uipc_socket.c revision 134062
1/*
2 * Copyright (c) 2004 The FreeBSD Foundation
3 * Copyright (c) 2004 Robert Watson
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/kern/uipc_socket.c 134062 2004-08-20 04:15:30Z jmg $");
36
37#include "opt_inet.h"
38#include "opt_mac.h"
39#include "opt_zero.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/fcntl.h>
44#include <sys/limits.h>
45#include <sys/lock.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/mutex.h>
50#include <sys/domain.h>
51#include <sys/file.h>			/* for struct knote */
52#include <sys/kernel.h>
53#include <sys/event.h>
54#include <sys/poll.h>
55#include <sys/proc.h>
56#include <sys/protosw.h>
57#include <sys/socket.h>
58#include <sys/socketvar.h>
59#include <sys/resourcevar.h>
60#include <sys/signalvar.h>
61#include <sys/sysctl.h>
62#include <sys/uio.h>
63#include <sys/jail.h>
64
65#include <vm/uma.h>
66
67
68static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
69		    int flags);
70
71#ifdef INET
72static int	 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt);
73#endif
74
75static void	filt_sordetach(struct knote *kn);
76static int	filt_soread(struct knote *kn, long hint);
77static void	filt_sowdetach(struct knote *kn);
78static int	filt_sowrite(struct knote *kn, long hint);
79static int	filt_solisten(struct knote *kn, long hint);
80
81static struct filterops solisten_filtops =
82	{ 1, NULL, filt_sordetach, filt_solisten };
83static struct filterops soread_filtops =
84	{ 1, NULL, filt_sordetach, filt_soread };
85static struct filterops sowrite_filtops =
86	{ 1, NULL, filt_sowdetach, filt_sowrite };
87
88uma_zone_t socket_zone;
89so_gen_t	so_gencnt;	/* generation count for sockets */
90
91MALLOC_DEFINE(M_SONAME, "soname", "socket name");
92MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
93
94SYSCTL_DECL(_kern_ipc);
95
96static int somaxconn = SOMAXCONN;
97SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW,
98    &somaxconn, 0, "Maximum pending socket connection queue size");
99static int numopensockets;
100SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
101    &numopensockets, 0, "Number of open sockets");
102#ifdef ZERO_COPY_SOCKETS
103/* These aren't static because they're used in other files. */
104int so_zero_copy_send = 1;
105int so_zero_copy_receive = 1;
106SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
107    "Zero copy controls");
108SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
109    &so_zero_copy_receive, 0, "Enable zero copy receive");
110SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
111    &so_zero_copy_send, 0, "Enable zero copy send");
112#endif /* ZERO_COPY_SOCKETS */
113
114/*
115 * accept_mtx locks down per-socket fields relating to accept queues.  See
116 * socketvar.h for an annotation of the protected fields of struct socket.
117 */
118struct mtx accept_mtx;
119MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
120
121/*
122 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
123 * so_gencnt field.
124 *
125 * XXXRW: These variables might be better manipulated using atomic operations
126 * for improved efficiency.
127 */
128static struct mtx so_global_mtx;
129MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
130
131/*
132 * Socket operation routines.
133 * These routines are called by the routines in
134 * sys_socket.c or from a system process, and
135 * implement the semantics of socket operations by
136 * switching out to the protocol specific routines.
137 */
138
139/*
140 * Get a socket structure from our zone, and initialize it.
141 * Note that it would probably be better to allocate socket
142 * and PCB at the same time, but I'm not convinced that all
143 * the protocols can be easily modified to do this.
144 *
145 * soalloc() returns a socket with a ref count of 0.
146 */
147struct socket *
148soalloc(int mflags)
149{
150	struct socket *so;
151#ifdef MAC
152	int error;
153#endif
154
155	so = uma_zalloc(socket_zone, mflags | M_ZERO);
156	if (so != NULL) {
157#ifdef MAC
158		error = mac_init_socket(so, mflags);
159		if (error != 0) {
160			uma_zfree(socket_zone, so);
161			so = NULL;
162			return so;
163		}
164#endif
165		SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
166		SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
167		/* sx_init(&so->so_sxlock, "socket sxlock"); */
168		TAILQ_INIT(&so->so_aiojobq);
169		mtx_lock(&so_global_mtx);
170		so->so_gencnt = ++so_gencnt;
171		++numopensockets;
172		mtx_unlock(&so_global_mtx);
173	}
174	return so;
175}
176
177/*
178 * socreate returns a socket with a ref count of 1.  The socket should be
179 * closed with soclose().
180 */
181int
182socreate(dom, aso, type, proto, cred, td)
183	int dom;
184	struct socket **aso;
185	int type;
186	int proto;
187	struct ucred *cred;
188	struct thread *td;
189{
190	struct protosw *prp;
191	struct socket *so;
192	int error;
193
194	if (proto)
195		prp = pffindproto(dom, proto, type);
196	else
197		prp = pffindtype(dom, type);
198
199	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL)
200		return (EPROTONOSUPPORT);
201
202	if (jailed(cred) && jail_socket_unixiproute_only &&
203	    prp->pr_domain->dom_family != PF_LOCAL &&
204	    prp->pr_domain->dom_family != PF_INET &&
205	    prp->pr_domain->dom_family != PF_ROUTE) {
206		return (EPROTONOSUPPORT);
207	}
208
209	if (prp->pr_type != type)
210		return (EPROTOTYPE);
211	so = soalloc(M_WAITOK);
212	if (so == NULL)
213		return (ENOBUFS);
214
215	TAILQ_INIT(&so->so_incomp);
216	TAILQ_INIT(&so->so_comp);
217	so->so_type = type;
218	so->so_cred = crhold(cred);
219	so->so_proto = prp;
220#ifdef MAC
221	mac_create_socket(cred, so);
222#endif
223	SOCK_LOCK(so);
224	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
225	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
226	soref(so);
227	SOCK_UNLOCK(so);
228	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
229	if (error) {
230		SOCK_LOCK(so);
231		so->so_state |= SS_NOFDREF;
232		sorele(so);
233		return (error);
234	}
235	*aso = so;
236	return (0);
237}
238
239int
240sobind(so, nam, td)
241	struct socket *so;
242	struct sockaddr *nam;
243	struct thread *td;
244{
245
246	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
247}
248
249void
250sodealloc(struct socket *so)
251{
252
253	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
254	mtx_lock(&so_global_mtx);
255	so->so_gencnt = ++so_gencnt;
256	mtx_unlock(&so_global_mtx);
257	if (so->so_rcv.sb_hiwat)
258		(void)chgsbsize(so->so_cred->cr_uidinfo,
259		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
260	if (so->so_snd.sb_hiwat)
261		(void)chgsbsize(so->so_cred->cr_uidinfo,
262		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
263#ifdef INET
264	/* remove acccept filter if one is present. */
265	if (so->so_accf != NULL)
266		do_setopt_accept_filter(so, NULL);
267#endif
268#ifdef MAC
269	mac_destroy_socket(so);
270#endif
271	crfree(so->so_cred);
272	SOCKBUF_LOCK_DESTROY(&so->so_snd);
273	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
274	/* sx_destroy(&so->so_sxlock); */
275	uma_zfree(socket_zone, so);
276	/*
277	 * XXXRW: Seems like a shame to grab the mutex again down here, but
278	 * we don't want to decrement the socket count until after we free
279	 * the socket, and we can't increment the gencnt on the socket after
280	 * we free, it so...
281	 */
282	mtx_lock(&so_global_mtx);
283	--numopensockets;
284	mtx_unlock(&so_global_mtx);
285}
286
287int
288solisten(so, backlog, td)
289	struct socket *so;
290	int backlog;
291	struct thread *td;
292{
293	int error;
294
295	/*
296	 * XXXRW: Ordering issue here -- perhaps we need to set
297	 * SO_ACCEPTCONN before the call to pru_listen()?
298	 * XXXRW: General atomic test-and-set concerns here also.
299	 */
300	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
301			    SS_ISDISCONNECTING))
302		return (EINVAL);
303	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, td);
304	if (error)
305		return (error);
306	ACCEPT_LOCK();
307	if (TAILQ_EMPTY(&so->so_comp)) {
308		SOCK_LOCK(so);
309		so->so_options |= SO_ACCEPTCONN;
310		SOCK_UNLOCK(so);
311	}
312	if (backlog < 0 || backlog > somaxconn)
313		backlog = somaxconn;
314	so->so_qlimit = backlog;
315	ACCEPT_UNLOCK();
316	return (0);
317}
318
319void
320sofree(so)
321	struct socket *so;
322{
323	struct socket *head;
324
325	KASSERT(so->so_count == 0, ("socket %p so_count not 0", so));
326	SOCK_LOCK_ASSERT(so);
327
328	if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0) {
329		SOCK_UNLOCK(so);
330		return;
331	}
332
333	SOCK_UNLOCK(so);
334	ACCEPT_LOCK();
335	head = so->so_head;
336	if (head != NULL) {
337		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
338		    (so->so_qstate & SQ_INCOMP) != 0,
339		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
340		    "SQ_INCOMP"));
341		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
342		    (so->so_qstate & SQ_INCOMP) == 0,
343		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
344		/*
345		 * accept(2) is responsible draining the completed
346		 * connection queue and freeing those sockets, so
347		 * we just return here if this socket is currently
348		 * on the completed connection queue.  Otherwise,
349		 * accept(2) may hang after select(2) has indicating
350		 * that a listening socket was ready.  If it's an
351		 * incomplete connection, we remove it from the queue
352		 * and free it; otherwise, it won't be released until
353		 * the listening socket is closed.
354		 */
355		if ((so->so_qstate & SQ_COMP) != 0) {
356			ACCEPT_UNLOCK();
357			return;
358		}
359		TAILQ_REMOVE(&head->so_incomp, so, so_list);
360		head->so_incqlen--;
361		so->so_qstate &= ~SQ_INCOMP;
362		so->so_head = NULL;
363	}
364	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
365	    (so->so_qstate & SQ_INCOMP) == 0,
366	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
367	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
368	ACCEPT_UNLOCK();
369	SOCKBUF_LOCK(&so->so_snd);
370	so->so_snd.sb_flags |= SB_NOINTR;
371	(void)sblock(&so->so_snd, M_WAITOK);
372	/*
373	 * socantsendmore_locked() drops the socket buffer mutex so that it
374	 * can safely perform wakeups.  Re-acquire the mutex before
375	 * continuing.
376	 */
377	socantsendmore_locked(so);
378	SOCKBUF_LOCK(&so->so_snd);
379	sbunlock(&so->so_snd);
380	sbrelease_locked(&so->so_snd, so);
381	SOCKBUF_UNLOCK(&so->so_snd);
382	sorflush(so);
383	knlist_destroy(&so->so_rcv.sb_sel.si_note);
384	knlist_destroy(&so->so_snd.sb_sel.si_note);
385	sodealloc(so);
386}
387
388/*
389 * Close a socket on last file table reference removal.
390 * Initiate disconnect if connected.
391 * Free socket when disconnect complete.
392 *
393 * This function will sorele() the socket.  Note that soclose() may be
394 * called prior to the ref count reaching zero.  The actual socket
395 * structure will not be freed until the ref count reaches zero.
396 */
397int
398soclose(so)
399	struct socket *so;
400{
401	int error = 0;
402
403	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
404
405	funsetown(&so->so_sigio);
406	if (so->so_options & SO_ACCEPTCONN) {
407		struct socket *sp;
408		ACCEPT_LOCK();
409		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
410			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
411			so->so_incqlen--;
412			sp->so_qstate &= ~SQ_INCOMP;
413			sp->so_head = NULL;
414			ACCEPT_UNLOCK();
415			(void) soabort(sp);
416			ACCEPT_LOCK();
417		}
418		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
419			TAILQ_REMOVE(&so->so_comp, sp, so_list);
420			so->so_qlen--;
421			sp->so_qstate &= ~SQ_COMP;
422			sp->so_head = NULL;
423			ACCEPT_UNLOCK();
424			(void) soabort(sp);
425			ACCEPT_LOCK();
426		}
427		ACCEPT_UNLOCK();
428	}
429	if (so->so_pcb == NULL)
430		goto discard;
431	if (so->so_state & SS_ISCONNECTED) {
432		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
433			error = sodisconnect(so);
434			if (error)
435				goto drop;
436		}
437		if (so->so_options & SO_LINGER) {
438			if ((so->so_state & SS_ISDISCONNECTING) &&
439			    (so->so_state & SS_NBIO))
440				goto drop;
441			while (so->so_state & SS_ISCONNECTED) {
442				error = tsleep(&so->so_timeo,
443				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
444				if (error)
445					break;
446			}
447		}
448	}
449drop:
450	if (so->so_pcb != NULL) {
451		int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so);
452		if (error == 0)
453			error = error2;
454	}
455discard:
456	SOCK_LOCK(so);
457	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
458	so->so_state |= SS_NOFDREF;
459	sorele(so);
460	return (error);
461}
462
463/*
464 * soabort() must not be called with any socket locks held, as it calls
465 * into the protocol, which will call back into the socket code causing
466 * it to acquire additional socket locks that may cause recursion or lock
467 * order reversals.
468 */
469int
470soabort(so)
471	struct socket *so;
472{
473	int error;
474
475	error = (*so->so_proto->pr_usrreqs->pru_abort)(so);
476	if (error) {
477		SOCK_LOCK(so);
478		sotryfree(so);	/* note: does not decrement the ref count */
479		return error;
480	}
481	return (0);
482}
483
484int
485soaccept(so, nam)
486	struct socket *so;
487	struct sockaddr **nam;
488{
489	int error;
490
491	SOCK_LOCK(so);
492	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
493	so->so_state &= ~SS_NOFDREF;
494	SOCK_UNLOCK(so);
495	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
496	return (error);
497}
498
499int
500soconnect(so, nam, td)
501	struct socket *so;
502	struct sockaddr *nam;
503	struct thread *td;
504{
505	int error;
506
507	if (so->so_options & SO_ACCEPTCONN)
508		return (EOPNOTSUPP);
509	/*
510	 * If protocol is connection-based, can only connect once.
511	 * Otherwise, if connected, try to disconnect first.
512	 * This allows user to disconnect by connecting to, e.g.,
513	 * a null address.
514	 */
515	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
516	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
517	    (error = sodisconnect(so))))
518		error = EISCONN;
519	else
520		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
521	return (error);
522}
523
524int
525soconnect2(so1, so2)
526	struct socket *so1;
527	struct socket *so2;
528{
529
530	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
531}
532
533int
534sodisconnect(so)
535	struct socket *so;
536{
537	int error;
538
539	if ((so->so_state & SS_ISCONNECTED) == 0)
540		return (ENOTCONN);
541	if (so->so_state & SS_ISDISCONNECTING)
542		return (EALREADY);
543	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
544	return (error);
545}
546
547#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
548/*
549 * Send on a socket.
550 * If send must go all at once and message is larger than
551 * send buffering, then hard error.
552 * Lock against other senders.
553 * If must go all at once and not enough room now, then
554 * inform user that this would block and do nothing.
555 * Otherwise, if nonblocking, send as much as possible.
556 * The data to be sent is described by "uio" if nonzero,
557 * otherwise by the mbuf chain "top" (which must be null
558 * if uio is not).  Data provided in mbuf chain must be small
559 * enough to send all at once.
560 *
561 * Returns nonzero on error, timeout or signal; callers
562 * must check for short counts if EINTR/ERESTART are returned.
563 * Data and control buffers are freed on return.
564 */
565
566#ifdef ZERO_COPY_SOCKETS
567struct so_zerocopy_stats{
568	int size_ok;
569	int align_ok;
570	int found_ifp;
571};
572struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
573#include <netinet/in.h>
574#include <net/route.h>
575#include <netinet/in_pcb.h>
576#include <vm/vm.h>
577#include <vm/vm_page.h>
578#include <vm/vm_object.h>
579#endif /*ZERO_COPY_SOCKETS*/
580
581int
582sosend(so, addr, uio, top, control, flags, td)
583	struct socket *so;
584	struct sockaddr *addr;
585	struct uio *uio;
586	struct mbuf *top;
587	struct mbuf *control;
588	int flags;
589	struct thread *td;
590{
591	struct mbuf **mp;
592	struct mbuf *m;
593	long space, len = 0, resid;
594	int clen = 0, error, dontroute;
595	int atomic = sosendallatonce(so) || top;
596#ifdef ZERO_COPY_SOCKETS
597	int cow_send;
598#endif /* ZERO_COPY_SOCKETS */
599
600	if (uio != NULL)
601		resid = uio->uio_resid;
602	else
603		resid = top->m_pkthdr.len;
604	/*
605	 * In theory resid should be unsigned.
606	 * However, space must be signed, as it might be less than 0
607	 * if we over-committed, and we must use a signed comparison
608	 * of space and resid.  On the other hand, a negative resid
609	 * causes us to loop sending 0-length segments to the protocol.
610	 *
611	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
612	 * type sockets since that's an error.
613	 */
614	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
615		error = EINVAL;
616		goto out;
617	}
618
619	dontroute =
620	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
621	    (so->so_proto->pr_flags & PR_ATOMIC);
622	if (td != NULL)
623		td->td_proc->p_stats->p_ru.ru_msgsnd++;
624	if (control != NULL)
625		clen = control->m_len;
626#define	snderr(errno)	{ error = (errno); goto release; }
627
628	SOCKBUF_LOCK(&so->so_snd);
629restart:
630	SOCKBUF_LOCK_ASSERT(&so->so_snd);
631	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
632	if (error)
633		goto out_locked;
634	do {
635		SOCKBUF_LOCK_ASSERT(&so->so_snd);
636		if (so->so_snd.sb_state & SBS_CANTSENDMORE)
637			snderr(EPIPE);
638		if (so->so_error) {
639			error = so->so_error;
640			so->so_error = 0;
641			goto release;
642		}
643		if ((so->so_state & SS_ISCONNECTED) == 0) {
644			/*
645			 * `sendto' and `sendmsg' is allowed on a connection-
646			 * based socket if it supports implied connect.
647			 * Return ENOTCONN if not connected and no address is
648			 * supplied.
649			 */
650			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
651			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
652				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
653				    !(resid == 0 && clen != 0))
654					snderr(ENOTCONN);
655			} else if (addr == NULL)
656			    snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
657				   ENOTCONN : EDESTADDRREQ);
658		}
659		space = sbspace(&so->so_snd);
660		if (flags & MSG_OOB)
661			space += 1024;
662		if ((atomic && resid > so->so_snd.sb_hiwat) ||
663		    clen > so->so_snd.sb_hiwat)
664			snderr(EMSGSIZE);
665		if (space < resid + clen &&
666		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
667			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO))
668				snderr(EWOULDBLOCK);
669			sbunlock(&so->so_snd);
670			error = sbwait(&so->so_snd);
671			if (error)
672				goto out_locked;
673			goto restart;
674		}
675		SOCKBUF_UNLOCK(&so->so_snd);
676		mp = &top;
677		space -= clen;
678		do {
679		    if (uio == NULL) {
680			/*
681			 * Data is prepackaged in "top".
682			 */
683			resid = 0;
684			if (flags & MSG_EOR)
685				top->m_flags |= M_EOR;
686		    } else do {
687#ifdef ZERO_COPY_SOCKETS
688			cow_send = 0;
689#endif /* ZERO_COPY_SOCKETS */
690			if (resid >= MINCLSIZE) {
691#ifdef ZERO_COPY_SOCKETS
692				if (top == NULL) {
693					MGETHDR(m, M_TRYWAIT, MT_DATA);
694					if (m == NULL) {
695						error = ENOBUFS;
696						SOCKBUF_LOCK(&so->so_snd);
697						goto release;
698					}
699					m->m_pkthdr.len = 0;
700					m->m_pkthdr.rcvif = (struct ifnet *)0;
701				} else {
702					MGET(m, M_TRYWAIT, MT_DATA);
703					if (m == NULL) {
704						error = ENOBUFS;
705						SOCKBUF_LOCK(&so->so_snd);
706						goto release;
707					}
708				}
709				if (so_zero_copy_send &&
710				    resid>=PAGE_SIZE &&
711				    space>=PAGE_SIZE &&
712				    uio->uio_iov->iov_len>=PAGE_SIZE) {
713					so_zerocp_stats.size_ok++;
714					if (!((vm_offset_t)
715					  uio->uio_iov->iov_base & PAGE_MASK)){
716						so_zerocp_stats.align_ok++;
717						cow_send = socow_setup(m, uio);
718					}
719				}
720				if (!cow_send) {
721					MCLGET(m, M_TRYWAIT);
722					if ((m->m_flags & M_EXT) == 0) {
723						m_free(m);
724						m = NULL;
725					} else {
726						len = min(min(MCLBYTES, resid), space);
727					}
728				} else
729					len = PAGE_SIZE;
730#else /* ZERO_COPY_SOCKETS */
731				if (top == NULL) {
732					m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
733					m->m_pkthdr.len = 0;
734					m->m_pkthdr.rcvif = (struct ifnet *)0;
735				} else
736					m = m_getcl(M_TRYWAIT, MT_DATA, 0);
737				len = min(min(MCLBYTES, resid), space);
738#endif /* ZERO_COPY_SOCKETS */
739			} else {
740				if (top == NULL) {
741					m = m_gethdr(M_TRYWAIT, MT_DATA);
742					m->m_pkthdr.len = 0;
743					m->m_pkthdr.rcvif = (struct ifnet *)0;
744
745					len = min(min(MHLEN, resid), space);
746					/*
747					 * For datagram protocols, leave room
748					 * for protocol headers in first mbuf.
749					 */
750					if (atomic && m && len < MHLEN)
751						MH_ALIGN(m, len);
752				} else {
753					m = m_get(M_TRYWAIT, MT_DATA);
754					len = min(min(MLEN, resid), space);
755				}
756			}
757			if (m == NULL) {
758				error = ENOBUFS;
759				SOCKBUF_LOCK(&so->so_snd);
760				goto release;
761			}
762
763			space -= len;
764#ifdef ZERO_COPY_SOCKETS
765			if (cow_send)
766				error = 0;
767			else
768#endif /* ZERO_COPY_SOCKETS */
769			error = uiomove(mtod(m, void *), (int)len, uio);
770			resid = uio->uio_resid;
771			m->m_len = len;
772			*mp = m;
773			top->m_pkthdr.len += len;
774			if (error) {
775				SOCKBUF_LOCK(&so->so_snd);
776				goto release;
777			}
778			mp = &m->m_next;
779			if (resid <= 0) {
780				if (flags & MSG_EOR)
781					top->m_flags |= M_EOR;
782				break;
783			}
784		    } while (space > 0 && atomic);
785		    if (dontroute) {
786			    SOCK_LOCK(so);
787			    so->so_options |= SO_DONTROUTE;
788			    SOCK_UNLOCK(so);
789		    }
790		    /*
791		     * XXX all the SBS_CANTSENDMORE checks previously
792		     * done could be out of date.  We could have recieved
793		     * a reset packet in an interrupt or maybe we slept
794		     * while doing page faults in uiomove() etc. We could
795		     * probably recheck again inside the locking protection
796		     * here, but there are probably other places that this
797		     * also happens.  We must rethink this.
798		     */
799		    error = (*so->so_proto->pr_usrreqs->pru_send)(so,
800			(flags & MSG_OOB) ? PRUS_OOB :
801			/*
802			 * If the user set MSG_EOF, the protocol
803			 * understands this flag and nothing left to
804			 * send then use PRU_SEND_EOF instead of PRU_SEND.
805			 */
806			((flags & MSG_EOF) &&
807			 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
808			 (resid <= 0)) ?
809				PRUS_EOF :
810			/* If there is more to send set PRUS_MORETOCOME */
811			(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
812			top, addr, control, td);
813		    if (dontroute) {
814			    SOCK_LOCK(so);
815			    so->so_options &= ~SO_DONTROUTE;
816			    SOCK_UNLOCK(so);
817		    }
818		    clen = 0;
819		    control = NULL;
820		    top = NULL;
821		    mp = &top;
822		    if (error) {
823			SOCKBUF_LOCK(&so->so_snd);
824			goto release;
825		    }
826		} while (resid && space > 0);
827		SOCKBUF_LOCK(&so->so_snd);
828	} while (resid);
829
830release:
831	SOCKBUF_LOCK_ASSERT(&so->so_snd);
832	sbunlock(&so->so_snd);
833out_locked:
834	SOCKBUF_LOCK_ASSERT(&so->so_snd);
835	SOCKBUF_UNLOCK(&so->so_snd);
836out:
837	if (top != NULL)
838		m_freem(top);
839	if (control != NULL)
840		m_freem(control);
841	return (error);
842}
843
844/*
845 * The part of soreceive() that implements reading non-inline out-of-band
846 * data from a socket.  For more complete comments, see soreceive(), from
847 * which this code originated.
848 *
849 * XXXRW: Note that soreceive_rcvoob(), unlike the remainder of soreiceve(),
850 * is unable to return an mbuf chain to the caller.
851 */
852static int
853soreceive_rcvoob(so, uio, flags)
854	struct socket *so;
855	struct uio *uio;
856	int flags;
857{
858	struct protosw *pr = so->so_proto;
859	struct mbuf *m;
860	int error;
861
862	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
863
864	m = m_get(M_TRYWAIT, MT_DATA);
865	if (m == NULL)
866		return (ENOBUFS);
867	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
868	if (error)
869		goto bad;
870	do {
871#ifdef ZERO_COPY_SOCKETS
872		if (so_zero_copy_receive) {
873			vm_page_t pg;
874			int disposable;
875
876			if ((m->m_flags & M_EXT)
877			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
878				disposable = 1;
879			else
880				disposable = 0;
881
882			pg = PHYS_TO_VM_PAGE(vtophys(mtod(m, caddr_t)));
883			if (uio->uio_offset == -1)
884				uio->uio_offset =IDX_TO_OFF(pg->pindex);
885
886			error = uiomoveco(mtod(m, void *),
887					  min(uio->uio_resid, m->m_len),
888					  uio, pg->object,
889					  disposable);
890		} else
891#endif /* ZERO_COPY_SOCKETS */
892		error = uiomove(mtod(m, void *),
893		    (int) min(uio->uio_resid, m->m_len), uio);
894		m = m_free(m);
895	} while (uio->uio_resid && error == 0 && m);
896bad:
897	if (m != NULL)
898		m_freem(m);
899	return (error);
900}
901
902/*
903 * Following replacement or removal of the first mbuf on the first mbuf chain
904 * of a socket buffer, push necessary state changes back into the socket
905 * buffer so that other consumers see the values consistently.  'nextrecord'
906 * is the callers locally stored value of the original value of
907 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
908 * NOTE: 'nextrecord' may be NULL.
909 */
910static __inline void
911sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
912{
913
914	SOCKBUF_LOCK_ASSERT(sb);
915	/*
916	 * First, update for the new value of nextrecord.  If necessary, make
917	 * it the first record.
918	 */
919	if (sb->sb_mb != NULL)
920		sb->sb_mb->m_nextpkt = nextrecord;
921	else
922		sb->sb_mb = nextrecord;
923
924        /*
925         * Now update any dependent socket buffer fields to reflect the new
926         * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
927	 * addition of a second clause that takes care of the case where
928	 * sb_mb has been updated, but remains the last record.
929         */
930        if (sb->sb_mb == NULL) {
931                sb->sb_mbtail = NULL;
932                sb->sb_lastrecord = NULL;
933        } else if (sb->sb_mb->m_nextpkt == NULL)
934                sb->sb_lastrecord = sb->sb_mb;
935}
936
937
938/*
939 * Implement receive operations on a socket.
940 * We depend on the way that records are added to the sockbuf
941 * by sbappend*.  In particular, each record (mbufs linked through m_next)
942 * must begin with an address if the protocol so specifies,
943 * followed by an optional mbuf or mbufs containing ancillary data,
944 * and then zero or more mbufs of data.
945 * In order to avoid blocking network interrupts for the entire time here,
946 * we splx() while doing the actual copy to user space.
947 * Although the sockbuf is locked, new data may still be appended,
948 * and thus we must maintain consistency of the sockbuf during that time.
949 *
950 * The caller may receive the data as a single mbuf chain by supplying
951 * an mbuf **mp0 for use in returning the chain.  The uio is then used
952 * only for the count in uio_resid.
953 */
954int
955soreceive(so, psa, uio, mp0, controlp, flagsp)
956	struct socket *so;
957	struct sockaddr **psa;
958	struct uio *uio;
959	struct mbuf **mp0;
960	struct mbuf **controlp;
961	int *flagsp;
962{
963	struct mbuf *m, **mp;
964	int flags, len, error, offset;
965	struct protosw *pr = so->so_proto;
966	struct mbuf *nextrecord;
967	int moff, type = 0;
968	int orig_resid = uio->uio_resid;
969
970	mp = mp0;
971	if (psa != NULL)
972		*psa = NULL;
973	if (controlp != NULL)
974		*controlp = NULL;
975	if (flagsp != NULL)
976		flags = *flagsp &~ MSG_EOR;
977	else
978		flags = 0;
979	if (flags & MSG_OOB)
980		return (soreceive_rcvoob(so, uio, flags));
981	if (mp != NULL)
982		*mp = NULL;
983	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
984		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
985
986	SOCKBUF_LOCK(&so->so_rcv);
987restart:
988	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
989	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
990	if (error)
991		goto out;
992
993	m = so->so_rcv.sb_mb;
994	/*
995	 * If we have less data than requested, block awaiting more
996	 * (subject to any timeout) if:
997	 *   1. the current count is less than the low water mark, or
998	 *   2. MSG_WAITALL is set, and it is possible to do the entire
999	 *	receive operation at once if we block (resid <= hiwat).
1000	 *   3. MSG_DONTWAIT is not set
1001	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1002	 * we have to do the receive in sections, and thus risk returning
1003	 * a short count if a timeout or signal occurs after we start.
1004	 */
1005	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1006	    so->so_rcv.sb_cc < uio->uio_resid) &&
1007	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1008	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1009	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1010		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1011		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1012		    m, so->so_rcv.sb_cc));
1013		if (so->so_error) {
1014			if (m != NULL)
1015				goto dontblock;
1016			error = so->so_error;
1017			if ((flags & MSG_PEEK) == 0)
1018				so->so_error = 0;
1019			goto release;
1020		}
1021		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1022		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1023			if (m)
1024				goto dontblock;
1025			else
1026				goto release;
1027		}
1028		for (; m != NULL; m = m->m_next)
1029			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1030				m = so->so_rcv.sb_mb;
1031				goto dontblock;
1032			}
1033		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1034		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1035			error = ENOTCONN;
1036			goto release;
1037		}
1038		if (uio->uio_resid == 0)
1039			goto release;
1040		if ((so->so_state & SS_NBIO) ||
1041		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1042			error = EWOULDBLOCK;
1043			goto release;
1044		}
1045		SBLASTRECORDCHK(&so->so_rcv);
1046		SBLASTMBUFCHK(&so->so_rcv);
1047		sbunlock(&so->so_rcv);
1048		error = sbwait(&so->so_rcv);
1049		if (error)
1050			goto out;
1051		goto restart;
1052	}
1053dontblock:
1054	/*
1055	 * From this point onward, we maintain 'nextrecord' as a cache of the
1056	 * pointer to the next record in the socket buffer.  We must keep the
1057	 * various socket buffer pointers and local stack versions of the
1058	 * pointers in sync, pushing out modifications before dropping the
1059	 * socket buffer mutex, and re-reading them when picking it up.
1060	 *
1061	 * Otherwise, we will race with the network stack appending new data
1062	 * or records onto the socket buffer by using inconsistent/stale
1063	 * versions of the field, possibly resulting in socket buffer
1064	 * corruption.
1065	 *
1066	 * By holding the high-level sblock(), we prevent simultaneous
1067	 * readers from pulling off the front of the socket buffer.
1068	 */
1069	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1070	if (uio->uio_td)
1071		uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++;
1072	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1073	SBLASTRECORDCHK(&so->so_rcv);
1074	SBLASTMBUFCHK(&so->so_rcv);
1075	nextrecord = m->m_nextpkt;
1076	if (pr->pr_flags & PR_ADDR) {
1077		KASSERT(m->m_type == MT_SONAME,
1078		    ("m->m_type == %d", m->m_type));
1079		orig_resid = 0;
1080		if (psa != NULL)
1081			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1082			    M_NOWAIT);
1083		if (flags & MSG_PEEK) {
1084			m = m->m_next;
1085		} else {
1086			sbfree(&so->so_rcv, m);
1087			so->so_rcv.sb_mb = m_free(m);
1088			m = so->so_rcv.sb_mb;
1089			sockbuf_pushsync(&so->so_rcv, nextrecord);
1090		}
1091	}
1092
1093	/*
1094	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1095	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1096	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1097	 * perform externalization (or freeing if controlp == NULL).
1098	 */
1099	if (m != NULL && m->m_type == MT_CONTROL) {
1100		struct mbuf *cm = NULL, *cmn;
1101		struct mbuf **cme = &cm;
1102
1103		do {
1104			if (flags & MSG_PEEK) {
1105				if (controlp != NULL) {
1106					*controlp = m_copy(m, 0, m->m_len);
1107					controlp = &(*controlp)->m_next;
1108				}
1109				m = m->m_next;
1110			} else {
1111				sbfree(&so->so_rcv, m);
1112				so->so_rcv.sb_mb = m->m_next;
1113				m->m_next = NULL;
1114				*cme = m;
1115				cme = &(*cme)->m_next;
1116				m = so->so_rcv.sb_mb;
1117			}
1118		} while (m != NULL && m->m_type == MT_CONTROL);
1119		if ((flags & MSG_PEEK) == 0)
1120			sockbuf_pushsync(&so->so_rcv, nextrecord);
1121		while (cm != NULL) {
1122			cmn = cm->m_next;
1123			cm->m_next = NULL;
1124			if (pr->pr_domain->dom_externalize != NULL) {
1125				SOCKBUF_UNLOCK(&so->so_rcv);
1126				error = (*pr->pr_domain->dom_externalize)
1127				    (cm, controlp);
1128				SOCKBUF_LOCK(&so->so_rcv);
1129			} else if (controlp != NULL)
1130				*controlp = cm;
1131			else
1132				m_freem(cm);
1133			if (controlp != NULL) {
1134				orig_resid = 0;
1135				while (*controlp != NULL)
1136					controlp = &(*controlp)->m_next;
1137			}
1138			cm = cmn;
1139		}
1140		nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1141		orig_resid = 0;
1142	}
1143	if (m != NULL) {
1144		if ((flags & MSG_PEEK) == 0) {
1145			KASSERT(m->m_nextpkt == nextrecord,
1146			    ("soreceive: post-control, nextrecord !sync"));
1147			if (nextrecord == NULL) {
1148				KASSERT(so->so_rcv.sb_mb == m,
1149				    ("soreceive: post-control, sb_mb!=m"));
1150				KASSERT(so->so_rcv.sb_lastrecord == m,
1151				    ("soreceive: post-control, lastrecord!=m"));
1152			}
1153		}
1154		type = m->m_type;
1155		if (type == MT_OOBDATA)
1156			flags |= MSG_OOB;
1157	} else {
1158		if ((flags & MSG_PEEK) == 0) {
1159			KASSERT(so->so_rcv.sb_mb == nextrecord,
1160			    ("soreceive: sb_mb != nextrecord"));
1161			if (so->so_rcv.sb_mb == NULL) {
1162				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1163				    ("soreceive: sb_lastercord != NULL"));
1164			}
1165		}
1166	}
1167	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1168	SBLASTRECORDCHK(&so->so_rcv);
1169	SBLASTMBUFCHK(&so->so_rcv);
1170
1171	/*
1172	 * Now continue to read any data mbufs off of the head of the socket
1173	 * buffer until the read request is satisfied.  Note that 'type' is
1174	 * used to store the type of any mbuf reads that have happened so far
1175	 * such that soreceive() can stop reading if the type changes, which
1176	 * causes soreceive() to return only one of regular data and inline
1177	 * out-of-band data in a single socket receive operation.
1178	 */
1179	moff = 0;
1180	offset = 0;
1181	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1182		/*
1183		 * If the type of mbuf has changed since the last mbuf
1184		 * examined ('type'), end the receive operation.
1185	 	 */
1186		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1187		if (m->m_type == MT_OOBDATA) {
1188			if (type != MT_OOBDATA)
1189				break;
1190		} else if (type == MT_OOBDATA)
1191			break;
1192		else
1193		    KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1194			("m->m_type == %d", m->m_type));
1195		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1196		len = uio->uio_resid;
1197		if (so->so_oobmark && len > so->so_oobmark - offset)
1198			len = so->so_oobmark - offset;
1199		if (len > m->m_len - moff)
1200			len = m->m_len - moff;
1201		/*
1202		 * If mp is set, just pass back the mbufs.
1203		 * Otherwise copy them out via the uio, then free.
1204		 * Sockbuf must be consistent here (points to current mbuf,
1205		 * it points to next record) when we drop priority;
1206		 * we must note any additions to the sockbuf when we
1207		 * block interrupts again.
1208		 */
1209		if (mp == NULL) {
1210			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1211			SBLASTRECORDCHK(&so->so_rcv);
1212			SBLASTMBUFCHK(&so->so_rcv);
1213			SOCKBUF_UNLOCK(&so->so_rcv);
1214#ifdef ZERO_COPY_SOCKETS
1215			if (so_zero_copy_receive) {
1216				vm_page_t pg;
1217				int disposable;
1218
1219				if ((m->m_flags & M_EXT)
1220				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1221					disposable = 1;
1222				else
1223					disposable = 0;
1224
1225				pg = PHYS_TO_VM_PAGE(vtophys(mtod(m, caddr_t) +
1226					moff));
1227
1228				if (uio->uio_offset == -1)
1229					uio->uio_offset =IDX_TO_OFF(pg->pindex);
1230
1231				error = uiomoveco(mtod(m, char *) + moff,
1232						  (int)len, uio,pg->object,
1233						  disposable);
1234			} else
1235#endif /* ZERO_COPY_SOCKETS */
1236			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1237			SOCKBUF_LOCK(&so->so_rcv);
1238			if (error)
1239				goto release;
1240		} else
1241			uio->uio_resid -= len;
1242		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1243		if (len == m->m_len - moff) {
1244			if (m->m_flags & M_EOR)
1245				flags |= MSG_EOR;
1246			if (flags & MSG_PEEK) {
1247				m = m->m_next;
1248				moff = 0;
1249			} else {
1250				nextrecord = m->m_nextpkt;
1251				sbfree(&so->so_rcv, m);
1252				if (mp != NULL) {
1253					*mp = m;
1254					mp = &m->m_next;
1255					so->so_rcv.sb_mb = m = m->m_next;
1256					*mp = NULL;
1257				} else {
1258					so->so_rcv.sb_mb = m_free(m);
1259					m = so->so_rcv.sb_mb;
1260				}
1261				if (m != NULL) {
1262					m->m_nextpkt = nextrecord;
1263					if (nextrecord == NULL)
1264						so->so_rcv.sb_lastrecord = m;
1265				} else {
1266					so->so_rcv.sb_mb = nextrecord;
1267					SB_EMPTY_FIXUP(&so->so_rcv);
1268				}
1269				SBLASTRECORDCHK(&so->so_rcv);
1270				SBLASTMBUFCHK(&so->so_rcv);
1271			}
1272		} else {
1273			if (flags & MSG_PEEK)
1274				moff += len;
1275			else {
1276				if (mp != NULL) {
1277					SOCKBUF_UNLOCK(&so->so_rcv);
1278					*mp = m_copym(m, 0, len, M_TRYWAIT);
1279					SOCKBUF_LOCK(&so->so_rcv);
1280				}
1281				m->m_data += len;
1282				m->m_len -= len;
1283				so->so_rcv.sb_cc -= len;
1284			}
1285		}
1286		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1287		if (so->so_oobmark) {
1288			if ((flags & MSG_PEEK) == 0) {
1289				so->so_oobmark -= len;
1290				if (so->so_oobmark == 0) {
1291					so->so_rcv.sb_state |= SBS_RCVATMARK;
1292					break;
1293				}
1294			} else {
1295				offset += len;
1296				if (offset == so->so_oobmark)
1297					break;
1298			}
1299		}
1300		if (flags & MSG_EOR)
1301			break;
1302		/*
1303		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1304		 * we must not quit until "uio->uio_resid == 0" or an error
1305		 * termination.  If a signal/timeout occurs, return
1306		 * with a short count but without error.
1307		 * Keep sockbuf locked against other readers.
1308		 */
1309		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1310		    !sosendallatonce(so) && nextrecord == NULL) {
1311			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1312			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1313				break;
1314			/*
1315			 * Notify the protocol that some data has been
1316			 * drained before blocking.
1317			 */
1318			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) {
1319				SOCKBUF_UNLOCK(&so->so_rcv);
1320				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1321				SOCKBUF_LOCK(&so->so_rcv);
1322			}
1323			SBLASTRECORDCHK(&so->so_rcv);
1324			SBLASTMBUFCHK(&so->so_rcv);
1325			error = sbwait(&so->so_rcv);
1326			if (error)
1327				goto release;
1328			m = so->so_rcv.sb_mb;
1329			if (m != NULL)
1330				nextrecord = m->m_nextpkt;
1331		}
1332	}
1333
1334	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1335	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1336		flags |= MSG_TRUNC;
1337		if ((flags & MSG_PEEK) == 0)
1338			(void) sbdroprecord_locked(&so->so_rcv);
1339	}
1340	if ((flags & MSG_PEEK) == 0) {
1341		if (m == NULL) {
1342			/*
1343			 * First part is an inline SB_EMPTY_FIXUP().  Second
1344			 * part makes sure sb_lastrecord is up-to-date if
1345			 * there is still data in the socket buffer.
1346			 */
1347			so->so_rcv.sb_mb = nextrecord;
1348			if (so->so_rcv.sb_mb == NULL) {
1349				so->so_rcv.sb_mbtail = NULL;
1350				so->so_rcv.sb_lastrecord = NULL;
1351			} else if (nextrecord->m_nextpkt == NULL)
1352				so->so_rcv.sb_lastrecord = nextrecord;
1353		}
1354		SBLASTRECORDCHK(&so->so_rcv);
1355		SBLASTMBUFCHK(&so->so_rcv);
1356		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) {
1357			SOCKBUF_UNLOCK(&so->so_rcv);
1358			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1359			SOCKBUF_LOCK(&so->so_rcv);
1360		}
1361	}
1362	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1363	if (orig_resid == uio->uio_resid && orig_resid &&
1364	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1365		sbunlock(&so->so_rcv);
1366		goto restart;
1367	}
1368
1369	if (flagsp != NULL)
1370		*flagsp |= flags;
1371release:
1372	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1373	sbunlock(&so->so_rcv);
1374out:
1375	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1376	SOCKBUF_UNLOCK(&so->so_rcv);
1377	return (error);
1378}
1379
1380int
1381soshutdown(so, how)
1382	struct socket *so;
1383	int how;
1384{
1385	struct protosw *pr = so->so_proto;
1386
1387	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1388		return (EINVAL);
1389
1390	if (how != SHUT_WR)
1391		sorflush(so);
1392	if (how != SHUT_RD)
1393		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1394	return (0);
1395}
1396
1397void
1398sorflush(so)
1399	struct socket *so;
1400{
1401	struct sockbuf *sb = &so->so_rcv;
1402	struct protosw *pr = so->so_proto;
1403	struct sockbuf asb;
1404
1405	/*
1406	 * XXXRW: This is quite ugly.  The existing code made a copy of the
1407	 * socket buffer, then zero'd the original to clear the buffer
1408	 * fields.  However, with mutexes in the socket buffer, this causes
1409	 * problems.  We only clear the zeroable bits of the original;
1410	 * however, we have to initialize and destroy the mutex in the copy
1411	 * so that dom_dispose() and sbrelease() can lock t as needed.
1412	 */
1413	SOCKBUF_LOCK(sb);
1414	sb->sb_flags |= SB_NOINTR;
1415	(void) sblock(sb, M_WAITOK);
1416	/*
1417	 * socantrcvmore_locked() drops the socket buffer mutex so that it
1418	 * can safely perform wakeups.  Re-acquire the mutex before
1419	 * continuing.
1420	 */
1421	socantrcvmore_locked(so);
1422	SOCKBUF_LOCK(sb);
1423	sbunlock(sb);
1424	/*
1425	 * Invalidate/clear most of the sockbuf structure, but leave
1426	 * selinfo and mutex data unchanged.
1427	 */
1428	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1429	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1430	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1431	bzero(&sb->sb_startzero,
1432	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1433	SOCKBUF_UNLOCK(sb);
1434
1435	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1436	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1437		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1438	sbrelease(&asb, so);
1439	SOCKBUF_LOCK_DESTROY(&asb);
1440}
1441
1442#ifdef INET
1443static int
1444do_setopt_accept_filter(so, sopt)
1445	struct	socket *so;
1446	struct	sockopt *sopt;
1447{
1448	struct accept_filter_arg	*afap;
1449	struct accept_filter	*afp;
1450	struct so_accf	*newaf;
1451	int	error = 0;
1452
1453	newaf = NULL;
1454	afap = NULL;
1455
1456	/*
1457	 * XXXRW: Configuring accept filters should be an atomic test-and-set
1458	 * operation to prevent races during setup and attach.  There may be
1459	 * more general issues of racing and ordering here that are not yet
1460	 * addressed by locking.
1461	 */
1462	/* do not set/remove accept filters on non listen sockets */
1463	SOCK_LOCK(so);
1464	if ((so->so_options & SO_ACCEPTCONN) == 0) {
1465		SOCK_UNLOCK(so);
1466		return (EINVAL);
1467	}
1468
1469	/* removing the filter */
1470	if (sopt == NULL) {
1471		if (so->so_accf != NULL) {
1472			struct so_accf *af = so->so_accf;
1473			if (af->so_accept_filter != NULL &&
1474				af->so_accept_filter->accf_destroy != NULL) {
1475				af->so_accept_filter->accf_destroy(so);
1476			}
1477			if (af->so_accept_filter_str != NULL) {
1478				FREE(af->so_accept_filter_str, M_ACCF);
1479			}
1480			FREE(af, M_ACCF);
1481			so->so_accf = NULL;
1482		}
1483		so->so_options &= ~SO_ACCEPTFILTER;
1484		SOCK_UNLOCK(so);
1485		return (0);
1486	}
1487	SOCK_UNLOCK(so);
1488
1489	/*-
1490	 * Adding a filter.
1491	 *
1492	 * Do memory allocation, copyin, and filter lookup now while we're
1493	 * not holding any locks.  Avoids sleeping with a mutex, as well as
1494	 * introducing a lock order between accept filter locks and socket
1495	 * locks here.
1496	 */
1497	MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), M_TEMP,
1498	    M_WAITOK);
1499	/* don't put large objects on the kernel stack */
1500	error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap);
1501	afap->af_name[sizeof(afap->af_name)-1] = '\0';
1502	afap->af_arg[sizeof(afap->af_arg)-1] = '\0';
1503	if (error) {
1504		FREE(afap, M_TEMP);
1505		return (error);
1506	}
1507	afp = accept_filt_get(afap->af_name);
1508	if (afp == NULL) {
1509		FREE(afap, M_TEMP);
1510		return (ENOENT);
1511	}
1512
1513	/*
1514	 * Allocate the new accept filter instance storage.  We may have to
1515	 * free it again later if we fail to attach it.  If attached
1516	 * properly, 'newaf' is NULLed to avoid a free() while in use.
1517	 */
1518	MALLOC(newaf, struct so_accf *, sizeof(*newaf), M_ACCF, M_WAITOK |
1519	    M_ZERO);
1520	if (afp->accf_create != NULL && afap->af_name[0] != '\0') {
1521		int len = strlen(afap->af_name) + 1;
1522		MALLOC(newaf->so_accept_filter_str, char *, len, M_ACCF,
1523		    M_WAITOK);
1524		strcpy(newaf->so_accept_filter_str, afap->af_name);
1525	}
1526
1527	SOCK_LOCK(so);
1528	/* must remove previous filter first */
1529	if (so->so_accf != NULL) {
1530		error = EINVAL;
1531		goto out;
1532	}
1533	/*
1534	 * Invoke the accf_create() method of the filter if required.
1535	 * XXXRW: the socket mutex is held over this call, so the create
1536	 * method cannot block.  This may be something we have to change, but
1537	 * it would require addressing possible races.
1538	 */
1539	if (afp->accf_create != NULL) {
1540		newaf->so_accept_filter_arg =
1541		    afp->accf_create(so, afap->af_arg);
1542		if (newaf->so_accept_filter_arg == NULL) {
1543			error = EINVAL;
1544			goto out;
1545		}
1546	}
1547	newaf->so_accept_filter = afp;
1548	so->so_accf = newaf;
1549	so->so_options |= SO_ACCEPTFILTER;
1550	newaf = NULL;
1551out:
1552	SOCK_UNLOCK(so);
1553	if (newaf != NULL) {
1554		if (newaf->so_accept_filter_str != NULL)
1555			FREE(newaf->so_accept_filter_str, M_ACCF);
1556		FREE(newaf, M_ACCF);
1557	}
1558	if (afap != NULL)
1559		FREE(afap, M_TEMP);
1560	return (error);
1561}
1562#endif /* INET */
1563
1564/*
1565 * Perhaps this routine, and sooptcopyout(), below, ought to come in
1566 * an additional variant to handle the case where the option value needs
1567 * to be some kind of integer, but not a specific size.
1568 * In addition to their use here, these functions are also called by the
1569 * protocol-level pr_ctloutput() routines.
1570 */
1571int
1572sooptcopyin(sopt, buf, len, minlen)
1573	struct	sockopt *sopt;
1574	void	*buf;
1575	size_t	len;
1576	size_t	minlen;
1577{
1578	size_t	valsize;
1579
1580	/*
1581	 * If the user gives us more than we wanted, we ignore it,
1582	 * but if we don't get the minimum length the caller
1583	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
1584	 * is set to however much we actually retrieved.
1585	 */
1586	if ((valsize = sopt->sopt_valsize) < minlen)
1587		return EINVAL;
1588	if (valsize > len)
1589		sopt->sopt_valsize = valsize = len;
1590
1591	if (sopt->sopt_td != NULL)
1592		return (copyin(sopt->sopt_val, buf, valsize));
1593
1594	bcopy(sopt->sopt_val, buf, valsize);
1595	return 0;
1596}
1597
1598/*
1599 * Kernel version of setsockopt(2)/
1600 * XXX: optlen is size_t, not socklen_t
1601 */
1602int
1603so_setsockopt(struct socket *so, int level, int optname, void *optval,
1604    size_t optlen)
1605{
1606	struct sockopt sopt;
1607
1608	sopt.sopt_level = level;
1609	sopt.sopt_name = optname;
1610	sopt.sopt_dir = SOPT_SET;
1611	sopt.sopt_val = optval;
1612	sopt.sopt_valsize = optlen;
1613	sopt.sopt_td = NULL;
1614	return (sosetopt(so, &sopt));
1615}
1616
1617int
1618sosetopt(so, sopt)
1619	struct socket *so;
1620	struct sockopt *sopt;
1621{
1622	int	error, optval;
1623	struct	linger l;
1624	struct	timeval tv;
1625	u_long  val;
1626#ifdef MAC
1627	struct mac extmac;
1628#endif
1629
1630	error = 0;
1631	if (sopt->sopt_level != SOL_SOCKET) {
1632		if (so->so_proto && so->so_proto->pr_ctloutput)
1633			return ((*so->so_proto->pr_ctloutput)
1634				  (so, sopt));
1635		error = ENOPROTOOPT;
1636	} else {
1637		switch (sopt->sopt_name) {
1638#ifdef INET
1639		case SO_ACCEPTFILTER:
1640			error = do_setopt_accept_filter(so, sopt);
1641			if (error)
1642				goto bad;
1643			break;
1644#endif
1645		case SO_LINGER:
1646			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1647			if (error)
1648				goto bad;
1649
1650			SOCK_LOCK(so);
1651			so->so_linger = l.l_linger;
1652			if (l.l_onoff)
1653				so->so_options |= SO_LINGER;
1654			else
1655				so->so_options &= ~SO_LINGER;
1656			SOCK_UNLOCK(so);
1657			break;
1658
1659		case SO_DEBUG:
1660		case SO_KEEPALIVE:
1661		case SO_DONTROUTE:
1662		case SO_USELOOPBACK:
1663		case SO_BROADCAST:
1664		case SO_REUSEADDR:
1665		case SO_REUSEPORT:
1666		case SO_OOBINLINE:
1667		case SO_TIMESTAMP:
1668		case SO_BINTIME:
1669		case SO_NOSIGPIPE:
1670			error = sooptcopyin(sopt, &optval, sizeof optval,
1671					    sizeof optval);
1672			if (error)
1673				goto bad;
1674			SOCK_LOCK(so);
1675			if (optval)
1676				so->so_options |= sopt->sopt_name;
1677			else
1678				so->so_options &= ~sopt->sopt_name;
1679			SOCK_UNLOCK(so);
1680			break;
1681
1682		case SO_SNDBUF:
1683		case SO_RCVBUF:
1684		case SO_SNDLOWAT:
1685		case SO_RCVLOWAT:
1686			error = sooptcopyin(sopt, &optval, sizeof optval,
1687					    sizeof optval);
1688			if (error)
1689				goto bad;
1690
1691			/*
1692			 * Values < 1 make no sense for any of these
1693			 * options, so disallow them.
1694			 */
1695			if (optval < 1) {
1696				error = EINVAL;
1697				goto bad;
1698			}
1699
1700			switch (sopt->sopt_name) {
1701			case SO_SNDBUF:
1702			case SO_RCVBUF:
1703				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
1704				    &so->so_snd : &so->so_rcv, (u_long)optval,
1705				    so, curthread) == 0) {
1706					error = ENOBUFS;
1707					goto bad;
1708				}
1709				break;
1710
1711			/*
1712			 * Make sure the low-water is never greater than
1713			 * the high-water.
1714			 */
1715			case SO_SNDLOWAT:
1716				SOCKBUF_LOCK(&so->so_snd);
1717				so->so_snd.sb_lowat =
1718				    (optval > so->so_snd.sb_hiwat) ?
1719				    so->so_snd.sb_hiwat : optval;
1720				SOCKBUF_UNLOCK(&so->so_snd);
1721				break;
1722			case SO_RCVLOWAT:
1723				SOCKBUF_LOCK(&so->so_rcv);
1724				so->so_rcv.sb_lowat =
1725				    (optval > so->so_rcv.sb_hiwat) ?
1726				    so->so_rcv.sb_hiwat : optval;
1727				SOCKBUF_UNLOCK(&so->so_rcv);
1728				break;
1729			}
1730			break;
1731
1732		case SO_SNDTIMEO:
1733		case SO_RCVTIMEO:
1734			error = sooptcopyin(sopt, &tv, sizeof tv,
1735					    sizeof tv);
1736			if (error)
1737				goto bad;
1738
1739			/* assert(hz > 0); */
1740			if (tv.tv_sec < 0 || tv.tv_sec > SHRT_MAX / hz ||
1741			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1742				error = EDOM;
1743				goto bad;
1744			}
1745			/* assert(tick > 0); */
1746			/* assert(ULONG_MAX - SHRT_MAX >= 1000000); */
1747			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
1748			if (val > SHRT_MAX) {
1749				error = EDOM;
1750				goto bad;
1751			}
1752			if (val == 0 && tv.tv_usec != 0)
1753				val = 1;
1754
1755			switch (sopt->sopt_name) {
1756			case SO_SNDTIMEO:
1757				so->so_snd.sb_timeo = val;
1758				break;
1759			case SO_RCVTIMEO:
1760				so->so_rcv.sb_timeo = val;
1761				break;
1762			}
1763			break;
1764		case SO_LABEL:
1765#ifdef MAC
1766			error = sooptcopyin(sopt, &extmac, sizeof extmac,
1767			    sizeof extmac);
1768			if (error)
1769				goto bad;
1770			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
1771			    so, &extmac);
1772#else
1773			error = EOPNOTSUPP;
1774#endif
1775			break;
1776		default:
1777			error = ENOPROTOOPT;
1778			break;
1779		}
1780		if (error == 0 && so->so_proto != NULL &&
1781		    so->so_proto->pr_ctloutput != NULL) {
1782			(void) ((*so->so_proto->pr_ctloutput)
1783				  (so, sopt));
1784		}
1785	}
1786bad:
1787	return (error);
1788}
1789
1790/* Helper routine for getsockopt */
1791int
1792sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
1793{
1794	int	error;
1795	size_t	valsize;
1796
1797	error = 0;
1798
1799	/*
1800	 * Documented get behavior is that we always return a value,
1801	 * possibly truncated to fit in the user's buffer.
1802	 * Traditional behavior is that we always tell the user
1803	 * precisely how much we copied, rather than something useful
1804	 * like the total amount we had available for her.
1805	 * Note that this interface is not idempotent; the entire answer must
1806	 * generated ahead of time.
1807	 */
1808	valsize = min(len, sopt->sopt_valsize);
1809	sopt->sopt_valsize = valsize;
1810	if (sopt->sopt_val != NULL) {
1811		if (sopt->sopt_td != NULL)
1812			error = copyout(buf, sopt->sopt_val, valsize);
1813		else
1814			bcopy(buf, sopt->sopt_val, valsize);
1815	}
1816	return error;
1817}
1818
1819int
1820sogetopt(so, sopt)
1821	struct socket *so;
1822	struct sockopt *sopt;
1823{
1824	int	error, optval;
1825	struct	linger l;
1826	struct	timeval tv;
1827#ifdef INET
1828	struct accept_filter_arg *afap;
1829#endif
1830#ifdef MAC
1831	struct mac extmac;
1832#endif
1833
1834	error = 0;
1835	if (sopt->sopt_level != SOL_SOCKET) {
1836		if (so->so_proto && so->so_proto->pr_ctloutput) {
1837			return ((*so->so_proto->pr_ctloutput)
1838				  (so, sopt));
1839		} else
1840			return (ENOPROTOOPT);
1841	} else {
1842		switch (sopt->sopt_name) {
1843#ifdef INET
1844		case SO_ACCEPTFILTER:
1845			/* Unlocked read. */
1846			if ((so->so_options & SO_ACCEPTCONN) == 0)
1847				return (EINVAL);
1848			MALLOC(afap, struct accept_filter_arg *, sizeof(*afap),
1849				M_TEMP, M_WAITOK | M_ZERO);
1850			SOCK_LOCK(so);
1851			if ((so->so_options & SO_ACCEPTFILTER) != 0) {
1852				strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name);
1853				if (so->so_accf->so_accept_filter_str != NULL)
1854					strcpy(afap->af_arg, so->so_accf->so_accept_filter_str);
1855			}
1856			SOCK_UNLOCK(so);
1857			error = sooptcopyout(sopt, afap, sizeof(*afap));
1858			FREE(afap, M_TEMP);
1859			break;
1860#endif
1861
1862		case SO_LINGER:
1863			/*
1864			 * XXXRW: We grab the lock here to get a consistent
1865			 * snapshot of both fields.  This may not really
1866			 * be necessary.
1867			 */
1868			SOCK_LOCK(so);
1869			l.l_onoff = so->so_options & SO_LINGER;
1870			l.l_linger = so->so_linger;
1871			SOCK_UNLOCK(so);
1872			error = sooptcopyout(sopt, &l, sizeof l);
1873			break;
1874
1875		case SO_USELOOPBACK:
1876		case SO_DONTROUTE:
1877		case SO_DEBUG:
1878		case SO_KEEPALIVE:
1879		case SO_REUSEADDR:
1880		case SO_REUSEPORT:
1881		case SO_BROADCAST:
1882		case SO_OOBINLINE:
1883		case SO_TIMESTAMP:
1884		case SO_BINTIME:
1885		case SO_NOSIGPIPE:
1886			optval = so->so_options & sopt->sopt_name;
1887integer:
1888			error = sooptcopyout(sopt, &optval, sizeof optval);
1889			break;
1890
1891		case SO_TYPE:
1892			optval = so->so_type;
1893			goto integer;
1894
1895		case SO_ERROR:
1896			optval = so->so_error;
1897			so->so_error = 0;
1898			goto integer;
1899
1900		case SO_SNDBUF:
1901			optval = so->so_snd.sb_hiwat;
1902			goto integer;
1903
1904		case SO_RCVBUF:
1905			optval = so->so_rcv.sb_hiwat;
1906			goto integer;
1907
1908		case SO_SNDLOWAT:
1909			optval = so->so_snd.sb_lowat;
1910			goto integer;
1911
1912		case SO_RCVLOWAT:
1913			optval = so->so_rcv.sb_lowat;
1914			goto integer;
1915
1916		case SO_SNDTIMEO:
1917		case SO_RCVTIMEO:
1918			optval = (sopt->sopt_name == SO_SNDTIMEO ?
1919				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1920
1921			tv.tv_sec = optval / hz;
1922			tv.tv_usec = (optval % hz) * tick;
1923			error = sooptcopyout(sopt, &tv, sizeof tv);
1924			break;
1925		case SO_LABEL:
1926#ifdef MAC
1927			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
1928			    sizeof(extmac));
1929			if (error)
1930				return (error);
1931			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
1932			    so, &extmac);
1933			if (error)
1934				return (error);
1935			error = sooptcopyout(sopt, &extmac, sizeof extmac);
1936#else
1937			error = EOPNOTSUPP;
1938#endif
1939			break;
1940		case SO_PEERLABEL:
1941#ifdef MAC
1942			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
1943			    sizeof(extmac));
1944			if (error)
1945				return (error);
1946			error = mac_getsockopt_peerlabel(
1947			    sopt->sopt_td->td_ucred, so, &extmac);
1948			if (error)
1949				return (error);
1950			error = sooptcopyout(sopt, &extmac, sizeof extmac);
1951#else
1952			error = EOPNOTSUPP;
1953#endif
1954			break;
1955		default:
1956			error = ENOPROTOOPT;
1957			break;
1958		}
1959		return (error);
1960	}
1961}
1962
1963/* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
1964int
1965soopt_getm(struct sockopt *sopt, struct mbuf **mp)
1966{
1967	struct mbuf *m, *m_prev;
1968	int sopt_size = sopt->sopt_valsize;
1969
1970	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1971	if (m == NULL)
1972		return ENOBUFS;
1973	if (sopt_size > MLEN) {
1974		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
1975		if ((m->m_flags & M_EXT) == 0) {
1976			m_free(m);
1977			return ENOBUFS;
1978		}
1979		m->m_len = min(MCLBYTES, sopt_size);
1980	} else {
1981		m->m_len = min(MLEN, sopt_size);
1982	}
1983	sopt_size -= m->m_len;
1984	*mp = m;
1985	m_prev = m;
1986
1987	while (sopt_size) {
1988		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1989		if (m == NULL) {
1990			m_freem(*mp);
1991			return ENOBUFS;
1992		}
1993		if (sopt_size > MLEN) {
1994			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
1995			    M_DONTWAIT);
1996			if ((m->m_flags & M_EXT) == 0) {
1997				m_freem(m);
1998				m_freem(*mp);
1999				return ENOBUFS;
2000			}
2001			m->m_len = min(MCLBYTES, sopt_size);
2002		} else {
2003			m->m_len = min(MLEN, sopt_size);
2004		}
2005		sopt_size -= m->m_len;
2006		m_prev->m_next = m;
2007		m_prev = m;
2008	}
2009	return 0;
2010}
2011
2012/* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2013int
2014soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2015{
2016	struct mbuf *m0 = m;
2017
2018	if (sopt->sopt_val == NULL)
2019		return 0;
2020	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2021		if (sopt->sopt_td != NULL) {
2022			int error;
2023
2024			error = copyin(sopt->sopt_val, mtod(m, char *),
2025				       m->m_len);
2026			if (error != 0) {
2027				m_freem(m0);
2028				return(error);
2029			}
2030		} else
2031			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2032		sopt->sopt_valsize -= m->m_len;
2033		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2034		m = m->m_next;
2035	}
2036	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2037		panic("ip6_sooptmcopyin");
2038	return 0;
2039}
2040
2041/* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2042int
2043soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2044{
2045	struct mbuf *m0 = m;
2046	size_t valsize = 0;
2047
2048	if (sopt->sopt_val == NULL)
2049		return 0;
2050	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2051		if (sopt->sopt_td != NULL) {
2052			int error;
2053
2054			error = copyout(mtod(m, char *), sopt->sopt_val,
2055				       m->m_len);
2056			if (error != 0) {
2057				m_freem(m0);
2058				return(error);
2059			}
2060		} else
2061			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2062	       sopt->sopt_valsize -= m->m_len;
2063	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2064	       valsize += m->m_len;
2065	       m = m->m_next;
2066	}
2067	if (m != NULL) {
2068		/* enough soopt buffer should be given from user-land */
2069		m_freem(m0);
2070		return(EINVAL);
2071	}
2072	sopt->sopt_valsize = valsize;
2073	return 0;
2074}
2075
2076void
2077sohasoutofband(so)
2078	struct socket *so;
2079{
2080	if (so->so_sigio != NULL)
2081		pgsigio(&so->so_sigio, SIGURG, 0);
2082	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2083}
2084
2085int
2086sopoll(struct socket *so, int events, struct ucred *active_cred,
2087    struct thread *td)
2088{
2089	int revents = 0;
2090
2091	if (events & (POLLIN | POLLRDNORM))
2092		if (soreadable(so))
2093			revents |= events & (POLLIN | POLLRDNORM);
2094
2095	if (events & POLLINIGNEOF)
2096		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2097		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2098			revents |= POLLINIGNEOF;
2099
2100	if (events & (POLLOUT | POLLWRNORM))
2101		if (sowriteable(so))
2102			revents |= events & (POLLOUT | POLLWRNORM);
2103
2104	if (events & (POLLPRI | POLLRDBAND))
2105		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2106			revents |= events & (POLLPRI | POLLRDBAND);
2107
2108	if (revents == 0) {
2109		if (events &
2110		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2111		     POLLRDBAND)) {
2112			SOCKBUF_LOCK(&so->so_rcv);
2113			selrecord(td, &so->so_rcv.sb_sel);
2114			so->so_rcv.sb_flags |= SB_SEL;
2115			SOCKBUF_UNLOCK(&so->so_rcv);
2116		}
2117
2118		if (events & (POLLOUT | POLLWRNORM)) {
2119			SOCKBUF_LOCK(&so->so_snd);
2120			selrecord(td, &so->so_snd.sb_sel);
2121			so->so_snd.sb_flags |= SB_SEL;
2122			SOCKBUF_UNLOCK(&so->so_snd);
2123		}
2124	}
2125
2126	return (revents);
2127}
2128
2129int
2130soo_kqfilter(struct file *fp, struct knote *kn)
2131{
2132	struct socket *so = kn->kn_fp->f_data;
2133	struct sockbuf *sb;
2134
2135	switch (kn->kn_filter) {
2136	case EVFILT_READ:
2137		if (so->so_options & SO_ACCEPTCONN)
2138			kn->kn_fop = &solisten_filtops;
2139		else if (so->so_state & SS_ISCONNECTED)
2140			kn->kn_fop = &soread_filtops;
2141		else
2142			return (EINVAL);
2143		sb = &so->so_rcv;
2144		break;
2145	case EVFILT_WRITE:
2146		kn->kn_fop = &sowrite_filtops;
2147		sb = &so->so_snd;
2148		break;
2149	default:
2150		return (EINVAL);
2151	}
2152
2153	SOCKBUF_LOCK(sb);
2154	knlist_add(&sb->sb_sel.si_note, kn, 1);
2155	sb->sb_flags |= SB_KNOTE;
2156	SOCKBUF_UNLOCK(sb);
2157	return (0);
2158}
2159
2160static void
2161filt_sordetach(struct knote *kn)
2162{
2163	struct socket *so = kn->kn_fp->f_data;
2164
2165	SOCKBUF_LOCK(&so->so_rcv);
2166	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2167	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2168		so->so_rcv.sb_flags &= ~SB_KNOTE;
2169	SOCKBUF_UNLOCK(&so->so_rcv);
2170}
2171
2172/*ARGSUSED*/
2173static int
2174filt_soread(struct knote *kn, long hint)
2175{
2176	struct socket *so = kn->kn_fp->f_data;
2177	int need_lock, result;
2178
2179	/*
2180	 * XXXRW: Conditional locking because filt_soread() can be called
2181	 * either from KNOTE() in the socket context where the socket buffer
2182	 * lock is already held, or from kqueue() itself.
2183	 */
2184	need_lock = !SOCKBUF_OWNED(&so->so_rcv);
2185	if (need_lock)
2186		SOCKBUF_LOCK(&so->so_rcv);
2187	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2188	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2189		kn->kn_flags |= EV_EOF;
2190		kn->kn_fflags = so->so_error;
2191		result = 1;
2192	} else if (so->so_error)	/* temporary udp error */
2193		result = 1;
2194	else if (kn->kn_sfflags & NOTE_LOWAT)
2195		result = (kn->kn_data >= kn->kn_sdata);
2196	else
2197		result = (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2198	if (need_lock)
2199		SOCKBUF_UNLOCK(&so->so_rcv);
2200	return (result);
2201}
2202
2203static void
2204filt_sowdetach(struct knote *kn)
2205{
2206	struct socket *so = kn->kn_fp->f_data;
2207
2208	SOCKBUF_LOCK(&so->so_snd);
2209	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2210	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2211		so->so_snd.sb_flags &= ~SB_KNOTE;
2212	SOCKBUF_UNLOCK(&so->so_snd);
2213}
2214
2215/*ARGSUSED*/
2216static int
2217filt_sowrite(struct knote *kn, long hint)
2218{
2219	struct socket *so = kn->kn_fp->f_data;
2220	int need_lock, result;
2221
2222	/*
2223	 * XXXRW: Conditional locking because filt_soread() can be called
2224	 * either from KNOTE() in the socket context where the socket buffer
2225	 * lock is already held, or from kqueue() itself.
2226	 */
2227	need_lock = !SOCKBUF_OWNED(&so->so_snd);
2228	if (need_lock)
2229		SOCKBUF_LOCK(&so->so_snd);
2230	kn->kn_data = sbspace(&so->so_snd);
2231	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2232		kn->kn_flags |= EV_EOF;
2233		kn->kn_fflags = so->so_error;
2234		result = 1;
2235	} else if (so->so_error)	/* temporary udp error */
2236		result = 1;
2237	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2238	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2239		result = 0;
2240	else if (kn->kn_sfflags & NOTE_LOWAT)
2241		result = (kn->kn_data >= kn->kn_sdata);
2242	else
2243		result = (kn->kn_data >= so->so_snd.sb_lowat);
2244	if (need_lock)
2245		SOCKBUF_UNLOCK(&so->so_snd);
2246	return (result);
2247}
2248
2249/*ARGSUSED*/
2250static int
2251filt_solisten(struct knote *kn, long hint)
2252{
2253	struct socket *so = kn->kn_fp->f_data;
2254
2255	kn->kn_data = so->so_qlen;
2256	return (! TAILQ_EMPTY(&so->so_comp));
2257}
2258
2259int
2260socheckuid(struct socket *so, uid_t uid)
2261{
2262
2263	if (so == NULL)
2264		return (EPERM);
2265	if (so->so_cred->cr_uid == uid)
2266		return (0);
2267	return (EPERM);
2268}
2269