uipc_socket.c revision 142062
1/*-
2 * Copyright (c) 2004 The FreeBSD Foundation
3 * Copyright (c) 2004-2005 Robert Watson
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/kern/uipc_socket.c 142062 2005-02-18 19:15:22Z rwatson $");
36
37#include "opt_inet.h"
38#include "opt_mac.h"
39#include "opt_zero.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/fcntl.h>
44#include <sys/limits.h>
45#include <sys/lock.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/mutex.h>
50#include <sys/domain.h>
51#include <sys/file.h>			/* for struct knote */
52#include <sys/kernel.h>
53#include <sys/event.h>
54#include <sys/poll.h>
55#include <sys/proc.h>
56#include <sys/protosw.h>
57#include <sys/socket.h>
58#include <sys/socketvar.h>
59#include <sys/resourcevar.h>
60#include <sys/signalvar.h>
61#include <sys/sysctl.h>
62#include <sys/uio.h>
63#include <sys/jail.h>
64
65#include <vm/uma.h>
66
67
68static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
69		    int flags);
70
71static void	filt_sordetach(struct knote *kn);
72static int	filt_soread(struct knote *kn, long hint);
73static void	filt_sowdetach(struct knote *kn);
74static int	filt_sowrite(struct knote *kn, long hint);
75static int	filt_solisten(struct knote *kn, long hint);
76
77static struct filterops solisten_filtops =
78	{ 1, NULL, filt_sordetach, filt_solisten };
79static struct filterops soread_filtops =
80	{ 1, NULL, filt_sordetach, filt_soread };
81static struct filterops sowrite_filtops =
82	{ 1, NULL, filt_sowdetach, filt_sowrite };
83
84uma_zone_t socket_zone;
85so_gen_t	so_gencnt;	/* generation count for sockets */
86
87MALLOC_DEFINE(M_SONAME, "soname", "socket name");
88MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
89
90SYSCTL_DECL(_kern_ipc);
91
92static int somaxconn = SOMAXCONN;
93static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS);
94/* XXX: we dont have SYSCTL_USHORT */
95SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
96    0, sizeof(int), somaxconn_sysctl, "I", "Maximum pending socket connection "
97    "queue size");
98static int numopensockets;
99SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
100    &numopensockets, 0, "Number of open sockets");
101#ifdef ZERO_COPY_SOCKETS
102/* These aren't static because they're used in other files. */
103int so_zero_copy_send = 1;
104int so_zero_copy_receive = 1;
105SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
106    "Zero copy controls");
107SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
108    &so_zero_copy_receive, 0, "Enable zero copy receive");
109SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
110    &so_zero_copy_send, 0, "Enable zero copy send");
111#endif /* ZERO_COPY_SOCKETS */
112
113/*
114 * accept_mtx locks down per-socket fields relating to accept queues.  See
115 * socketvar.h for an annotation of the protected fields of struct socket.
116 */
117struct mtx accept_mtx;
118MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
119
120/*
121 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
122 * so_gencnt field.
123 */
124static struct mtx so_global_mtx;
125MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
126
127/*
128 * Socket operation routines.
129 * These routines are called by the routines in
130 * sys_socket.c or from a system process, and
131 * implement the semantics of socket operations by
132 * switching out to the protocol specific routines.
133 */
134
135/*
136 * Get a socket structure from our zone, and initialize it.
137 * Note that it would probably be better to allocate socket
138 * and PCB at the same time, but I'm not convinced that all
139 * the protocols can be easily modified to do this.
140 *
141 * soalloc() returns a socket with a ref count of 0.
142 */
143struct socket *
144soalloc(int mflags)
145{
146	struct socket *so;
147
148	so = uma_zalloc(socket_zone, mflags | M_ZERO);
149	if (so != NULL) {
150#ifdef MAC
151		if (mac_init_socket(so, mflags) != 0) {
152			uma_zfree(socket_zone, so);
153			return (NULL);
154		}
155#endif
156		SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
157		SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
158		/* sx_init(&so->so_sxlock, "socket sxlock"); */
159		TAILQ_INIT(&so->so_aiojobq);
160		mtx_lock(&so_global_mtx);
161		so->so_gencnt = ++so_gencnt;
162		++numopensockets;
163		mtx_unlock(&so_global_mtx);
164	}
165	return (so);
166}
167
168/*
169 * socreate returns a socket with a ref count of 1.  The socket should be
170 * closed with soclose().
171 */
172int
173socreate(dom, aso, type, proto, cred, td)
174	int dom;
175	struct socket **aso;
176	int type;
177	int proto;
178	struct ucred *cred;
179	struct thread *td;
180{
181	struct protosw *prp;
182	struct socket *so;
183	int error;
184
185	if (proto)
186		prp = pffindproto(dom, proto, type);
187	else
188		prp = pffindtype(dom, type);
189
190	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
191	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
192		return (EPROTONOSUPPORT);
193
194	if (jailed(cred) && jail_socket_unixiproute_only &&
195	    prp->pr_domain->dom_family != PF_LOCAL &&
196	    prp->pr_domain->dom_family != PF_INET &&
197	    prp->pr_domain->dom_family != PF_ROUTE) {
198		return (EPROTONOSUPPORT);
199	}
200
201	if (prp->pr_type != type)
202		return (EPROTOTYPE);
203	so = soalloc(M_WAITOK);
204	if (so == NULL)
205		return (ENOBUFS);
206
207	TAILQ_INIT(&so->so_incomp);
208	TAILQ_INIT(&so->so_comp);
209	so->so_type = type;
210	so->so_cred = crhold(cred);
211	so->so_proto = prp;
212#ifdef MAC
213	mac_create_socket(cred, so);
214#endif
215	SOCK_LOCK(so);
216	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
217	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
218	soref(so);
219	SOCK_UNLOCK(so);
220	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
221	if (error) {
222		ACCEPT_LOCK();
223		SOCK_LOCK(so);
224		so->so_state |= SS_NOFDREF;
225		sorele(so);
226		return (error);
227	}
228	*aso = so;
229	return (0);
230}
231
232int
233sobind(so, nam, td)
234	struct socket *so;
235	struct sockaddr *nam;
236	struct thread *td;
237{
238
239	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
240}
241
242void
243sodealloc(struct socket *so)
244{
245
246	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
247	mtx_lock(&so_global_mtx);
248	so->so_gencnt = ++so_gencnt;
249	mtx_unlock(&so_global_mtx);
250	if (so->so_rcv.sb_hiwat)
251		(void)chgsbsize(so->so_cred->cr_uidinfo,
252		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
253	if (so->so_snd.sb_hiwat)
254		(void)chgsbsize(so->so_cred->cr_uidinfo,
255		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
256#ifdef INET
257	/* remove acccept filter if one is present. */
258	if (so->so_accf != NULL)
259		do_setopt_accept_filter(so, NULL);
260#endif
261#ifdef MAC
262	mac_destroy_socket(so);
263#endif
264	crfree(so->so_cred);
265	SOCKBUF_LOCK_DESTROY(&so->so_snd);
266	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
267	/* sx_destroy(&so->so_sxlock); */
268	uma_zfree(socket_zone, so);
269	mtx_lock(&so_global_mtx);
270	--numopensockets;
271	mtx_unlock(&so_global_mtx);
272}
273
274int
275solisten(so, backlog, td)
276	struct socket *so;
277	int backlog;
278	struct thread *td;
279{
280	int error;
281
282	/*
283	 * XXXRW: Ordering issue here -- perhaps we need to set
284	 * SO_ACCEPTCONN before the call to pru_listen()?
285	 * XXXRW: General atomic test-and-set concerns here also.
286	 */
287	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
288			    SS_ISDISCONNECTING))
289		return (EINVAL);
290	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, td);
291	if (error)
292		return (error);
293	ACCEPT_LOCK();
294	SOCK_LOCK(so);
295	so->so_options |= SO_ACCEPTCONN;
296	SOCK_UNLOCK(so);
297	if (backlog < 0 || backlog > somaxconn)
298		backlog = somaxconn;
299	so->so_qlimit = backlog;
300	ACCEPT_UNLOCK();
301	return (0);
302}
303
304/*
305 * Attempt to free a socket.  This should really be sotryfree().
306 *
307 * We free the socket if the protocol is no longer interested in the socket,
308 * there's no file descriptor reference, and the refcount is 0.  While the
309 * calling macro sotryfree() tests the refcount, sofree() has to test it
310 * again as it's possible to race with an accept()ing thread if the socket is
311 * in an listen queue of a listen socket, as being in the listen queue
312 * doesn't elevate the reference count.  sofree() acquires the accept mutex
313 * early for this test in order to avoid that race.
314 */
315void
316sofree(so)
317	struct socket *so;
318{
319	struct socket *head;
320
321	ACCEPT_LOCK_ASSERT();
322	SOCK_LOCK_ASSERT(so);
323
324	if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 ||
325	    so->so_count != 0) {
326		SOCK_UNLOCK(so);
327		ACCEPT_UNLOCK();
328		return;
329	}
330
331	head = so->so_head;
332	if (head != NULL) {
333		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
334		    (so->so_qstate & SQ_INCOMP) != 0,
335		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
336		    "SQ_INCOMP"));
337		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
338		    (so->so_qstate & SQ_INCOMP) == 0,
339		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
340		/*
341		 * accept(2) is responsible draining the completed
342		 * connection queue and freeing those sockets, so
343		 * we just return here if this socket is currently
344		 * on the completed connection queue.  Otherwise,
345		 * accept(2) may hang after select(2) has indicating
346		 * that a listening socket was ready.  If it's an
347		 * incomplete connection, we remove it from the queue
348		 * and free it; otherwise, it won't be released until
349		 * the listening socket is closed.
350		 */
351		if ((so->so_qstate & SQ_COMP) != 0) {
352			SOCK_UNLOCK(so);
353			ACCEPT_UNLOCK();
354			return;
355		}
356		TAILQ_REMOVE(&head->so_incomp, so, so_list);
357		head->so_incqlen--;
358		so->so_qstate &= ~SQ_INCOMP;
359		so->so_head = NULL;
360	}
361	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
362	    (so->so_qstate & SQ_INCOMP) == 0,
363	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
364	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
365	SOCK_UNLOCK(so);
366	ACCEPT_UNLOCK();
367	SOCKBUF_LOCK(&so->so_snd);
368	so->so_snd.sb_flags |= SB_NOINTR;
369	(void)sblock(&so->so_snd, M_WAITOK);
370	/*
371	 * socantsendmore_locked() drops the socket buffer mutex so that it
372	 * can safely perform wakeups.  Re-acquire the mutex before
373	 * continuing.
374	 */
375	socantsendmore_locked(so);
376	SOCKBUF_LOCK(&so->so_snd);
377	sbunlock(&so->so_snd);
378	sbrelease_locked(&so->so_snd, so);
379	SOCKBUF_UNLOCK(&so->so_snd);
380	sorflush(so);
381	knlist_destroy(&so->so_rcv.sb_sel.si_note);
382	knlist_destroy(&so->so_snd.sb_sel.si_note);
383	sodealloc(so);
384}
385
386/*
387 * Close a socket on last file table reference removal.
388 * Initiate disconnect if connected.
389 * Free socket when disconnect complete.
390 *
391 * This function will sorele() the socket.  Note that soclose() may be
392 * called prior to the ref count reaching zero.  The actual socket
393 * structure will not be freed until the ref count reaches zero.
394 */
395int
396soclose(so)
397	struct socket *so;
398{
399	int error = 0;
400
401	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
402
403	funsetown(&so->so_sigio);
404	if (so->so_options & SO_ACCEPTCONN) {
405		struct socket *sp;
406		ACCEPT_LOCK();
407		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
408			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
409			so->so_incqlen--;
410			sp->so_qstate &= ~SQ_INCOMP;
411			sp->so_head = NULL;
412			ACCEPT_UNLOCK();
413			(void) soabort(sp);
414			ACCEPT_LOCK();
415		}
416		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
417			TAILQ_REMOVE(&so->so_comp, sp, so_list);
418			so->so_qlen--;
419			sp->so_qstate &= ~SQ_COMP;
420			sp->so_head = NULL;
421			ACCEPT_UNLOCK();
422			(void) soabort(sp);
423			ACCEPT_LOCK();
424		}
425		ACCEPT_UNLOCK();
426	}
427	if (so->so_pcb == NULL)
428		goto discard;
429	if (so->so_state & SS_ISCONNECTED) {
430		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
431			error = sodisconnect(so);
432			if (error)
433				goto drop;
434		}
435		if (so->so_options & SO_LINGER) {
436			if ((so->so_state & SS_ISDISCONNECTING) &&
437			    (so->so_state & SS_NBIO))
438				goto drop;
439			while (so->so_state & SS_ISCONNECTED) {
440				error = tsleep(&so->so_timeo,
441				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
442				if (error)
443					break;
444			}
445		}
446	}
447drop:
448	if (so->so_pcb != NULL) {
449		int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so);
450		if (error == 0)
451			error = error2;
452	}
453discard:
454	ACCEPT_LOCK();
455	SOCK_LOCK(so);
456	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
457	so->so_state |= SS_NOFDREF;
458	sorele(so);
459	return (error);
460}
461
462/*
463 * soabort() must not be called with any socket locks held, as it calls
464 * into the protocol, which will call back into the socket code causing
465 * it to acquire additional socket locks that may cause recursion or lock
466 * order reversals.
467 */
468int
469soabort(so)
470	struct socket *so;
471{
472	int error;
473
474	error = (*so->so_proto->pr_usrreqs->pru_abort)(so);
475	if (error) {
476		ACCEPT_LOCK();
477		SOCK_LOCK(so);
478		sotryfree(so);	/* note: does not decrement the ref count */
479		return error;
480	}
481	return (0);
482}
483
484int
485soaccept(so, nam)
486	struct socket *so;
487	struct sockaddr **nam;
488{
489	int error;
490
491	SOCK_LOCK(so);
492	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
493	so->so_state &= ~SS_NOFDREF;
494	SOCK_UNLOCK(so);
495	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
496	return (error);
497}
498
499int
500soconnect(so, nam, td)
501	struct socket *so;
502	struct sockaddr *nam;
503	struct thread *td;
504{
505	int error;
506
507	if (so->so_options & SO_ACCEPTCONN)
508		return (EOPNOTSUPP);
509	/*
510	 * If protocol is connection-based, can only connect once.
511	 * Otherwise, if connected, try to disconnect first.
512	 * This allows user to disconnect by connecting to, e.g.,
513	 * a null address.
514	 */
515	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
516	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
517	    (error = sodisconnect(so)))) {
518		error = EISCONN;
519	} else {
520		/*
521		 * Prevent accumulated error from previous connection
522		 * from biting us.
523		 */
524		so->so_error = 0;
525		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
526	}
527
528	return (error);
529}
530
531int
532soconnect2(so1, so2)
533	struct socket *so1;
534	struct socket *so2;
535{
536
537	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
538}
539
540int
541sodisconnect(so)
542	struct socket *so;
543{
544	int error;
545
546	if ((so->so_state & SS_ISCONNECTED) == 0)
547		return (ENOTCONN);
548	if (so->so_state & SS_ISDISCONNECTING)
549		return (EALREADY);
550	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
551	return (error);
552}
553
554#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
555/*
556 * Send on a socket.
557 * If send must go all at once and message is larger than
558 * send buffering, then hard error.
559 * Lock against other senders.
560 * If must go all at once and not enough room now, then
561 * inform user that this would block and do nothing.
562 * Otherwise, if nonblocking, send as much as possible.
563 * The data to be sent is described by "uio" if nonzero,
564 * otherwise by the mbuf chain "top" (which must be null
565 * if uio is not).  Data provided in mbuf chain must be small
566 * enough to send all at once.
567 *
568 * Returns nonzero on error, timeout or signal; callers
569 * must check for short counts if EINTR/ERESTART are returned.
570 * Data and control buffers are freed on return.
571 */
572
573#ifdef ZERO_COPY_SOCKETS
574struct so_zerocopy_stats{
575	int size_ok;
576	int align_ok;
577	int found_ifp;
578};
579struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
580#include <netinet/in.h>
581#include <net/route.h>
582#include <netinet/in_pcb.h>
583#include <vm/vm.h>
584#include <vm/vm_page.h>
585#include <vm/vm_object.h>
586#endif /*ZERO_COPY_SOCKETS*/
587
588int
589sosend(so, addr, uio, top, control, flags, td)
590	struct socket *so;
591	struct sockaddr *addr;
592	struct uio *uio;
593	struct mbuf *top;
594	struct mbuf *control;
595	int flags;
596	struct thread *td;
597{
598	struct mbuf **mp;
599	struct mbuf *m;
600	long space, len = 0, resid;
601	int clen = 0, error, dontroute;
602	int atomic = sosendallatonce(so) || top;
603#ifdef ZERO_COPY_SOCKETS
604	int cow_send;
605#endif /* ZERO_COPY_SOCKETS */
606
607	if (uio != NULL)
608		resid = uio->uio_resid;
609	else
610		resid = top->m_pkthdr.len;
611	/*
612	 * In theory resid should be unsigned.
613	 * However, space must be signed, as it might be less than 0
614	 * if we over-committed, and we must use a signed comparison
615	 * of space and resid.  On the other hand, a negative resid
616	 * causes us to loop sending 0-length segments to the protocol.
617	 *
618	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
619	 * type sockets since that's an error.
620	 */
621	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
622		error = EINVAL;
623		goto out;
624	}
625
626	dontroute =
627	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
628	    (so->so_proto->pr_flags & PR_ATOMIC);
629	if (td != NULL)
630		td->td_proc->p_stats->p_ru.ru_msgsnd++;
631	if (control != NULL)
632		clen = control->m_len;
633#define	snderr(errno)	{ error = (errno); goto release; }
634
635	SOCKBUF_LOCK(&so->so_snd);
636restart:
637	SOCKBUF_LOCK_ASSERT(&so->so_snd);
638	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
639	if (error)
640		goto out_locked;
641	do {
642		SOCKBUF_LOCK_ASSERT(&so->so_snd);
643		if (so->so_snd.sb_state & SBS_CANTSENDMORE)
644			snderr(EPIPE);
645		if (so->so_error) {
646			error = so->so_error;
647			so->so_error = 0;
648			goto release;
649		}
650		if ((so->so_state & SS_ISCONNECTED) == 0) {
651			/*
652			 * `sendto' and `sendmsg' is allowed on a connection-
653			 * based socket if it supports implied connect.
654			 * Return ENOTCONN if not connected and no address is
655			 * supplied.
656			 */
657			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
658			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
659				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
660				    !(resid == 0 && clen != 0))
661					snderr(ENOTCONN);
662			} else if (addr == NULL)
663			    snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
664				   ENOTCONN : EDESTADDRREQ);
665		}
666		space = sbspace(&so->so_snd);
667		if (flags & MSG_OOB)
668			space += 1024;
669		if ((atomic && resid > so->so_snd.sb_hiwat) ||
670		    clen > so->so_snd.sb_hiwat)
671			snderr(EMSGSIZE);
672		if (space < resid + clen &&
673		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
674			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO))
675				snderr(EWOULDBLOCK);
676			sbunlock(&so->so_snd);
677			error = sbwait(&so->so_snd);
678			if (error)
679				goto out_locked;
680			goto restart;
681		}
682		SOCKBUF_UNLOCK(&so->so_snd);
683		mp = &top;
684		space -= clen;
685		do {
686		    if (uio == NULL) {
687			/*
688			 * Data is prepackaged in "top".
689			 */
690			resid = 0;
691			if (flags & MSG_EOR)
692				top->m_flags |= M_EOR;
693		    } else do {
694#ifdef ZERO_COPY_SOCKETS
695			cow_send = 0;
696#endif /* ZERO_COPY_SOCKETS */
697			if (resid >= MINCLSIZE) {
698#ifdef ZERO_COPY_SOCKETS
699				if (top == NULL) {
700					MGETHDR(m, M_TRYWAIT, MT_DATA);
701					if (m == NULL) {
702						error = ENOBUFS;
703						SOCKBUF_LOCK(&so->so_snd);
704						goto release;
705					}
706					m->m_pkthdr.len = 0;
707					m->m_pkthdr.rcvif = (struct ifnet *)0;
708				} else {
709					MGET(m, M_TRYWAIT, MT_DATA);
710					if (m == NULL) {
711						error = ENOBUFS;
712						SOCKBUF_LOCK(&so->so_snd);
713						goto release;
714					}
715				}
716				if (so_zero_copy_send &&
717				    resid>=PAGE_SIZE &&
718				    space>=PAGE_SIZE &&
719				    uio->uio_iov->iov_len>=PAGE_SIZE) {
720					so_zerocp_stats.size_ok++;
721					if (!((vm_offset_t)
722					  uio->uio_iov->iov_base & PAGE_MASK)){
723						so_zerocp_stats.align_ok++;
724						cow_send = socow_setup(m, uio);
725					}
726				}
727				if (!cow_send) {
728					MCLGET(m, M_TRYWAIT);
729					if ((m->m_flags & M_EXT) == 0) {
730						m_free(m);
731						m = NULL;
732					} else {
733						len = min(min(MCLBYTES, resid), space);
734					}
735				} else
736					len = PAGE_SIZE;
737#else /* ZERO_COPY_SOCKETS */
738				if (top == NULL) {
739					m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
740					m->m_pkthdr.len = 0;
741					m->m_pkthdr.rcvif = (struct ifnet *)0;
742				} else
743					m = m_getcl(M_TRYWAIT, MT_DATA, 0);
744				len = min(min(MCLBYTES, resid), space);
745#endif /* ZERO_COPY_SOCKETS */
746			} else {
747				if (top == NULL) {
748					m = m_gethdr(M_TRYWAIT, MT_DATA);
749					m->m_pkthdr.len = 0;
750					m->m_pkthdr.rcvif = (struct ifnet *)0;
751
752					len = min(min(MHLEN, resid), space);
753					/*
754					 * For datagram protocols, leave room
755					 * for protocol headers in first mbuf.
756					 */
757					if (atomic && m && len < MHLEN)
758						MH_ALIGN(m, len);
759				} else {
760					m = m_get(M_TRYWAIT, MT_DATA);
761					len = min(min(MLEN, resid), space);
762				}
763			}
764			if (m == NULL) {
765				error = ENOBUFS;
766				SOCKBUF_LOCK(&so->so_snd);
767				goto release;
768			}
769
770			space -= len;
771#ifdef ZERO_COPY_SOCKETS
772			if (cow_send)
773				error = 0;
774			else
775#endif /* ZERO_COPY_SOCKETS */
776			error = uiomove(mtod(m, void *), (int)len, uio);
777			resid = uio->uio_resid;
778			m->m_len = len;
779			*mp = m;
780			top->m_pkthdr.len += len;
781			if (error) {
782				SOCKBUF_LOCK(&so->so_snd);
783				goto release;
784			}
785			mp = &m->m_next;
786			if (resid <= 0) {
787				if (flags & MSG_EOR)
788					top->m_flags |= M_EOR;
789				break;
790			}
791		    } while (space > 0 && atomic);
792		    if (dontroute) {
793			    SOCK_LOCK(so);
794			    so->so_options |= SO_DONTROUTE;
795			    SOCK_UNLOCK(so);
796		    }
797		    /*
798		     * XXX all the SBS_CANTSENDMORE checks previously
799		     * done could be out of date.  We could have recieved
800		     * a reset packet in an interrupt or maybe we slept
801		     * while doing page faults in uiomove() etc. We could
802		     * probably recheck again inside the locking protection
803		     * here, but there are probably other places that this
804		     * also happens.  We must rethink this.
805		     */
806		    error = (*so->so_proto->pr_usrreqs->pru_send)(so,
807			(flags & MSG_OOB) ? PRUS_OOB :
808			/*
809			 * If the user set MSG_EOF, the protocol
810			 * understands this flag and nothing left to
811			 * send then use PRU_SEND_EOF instead of PRU_SEND.
812			 */
813			((flags & MSG_EOF) &&
814			 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
815			 (resid <= 0)) ?
816				PRUS_EOF :
817			/* If there is more to send set PRUS_MORETOCOME */
818			(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
819			top, addr, control, td);
820		    if (dontroute) {
821			    SOCK_LOCK(so);
822			    so->so_options &= ~SO_DONTROUTE;
823			    SOCK_UNLOCK(so);
824		    }
825		    clen = 0;
826		    control = NULL;
827		    top = NULL;
828		    mp = &top;
829		    if (error) {
830			SOCKBUF_LOCK(&so->so_snd);
831			goto release;
832		    }
833		} while (resid && space > 0);
834		SOCKBUF_LOCK(&so->so_snd);
835	} while (resid);
836
837release:
838	SOCKBUF_LOCK_ASSERT(&so->so_snd);
839	sbunlock(&so->so_snd);
840out_locked:
841	SOCKBUF_LOCK_ASSERT(&so->so_snd);
842	SOCKBUF_UNLOCK(&so->so_snd);
843out:
844	if (top != NULL)
845		m_freem(top);
846	if (control != NULL)
847		m_freem(control);
848	return (error);
849}
850
851/*
852 * The part of soreceive() that implements reading non-inline out-of-band
853 * data from a socket.  For more complete comments, see soreceive(), from
854 * which this code originated.
855 *
856 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
857 * unable to return an mbuf chain to the caller.
858 */
859static int
860soreceive_rcvoob(so, uio, flags)
861	struct socket *so;
862	struct uio *uio;
863	int flags;
864{
865	struct protosw *pr = so->so_proto;
866	struct mbuf *m;
867	int error;
868
869	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
870
871	m = m_get(M_TRYWAIT, MT_DATA);
872	if (m == NULL)
873		return (ENOBUFS);
874	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
875	if (error)
876		goto bad;
877	do {
878#ifdef ZERO_COPY_SOCKETS
879		if (so_zero_copy_receive) {
880			int disposable;
881
882			if ((m->m_flags & M_EXT)
883			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
884				disposable = 1;
885			else
886				disposable = 0;
887
888			error = uiomoveco(mtod(m, void *),
889					  min(uio->uio_resid, m->m_len),
890					  uio, disposable);
891		} else
892#endif /* ZERO_COPY_SOCKETS */
893		error = uiomove(mtod(m, void *),
894		    (int) min(uio->uio_resid, m->m_len), uio);
895		m = m_free(m);
896	} while (uio->uio_resid && error == 0 && m);
897bad:
898	if (m != NULL)
899		m_freem(m);
900	return (error);
901}
902
903/*
904 * Following replacement or removal of the first mbuf on the first mbuf chain
905 * of a socket buffer, push necessary state changes back into the socket
906 * buffer so that other consumers see the values consistently.  'nextrecord'
907 * is the callers locally stored value of the original value of
908 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
909 * NOTE: 'nextrecord' may be NULL.
910 */
911static __inline void
912sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
913{
914
915	SOCKBUF_LOCK_ASSERT(sb);
916	/*
917	 * First, update for the new value of nextrecord.  If necessary, make
918	 * it the first record.
919	 */
920	if (sb->sb_mb != NULL)
921		sb->sb_mb->m_nextpkt = nextrecord;
922	else
923		sb->sb_mb = nextrecord;
924
925        /*
926         * Now update any dependent socket buffer fields to reflect the new
927         * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
928	 * addition of a second clause that takes care of the case where
929	 * sb_mb has been updated, but remains the last record.
930         */
931        if (sb->sb_mb == NULL) {
932                sb->sb_mbtail = NULL;
933                sb->sb_lastrecord = NULL;
934        } else if (sb->sb_mb->m_nextpkt == NULL)
935                sb->sb_lastrecord = sb->sb_mb;
936}
937
938
939/*
940 * Implement receive operations on a socket.
941 * We depend on the way that records are added to the sockbuf
942 * by sbappend*.  In particular, each record (mbufs linked through m_next)
943 * must begin with an address if the protocol so specifies,
944 * followed by an optional mbuf or mbufs containing ancillary data,
945 * and then zero or more mbufs of data.
946 * In order to avoid blocking network interrupts for the entire time here,
947 * we splx() while doing the actual copy to user space.
948 * Although the sockbuf is locked, new data may still be appended,
949 * and thus we must maintain consistency of the sockbuf during that time.
950 *
951 * The caller may receive the data as a single mbuf chain by supplying
952 * an mbuf **mp0 for use in returning the chain.  The uio is then used
953 * only for the count in uio_resid.
954 */
955int
956soreceive(so, psa, uio, mp0, controlp, flagsp)
957	struct socket *so;
958	struct sockaddr **psa;
959	struct uio *uio;
960	struct mbuf **mp0;
961	struct mbuf **controlp;
962	int *flagsp;
963{
964	struct mbuf *m, **mp;
965	int flags, len, error, offset;
966	struct protosw *pr = so->so_proto;
967	struct mbuf *nextrecord;
968	int moff, type = 0;
969	int orig_resid = uio->uio_resid;
970
971	mp = mp0;
972	if (psa != NULL)
973		*psa = NULL;
974	if (controlp != NULL)
975		*controlp = NULL;
976	if (flagsp != NULL)
977		flags = *flagsp &~ MSG_EOR;
978	else
979		flags = 0;
980	if (flags & MSG_OOB)
981		return (soreceive_rcvoob(so, uio, flags));
982	if (mp != NULL)
983		*mp = NULL;
984	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
985		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
986
987	SOCKBUF_LOCK(&so->so_rcv);
988restart:
989	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
990	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
991	if (error)
992		goto out;
993
994	m = so->so_rcv.sb_mb;
995	/*
996	 * If we have less data than requested, block awaiting more
997	 * (subject to any timeout) if:
998	 *   1. the current count is less than the low water mark, or
999	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1000	 *	receive operation at once if we block (resid <= hiwat).
1001	 *   3. MSG_DONTWAIT is not set
1002	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1003	 * we have to do the receive in sections, and thus risk returning
1004	 * a short count if a timeout or signal occurs after we start.
1005	 */
1006	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1007	    so->so_rcv.sb_cc < uio->uio_resid) &&
1008	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1009	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1010	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1011		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1012		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1013		    m, so->so_rcv.sb_cc));
1014		if (so->so_error) {
1015			if (m != NULL)
1016				goto dontblock;
1017			error = so->so_error;
1018			if ((flags & MSG_PEEK) == 0)
1019				so->so_error = 0;
1020			goto release;
1021		}
1022		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1023		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1024			if (m)
1025				goto dontblock;
1026			else
1027				goto release;
1028		}
1029		for (; m != NULL; m = m->m_next)
1030			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1031				m = so->so_rcv.sb_mb;
1032				goto dontblock;
1033			}
1034		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1035		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1036			error = ENOTCONN;
1037			goto release;
1038		}
1039		if (uio->uio_resid == 0)
1040			goto release;
1041		if ((so->so_state & SS_NBIO) ||
1042		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1043			error = EWOULDBLOCK;
1044			goto release;
1045		}
1046		SBLASTRECORDCHK(&so->so_rcv);
1047		SBLASTMBUFCHK(&so->so_rcv);
1048		sbunlock(&so->so_rcv);
1049		error = sbwait(&so->so_rcv);
1050		if (error)
1051			goto out;
1052		goto restart;
1053	}
1054dontblock:
1055	/*
1056	 * From this point onward, we maintain 'nextrecord' as a cache of the
1057	 * pointer to the next record in the socket buffer.  We must keep the
1058	 * various socket buffer pointers and local stack versions of the
1059	 * pointers in sync, pushing out modifications before dropping the
1060	 * socket buffer mutex, and re-reading them when picking it up.
1061	 *
1062	 * Otherwise, we will race with the network stack appending new data
1063	 * or records onto the socket buffer by using inconsistent/stale
1064	 * versions of the field, possibly resulting in socket buffer
1065	 * corruption.
1066	 *
1067	 * By holding the high-level sblock(), we prevent simultaneous
1068	 * readers from pulling off the front of the socket buffer.
1069	 */
1070	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1071	if (uio->uio_td)
1072		uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++;
1073	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1074	SBLASTRECORDCHK(&so->so_rcv);
1075	SBLASTMBUFCHK(&so->so_rcv);
1076	nextrecord = m->m_nextpkt;
1077	if (pr->pr_flags & PR_ADDR) {
1078		KASSERT(m->m_type == MT_SONAME,
1079		    ("m->m_type == %d", m->m_type));
1080		orig_resid = 0;
1081		if (psa != NULL)
1082			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1083			    M_NOWAIT);
1084		if (flags & MSG_PEEK) {
1085			m = m->m_next;
1086		} else {
1087			sbfree(&so->so_rcv, m);
1088			so->so_rcv.sb_mb = m_free(m);
1089			m = so->so_rcv.sb_mb;
1090			sockbuf_pushsync(&so->so_rcv, nextrecord);
1091		}
1092	}
1093
1094	/*
1095	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1096	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1097	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1098	 * perform externalization (or freeing if controlp == NULL).
1099	 */
1100	if (m != NULL && m->m_type == MT_CONTROL) {
1101		struct mbuf *cm = NULL, *cmn;
1102		struct mbuf **cme = &cm;
1103
1104		do {
1105			if (flags & MSG_PEEK) {
1106				if (controlp != NULL) {
1107					*controlp = m_copy(m, 0, m->m_len);
1108					controlp = &(*controlp)->m_next;
1109				}
1110				m = m->m_next;
1111			} else {
1112				sbfree(&so->so_rcv, m);
1113				so->so_rcv.sb_mb = m->m_next;
1114				m->m_next = NULL;
1115				*cme = m;
1116				cme = &(*cme)->m_next;
1117				m = so->so_rcv.sb_mb;
1118			}
1119		} while (m != NULL && m->m_type == MT_CONTROL);
1120		if ((flags & MSG_PEEK) == 0)
1121			sockbuf_pushsync(&so->so_rcv, nextrecord);
1122		while (cm != NULL) {
1123			cmn = cm->m_next;
1124			cm->m_next = NULL;
1125			if (pr->pr_domain->dom_externalize != NULL) {
1126				SOCKBUF_UNLOCK(&so->so_rcv);
1127				error = (*pr->pr_domain->dom_externalize)
1128				    (cm, controlp);
1129				SOCKBUF_LOCK(&so->so_rcv);
1130			} else if (controlp != NULL)
1131				*controlp = cm;
1132			else
1133				m_freem(cm);
1134			if (controlp != NULL) {
1135				orig_resid = 0;
1136				while (*controlp != NULL)
1137					controlp = &(*controlp)->m_next;
1138			}
1139			cm = cmn;
1140		}
1141		nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1142		orig_resid = 0;
1143	}
1144	if (m != NULL) {
1145		if ((flags & MSG_PEEK) == 0) {
1146			KASSERT(m->m_nextpkt == nextrecord,
1147			    ("soreceive: post-control, nextrecord !sync"));
1148			if (nextrecord == NULL) {
1149				KASSERT(so->so_rcv.sb_mb == m,
1150				    ("soreceive: post-control, sb_mb!=m"));
1151				KASSERT(so->so_rcv.sb_lastrecord == m,
1152				    ("soreceive: post-control, lastrecord!=m"));
1153			}
1154		}
1155		type = m->m_type;
1156		if (type == MT_OOBDATA)
1157			flags |= MSG_OOB;
1158	} else {
1159		if ((flags & MSG_PEEK) == 0) {
1160			KASSERT(so->so_rcv.sb_mb == nextrecord,
1161			    ("soreceive: sb_mb != nextrecord"));
1162			if (so->so_rcv.sb_mb == NULL) {
1163				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1164				    ("soreceive: sb_lastercord != NULL"));
1165			}
1166		}
1167	}
1168	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1169	SBLASTRECORDCHK(&so->so_rcv);
1170	SBLASTMBUFCHK(&so->so_rcv);
1171
1172	/*
1173	 * Now continue to read any data mbufs off of the head of the socket
1174	 * buffer until the read request is satisfied.  Note that 'type' is
1175	 * used to store the type of any mbuf reads that have happened so far
1176	 * such that soreceive() can stop reading if the type changes, which
1177	 * causes soreceive() to return only one of regular data and inline
1178	 * out-of-band data in a single socket receive operation.
1179	 */
1180	moff = 0;
1181	offset = 0;
1182	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1183		/*
1184		 * If the type of mbuf has changed since the last mbuf
1185		 * examined ('type'), end the receive operation.
1186	 	 */
1187		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1188		if (m->m_type == MT_OOBDATA) {
1189			if (type != MT_OOBDATA)
1190				break;
1191		} else if (type == MT_OOBDATA)
1192			break;
1193		else
1194		    KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1195			("m->m_type == %d", m->m_type));
1196		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1197		len = uio->uio_resid;
1198		if (so->so_oobmark && len > so->so_oobmark - offset)
1199			len = so->so_oobmark - offset;
1200		if (len > m->m_len - moff)
1201			len = m->m_len - moff;
1202		/*
1203		 * If mp is set, just pass back the mbufs.
1204		 * Otherwise copy them out via the uio, then free.
1205		 * Sockbuf must be consistent here (points to current mbuf,
1206		 * it points to next record) when we drop priority;
1207		 * we must note any additions to the sockbuf when we
1208		 * block interrupts again.
1209		 */
1210		if (mp == NULL) {
1211			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1212			SBLASTRECORDCHK(&so->so_rcv);
1213			SBLASTMBUFCHK(&so->so_rcv);
1214			SOCKBUF_UNLOCK(&so->so_rcv);
1215#ifdef ZERO_COPY_SOCKETS
1216			if (so_zero_copy_receive) {
1217				int disposable;
1218
1219				if ((m->m_flags & M_EXT)
1220				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1221					disposable = 1;
1222				else
1223					disposable = 0;
1224
1225				error = uiomoveco(mtod(m, char *) + moff,
1226						  (int)len, uio,
1227						  disposable);
1228			} else
1229#endif /* ZERO_COPY_SOCKETS */
1230			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1231			SOCKBUF_LOCK(&so->so_rcv);
1232			if (error)
1233				goto release;
1234		} else
1235			uio->uio_resid -= len;
1236		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1237		if (len == m->m_len - moff) {
1238			if (m->m_flags & M_EOR)
1239				flags |= MSG_EOR;
1240			if (flags & MSG_PEEK) {
1241				m = m->m_next;
1242				moff = 0;
1243			} else {
1244				nextrecord = m->m_nextpkt;
1245				sbfree(&so->so_rcv, m);
1246				if (mp != NULL) {
1247					*mp = m;
1248					mp = &m->m_next;
1249					so->so_rcv.sb_mb = m = m->m_next;
1250					*mp = NULL;
1251				} else {
1252					so->so_rcv.sb_mb = m_free(m);
1253					m = so->so_rcv.sb_mb;
1254				}
1255				if (m != NULL) {
1256					m->m_nextpkt = nextrecord;
1257					if (nextrecord == NULL)
1258						so->so_rcv.sb_lastrecord = m;
1259				} else {
1260					so->so_rcv.sb_mb = nextrecord;
1261					SB_EMPTY_FIXUP(&so->so_rcv);
1262				}
1263				SBLASTRECORDCHK(&so->so_rcv);
1264				SBLASTMBUFCHK(&so->so_rcv);
1265			}
1266		} else {
1267			if (flags & MSG_PEEK)
1268				moff += len;
1269			else {
1270				if (mp != NULL) {
1271					int copy_flag;
1272
1273					if (flags & MSG_DONTWAIT)
1274						copy_flag = M_DONTWAIT;
1275					else
1276						copy_flag = M_TRYWAIT;
1277					if (copy_flag == M_TRYWAIT)
1278						SOCKBUF_UNLOCK(&so->so_rcv);
1279					*mp = m_copym(m, 0, len, copy_flag);
1280					if (copy_flag == M_TRYWAIT)
1281						SOCKBUF_LOCK(&so->so_rcv);
1282 					if (*mp == NULL) {
1283 						/*
1284 						 * m_copym() couldn't allocate an mbuf.
1285						 * Adjust uio_resid back (it was adjusted
1286						 * down by len bytes, which we didn't end
1287						 * up "copying" over).
1288 						 */
1289 						uio->uio_resid += len;
1290 						break;
1291 					}
1292				}
1293				m->m_data += len;
1294				m->m_len -= len;
1295				so->so_rcv.sb_cc -= len;
1296			}
1297		}
1298		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1299		if (so->so_oobmark) {
1300			if ((flags & MSG_PEEK) == 0) {
1301				so->so_oobmark -= len;
1302				if (so->so_oobmark == 0) {
1303					so->so_rcv.sb_state |= SBS_RCVATMARK;
1304					break;
1305				}
1306			} else {
1307				offset += len;
1308				if (offset == so->so_oobmark)
1309					break;
1310			}
1311		}
1312		if (flags & MSG_EOR)
1313			break;
1314		/*
1315		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1316		 * we must not quit until "uio->uio_resid == 0" or an error
1317		 * termination.  If a signal/timeout occurs, return
1318		 * with a short count but without error.
1319		 * Keep sockbuf locked against other readers.
1320		 */
1321		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1322		    !sosendallatonce(so) && nextrecord == NULL) {
1323			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1324			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1325				break;
1326			/*
1327			 * Notify the protocol that some data has been
1328			 * drained before blocking.
1329			 */
1330			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) {
1331				SOCKBUF_UNLOCK(&so->so_rcv);
1332				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1333				SOCKBUF_LOCK(&so->so_rcv);
1334			}
1335			SBLASTRECORDCHK(&so->so_rcv);
1336			SBLASTMBUFCHK(&so->so_rcv);
1337			error = sbwait(&so->so_rcv);
1338			if (error)
1339				goto release;
1340			m = so->so_rcv.sb_mb;
1341			if (m != NULL)
1342				nextrecord = m->m_nextpkt;
1343		}
1344	}
1345
1346	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1347	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1348		flags |= MSG_TRUNC;
1349		if ((flags & MSG_PEEK) == 0)
1350			(void) sbdroprecord_locked(&so->so_rcv);
1351	}
1352	if ((flags & MSG_PEEK) == 0) {
1353		if (m == NULL) {
1354			/*
1355			 * First part is an inline SB_EMPTY_FIXUP().  Second
1356			 * part makes sure sb_lastrecord is up-to-date if
1357			 * there is still data in the socket buffer.
1358			 */
1359			so->so_rcv.sb_mb = nextrecord;
1360			if (so->so_rcv.sb_mb == NULL) {
1361				so->so_rcv.sb_mbtail = NULL;
1362				so->so_rcv.sb_lastrecord = NULL;
1363			} else if (nextrecord->m_nextpkt == NULL)
1364				so->so_rcv.sb_lastrecord = nextrecord;
1365		}
1366		SBLASTRECORDCHK(&so->so_rcv);
1367		SBLASTMBUFCHK(&so->so_rcv);
1368		/*
1369		 * If soreceive() is being done from the socket callback, then
1370		 * don't need to generate ACK to peer to update window, since
1371		 * ACK will be generated on return to TCP.
1372		 */
1373		if (!(flags & MSG_SOCALLBCK) &&
1374		    (pr->pr_flags & PR_WANTRCVD) && so->so_pcb) {
1375			SOCKBUF_UNLOCK(&so->so_rcv);
1376			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1377			SOCKBUF_LOCK(&so->so_rcv);
1378		}
1379	}
1380	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1381	if (orig_resid == uio->uio_resid && orig_resid &&
1382	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1383		sbunlock(&so->so_rcv);
1384		goto restart;
1385	}
1386
1387	if (flagsp != NULL)
1388		*flagsp |= flags;
1389release:
1390	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1391	sbunlock(&so->so_rcv);
1392out:
1393	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1394	SOCKBUF_UNLOCK(&so->so_rcv);
1395	return (error);
1396}
1397
1398int
1399soshutdown(so, how)
1400	struct socket *so;
1401	int how;
1402{
1403	struct protosw *pr = so->so_proto;
1404
1405	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1406		return (EINVAL);
1407
1408	if (how != SHUT_WR)
1409		sorflush(so);
1410	if (how != SHUT_RD)
1411		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1412	return (0);
1413}
1414
1415void
1416sorflush(so)
1417	struct socket *so;
1418{
1419	struct sockbuf *sb = &so->so_rcv;
1420	struct protosw *pr = so->so_proto;
1421	struct sockbuf asb;
1422
1423	/*
1424	 * XXXRW: This is quite ugly.  Previously, this code made a copy of
1425	 * the socket buffer, then zero'd the original to clear the buffer
1426	 * fields.  However, with mutexes in the socket buffer, this causes
1427	 * problems.  We only clear the zeroable bits of the original;
1428	 * however, we have to initialize and destroy the mutex in the copy
1429	 * so that dom_dispose() and sbrelease() can lock t as needed.
1430	 */
1431	SOCKBUF_LOCK(sb);
1432	sb->sb_flags |= SB_NOINTR;
1433	(void) sblock(sb, M_WAITOK);
1434	/*
1435	 * socantrcvmore_locked() drops the socket buffer mutex so that it
1436	 * can safely perform wakeups.  Re-acquire the mutex before
1437	 * continuing.
1438	 */
1439	socantrcvmore_locked(so);
1440	SOCKBUF_LOCK(sb);
1441	sbunlock(sb);
1442	/*
1443	 * Invalidate/clear most of the sockbuf structure, but leave
1444	 * selinfo and mutex data unchanged.
1445	 */
1446	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1447	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1448	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1449	bzero(&sb->sb_startzero,
1450	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1451	SOCKBUF_UNLOCK(sb);
1452
1453	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1454	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1455		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1456	sbrelease(&asb, so);
1457	SOCKBUF_LOCK_DESTROY(&asb);
1458}
1459
1460/*
1461 * Perhaps this routine, and sooptcopyout(), below, ought to come in
1462 * an additional variant to handle the case where the option value needs
1463 * to be some kind of integer, but not a specific size.
1464 * In addition to their use here, these functions are also called by the
1465 * protocol-level pr_ctloutput() routines.
1466 */
1467int
1468sooptcopyin(sopt, buf, len, minlen)
1469	struct	sockopt *sopt;
1470	void	*buf;
1471	size_t	len;
1472	size_t	minlen;
1473{
1474	size_t	valsize;
1475
1476	/*
1477	 * If the user gives us more than we wanted, we ignore it,
1478	 * but if we don't get the minimum length the caller
1479	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
1480	 * is set to however much we actually retrieved.
1481	 */
1482	if ((valsize = sopt->sopt_valsize) < minlen)
1483		return EINVAL;
1484	if (valsize > len)
1485		sopt->sopt_valsize = valsize = len;
1486
1487	if (sopt->sopt_td != NULL)
1488		return (copyin(sopt->sopt_val, buf, valsize));
1489
1490	bcopy(sopt->sopt_val, buf, valsize);
1491	return 0;
1492}
1493
1494/*
1495 * Kernel version of setsockopt(2)/
1496 * XXX: optlen is size_t, not socklen_t
1497 */
1498int
1499so_setsockopt(struct socket *so, int level, int optname, void *optval,
1500    size_t optlen)
1501{
1502	struct sockopt sopt;
1503
1504	sopt.sopt_level = level;
1505	sopt.sopt_name = optname;
1506	sopt.sopt_dir = SOPT_SET;
1507	sopt.sopt_val = optval;
1508	sopt.sopt_valsize = optlen;
1509	sopt.sopt_td = NULL;
1510	return (sosetopt(so, &sopt));
1511}
1512
1513int
1514sosetopt(so, sopt)
1515	struct socket *so;
1516	struct sockopt *sopt;
1517{
1518	int	error, optval;
1519	struct	linger l;
1520	struct	timeval tv;
1521	u_long  val;
1522#ifdef MAC
1523	struct mac extmac;
1524#endif
1525
1526	error = 0;
1527	if (sopt->sopt_level != SOL_SOCKET) {
1528		if (so->so_proto && so->so_proto->pr_ctloutput)
1529			return ((*so->so_proto->pr_ctloutput)
1530				  (so, sopt));
1531		error = ENOPROTOOPT;
1532	} else {
1533		switch (sopt->sopt_name) {
1534#ifdef INET
1535		case SO_ACCEPTFILTER:
1536			error = do_setopt_accept_filter(so, sopt);
1537			if (error)
1538				goto bad;
1539			break;
1540#endif
1541		case SO_LINGER:
1542			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1543			if (error)
1544				goto bad;
1545
1546			SOCK_LOCK(so);
1547			so->so_linger = l.l_linger;
1548			if (l.l_onoff)
1549				so->so_options |= SO_LINGER;
1550			else
1551				so->so_options &= ~SO_LINGER;
1552			SOCK_UNLOCK(so);
1553			break;
1554
1555		case SO_DEBUG:
1556		case SO_KEEPALIVE:
1557		case SO_DONTROUTE:
1558		case SO_USELOOPBACK:
1559		case SO_BROADCAST:
1560		case SO_REUSEADDR:
1561		case SO_REUSEPORT:
1562		case SO_OOBINLINE:
1563		case SO_TIMESTAMP:
1564		case SO_BINTIME:
1565		case SO_NOSIGPIPE:
1566			error = sooptcopyin(sopt, &optval, sizeof optval,
1567					    sizeof optval);
1568			if (error)
1569				goto bad;
1570			SOCK_LOCK(so);
1571			if (optval)
1572				so->so_options |= sopt->sopt_name;
1573			else
1574				so->so_options &= ~sopt->sopt_name;
1575			SOCK_UNLOCK(so);
1576			break;
1577
1578		case SO_SNDBUF:
1579		case SO_RCVBUF:
1580		case SO_SNDLOWAT:
1581		case SO_RCVLOWAT:
1582			error = sooptcopyin(sopt, &optval, sizeof optval,
1583					    sizeof optval);
1584			if (error)
1585				goto bad;
1586
1587			/*
1588			 * Values < 1 make no sense for any of these
1589			 * options, so disallow them.
1590			 */
1591			if (optval < 1) {
1592				error = EINVAL;
1593				goto bad;
1594			}
1595
1596			switch (sopt->sopt_name) {
1597			case SO_SNDBUF:
1598			case SO_RCVBUF:
1599				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
1600				    &so->so_snd : &so->so_rcv, (u_long)optval,
1601				    so, curthread) == 0) {
1602					error = ENOBUFS;
1603					goto bad;
1604				}
1605				break;
1606
1607			/*
1608			 * Make sure the low-water is never greater than
1609			 * the high-water.
1610			 */
1611			case SO_SNDLOWAT:
1612				SOCKBUF_LOCK(&so->so_snd);
1613				so->so_snd.sb_lowat =
1614				    (optval > so->so_snd.sb_hiwat) ?
1615				    so->so_snd.sb_hiwat : optval;
1616				SOCKBUF_UNLOCK(&so->so_snd);
1617				break;
1618			case SO_RCVLOWAT:
1619				SOCKBUF_LOCK(&so->so_rcv);
1620				so->so_rcv.sb_lowat =
1621				    (optval > so->so_rcv.sb_hiwat) ?
1622				    so->so_rcv.sb_hiwat : optval;
1623				SOCKBUF_UNLOCK(&so->so_rcv);
1624				break;
1625			}
1626			break;
1627
1628		case SO_SNDTIMEO:
1629		case SO_RCVTIMEO:
1630			error = sooptcopyin(sopt, &tv, sizeof tv,
1631					    sizeof tv);
1632			if (error)
1633				goto bad;
1634
1635			/* assert(hz > 0); */
1636			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
1637			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1638				error = EDOM;
1639				goto bad;
1640			}
1641			/* assert(tick > 0); */
1642			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
1643			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
1644			if (val > INT_MAX) {
1645				error = EDOM;
1646				goto bad;
1647			}
1648			if (val == 0 && tv.tv_usec != 0)
1649				val = 1;
1650
1651			switch (sopt->sopt_name) {
1652			case SO_SNDTIMEO:
1653				so->so_snd.sb_timeo = val;
1654				break;
1655			case SO_RCVTIMEO:
1656				so->so_rcv.sb_timeo = val;
1657				break;
1658			}
1659			break;
1660		case SO_LABEL:
1661#ifdef MAC
1662			error = sooptcopyin(sopt, &extmac, sizeof extmac,
1663			    sizeof extmac);
1664			if (error)
1665				goto bad;
1666			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
1667			    so, &extmac);
1668#else
1669			error = EOPNOTSUPP;
1670#endif
1671			break;
1672		default:
1673			error = ENOPROTOOPT;
1674			break;
1675		}
1676		if (error == 0 && so->so_proto != NULL &&
1677		    so->so_proto->pr_ctloutput != NULL) {
1678			(void) ((*so->so_proto->pr_ctloutput)
1679				  (so, sopt));
1680		}
1681	}
1682bad:
1683	return (error);
1684}
1685
1686/* Helper routine for getsockopt */
1687int
1688sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
1689{
1690	int	error;
1691	size_t	valsize;
1692
1693	error = 0;
1694
1695	/*
1696	 * Documented get behavior is that we always return a value,
1697	 * possibly truncated to fit in the user's buffer.
1698	 * Traditional behavior is that we always tell the user
1699	 * precisely how much we copied, rather than something useful
1700	 * like the total amount we had available for her.
1701	 * Note that this interface is not idempotent; the entire answer must
1702	 * generated ahead of time.
1703	 */
1704	valsize = min(len, sopt->sopt_valsize);
1705	sopt->sopt_valsize = valsize;
1706	if (sopt->sopt_val != NULL) {
1707		if (sopt->sopt_td != NULL)
1708			error = copyout(buf, sopt->sopt_val, valsize);
1709		else
1710			bcopy(buf, sopt->sopt_val, valsize);
1711	}
1712	return error;
1713}
1714
1715int
1716sogetopt(so, sopt)
1717	struct socket *so;
1718	struct sockopt *sopt;
1719{
1720	int	error, optval;
1721	struct	linger l;
1722	struct	timeval tv;
1723#ifdef INET
1724	struct accept_filter_arg *afap;
1725#endif
1726#ifdef MAC
1727	struct mac extmac;
1728#endif
1729
1730	error = 0;
1731	if (sopt->sopt_level != SOL_SOCKET) {
1732		if (so->so_proto && so->so_proto->pr_ctloutput) {
1733			return ((*so->so_proto->pr_ctloutput)
1734				  (so, sopt));
1735		} else
1736			return (ENOPROTOOPT);
1737	} else {
1738		switch (sopt->sopt_name) {
1739#ifdef INET
1740		case SO_ACCEPTFILTER:
1741			/* Unlocked read. */
1742			if ((so->so_options & SO_ACCEPTCONN) == 0)
1743				return (EINVAL);
1744			MALLOC(afap, struct accept_filter_arg *, sizeof(*afap),
1745				M_TEMP, M_WAITOK | M_ZERO);
1746			SOCK_LOCK(so);
1747			if ((so->so_options & SO_ACCEPTFILTER) != 0) {
1748				strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name);
1749				if (so->so_accf->so_accept_filter_str != NULL)
1750					strcpy(afap->af_arg, so->so_accf->so_accept_filter_str);
1751			}
1752			SOCK_UNLOCK(so);
1753			error = sooptcopyout(sopt, afap, sizeof(*afap));
1754			FREE(afap, M_TEMP);
1755			break;
1756#endif
1757
1758		case SO_LINGER:
1759			SOCK_LOCK(so);
1760			l.l_onoff = so->so_options & SO_LINGER;
1761			l.l_linger = so->so_linger;
1762			SOCK_UNLOCK(so);
1763			error = sooptcopyout(sopt, &l, sizeof l);
1764			break;
1765
1766		case SO_USELOOPBACK:
1767		case SO_DONTROUTE:
1768		case SO_DEBUG:
1769		case SO_KEEPALIVE:
1770		case SO_REUSEADDR:
1771		case SO_REUSEPORT:
1772		case SO_BROADCAST:
1773		case SO_OOBINLINE:
1774		case SO_TIMESTAMP:
1775		case SO_BINTIME:
1776		case SO_NOSIGPIPE:
1777			optval = so->so_options & sopt->sopt_name;
1778integer:
1779			error = sooptcopyout(sopt, &optval, sizeof optval);
1780			break;
1781
1782		case SO_TYPE:
1783			optval = so->so_type;
1784			goto integer;
1785
1786		case SO_ERROR:
1787			optval = so->so_error;
1788			so->so_error = 0;
1789			goto integer;
1790
1791		case SO_SNDBUF:
1792			optval = so->so_snd.sb_hiwat;
1793			goto integer;
1794
1795		case SO_RCVBUF:
1796			optval = so->so_rcv.sb_hiwat;
1797			goto integer;
1798
1799		case SO_SNDLOWAT:
1800			optval = so->so_snd.sb_lowat;
1801			goto integer;
1802
1803		case SO_RCVLOWAT:
1804			optval = so->so_rcv.sb_lowat;
1805			goto integer;
1806
1807		case SO_SNDTIMEO:
1808		case SO_RCVTIMEO:
1809			optval = (sopt->sopt_name == SO_SNDTIMEO ?
1810				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1811
1812			tv.tv_sec = optval / hz;
1813			tv.tv_usec = (optval % hz) * tick;
1814			error = sooptcopyout(sopt, &tv, sizeof tv);
1815			break;
1816		case SO_LABEL:
1817#ifdef MAC
1818			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
1819			    sizeof(extmac));
1820			if (error)
1821				return (error);
1822			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
1823			    so, &extmac);
1824			if (error)
1825				return (error);
1826			error = sooptcopyout(sopt, &extmac, sizeof extmac);
1827#else
1828			error = EOPNOTSUPP;
1829#endif
1830			break;
1831		case SO_PEERLABEL:
1832#ifdef MAC
1833			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
1834			    sizeof(extmac));
1835			if (error)
1836				return (error);
1837			error = mac_getsockopt_peerlabel(
1838			    sopt->sopt_td->td_ucred, so, &extmac);
1839			if (error)
1840				return (error);
1841			error = sooptcopyout(sopt, &extmac, sizeof extmac);
1842#else
1843			error = EOPNOTSUPP;
1844#endif
1845			break;
1846		default:
1847			error = ENOPROTOOPT;
1848			break;
1849		}
1850		return (error);
1851	}
1852}
1853
1854/* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
1855int
1856soopt_getm(struct sockopt *sopt, struct mbuf **mp)
1857{
1858	struct mbuf *m, *m_prev;
1859	int sopt_size = sopt->sopt_valsize;
1860
1861	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1862	if (m == NULL)
1863		return ENOBUFS;
1864	if (sopt_size > MLEN) {
1865		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
1866		if ((m->m_flags & M_EXT) == 0) {
1867			m_free(m);
1868			return ENOBUFS;
1869		}
1870		m->m_len = min(MCLBYTES, sopt_size);
1871	} else {
1872		m->m_len = min(MLEN, sopt_size);
1873	}
1874	sopt_size -= m->m_len;
1875	*mp = m;
1876	m_prev = m;
1877
1878	while (sopt_size) {
1879		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1880		if (m == NULL) {
1881			m_freem(*mp);
1882			return ENOBUFS;
1883		}
1884		if (sopt_size > MLEN) {
1885			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
1886			    M_DONTWAIT);
1887			if ((m->m_flags & M_EXT) == 0) {
1888				m_freem(m);
1889				m_freem(*mp);
1890				return ENOBUFS;
1891			}
1892			m->m_len = min(MCLBYTES, sopt_size);
1893		} else {
1894			m->m_len = min(MLEN, sopt_size);
1895		}
1896		sopt_size -= m->m_len;
1897		m_prev->m_next = m;
1898		m_prev = m;
1899	}
1900	return 0;
1901}
1902
1903/* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
1904int
1905soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
1906{
1907	struct mbuf *m0 = m;
1908
1909	if (sopt->sopt_val == NULL)
1910		return 0;
1911	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
1912		if (sopt->sopt_td != NULL) {
1913			int error;
1914
1915			error = copyin(sopt->sopt_val, mtod(m, char *),
1916				       m->m_len);
1917			if (error != 0) {
1918				m_freem(m0);
1919				return(error);
1920			}
1921		} else
1922			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
1923		sopt->sopt_valsize -= m->m_len;
1924		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
1925		m = m->m_next;
1926	}
1927	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
1928		panic("ip6_sooptmcopyin");
1929	return 0;
1930}
1931
1932/* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
1933int
1934soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
1935{
1936	struct mbuf *m0 = m;
1937	size_t valsize = 0;
1938
1939	if (sopt->sopt_val == NULL)
1940		return 0;
1941	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
1942		if (sopt->sopt_td != NULL) {
1943			int error;
1944
1945			error = copyout(mtod(m, char *), sopt->sopt_val,
1946				       m->m_len);
1947			if (error != 0) {
1948				m_freem(m0);
1949				return(error);
1950			}
1951		} else
1952			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
1953	       sopt->sopt_valsize -= m->m_len;
1954	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
1955	       valsize += m->m_len;
1956	       m = m->m_next;
1957	}
1958	if (m != NULL) {
1959		/* enough soopt buffer should be given from user-land */
1960		m_freem(m0);
1961		return(EINVAL);
1962	}
1963	sopt->sopt_valsize = valsize;
1964	return 0;
1965}
1966
1967void
1968sohasoutofband(so)
1969	struct socket *so;
1970{
1971	if (so->so_sigio != NULL)
1972		pgsigio(&so->so_sigio, SIGURG, 0);
1973	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
1974}
1975
1976int
1977sopoll(struct socket *so, int events, struct ucred *active_cred,
1978    struct thread *td)
1979{
1980	int revents = 0;
1981
1982	SOCKBUF_LOCK(&so->so_snd);
1983	SOCKBUF_LOCK(&so->so_rcv);
1984	if (events & (POLLIN | POLLRDNORM))
1985		if (soreadable(so))
1986			revents |= events & (POLLIN | POLLRDNORM);
1987
1988	if (events & POLLINIGNEOF)
1989		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
1990		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
1991			revents |= POLLINIGNEOF;
1992
1993	if (events & (POLLOUT | POLLWRNORM))
1994		if (sowriteable(so))
1995			revents |= events & (POLLOUT | POLLWRNORM);
1996
1997	if (events & (POLLPRI | POLLRDBAND))
1998		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
1999			revents |= events & (POLLPRI | POLLRDBAND);
2000
2001	if (revents == 0) {
2002		if (events &
2003		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2004		     POLLRDBAND)) {
2005			selrecord(td, &so->so_rcv.sb_sel);
2006			so->so_rcv.sb_flags |= SB_SEL;
2007		}
2008
2009		if (events & (POLLOUT | POLLWRNORM)) {
2010			selrecord(td, &so->so_snd.sb_sel);
2011			so->so_snd.sb_flags |= SB_SEL;
2012		}
2013	}
2014
2015	SOCKBUF_UNLOCK(&so->so_rcv);
2016	SOCKBUF_UNLOCK(&so->so_snd);
2017	return (revents);
2018}
2019
2020int
2021soo_kqfilter(struct file *fp, struct knote *kn)
2022{
2023	struct socket *so = kn->kn_fp->f_data;
2024	struct sockbuf *sb;
2025
2026	switch (kn->kn_filter) {
2027	case EVFILT_READ:
2028		if (so->so_options & SO_ACCEPTCONN)
2029			kn->kn_fop = &solisten_filtops;
2030		else
2031			kn->kn_fop = &soread_filtops;
2032		sb = &so->so_rcv;
2033		break;
2034	case EVFILT_WRITE:
2035		kn->kn_fop = &sowrite_filtops;
2036		sb = &so->so_snd;
2037		break;
2038	default:
2039		return (EINVAL);
2040	}
2041
2042	SOCKBUF_LOCK(sb);
2043	knlist_add(&sb->sb_sel.si_note, kn, 1);
2044	sb->sb_flags |= SB_KNOTE;
2045	SOCKBUF_UNLOCK(sb);
2046	return (0);
2047}
2048
2049static void
2050filt_sordetach(struct knote *kn)
2051{
2052	struct socket *so = kn->kn_fp->f_data;
2053
2054	SOCKBUF_LOCK(&so->so_rcv);
2055	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2056	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2057		so->so_rcv.sb_flags &= ~SB_KNOTE;
2058	SOCKBUF_UNLOCK(&so->so_rcv);
2059}
2060
2061/*ARGSUSED*/
2062static int
2063filt_soread(struct knote *kn, long hint)
2064{
2065	struct socket *so;
2066
2067	so = kn->kn_fp->f_data;
2068	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2069
2070	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2071	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2072		kn->kn_flags |= EV_EOF;
2073		kn->kn_fflags = so->so_error;
2074		return (1);
2075	} else if (so->so_error)	/* temporary udp error */
2076		return (1);
2077	else if (kn->kn_sfflags & NOTE_LOWAT)
2078		return (kn->kn_data >= kn->kn_sdata);
2079	else
2080		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2081}
2082
2083static void
2084filt_sowdetach(struct knote *kn)
2085{
2086	struct socket *so = kn->kn_fp->f_data;
2087
2088	SOCKBUF_LOCK(&so->so_snd);
2089	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2090	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2091		so->so_snd.sb_flags &= ~SB_KNOTE;
2092	SOCKBUF_UNLOCK(&so->so_snd);
2093}
2094
2095/*ARGSUSED*/
2096static int
2097filt_sowrite(struct knote *kn, long hint)
2098{
2099	struct socket *so;
2100
2101	so = kn->kn_fp->f_data;
2102	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2103	kn->kn_data = sbspace(&so->so_snd);
2104	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2105		kn->kn_flags |= EV_EOF;
2106		kn->kn_fflags = so->so_error;
2107		return (1);
2108	} else if (so->so_error)	/* temporary udp error */
2109		return (1);
2110	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2111	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2112		return (0);
2113	else if (kn->kn_sfflags & NOTE_LOWAT)
2114		return (kn->kn_data >= kn->kn_sdata);
2115	else
2116		return (kn->kn_data >= so->so_snd.sb_lowat);
2117}
2118
2119/*ARGSUSED*/
2120static int
2121filt_solisten(struct knote *kn, long hint)
2122{
2123	struct socket *so = kn->kn_fp->f_data;
2124
2125	kn->kn_data = so->so_qlen;
2126	return (! TAILQ_EMPTY(&so->so_comp));
2127}
2128
2129int
2130socheckuid(struct socket *so, uid_t uid)
2131{
2132
2133	if (so == NULL)
2134		return (EPERM);
2135	if (so->so_cred->cr_uid != uid)
2136		return (EPERM);
2137	return (0);
2138}
2139
2140static int
2141somaxconn_sysctl(SYSCTL_HANDLER_ARGS)
2142{
2143	int error;
2144	int val;
2145
2146	val = somaxconn;
2147	error = sysctl_handle_int(oidp, &val, sizeof(int), req);
2148	if (error || !req->newptr )
2149		return (error);
2150
2151	if (val < 1 || val > USHRT_MAX)
2152		return (EINVAL);
2153
2154	somaxconn = val;
2155	return (0);
2156}
2157