET) {
1555		if (so->so_proto && so->so_proto->pr_ctloutput)
1556			return ((*so->so_proto->pr_ctloutput)
1557				  (so, sopt));
1558		error = ENOPROTOOPT;
1559	} else {
1560		switch (sopt->sopt_name) {
1561#ifdef INET
1562		case SO_ACCEPTFILTER:
1563			error = do_setopt_accept_filter(so, sopt);
1564			if (error)
1565				goto bad;
1566			break;
1567#endif
1568		case SO_LINGER:
1569			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1570			if (error)
1571				goto bad;
1572
1573			SOCK_LOCK(so);
1574			so->so_linger = l.l_linger;
1575			if (l.l_onoff)
1576				so->so_options |= SO_LINGER;
1577			else
1578				so->so_options &= ~SO_LINGER;
1579			SOCK_UNLOCK(so);
1580			break;
1581
1582		case SO_DEBUG:
1583		case SO_KEEPALIVE:
1584		case SO_DONTROUTE:
1585		case SO_USELOOPBACK:
1586		case SO_BROADCAST:
1587		case SO_REUSEADDR:
1588		case SO_REUSEPORT:
1589		case SO_OOBINLINE:
1590		case SO_TIMESTAMP:
1591		case SO_BINTIME:
1592		case SO_NOSIGPIPE:
1593			error = sooptcopyin(sopt, &optval, sizeof optval,
1594					    sizeof optval);
1595			if (error)
1596				goto bad;
1597			SOCK_LOCK(so);
1598			if (optval)
1599				so->so_options |= sopt->sopt_name;
1600			else
1601				so->so_options &= ~sopt->sopt_name;
1602			SOCK_UNLOCK(so);
1603			break;
1604
1605		case SO_SNDBUF:
1606		case SO_RCVBUF:
1607		case SO_SNDLOWAT:
1608		case SO_RCVLOWAT:
1609			error = sooptcopyin(sopt, &optval, sizeof optval,
1610					    sizeof optval);
1611			if (error)
1612				goto bad;
1613
1614			/*
1615			 * Values < 1 make no sense for any of these
1616			 * options, so disallow them.
1617			 */
1618			if (optval < 1) {
1619				error = EINVAL;
1620				goto bad;
1621			}
1622
1623			switch (sopt->sopt_name) {
1624			case SO_SNDBUF:
1625			case SO_RCVBUF:
1626				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
1627				    &so->so_snd : &so->so_rcv, (u_long)optval,
1628				    so, curthread) == 0) {
1629					error = ENOBUFS;
1630					goto bad;
1631				}
1632				break;
1633
1634			/*
1635			 * Make sure the low-water is never greater than
1636			 * the high-water.
1637			 */
1638			case SO_SNDLOWAT:
1639				SOCKBUF_LOCK(&so->so_snd);
1640				so->so_snd.sb_lowat =
1641				    (optval > so->so_snd.sb_hiwat) ?
1642				    so->so_snd.sb_hiwat : optval;
1643				SOCKBUF_UNLOCK(&so->so_snd);
1644				break;
1645			case SO_RCVLOWAT:
1646				SOCKBUF_LOCK(&so->so_rcv);
1647				so->so_rcv.sb_lowat =
1648				    (optval > so->so_rcv.sb_hiwat) ?
1649				    so->so_rcv.sb_hiwat : optval;
1650				SOCKBUF_UNLOCK(&so->so_rcv);
1651				break;
1652			}
1653			break;
1654
1655		case SO_SNDTIMEO:
1656		case SO_RCVTIMEO:
1657#ifdef COMPAT_IA32
1658			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
1659				struct timeval32 tv32;
1660
1661				error = sooptcopyin(sopt, &tv32, sizeof tv32,
1662				    sizeof tv32);
1663				CP(tv32, tv, tv_sec);
1664				CP(tv32, tv, tv_usec);
1665			} else
1666#endif
1667				error = sooptcopyin(sopt, &tv, sizeof tv,
1668				    sizeof tv);
1669			if (error)
1670				goto bad;
1671
1672			/* assert(hz > 0); */
1673			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
1674			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1675				error = EDOM;
1676				goto bad;
1677			}
1678			/* assert(tick > 0); */
1679			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
1680			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
1681			if (val > INT_MAX) {
1682				error = EDOM;
1683				goto bad;
1684			}
1685			if (val == 0 && tv.tv_usec != 0)
1686				val = 1;
1687
1688			switch (sopt->sopt_name) {
1689			case SO_SNDTIMEO:
1690				so->so_snd.sb_timeo = val;
1691				break;
1692			case SO_RCVTIMEO:
1693				so->so_rcv.sb_timeo = val;
1694				break;
1695			}
1696			break;
1697
1698		case SO_LABEL:
1699#ifdef MAC
1700			error = sooptcopyin(sopt, &extmac, sizeof extmac,
1701			    sizeof extmac);
1702			if (error)
1703				goto bad;
1704			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
1705			    so, &extmac);
1706#else
1707			error = EOPNOTSUPP;
1708#endif
1709			break;
1710
1711		default:
1712			error = ENOPROTOOPT;
1713			break;
1714		}
1715		if (error == 0 && so->so_proto != NULL &&
1716		    so->so_proto->pr_ctloutput != NULL) {
1717			(void) ((*so->so_proto->pr_ctloutput)
1718				  (so, sopt));
1719		}
1720	}
1721bad:
1722	return (error);
1723}
1724
1725/* Helper routine for getsockopt */
1726int
1727sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
1728{
1729	int	error;
1730	size_t	valsize;
1731
1732	error = 0;
1733
1734	/*
1735	 * Documented get behavior is that we always return a value,
1736	 * possibly truncated to fit in the user's buffer.
1737	 * Traditional behavior is that we always tell the user
1738	 * precisely how much we copied, rather than something useful
1739	 * like the total amount we had available for her.
1740	 * Note that this interface is not idempotent; the entire answer must
1741	 * generated ahead of time.
1742	 */
1743	valsize = min(len, sopt->sopt_valsize);
1744	sopt->sopt_valsize = valsize;
1745	if (sopt->sopt_val != NULL) {
1746		if (sopt->sopt_td != NULL)
1747			error = copyout(buf, sopt->sopt_val, valsize);
1748		else
1749			bcopy(buf, sopt->sopt_val, valsize);
1750	}
1751	return error;
1752}
1753
1754int
1755sogetopt(so, sopt)
1756	struct socket *so;
1757	struct sockopt *sopt;
1758{
1759	int	error, optval;
1760	struct	linger l;
1761	struct	timeval tv;
1762#ifdef MAC
1763	struct mac extmac;
1764#endif
1765
1766	error = 0;
1767	if (sopt->sopt_level != SOL_SOCKET) {
1768		if (so->so_proto && so->so_proto->pr_ctloutput) {
1769			return ((*so->so_proto->pr_ctloutput)
1770				  (so, sopt));
1771		} else
1772			return (ENOPROTOOPT);
1773	} else {
1774		switch (sopt->sopt_name) {
1775#ifdef INET
1776		case SO_ACCEPTFILTER:
1777			error = do_getopt_accept_filter(so, sopt);
1778			break;
1779#endif
1780		case SO_LINGER:
1781			SOCK_LOCK(so);
1782			l.l_onoff = so->so_options & SO_LINGER;
1783			l.l_linger = so->so_linger;
1784			SOCK_UNLOCK(so);
1785			error = sooptcopyout(sopt, &l, sizeof l);
1786			break;
1787
1788		case SO_USELOOPBACK:
1789		case SO_DONTROUTE:
1790		case SO_DEBUG:
1791		case SO_KEEPALIVE:
1792		case SO_REUSEADDR:
1793		case SO_REUSEPORT:
1794		case SO_BROADCAST:
1795		case SO_OOBINLINE:
1796		case SO_ACCEPTCONN:
1797		case SO_TIMESTAMP:
1798		case SO_BINTIME:
1799		case SO_NOSIGPIPE:
1800			optval = so->so_options & sopt->sopt_name;
1801integer:
1802			error = sooptcopyout(sopt, &optval, sizeof optval);
1803			break;
1804
1805		case SO_TYPE:
1806			optval = so->so_type;
1807			goto integer;
1808
1809		case SO_ERROR:
1810			optval = so->so_error;
1811			so->so_error = 0;
1812			goto integer;
1813
1814		case SO_SNDBUF:
1815			optval = so->so_snd.sb_hiwat;
1816			goto integer;
1817
1818		case SO_RCVBUF:
1819			optval = so->so_rcv.sb_hiwat;
1820			goto integer;
1821
1822		case SO_SNDLOWAT:
1823			optval = so->so_snd.sb_lowat;
1824			goto integer;
1825
1826		case SO_RCVLOWAT:
1827			optval = so->so_rcv.sb_lowat;
1828			goto integer;
1829
1830		case SO_SNDTIMEO:
1831		case SO_RCVTIMEO:
1832			optval = (sopt->sopt_name == SO_SNDTIMEO ?
1833				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1834
1835			tv.tv_sec = optval / hz;
1836			tv.tv_usec = (optval % hz) * tick;
1837#ifdef COMPAT_IA32
1838			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
1839				struct timeval32 tv32;
1840
1841				CP(tv, tv32, tv_sec);
1842				CP(tv, tv32, tv_usec);
1843				error = sooptcopyout(sopt, &tv32, sizeof tv32);
1844			} else
1845#endif
1846				error = sooptcopyout(sopt, &tv, sizeof tv);
1847			break;
1848
1849		case SO_LABEL:
1850#ifdef MAC
1851			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
1852			    sizeof(extmac));
1853			if (error)
1854				return (error);
1855			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
1856			    so, &extmac);
1857			if (error)
1858				return (error);
1859			error = sooptcopyout(sopt, &extmac, sizeof extmac);
1860#else
1861			error = EOPNOTSUPP;
1862#endif
1863			break;
1864
1865		case SO_PEERLABEL:
1866#ifdef MAC
1867			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
1868			    sizeof(extmac));
1869			if (error)
1870				return (error);
1871			error = mac_getsockopt_peerlabel(
1872			    sopt->sopt_td->td_ucred, so, &extmac);
1873			if (error)
1874				return (error);
1875			error = sooptcopyout(sopt, &extmac, sizeof extmac);
1876#else
1877			error = EOPNOTSUPP;
1878#endif
1879			break;
1880
1881		case SO_LISTENQLIMIT:
1882			optval = so->so_qlimit;
1883			goto integer;
1884
1885		case SO_LISTENQLEN:
1886			optval = so->so_qlen;
1887			goto integer;
1888
1889		case SO_LISTENINCQLEN:
1890			optval = so->so_incqlen;
1891			goto integer;
1892
1893		default:
1894			error = ENOPROTOOPT;
1895			break;
1896		}
1897		return (error);
1898	}
1899}
1900
1901/* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
1902int
1903soopt_getm(struct sockopt *sopt, struct mbuf **mp)
1904{
1905	struct mbuf *m, *m_prev;
1906	int sopt_size = sopt->sopt_valsize;
1907
1908	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1909	if (m == NULL)
1910		return ENOBUFS;
1911	if (sopt_size > MLEN) {
1912		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
1913		if ((m->m_flags & M_EXT) == 0) {
1914			m_free(m);
1915			return ENOBUFS;
1916		}
1917		m->m_len = min(MCLBYTES, sopt_size);
1918	} else {
1919		m->m_len = min(MLEN, sopt_size);
1920	}
1921	sopt_size -= m->m_len;
1922	*mp = m;
1923	m_prev = m;
1924
1925	while (sopt_size) {
1926		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1927		if (m == NULL) {
1928			m_freem(*mp);
1929			return ENOBUFS;
1930		}
1931		if (sopt_size > MLEN) {
1932			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
1933			    M_DONTWAIT);
1934			if ((m->m_flags & M_EXT) == 0) {
1935				m_freem(m);
1936				m_freem(*mp);
1937				return ENOBUFS;
1938			}
1939			m->m_len = min(MCLBYTES, sopt_size);
1940		} else {
1941			m->m_len = min(MLEN, sopt_size);
1942		}
1943		sopt_size -= m->m_len;
1944		m_prev->m_next = m;
1945		m_prev = m;
1946	}
1947	return 0;
1948}
1949
1950/* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
1951int
1952soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
1953{
1954	struct mbuf *m0 = m;
1955
1956	if (sopt->sopt_val == NULL)
1957		return 0;
1958	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
1959		if (sopt->sopt_td != NULL) {
1960			int error;
1961
1962			error = copyin(sopt->sopt_val, mtod(m, char *),
1963				       m->m_len);
1964			if (error != 0) {
1965				m_freem(m0);
1966				return(error);
1967			}
1968		} else
1969			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
1970		sopt->sopt_valsize -= m->m_len;
1971		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
1972		m = m->m_next;
1973	}
1974	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
1975		panic("ip6_sooptmcopyin");
1976	return 0;
1977}
1978
1979/* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
1980int
1981soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
1982{
1983	struct mbuf *m0 = m;
1984	size_t valsize = 0;
1985
1986	if (sopt->sopt_val == NULL)
1987		return 0;
1988	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
1989		if (sopt->sopt_td != NULL) {
1990			int error;
1991
1992			error = copyout(mtod(m, char *), sopt->sopt_val,
1993				       m->m_len);
1994			if (error != 0) {
1995				m_freem(m0);
1996				return(error);
1997			}
1998		} else
1999			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2000	       sopt->sopt_valsize -= m->m_len;
2001	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2002	       valsize += m->m_len;
2003	       m = m->m_next;
2004	}
2005	if (m != NULL) {
2006		/* enough soopt buffer should be given from user-land */
2007		m_freem(m0);
2008		return(EINVAL);
2009	}
2010	sopt->sopt_valsize = valsize;
2011	return 0;
2012}
2013
2014void
2015sohasoutofband(so)
2016	struct socket *so;
2017{
2018	if (so->so_sigio != NULL)
2019		pgsigio(&so->so_sigio, SIGURG, 0);
2020	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2021}
2022
2023int
2024sopoll(struct socket *so, int events, struct ucred *active_cred,
2025    struct thread *td)
2026{
2027	int revents = 0;
2028
2029	SOCKBUF_LOCK(&so->so_snd);
2030	SOCKBUF_LOCK(&so->so_rcv);
2031	if (events & (POLLIN | POLLRDNORM))
2032		if (soreadable(so))
2033			revents |= events & (POLLIN | POLLRDNORM);
2034
2035	if (events & POLLINIGNEOF)
2036		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2037		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2038			revents |= POLLINIGNEOF;
2039
2040	if (events & (POLLOUT | POLLWRNORM))
2041		if (sowriteable(so))
2042			revents |= events & (POLLOUT | POLLWRNORM);
2043
2044	if (events & (POLLPRI | POLLRDBAND))
2045		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2046			revents |= events & (POLLPRI | POLLRDBAND);
2047
2048	if (revents == 0) {
2049		if (events &
2050		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2051		     POLLRDBAND)) {
2052			selrecord(td, &so->so_rcv.sb_sel);
2053			so->so_rcv.sb_flags |= SB_SEL;
2054		}
2055
2056		if (events & (POLLOUT | POLLWRNORM)) {
2057			selrecord(td, &so->so_snd.sb_sel);
2058			so->so_snd.sb_flags |= SB_SEL;
2059		}
2060	}
2061
2062	SOCKBUF_UNLOCK(&so->so_rcv);
2063	SOCKBUF_UNLOCK(&so->so_snd);
2064	return (revents);
2065}
2066
2067int
2068soo_kqfilter(struct file *fp, struct knote *kn)
2069{
2070	struct socket *so = kn->kn_fp->f_data;
2071	struct sockbuf *sb;
2072
2073	switch (kn->kn_filter) {
2074	case EVFILT_READ:
2075		if (so->so_options & SO_ACCEPTCONN)
2076			kn->kn_fop = &solisten_filtops;
2077		else
2078			kn->kn_fop = &soread_filtops;
2079		sb = &so->so_rcv;
2080		break;
2081	case EVFILT_WRITE:
2082		kn->kn_fop = &sowrite_filtops;
2083		sb = &so->so_snd;
2084		break;
2085	default:
2086		return (EINVAL);
2087	}
2088
2089	SOCKBUF_LOCK(sb);
2090	knlist_add(&sb->sb_sel.si_note, kn, 1);
2091	sb->sb_flags |= SB_KNOTE;
2092	SOCKBUF_UNLOCK(sb);
2093	return (0);
2094}
2095
2096static void
2097filt_sordetach(struct knote *kn)
2098{
2099	struct socket *so = kn->kn_fp->f_data;
2100
2101	SOCKBUF_LOCK(&so->so_rcv);
2102	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2103	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2104		so->so_rcv.sb_flags &= ~SB_KNOTE;
2105	SOCKBUF_UNLOCK(&so->so_rcv);
2106}
2107
2108/*ARGSUSED*/
2109static int
2110filt_soread(struct knote *kn, long hint)
2111{
2112	struct socket *so;
2113
2114	so = kn->kn_fp->f_data;
2115	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2116
2117	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2118	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2119		kn->kn_flags |= EV_EOF;
2120		kn->kn_fflags = so->so_error;
2121		return (1);
2122	} else if (so->so_error)	/* temporary udp error */
2123		return (1);
2124	else if (kn->kn_sfflags & NOTE_LOWAT)
2125		return (kn->kn_data >= kn->kn_sdata);
2126	else
2127		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2128}
2129
2130static void
2131filt_sowdetach(struct knote *kn)
2132{
2133	struct socket *so = kn->kn_fp->f_data;
2134
2135	SOCKBUF_LOCK(&so->so_snd);
2136	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2137	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2138		so->so_snd.sb_flags &= ~SB_KNOTE;
2139	SOCKBUF_UNLOCK(&so->so_snd);
2140}
2141
2142/*ARGSUSED*/
2143static int
2144filt_sowrite(struct knote *kn, long hint)
2145{
2146	struct socket *so;
2147
2148	so = kn->kn_fp->f_data;
2149	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2150	kn->kn_data = sbspace(&so->so_snd);
2151	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2152		kn->kn_flags |= EV_EOF;
2153		kn->kn_fflags = so->so_error;
2154		return (1);
2155	} else if (so->so_error)	/* temporary udp error */
2156		return (1);
2157	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2158	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2159		return (0);
2160	else if (kn->kn_sfflags & NOTE_LOWAT)
2161		return (kn->kn_data >= kn->kn_sdata);
2162	else
2163		return (kn->kn_data >= so->so_snd.sb_lowat);
2164}
2165
2166/*ARGSUSED*/
2167static int
2168filt_solisten(struct knote *kn, long hint)
2169{
2170	struct socket *so = kn->kn_fp->f_data;
2171
2172	kn->kn_data = so->so_qlen;
2173	return (! TAILQ_EMPTY(&so->so_comp));
2174}
2175
2176int
2177socheckuid(struct socket *so, uid_t uid)
2178{
2179
2180	if (so == NULL)
2181		return (EPERM);
2182	if (so->so_cred->cr_uid != uid)
2183		return (EPERM);
2184	return (0);
2185}
2186
2187static int
2188somaxconn_sysctl(SYSCTL_HANDLER_ARGS)
2189{
2190	int error;
2191	int val;
2192
2193	val = somaxconn;
2194	error = sysctl_handle_int(oidp, &val, sizeof(int), req);
2195	if (error || !req->newptr )
2196		return (error);
2197
2198	if (val < 1 || val > USHRT_MAX)
2199		return (EINVAL);
2200
2201	somaxconn = val;
2202	return (0);
2203}
2204