uipc_mbuf.c revision 254605
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/uipc_mbuf.c 254605 2013-08-21 18:12:04Z andre $");
34
35#include "opt_param.h"
36#include "opt_mbuf_stress_test.h"
37#include "opt_mbuf_profiling.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/sysctl.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/uio.h>
50
51int	max_linkhdr;
52int	max_protohdr;
53int	max_hdr;
54int	max_datalen;
55#ifdef MBUF_STRESS_TEST
56int	m_defragpackets;
57int	m_defragbytes;
58int	m_defraguseless;
59int	m_defragfailure;
60int	m_defragrandomfailures;
61#endif
62
63/*
64 * sysctl(8) exported objects
65 */
66SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67	   &max_linkhdr, 0, "Size of largest link layer header");
68SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69	   &max_protohdr, 0, "Size of largest protocol layer header");
70SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71	   &max_hdr, 0, "Size of largest link plus protocol header");
72SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74#ifdef MBUF_STRESS_TEST
75SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76	   &m_defragpackets, 0, "");
77SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78	   &m_defragbytes, 0, "");
79SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80	   &m_defraguseless, 0, "");
81SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82	   &m_defragfailure, 0, "");
83SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84	   &m_defragrandomfailures, 0, "");
85#endif
86
87/*
88 * m_get2() allocates minimum mbuf that would fit "size" argument.
89 */
90struct mbuf *
91m_get2(int size, int how, short type, int flags)
92{
93	struct mb_args args;
94	struct mbuf *m, *n;
95
96	args.flags = flags;
97	args.type = type;
98
99	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
100		return (uma_zalloc_arg(zone_mbuf, &args, how));
101	if (size <= MCLBYTES)
102		return (uma_zalloc_arg(zone_pack, &args, how));
103
104	if (size > MJUMPAGESIZE)
105		return (NULL);
106
107	m = uma_zalloc_arg(zone_mbuf, &args, how);
108	if (m == NULL)
109		return (NULL);
110
111	n = uma_zalloc_arg(zone_jumbop, m, how);
112	if (n == NULL) {
113		uma_zfree(zone_mbuf, m);
114		return (NULL);
115	}
116
117	return (m);
118}
119
120/*
121 * m_getjcl() returns an mbuf with a cluster of the specified size attached.
122 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
123 */
124struct mbuf *
125m_getjcl(int how, short type, int flags, int size)
126{
127	struct mb_args args;
128	struct mbuf *m, *n;
129	uma_zone_t zone;
130
131	if (size == MCLBYTES)
132		return m_getcl(how, type, flags);
133
134	args.flags = flags;
135	args.type = type;
136
137	m = uma_zalloc_arg(zone_mbuf, &args, how);
138	if (m == NULL)
139		return (NULL);
140
141	zone = m_getzone(size);
142	n = uma_zalloc_arg(zone, m, how);
143	if (n == NULL) {
144		uma_zfree(zone_mbuf, m);
145		return (NULL);
146	}
147	return (m);
148}
149
150/*
151 * Allocate a given length worth of mbufs and/or clusters (whatever fits
152 * best) and return a pointer to the top of the allocated chain.  If an
153 * existing mbuf chain is provided, then we will append the new chain
154 * to the existing one but still return the top of the newly allocated
155 * chain.
156 */
157struct mbuf *
158m_getm2(struct mbuf *m, int len, int how, short type, int flags)
159{
160	struct mbuf *mb, *nm = NULL, *mtail = NULL;
161
162	KASSERT(len >= 0, ("%s: len is < 0", __func__));
163
164	/* Validate flags. */
165	flags &= (M_PKTHDR | M_EOR);
166
167	/* Packet header mbuf must be first in chain. */
168	if ((flags & M_PKTHDR) && m != NULL)
169		flags &= ~M_PKTHDR;
170
171	/* Loop and append maximum sized mbufs to the chain tail. */
172	while (len > 0) {
173		if (len > MCLBYTES)
174			mb = m_getjcl(how, type, (flags & M_PKTHDR),
175			    MJUMPAGESIZE);
176		else if (len >= MINCLSIZE)
177			mb = m_getcl(how, type, (flags & M_PKTHDR));
178		else if (flags & M_PKTHDR)
179			mb = m_gethdr(how, type);
180		else
181			mb = m_get(how, type);
182
183		/* Fail the whole operation if one mbuf can't be allocated. */
184		if (mb == NULL) {
185			if (nm != NULL)
186				m_freem(nm);
187			return (NULL);
188		}
189
190		/* Book keeping. */
191		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
192			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
193		if (mtail != NULL)
194			mtail->m_next = mb;
195		else
196			nm = mb;
197		mtail = mb;
198		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
199	}
200	if (flags & M_EOR)
201		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
202
203	/* If mbuf was supplied, append new chain to the end of it. */
204	if (m != NULL) {
205		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
206			;
207		mtail->m_next = nm;
208		mtail->m_flags &= ~M_EOR;
209	} else
210		m = nm;
211
212	return (m);
213}
214
215/*
216 * Free an entire chain of mbufs and associated external buffers, if
217 * applicable.
218 */
219void
220m_freem(struct mbuf *mb)
221{
222
223	while (mb != NULL)
224		mb = m_free(mb);
225}
226
227/*-
228 * Configure a provided mbuf to refer to the provided external storage
229 * buffer and setup a reference count for said buffer.  If the setting
230 * up of the reference count fails, the M_EXT bit will not be set.  If
231 * successfull, the M_EXT bit is set in the mbuf's flags.
232 *
233 * Arguments:
234 *    mb     The existing mbuf to which to attach the provided buffer.
235 *    buf    The address of the provided external storage buffer.
236 *    size   The size of the provided buffer.
237 *    freef  A pointer to a routine that is responsible for freeing the
238 *           provided external storage buffer.
239 *    args   A pointer to an argument structure (of any type) to be passed
240 *           to the provided freef routine (may be NULL).
241 *    flags  Any other flags to be passed to the provided mbuf.
242 *    type   The type that the external storage buffer should be
243 *           labeled with.
244 *
245 * Returns:
246 *    Nothing.
247 */
248int
249m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
250    void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type,
251    int wait)
252{
253	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
254
255	if (type != EXT_EXTREF)
256		mb->m_ext.ref_cnt = uma_zalloc(zone_ext_refcnt, wait);
257
258	if (mb->m_ext.ref_cnt == NULL)
259		return (ENOMEM);
260
261	*(mb->m_ext.ref_cnt) = 1;
262	mb->m_flags |= (M_EXT | flags);
263	mb->m_ext.ext_buf = buf;
264	mb->m_data = mb->m_ext.ext_buf;
265	mb->m_ext.ext_size = size;
266	mb->m_ext.ext_free = freef;
267	mb->m_ext.ext_arg1 = arg1;
268	mb->m_ext.ext_arg2 = arg2;
269	mb->m_ext.ext_type = type;
270
271	return (0);
272}
273
274/*
275 * Non-directly-exported function to clean up after mbufs with M_EXT
276 * storage attached to them if the reference count hits 1.
277 */
278void
279mb_free_ext(struct mbuf *m)
280{
281	int skipmbuf;
282
283	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
284	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
285
286	/*
287	 * check if the header is embedded in the cluster
288	 */
289	skipmbuf = (m->m_flags & M_NOFREE);
290
291	/* Free attached storage if this mbuf is the only reference to it. */
292	if (*(m->m_ext.ref_cnt) == 1 ||
293	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
294		switch (m->m_ext.ext_type) {
295		case EXT_PACKET:	/* The packet zone is special. */
296			if (*(m->m_ext.ref_cnt) == 0)
297				*(m->m_ext.ref_cnt) = 1;
298			uma_zfree(zone_pack, m);
299			return;		/* Job done. */
300		case EXT_CLUSTER:
301			uma_zfree(zone_clust, m->m_ext.ext_buf);
302			break;
303		case EXT_JUMBOP:
304			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
305			break;
306		case EXT_JUMBO9:
307			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
308			break;
309		case EXT_JUMBO16:
310			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
311			break;
312		case EXT_SFBUF:
313		case EXT_NET_DRV:
314		case EXT_MOD_TYPE:
315		case EXT_DISPOSABLE:
316			*(m->m_ext.ref_cnt) = 0;
317			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
318				m->m_ext.ref_cnt));
319			/* FALLTHROUGH */
320		case EXT_EXTREF:
321			KASSERT(m->m_ext.ext_free != NULL,
322				("%s: ext_free not set", __func__));
323			(*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
324			    m->m_ext.ext_arg2);
325			break;
326		default:
327			KASSERT(m->m_ext.ext_type == 0,
328				("%s: unknown ext_type", __func__));
329		}
330	}
331	if (skipmbuf)
332		return;
333
334	/*
335	 * Free this mbuf back to the mbuf zone with all m_ext
336	 * information purged.
337	 */
338	m->m_ext.ext_buf = NULL;
339	m->m_ext.ext_free = NULL;
340	m->m_ext.ext_arg1 = NULL;
341	m->m_ext.ext_arg2 = NULL;
342	m->m_ext.ref_cnt = NULL;
343	m->m_ext.ext_size = 0;
344	m->m_ext.ext_type = 0;
345	m->m_flags &= ~M_EXT;
346	uma_zfree(zone_mbuf, m);
347}
348
349/*
350 * Attach the cluster from *m to *n, set up m_ext in *n
351 * and bump the refcount of the cluster.
352 */
353static void
354mb_dupcl(struct mbuf *n, struct mbuf *m)
355{
356	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
357	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
358	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
359
360	if (*(m->m_ext.ref_cnt) == 1)
361		*(m->m_ext.ref_cnt) += 1;
362	else
363		atomic_add_int(m->m_ext.ref_cnt, 1);
364	n->m_ext.ext_buf = m->m_ext.ext_buf;
365	n->m_ext.ext_free = m->m_ext.ext_free;
366	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
367	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
368	n->m_ext.ext_size = m->m_ext.ext_size;
369	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
370	n->m_ext.ext_type = m->m_ext.ext_type;
371	n->m_flags |= M_EXT;
372	n->m_flags |= m->m_flags & M_RDONLY;
373}
374
375/*
376 * Clean up mbuf (chain) from any tags and packet headers.
377 * If "all" is set then the first mbuf in the chain will be
378 * cleaned too.
379 */
380void
381m_demote(struct mbuf *m0, int all)
382{
383	struct mbuf *m;
384
385	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
386		if (m->m_flags & M_PKTHDR) {
387			m_tag_delete_chain(m, NULL);
388			m->m_flags &= ~M_PKTHDR;
389			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
390		}
391		if (m != m0 && m->m_nextpkt != NULL) {
392			KASSERT(m->m_nextpkt == NULL,
393			    ("%s: m_nextpkt not NULL", __func__));
394			m_freem(m->m_nextpkt);
395			m->m_nextpkt = NULL;
396		}
397		m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_NOFREE);
398	}
399}
400
401/*
402 * Sanity checks on mbuf (chain) for use in KASSERT() and general
403 * debugging.
404 * Returns 0 or panics when bad and 1 on all tests passed.
405 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
406 * blow up later.
407 */
408int
409m_sanity(struct mbuf *m0, int sanitize)
410{
411	struct mbuf *m;
412	caddr_t a, b;
413	int pktlen = 0;
414
415#ifdef INVARIANTS
416#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
417#else
418#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
419#endif
420
421	for (m = m0; m != NULL; m = m->m_next) {
422		/*
423		 * Basic pointer checks.  If any of these fails then some
424		 * unrelated kernel memory before or after us is trashed.
425		 * No way to recover from that.
426		 */
427		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
428			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
429			 (caddr_t)(&m->m_dat)) );
430		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
431			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
432		if ((caddr_t)m->m_data < a)
433			M_SANITY_ACTION("m_data outside mbuf data range left");
434		if ((caddr_t)m->m_data > b)
435			M_SANITY_ACTION("m_data outside mbuf data range right");
436		if ((caddr_t)m->m_data + m->m_len > b)
437			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
438		if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
439			if ((caddr_t)m->m_pkthdr.header < a ||
440			    (caddr_t)m->m_pkthdr.header > b)
441				M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
442		}
443
444		/* m->m_nextpkt may only be set on first mbuf in chain. */
445		if (m != m0 && m->m_nextpkt != NULL) {
446			if (sanitize) {
447				m_freem(m->m_nextpkt);
448				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
449			} else
450				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
451		}
452
453		/* packet length (not mbuf length!) calculation */
454		if (m0->m_flags & M_PKTHDR)
455			pktlen += m->m_len;
456
457		/* m_tags may only be attached to first mbuf in chain. */
458		if (m != m0 && m->m_flags & M_PKTHDR &&
459		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
460			if (sanitize) {
461				m_tag_delete_chain(m, NULL);
462				/* put in 0xDEADC0DE perhaps? */
463			} else
464				M_SANITY_ACTION("m_tags on in-chain mbuf");
465		}
466
467		/* M_PKTHDR may only be set on first mbuf in chain */
468		if (m != m0 && m->m_flags & M_PKTHDR) {
469			if (sanitize) {
470				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
471				m->m_flags &= ~M_PKTHDR;
472				/* put in 0xDEADCODE and leave hdr flag in */
473			} else
474				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
475		}
476	}
477	m = m0;
478	if (pktlen && pktlen != m->m_pkthdr.len) {
479		if (sanitize)
480			m->m_pkthdr.len = 0;
481		else
482			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
483	}
484	return 1;
485
486#undef	M_SANITY_ACTION
487}
488
489
490/*
491 * "Move" mbuf pkthdr from "from" to "to".
492 * "from" must have M_PKTHDR set, and "to" must be empty.
493 */
494void
495m_move_pkthdr(struct mbuf *to, struct mbuf *from)
496{
497
498#if 0
499	/* see below for why these are not enabled */
500	M_ASSERTPKTHDR(to);
501	/* Note: with MAC, this may not be a good assertion. */
502	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
503	    ("m_move_pkthdr: to has tags"));
504#endif
505#ifdef MAC
506	/*
507	 * XXXMAC: It could be this should also occur for non-MAC?
508	 */
509	if (to->m_flags & M_PKTHDR)
510		m_tag_delete_chain(to, NULL);
511#endif
512	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
513	if ((to->m_flags & M_EXT) == 0)
514		to->m_data = to->m_pktdat;
515	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
516	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
517	from->m_flags &= ~M_PKTHDR;
518}
519
520/*
521 * Duplicate "from"'s mbuf pkthdr in "to".
522 * "from" must have M_PKTHDR set, and "to" must be empty.
523 * In particular, this does a deep copy of the packet tags.
524 */
525int
526m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
527{
528
529#if 0
530	/*
531	 * The mbuf allocator only initializes the pkthdr
532	 * when the mbuf is allocated with m_gethdr(). Many users
533	 * (e.g. m_copy*, m_prepend) use m_get() and then
534	 * smash the pkthdr as needed causing these
535	 * assertions to trip.  For now just disable them.
536	 */
537	M_ASSERTPKTHDR(to);
538	/* Note: with MAC, this may not be a good assertion. */
539	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
540#endif
541	MBUF_CHECKSLEEP(how);
542#ifdef MAC
543	if (to->m_flags & M_PKTHDR)
544		m_tag_delete_chain(to, NULL);
545#endif
546	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
547	if ((to->m_flags & M_EXT) == 0)
548		to->m_data = to->m_pktdat;
549	to->m_pkthdr = from->m_pkthdr;
550	SLIST_INIT(&to->m_pkthdr.tags);
551	return (m_tag_copy_chain(to, from, MBTOM(how)));
552}
553
554/*
555 * Lesser-used path for M_PREPEND:
556 * allocate new mbuf to prepend to chain,
557 * copy junk along.
558 */
559struct mbuf *
560m_prepend(struct mbuf *m, int len, int how)
561{
562	struct mbuf *mn;
563
564	if (m->m_flags & M_PKTHDR)
565		mn = m_gethdr(how, m->m_type);
566	else
567		mn = m_get(how, m->m_type);
568	if (mn == NULL) {
569		m_freem(m);
570		return (NULL);
571	}
572	if (m->m_flags & M_PKTHDR)
573		m_move_pkthdr(mn, m);
574	mn->m_next = m;
575	m = mn;
576	if(m->m_flags & M_PKTHDR) {
577		if (len < MHLEN)
578			MH_ALIGN(m, len);
579	} else {
580		if (len < MLEN)
581			M_ALIGN(m, len);
582	}
583	m->m_len = len;
584	return (m);
585}
586
587/*
588 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
589 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
590 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
591 * Note that the copy is read-only, because clusters are not copied,
592 * only their reference counts are incremented.
593 */
594struct mbuf *
595m_copym(struct mbuf *m, int off0, int len, int wait)
596{
597	struct mbuf *n, **np;
598	int off = off0;
599	struct mbuf *top;
600	int copyhdr = 0;
601
602	KASSERT(off >= 0, ("m_copym, negative off %d", off));
603	KASSERT(len >= 0, ("m_copym, negative len %d", len));
604	MBUF_CHECKSLEEP(wait);
605	if (off == 0 && m->m_flags & M_PKTHDR)
606		copyhdr = 1;
607	while (off > 0) {
608		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
609		if (off < m->m_len)
610			break;
611		off -= m->m_len;
612		m = m->m_next;
613	}
614	np = &top;
615	top = 0;
616	while (len > 0) {
617		if (m == NULL) {
618			KASSERT(len == M_COPYALL,
619			    ("m_copym, length > size of mbuf chain"));
620			break;
621		}
622		if (copyhdr)
623			n = m_gethdr(wait, m->m_type);
624		else
625			n = m_get(wait, m->m_type);
626		*np = n;
627		if (n == NULL)
628			goto nospace;
629		if (copyhdr) {
630			if (!m_dup_pkthdr(n, m, wait))
631				goto nospace;
632			if (len == M_COPYALL)
633				n->m_pkthdr.len -= off0;
634			else
635				n->m_pkthdr.len = len;
636			copyhdr = 0;
637		}
638		n->m_len = min(len, m->m_len - off);
639		if (m->m_flags & M_EXT) {
640			n->m_data = m->m_data + off;
641			mb_dupcl(n, m);
642		} else
643			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
644			    (u_int)n->m_len);
645		if (len != M_COPYALL)
646			len -= n->m_len;
647		off = 0;
648		m = m->m_next;
649		np = &n->m_next;
650	}
651
652	return (top);
653nospace:
654	m_freem(top);
655	return (NULL);
656}
657
658/*
659 * Returns mbuf chain with new head for the prepending case.
660 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
661 * either prepending or appending the data.
662 * The resulting mbuf (chain) m is fully writeable.
663 * m is destination (is made writeable)
664 * n is source, off is offset in source, len is len from offset
665 * dir, 0 append, 1 prepend
666 * how, wait or nowait
667 */
668
669static int
670m_bcopyxxx(void *s, void *t, u_int len)
671{
672	bcopy(s, t, (size_t)len);
673	return 0;
674}
675
676struct mbuf *
677m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
678    int prep, int how)
679{
680	struct mbuf *mm, *x, *z, *prev = NULL;
681	caddr_t p;
682	int i, nlen = 0;
683	caddr_t buf[MLEN];
684
685	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
686	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
687	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
688	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
689
690	mm = m;
691	if (!prep) {
692		while(mm->m_next) {
693			prev = mm;
694			mm = mm->m_next;
695		}
696	}
697	for (z = n; z != NULL; z = z->m_next)
698		nlen += z->m_len;
699	if (len == M_COPYALL)
700		len = nlen - off;
701	if (off + len > nlen || len < 1)
702		return NULL;
703
704	if (!M_WRITABLE(mm)) {
705		/* XXX: Use proper m_xxx function instead. */
706		x = m_getcl(how, MT_DATA, mm->m_flags);
707		if (x == NULL)
708			return NULL;
709		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
710		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
711		x->m_data = p;
712		mm->m_next = NULL;
713		if (mm != m)
714			prev->m_next = x;
715		m_free(mm);
716		mm = x;
717	}
718
719	/*
720	 * Append/prepend the data.  Allocating mbufs as necessary.
721	 */
722	/* Shortcut if enough free space in first/last mbuf. */
723	if (!prep && M_TRAILINGSPACE(mm) >= len) {
724		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
725			 mm->m_len);
726		mm->m_len += len;
727		mm->m_pkthdr.len += len;
728		return m;
729	}
730	if (prep && M_LEADINGSPACE(mm) >= len) {
731		mm->m_data = mtod(mm, caddr_t) - len;
732		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
733		mm->m_len += len;
734		mm->m_pkthdr.len += len;
735		return mm;
736	}
737
738	/* Expand first/last mbuf to cluster if possible. */
739	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
740		bcopy(mm->m_data, &buf, mm->m_len);
741		m_clget(mm, how);
742		if (!(mm->m_flags & M_EXT))
743			return NULL;
744		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
745		mm->m_data = mm->m_ext.ext_buf;
746		mm->m_pkthdr.header = NULL;
747	}
748	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
749		bcopy(mm->m_data, &buf, mm->m_len);
750		m_clget(mm, how);
751		if (!(mm->m_flags & M_EXT))
752			return NULL;
753		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
754		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
755		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
756			      mm->m_ext.ext_size - mm->m_len;
757		mm->m_pkthdr.header = NULL;
758	}
759
760	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
761	if (!prep && len > M_TRAILINGSPACE(mm)) {
762		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
763			return NULL;
764	}
765	if (prep && len > M_LEADINGSPACE(mm)) {
766		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
767			return NULL;
768		i = 0;
769		for (x = z; x != NULL; x = x->m_next) {
770			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
771			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
772			if (!x->m_next)
773				break;
774		}
775		z->m_data += i - len;
776		m_move_pkthdr(mm, z);
777		x->m_next = mm;
778		mm = z;
779	}
780
781	/* Seek to start position in source mbuf. Optimization for long chains. */
782	while (off > 0) {
783		if (off < n->m_len)
784			break;
785		off -= n->m_len;
786		n = n->m_next;
787	}
788
789	/* Copy data into target mbuf. */
790	z = mm;
791	while (len > 0) {
792		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
793		i = M_TRAILINGSPACE(z);
794		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
795		z->m_len += i;
796		/* fixup pkthdr.len if necessary */
797		if ((prep ? mm : m)->m_flags & M_PKTHDR)
798			(prep ? mm : m)->m_pkthdr.len += i;
799		off += i;
800		len -= i;
801		z = z->m_next;
802	}
803	return (prep ? mm : m);
804}
805
806/*
807 * Copy an entire packet, including header (which must be present).
808 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
809 * Note that the copy is read-only, because clusters are not copied,
810 * only their reference counts are incremented.
811 * Preserve alignment of the first mbuf so if the creator has left
812 * some room at the beginning (e.g. for inserting protocol headers)
813 * the copies still have the room available.
814 */
815struct mbuf *
816m_copypacket(struct mbuf *m, int how)
817{
818	struct mbuf *top, *n, *o;
819
820	MBUF_CHECKSLEEP(how);
821	n = m_get(how, m->m_type);
822	top = n;
823	if (n == NULL)
824		goto nospace;
825
826	if (!m_dup_pkthdr(n, m, how))
827		goto nospace;
828	n->m_len = m->m_len;
829	if (m->m_flags & M_EXT) {
830		n->m_data = m->m_data;
831		mb_dupcl(n, m);
832	} else {
833		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
834		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
835	}
836
837	m = m->m_next;
838	while (m) {
839		o = m_get(how, m->m_type);
840		if (o == NULL)
841			goto nospace;
842
843		n->m_next = o;
844		n = n->m_next;
845
846		n->m_len = m->m_len;
847		if (m->m_flags & M_EXT) {
848			n->m_data = m->m_data;
849			mb_dupcl(n, m);
850		} else {
851			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
852		}
853
854		m = m->m_next;
855	}
856	return top;
857nospace:
858	m_freem(top);
859	return (NULL);
860}
861
862/*
863 * Copy data from an mbuf chain starting "off" bytes from the beginning,
864 * continuing for "len" bytes, into the indicated buffer.
865 */
866void
867m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
868{
869	u_int count;
870
871	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
872	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
873	while (off > 0) {
874		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
875		if (off < m->m_len)
876			break;
877		off -= m->m_len;
878		m = m->m_next;
879	}
880	while (len > 0) {
881		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
882		count = min(m->m_len - off, len);
883		bcopy(mtod(m, caddr_t) + off, cp, count);
884		len -= count;
885		cp += count;
886		off = 0;
887		m = m->m_next;
888	}
889}
890
891/*
892 * Copy a packet header mbuf chain into a completely new chain, including
893 * copying any mbuf clusters.  Use this instead of m_copypacket() when
894 * you need a writable copy of an mbuf chain.
895 */
896struct mbuf *
897m_dup(struct mbuf *m, int how)
898{
899	struct mbuf **p, *top = NULL;
900	int remain, moff, nsize;
901
902	MBUF_CHECKSLEEP(how);
903	/* Sanity check */
904	if (m == NULL)
905		return (NULL);
906	M_ASSERTPKTHDR(m);
907
908	/* While there's more data, get a new mbuf, tack it on, and fill it */
909	remain = m->m_pkthdr.len;
910	moff = 0;
911	p = &top;
912	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
913		struct mbuf *n;
914
915		/* Get the next new mbuf */
916		if (remain >= MINCLSIZE) {
917			n = m_getcl(how, m->m_type, 0);
918			nsize = MCLBYTES;
919		} else {
920			n = m_get(how, m->m_type);
921			nsize = MLEN;
922		}
923		if (n == NULL)
924			goto nospace;
925
926		if (top == NULL) {		/* First one, must be PKTHDR */
927			if (!m_dup_pkthdr(n, m, how)) {
928				m_free(n);
929				goto nospace;
930			}
931			if ((n->m_flags & M_EXT) == 0)
932				nsize = MHLEN;
933		}
934		n->m_len = 0;
935
936		/* Link it into the new chain */
937		*p = n;
938		p = &n->m_next;
939
940		/* Copy data from original mbuf(s) into new mbuf */
941		while (n->m_len < nsize && m != NULL) {
942			int chunk = min(nsize - n->m_len, m->m_len - moff);
943
944			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
945			moff += chunk;
946			n->m_len += chunk;
947			remain -= chunk;
948			if (moff == m->m_len) {
949				m = m->m_next;
950				moff = 0;
951			}
952		}
953
954		/* Check correct total mbuf length */
955		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
956		    	("%s: bogus m_pkthdr.len", __func__));
957	}
958	return (top);
959
960nospace:
961	m_freem(top);
962	return (NULL);
963}
964
965/*
966 * Concatenate mbuf chain n to m.
967 * Both chains must be of the same type (e.g. MT_DATA).
968 * Any m_pkthdr is not updated.
969 */
970void
971m_cat(struct mbuf *m, struct mbuf *n)
972{
973	while (m->m_next)
974		m = m->m_next;
975	while (n) {
976		if (!M_WRITABLE(m) ||
977		    M_TRAILINGSPACE(m) < n->m_len) {
978			/* just join the two chains */
979			m->m_next = n;
980			return;
981		}
982		/* splat the data from one into the other */
983		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
984		    (u_int)n->m_len);
985		m->m_len += n->m_len;
986		n = m_free(n);
987	}
988}
989
990void
991m_adj(struct mbuf *mp, int req_len)
992{
993	int len = req_len;
994	struct mbuf *m;
995	int count;
996
997	if ((m = mp) == NULL)
998		return;
999	if (len >= 0) {
1000		/*
1001		 * Trim from head.
1002		 */
1003		while (m != NULL && len > 0) {
1004			if (m->m_len <= len) {
1005				len -= m->m_len;
1006				m->m_len = 0;
1007				m = m->m_next;
1008			} else {
1009				m->m_len -= len;
1010				m->m_data += len;
1011				len = 0;
1012			}
1013		}
1014		if (mp->m_flags & M_PKTHDR)
1015			mp->m_pkthdr.len -= (req_len - len);
1016	} else {
1017		/*
1018		 * Trim from tail.  Scan the mbuf chain,
1019		 * calculating its length and finding the last mbuf.
1020		 * If the adjustment only affects this mbuf, then just
1021		 * adjust and return.  Otherwise, rescan and truncate
1022		 * after the remaining size.
1023		 */
1024		len = -len;
1025		count = 0;
1026		for (;;) {
1027			count += m->m_len;
1028			if (m->m_next == (struct mbuf *)0)
1029				break;
1030			m = m->m_next;
1031		}
1032		if (m->m_len >= len) {
1033			m->m_len -= len;
1034			if (mp->m_flags & M_PKTHDR)
1035				mp->m_pkthdr.len -= len;
1036			return;
1037		}
1038		count -= len;
1039		if (count < 0)
1040			count = 0;
1041		/*
1042		 * Correct length for chain is "count".
1043		 * Find the mbuf with last data, adjust its length,
1044		 * and toss data from remaining mbufs on chain.
1045		 */
1046		m = mp;
1047		if (m->m_flags & M_PKTHDR)
1048			m->m_pkthdr.len = count;
1049		for (; m; m = m->m_next) {
1050			if (m->m_len >= count) {
1051				m->m_len = count;
1052				if (m->m_next != NULL) {
1053					m_freem(m->m_next);
1054					m->m_next = NULL;
1055				}
1056				break;
1057			}
1058			count -= m->m_len;
1059		}
1060	}
1061}
1062
1063/*
1064 * Rearange an mbuf chain so that len bytes are contiguous
1065 * and in the data area of an mbuf (so that mtod will work
1066 * for a structure of size len).  Returns the resulting
1067 * mbuf chain on success, frees it and returns null on failure.
1068 * If there is room, it will add up to max_protohdr-len extra bytes to the
1069 * contiguous region in an attempt to avoid being called next time.
1070 */
1071struct mbuf *
1072m_pullup(struct mbuf *n, int len)
1073{
1074	struct mbuf *m;
1075	int count;
1076	int space;
1077
1078	/*
1079	 * If first mbuf has no cluster, and has room for len bytes
1080	 * without shifting current data, pullup into it,
1081	 * otherwise allocate a new mbuf to prepend to the chain.
1082	 */
1083	if ((n->m_flags & M_EXT) == 0 &&
1084	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1085		if (n->m_len >= len)
1086			return (n);
1087		m = n;
1088		n = n->m_next;
1089		len -= m->m_len;
1090	} else {
1091		if (len > MHLEN)
1092			goto bad;
1093		m = m_get(M_NOWAIT, n->m_type);
1094		if (m == NULL)
1095			goto bad;
1096		if (n->m_flags & M_PKTHDR)
1097			m_move_pkthdr(m, n);
1098	}
1099	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1100	do {
1101		count = min(min(max(len, max_protohdr), space), n->m_len);
1102		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1103		  (u_int)count);
1104		len -= count;
1105		m->m_len += count;
1106		n->m_len -= count;
1107		space -= count;
1108		if (n->m_len)
1109			n->m_data += count;
1110		else
1111			n = m_free(n);
1112	} while (len > 0 && n);
1113	if (len > 0) {
1114		(void) m_free(m);
1115		goto bad;
1116	}
1117	m->m_next = n;
1118	return (m);
1119bad:
1120	m_freem(n);
1121	return (NULL);
1122}
1123
1124/*
1125 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1126 * the amount of empty space before the data in the new mbuf to be specified
1127 * (in the event that the caller expects to prepend later).
1128 */
1129int MSFail;
1130
1131struct mbuf *
1132m_copyup(struct mbuf *n, int len, int dstoff)
1133{
1134	struct mbuf *m;
1135	int count, space;
1136
1137	if (len > (MHLEN - dstoff))
1138		goto bad;
1139	m = m_get(M_NOWAIT, n->m_type);
1140	if (m == NULL)
1141		goto bad;
1142	if (n->m_flags & M_PKTHDR)
1143		m_move_pkthdr(m, n);
1144	m->m_data += dstoff;
1145	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1146	do {
1147		count = min(min(max(len, max_protohdr), space), n->m_len);
1148		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1149		    (unsigned)count);
1150		len -= count;
1151		m->m_len += count;
1152		n->m_len -= count;
1153		space -= count;
1154		if (n->m_len)
1155			n->m_data += count;
1156		else
1157			n = m_free(n);
1158	} while (len > 0 && n);
1159	if (len > 0) {
1160		(void) m_free(m);
1161		goto bad;
1162	}
1163	m->m_next = n;
1164	return (m);
1165 bad:
1166	m_freem(n);
1167	MSFail++;
1168	return (NULL);
1169}
1170
1171/*
1172 * Partition an mbuf chain in two pieces, returning the tail --
1173 * all but the first len0 bytes.  In case of failure, it returns NULL and
1174 * attempts to restore the chain to its original state.
1175 *
1176 * Note that the resulting mbufs might be read-only, because the new
1177 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1178 * the "breaking point" happens to lie within a cluster mbuf. Use the
1179 * M_WRITABLE() macro to check for this case.
1180 */
1181struct mbuf *
1182m_split(struct mbuf *m0, int len0, int wait)
1183{
1184	struct mbuf *m, *n;
1185	u_int len = len0, remain;
1186
1187	MBUF_CHECKSLEEP(wait);
1188	for (m = m0; m && len > m->m_len; m = m->m_next)
1189		len -= m->m_len;
1190	if (m == NULL)
1191		return (NULL);
1192	remain = m->m_len - len;
1193	if (m0->m_flags & M_PKTHDR && remain == 0) {
1194		n = m_gethdr(wait, m0->m_type);
1195			return (NULL);
1196		n->m_next = m->m_next;
1197		m->m_next = NULL;
1198		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1199		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1200		m0->m_pkthdr.len = len0;
1201		return (n);
1202	} else if (m0->m_flags & M_PKTHDR) {
1203		n = m_gethdr(wait, m0->m_type);
1204		if (n == NULL)
1205			return (NULL);
1206		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1207		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1208		m0->m_pkthdr.len = len0;
1209		if (m->m_flags & M_EXT)
1210			goto extpacket;
1211		if (remain > MHLEN) {
1212			/* m can't be the lead packet */
1213			MH_ALIGN(n, 0);
1214			n->m_next = m_split(m, len, wait);
1215			if (n->m_next == NULL) {
1216				(void) m_free(n);
1217				return (NULL);
1218			} else {
1219				n->m_len = 0;
1220				return (n);
1221			}
1222		} else
1223			MH_ALIGN(n, remain);
1224	} else if (remain == 0) {
1225		n = m->m_next;
1226		m->m_next = NULL;
1227		return (n);
1228	} else {
1229		n = m_get(wait, m->m_type);
1230		if (n == NULL)
1231			return (NULL);
1232		M_ALIGN(n, remain);
1233	}
1234extpacket:
1235	if (m->m_flags & M_EXT) {
1236		n->m_data = m->m_data + len;
1237		mb_dupcl(n, m);
1238	} else {
1239		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1240	}
1241	n->m_len = remain;
1242	m->m_len = len;
1243	n->m_next = m->m_next;
1244	m->m_next = NULL;
1245	return (n);
1246}
1247/*
1248 * Routine to copy from device local memory into mbufs.
1249 * Note that `off' argument is offset into first mbuf of target chain from
1250 * which to begin copying the data to.
1251 */
1252struct mbuf *
1253m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1254    void (*copy)(char *from, caddr_t to, u_int len))
1255{
1256	struct mbuf *m;
1257	struct mbuf *top = NULL, **mp = &top;
1258	int len;
1259
1260	if (off < 0 || off > MHLEN)
1261		return (NULL);
1262
1263	while (totlen > 0) {
1264		if (top == NULL) {	/* First one, must be PKTHDR */
1265			if (totlen + off >= MINCLSIZE) {
1266				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1267				len = MCLBYTES;
1268			} else {
1269				m = m_gethdr(M_NOWAIT, MT_DATA);
1270				len = MHLEN;
1271
1272				/* Place initial small packet/header at end of mbuf */
1273				if (m && totlen + off + max_linkhdr <= MLEN) {
1274					m->m_data += max_linkhdr;
1275					len -= max_linkhdr;
1276				}
1277			}
1278			if (m == NULL)
1279				return NULL;
1280			m->m_pkthdr.rcvif = ifp;
1281			m->m_pkthdr.len = totlen;
1282		} else {
1283			if (totlen + off >= MINCLSIZE) {
1284				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1285				len = MCLBYTES;
1286			} else {
1287				m = m_get(M_NOWAIT, MT_DATA);
1288				len = MLEN;
1289			}
1290			if (m == NULL) {
1291				m_freem(top);
1292				return NULL;
1293			}
1294		}
1295		if (off) {
1296			m->m_data += off;
1297			len -= off;
1298			off = 0;
1299		}
1300		m->m_len = len = min(totlen, len);
1301		if (copy)
1302			copy(buf, mtod(m, caddr_t), (u_int)len);
1303		else
1304			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1305		buf += len;
1306		*mp = m;
1307		mp = &m->m_next;
1308		totlen -= len;
1309	}
1310	return (top);
1311}
1312
1313/*
1314 * Copy data from a buffer back into the indicated mbuf chain,
1315 * starting "off" bytes from the beginning, extending the mbuf
1316 * chain if necessary.
1317 */
1318void
1319m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1320{
1321	int mlen;
1322	struct mbuf *m = m0, *n;
1323	int totlen = 0;
1324
1325	if (m0 == NULL)
1326		return;
1327	while (off > (mlen = m->m_len)) {
1328		off -= mlen;
1329		totlen += mlen;
1330		if (m->m_next == NULL) {
1331			n = m_get(M_NOWAIT, m->m_type);
1332			if (n == NULL)
1333				goto out;
1334			bzero(mtod(n, caddr_t), MLEN);
1335			n->m_len = min(MLEN, len + off);
1336			m->m_next = n;
1337		}
1338		m = m->m_next;
1339	}
1340	while (len > 0) {
1341		if (m->m_next == NULL && (len > m->m_len - off)) {
1342			m->m_len += min(len - (m->m_len - off),
1343			    M_TRAILINGSPACE(m));
1344		}
1345		mlen = min (m->m_len - off, len);
1346		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1347		cp += mlen;
1348		len -= mlen;
1349		mlen += off;
1350		off = 0;
1351		totlen += mlen;
1352		if (len == 0)
1353			break;
1354		if (m->m_next == NULL) {
1355			n = m_get(M_NOWAIT, m->m_type);
1356			if (n == NULL)
1357				break;
1358			n->m_len = min(MLEN, len);
1359			m->m_next = n;
1360		}
1361		m = m->m_next;
1362	}
1363out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1364		m->m_pkthdr.len = totlen;
1365}
1366
1367/*
1368 * Append the specified data to the indicated mbuf chain,
1369 * Extend the mbuf chain if the new data does not fit in
1370 * existing space.
1371 *
1372 * Return 1 if able to complete the job; otherwise 0.
1373 */
1374int
1375m_append(struct mbuf *m0, int len, c_caddr_t cp)
1376{
1377	struct mbuf *m, *n;
1378	int remainder, space;
1379
1380	for (m = m0; m->m_next != NULL; m = m->m_next)
1381		;
1382	remainder = len;
1383	space = M_TRAILINGSPACE(m);
1384	if (space > 0) {
1385		/*
1386		 * Copy into available space.
1387		 */
1388		if (space > remainder)
1389			space = remainder;
1390		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1391		m->m_len += space;
1392		cp += space, remainder -= space;
1393	}
1394	while (remainder > 0) {
1395		/*
1396		 * Allocate a new mbuf; could check space
1397		 * and allocate a cluster instead.
1398		 */
1399		n = m_get(M_NOWAIT, m->m_type);
1400		if (n == NULL)
1401			break;
1402		n->m_len = min(MLEN, remainder);
1403		bcopy(cp, mtod(n, caddr_t), n->m_len);
1404		cp += n->m_len, remainder -= n->m_len;
1405		m->m_next = n;
1406		m = n;
1407	}
1408	if (m0->m_flags & M_PKTHDR)
1409		m0->m_pkthdr.len += len - remainder;
1410	return (remainder == 0);
1411}
1412
1413/*
1414 * Apply function f to the data in an mbuf chain starting "off" bytes from
1415 * the beginning, continuing for "len" bytes.
1416 */
1417int
1418m_apply(struct mbuf *m, int off, int len,
1419    int (*f)(void *, void *, u_int), void *arg)
1420{
1421	u_int count;
1422	int rval;
1423
1424	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1425	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1426	while (off > 0) {
1427		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1428		if (off < m->m_len)
1429			break;
1430		off -= m->m_len;
1431		m = m->m_next;
1432	}
1433	while (len > 0) {
1434		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1435		count = min(m->m_len - off, len);
1436		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1437		if (rval)
1438			return (rval);
1439		len -= count;
1440		off = 0;
1441		m = m->m_next;
1442	}
1443	return (0);
1444}
1445
1446/*
1447 * Return a pointer to mbuf/offset of location in mbuf chain.
1448 */
1449struct mbuf *
1450m_getptr(struct mbuf *m, int loc, int *off)
1451{
1452
1453	while (loc >= 0) {
1454		/* Normal end of search. */
1455		if (m->m_len > loc) {
1456			*off = loc;
1457			return (m);
1458		} else {
1459			loc -= m->m_len;
1460			if (m->m_next == NULL) {
1461				if (loc == 0) {
1462					/* Point at the end of valid data. */
1463					*off = m->m_len;
1464					return (m);
1465				}
1466				return (NULL);
1467			}
1468			m = m->m_next;
1469		}
1470	}
1471	return (NULL);
1472}
1473
1474void
1475m_print(const struct mbuf *m, int maxlen)
1476{
1477	int len;
1478	int pdata;
1479	const struct mbuf *m2;
1480
1481	if (m == NULL) {
1482		printf("mbuf: %p\n", m);
1483		return;
1484	}
1485
1486	if (m->m_flags & M_PKTHDR)
1487		len = m->m_pkthdr.len;
1488	else
1489		len = -1;
1490	m2 = m;
1491	while (m2 != NULL && (len == -1 || len)) {
1492		pdata = m2->m_len;
1493		if (maxlen != -1 && pdata > maxlen)
1494			pdata = maxlen;
1495		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1496		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1497		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1498		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1499		if (pdata)
1500			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1501		if (len != -1)
1502			len -= m2->m_len;
1503		m2 = m2->m_next;
1504	}
1505	if (len > 0)
1506		printf("%d bytes unaccounted for.\n", len);
1507	return;
1508}
1509
1510u_int
1511m_fixhdr(struct mbuf *m0)
1512{
1513	u_int len;
1514
1515	len = m_length(m0, NULL);
1516	m0->m_pkthdr.len = len;
1517	return (len);
1518}
1519
1520u_int
1521m_length(struct mbuf *m0, struct mbuf **last)
1522{
1523	struct mbuf *m;
1524	u_int len;
1525
1526	len = 0;
1527	for (m = m0; m != NULL; m = m->m_next) {
1528		len += m->m_len;
1529		if (m->m_next == NULL)
1530			break;
1531	}
1532	if (last != NULL)
1533		*last = m;
1534	return (len);
1535}
1536
1537/*
1538 * Defragment a mbuf chain, returning the shortest possible
1539 * chain of mbufs and clusters.  If allocation fails and
1540 * this cannot be completed, NULL will be returned, but
1541 * the passed in chain will be unchanged.  Upon success,
1542 * the original chain will be freed, and the new chain
1543 * will be returned.
1544 *
1545 * If a non-packet header is passed in, the original
1546 * mbuf (chain?) will be returned unharmed.
1547 */
1548struct mbuf *
1549m_defrag(struct mbuf *m0, int how)
1550{
1551	struct mbuf *m_new = NULL, *m_final = NULL;
1552	int progress = 0, length;
1553
1554	MBUF_CHECKSLEEP(how);
1555	if (!(m0->m_flags & M_PKTHDR))
1556		return (m0);
1557
1558	m_fixhdr(m0); /* Needed sanity check */
1559
1560#ifdef MBUF_STRESS_TEST
1561	if (m_defragrandomfailures) {
1562		int temp = arc4random() & 0xff;
1563		if (temp == 0xba)
1564			goto nospace;
1565	}
1566#endif
1567
1568	if (m0->m_pkthdr.len > MHLEN)
1569		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1570	else
1571		m_final = m_gethdr(how, MT_DATA);
1572
1573	if (m_final == NULL)
1574		goto nospace;
1575
1576	if (m_dup_pkthdr(m_final, m0, how) == 0)
1577		goto nospace;
1578
1579	m_new = m_final;
1580
1581	while (progress < m0->m_pkthdr.len) {
1582		length = m0->m_pkthdr.len - progress;
1583		if (length > MCLBYTES)
1584			length = MCLBYTES;
1585
1586		if (m_new == NULL) {
1587			if (length > MLEN)
1588				m_new = m_getcl(how, MT_DATA, 0);
1589			else
1590				m_new = m_get(how, MT_DATA);
1591			if (m_new == NULL)
1592				goto nospace;
1593		}
1594
1595		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1596		progress += length;
1597		m_new->m_len = length;
1598		if (m_new != m_final)
1599			m_cat(m_final, m_new);
1600		m_new = NULL;
1601	}
1602#ifdef MBUF_STRESS_TEST
1603	if (m0->m_next == NULL)
1604		m_defraguseless++;
1605#endif
1606	m_freem(m0);
1607	m0 = m_final;
1608#ifdef MBUF_STRESS_TEST
1609	m_defragpackets++;
1610	m_defragbytes += m0->m_pkthdr.len;
1611#endif
1612	return (m0);
1613nospace:
1614#ifdef MBUF_STRESS_TEST
1615	m_defragfailure++;
1616#endif
1617	if (m_final)
1618		m_freem(m_final);
1619	return (NULL);
1620}
1621
1622/*
1623 * Defragment an mbuf chain, returning at most maxfrags separate
1624 * mbufs+clusters.  If this is not possible NULL is returned and
1625 * the original mbuf chain is left in it's present (potentially
1626 * modified) state.  We use two techniques: collapsing consecutive
1627 * mbufs and replacing consecutive mbufs by a cluster.
1628 *
1629 * NB: this should really be named m_defrag but that name is taken
1630 */
1631struct mbuf *
1632m_collapse(struct mbuf *m0, int how, int maxfrags)
1633{
1634	struct mbuf *m, *n, *n2, **prev;
1635	u_int curfrags;
1636
1637	/*
1638	 * Calculate the current number of frags.
1639	 */
1640	curfrags = 0;
1641	for (m = m0; m != NULL; m = m->m_next)
1642		curfrags++;
1643	/*
1644	 * First, try to collapse mbufs.  Note that we always collapse
1645	 * towards the front so we don't need to deal with moving the
1646	 * pkthdr.  This may be suboptimal if the first mbuf has much
1647	 * less data than the following.
1648	 */
1649	m = m0;
1650again:
1651	for (;;) {
1652		n = m->m_next;
1653		if (n == NULL)
1654			break;
1655		if (M_WRITABLE(m) &&
1656		    n->m_len < M_TRAILINGSPACE(m)) {
1657			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1658				n->m_len);
1659			m->m_len += n->m_len;
1660			m->m_next = n->m_next;
1661			m_free(n);
1662			if (--curfrags <= maxfrags)
1663				return m0;
1664		} else
1665			m = n;
1666	}
1667	KASSERT(maxfrags > 1,
1668		("maxfrags %u, but normal collapse failed", maxfrags));
1669	/*
1670	 * Collapse consecutive mbufs to a cluster.
1671	 */
1672	prev = &m0->m_next;		/* NB: not the first mbuf */
1673	while ((n = *prev) != NULL) {
1674		if ((n2 = n->m_next) != NULL &&
1675		    n->m_len + n2->m_len < MCLBYTES) {
1676			m = m_getcl(how, MT_DATA, 0);
1677			if (m == NULL)
1678				goto bad;
1679			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1680			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1681				n2->m_len);
1682			m->m_len = n->m_len + n2->m_len;
1683			m->m_next = n2->m_next;
1684			*prev = m;
1685			m_free(n);
1686			m_free(n2);
1687			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1688				return m0;
1689			/*
1690			 * Still not there, try the normal collapse
1691			 * again before we allocate another cluster.
1692			 */
1693			goto again;
1694		}
1695		prev = &n->m_next;
1696	}
1697	/*
1698	 * No place where we can collapse to a cluster; punt.
1699	 * This can occur if, for example, you request 2 frags
1700	 * but the packet requires that both be clusters (we
1701	 * never reallocate the first mbuf to avoid moving the
1702	 * packet header).
1703	 */
1704bad:
1705	return NULL;
1706}
1707
1708#ifdef MBUF_STRESS_TEST
1709
1710/*
1711 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1712 * this in normal usage, but it's great for stress testing various
1713 * mbuf consumers.
1714 *
1715 * If fragmentation is not possible, the original chain will be
1716 * returned.
1717 *
1718 * Possible length values:
1719 * 0	 no fragmentation will occur
1720 * > 0	each fragment will be of the specified length
1721 * -1	each fragment will be the same random value in length
1722 * -2	each fragment's length will be entirely random
1723 * (Random values range from 1 to 256)
1724 */
1725struct mbuf *
1726m_fragment(struct mbuf *m0, int how, int length)
1727{
1728	struct mbuf *m_new = NULL, *m_final = NULL;
1729	int progress = 0;
1730
1731	if (!(m0->m_flags & M_PKTHDR))
1732		return (m0);
1733
1734	if ((length == 0) || (length < -2))
1735		return (m0);
1736
1737	m_fixhdr(m0); /* Needed sanity check */
1738
1739	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1740
1741	if (m_final == NULL)
1742		goto nospace;
1743
1744	if (m_dup_pkthdr(m_final, m0, how) == 0)
1745		goto nospace;
1746
1747	m_new = m_final;
1748
1749	if (length == -1)
1750		length = 1 + (arc4random() & 255);
1751
1752	while (progress < m0->m_pkthdr.len) {
1753		int fraglen;
1754
1755		if (length > 0)
1756			fraglen = length;
1757		else
1758			fraglen = 1 + (arc4random() & 255);
1759		if (fraglen > m0->m_pkthdr.len - progress)
1760			fraglen = m0->m_pkthdr.len - progress;
1761
1762		if (fraglen > MCLBYTES)
1763			fraglen = MCLBYTES;
1764
1765		if (m_new == NULL) {
1766			m_new = m_getcl(how, MT_DATA, 0);
1767			if (m_new == NULL)
1768				goto nospace;
1769		}
1770
1771		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1772		progress += fraglen;
1773		m_new->m_len = fraglen;
1774		if (m_new != m_final)
1775			m_cat(m_final, m_new);
1776		m_new = NULL;
1777	}
1778	m_freem(m0);
1779	m0 = m_final;
1780	return (m0);
1781nospace:
1782	if (m_final)
1783		m_freem(m_final);
1784	/* Return the original chain on failure */
1785	return (m0);
1786}
1787
1788#endif
1789
1790/*
1791 * Copy the contents of uio into a properly sized mbuf chain.
1792 */
1793struct mbuf *
1794m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1795{
1796	struct mbuf *m, *mb;
1797	int error, length;
1798	ssize_t total;
1799	int progress = 0;
1800
1801	/*
1802	 * len can be zero or an arbitrary large value bound by
1803	 * the total data supplied by the uio.
1804	 */
1805	if (len > 0)
1806		total = min(uio->uio_resid, len);
1807	else
1808		total = uio->uio_resid;
1809
1810	/*
1811	 * The smallest unit returned by m_getm2() is a single mbuf
1812	 * with pkthdr.  We can't align past it.
1813	 */
1814	if (align >= MHLEN)
1815		return (NULL);
1816
1817	/*
1818	 * Give us the full allocation or nothing.
1819	 * If len is zero return the smallest empty mbuf.
1820	 */
1821	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1822	if (m == NULL)
1823		return (NULL);
1824	m->m_data += align;
1825
1826	/* Fill all mbufs with uio data and update header information. */
1827	for (mb = m; mb != NULL; mb = mb->m_next) {
1828		length = min(M_TRAILINGSPACE(mb), total - progress);
1829
1830		error = uiomove(mtod(mb, void *), length, uio);
1831		if (error) {
1832			m_freem(m);
1833			return (NULL);
1834		}
1835
1836		mb->m_len = length;
1837		progress += length;
1838		if (flags & M_PKTHDR)
1839			m->m_pkthdr.len += length;
1840	}
1841	KASSERT(progress == total, ("%s: progress != total", __func__));
1842
1843	return (m);
1844}
1845
1846/*
1847 * Copy an mbuf chain into a uio limited by len if set.
1848 */
1849int
1850m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1851{
1852	int error, length, total;
1853	int progress = 0;
1854
1855	if (len > 0)
1856		total = min(uio->uio_resid, len);
1857	else
1858		total = uio->uio_resid;
1859
1860	/* Fill the uio with data from the mbufs. */
1861	for (; m != NULL; m = m->m_next) {
1862		length = min(m->m_len, total - progress);
1863
1864		error = uiomove(mtod(m, void *), length, uio);
1865		if (error)
1866			return (error);
1867
1868		progress += length;
1869	}
1870
1871	return (0);
1872}
1873
1874/*
1875 * Set the m_data pointer of a newly-allocated mbuf
1876 * to place an object of the specified size at the
1877 * end of the mbuf, longword aligned.
1878 */
1879void
1880m_align(struct mbuf *m, int len)
1881{
1882#ifdef INVARIANTS
1883	const char *msg = "%s: not a virgin mbuf";
1884#endif
1885	int adjust;
1886
1887	if (m->m_flags & M_EXT) {
1888		KASSERT(m->m_data == m->m_ext.ext_buf, (msg, __func__));
1889		adjust = m->m_ext.ext_size - len;
1890	} else if (m->m_flags & M_PKTHDR) {
1891		KASSERT(m->m_data == m->m_pktdat, (msg, __func__));
1892		adjust = MHLEN - len;
1893	} else {
1894		KASSERT(m->m_data == m->m_dat, (msg, __func__));
1895		adjust = MLEN - len;
1896	}
1897
1898	m->m_data += adjust &~ (sizeof(long)-1);
1899}
1900
1901/*
1902 * Create a writable copy of the mbuf chain.  While doing this
1903 * we compact the chain with a goal of producing a chain with
1904 * at most two mbufs.  The second mbuf in this chain is likely
1905 * to be a cluster.  The primary purpose of this work is to create
1906 * a writable packet for encryption, compression, etc.  The
1907 * secondary goal is to linearize the data so the data can be
1908 * passed to crypto hardware in the most efficient manner possible.
1909 */
1910struct mbuf *
1911m_unshare(struct mbuf *m0, int how)
1912{
1913	struct mbuf *m, *mprev;
1914	struct mbuf *n, *mfirst, *mlast;
1915	int len, off;
1916
1917	mprev = NULL;
1918	for (m = m0; m != NULL; m = mprev->m_next) {
1919		/*
1920		 * Regular mbufs are ignored unless there's a cluster
1921		 * in front of it that we can use to coalesce.  We do
1922		 * the latter mainly so later clusters can be coalesced
1923		 * also w/o having to handle them specially (i.e. convert
1924		 * mbuf+cluster -> cluster).  This optimization is heavily
1925		 * influenced by the assumption that we're running over
1926		 * Ethernet where MCLBYTES is large enough that the max
1927		 * packet size will permit lots of coalescing into a
1928		 * single cluster.  This in turn permits efficient
1929		 * crypto operations, especially when using hardware.
1930		 */
1931		if ((m->m_flags & M_EXT) == 0) {
1932			if (mprev && (mprev->m_flags & M_EXT) &&
1933			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1934				/* XXX: this ignores mbuf types */
1935				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1936				       mtod(m, caddr_t), m->m_len);
1937				mprev->m_len += m->m_len;
1938				mprev->m_next = m->m_next;	/* unlink from chain */
1939				m_free(m);			/* reclaim mbuf */
1940#if 0
1941				newipsecstat.ips_mbcoalesced++;
1942#endif
1943			} else {
1944				mprev = m;
1945			}
1946			continue;
1947		}
1948		/*
1949		 * Writable mbufs are left alone (for now).
1950		 */
1951		if (M_WRITABLE(m)) {
1952			mprev = m;
1953			continue;
1954		}
1955
1956		/*
1957		 * Not writable, replace with a copy or coalesce with
1958		 * the previous mbuf if possible (since we have to copy
1959		 * it anyway, we try to reduce the number of mbufs and
1960		 * clusters so that future work is easier).
1961		 */
1962		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1963		/* NB: we only coalesce into a cluster or larger */
1964		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1965		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1966			/* XXX: this ignores mbuf types */
1967			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1968			       mtod(m, caddr_t), m->m_len);
1969			mprev->m_len += m->m_len;
1970			mprev->m_next = m->m_next;	/* unlink from chain */
1971			m_free(m);			/* reclaim mbuf */
1972#if 0
1973			newipsecstat.ips_clcoalesced++;
1974#endif
1975			continue;
1976		}
1977
1978		/*
1979		 * Allocate new space to hold the copy and copy the data.
1980		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1981		 * splitting them into clusters.  We could just malloc a
1982		 * buffer and make it external but too many device drivers
1983		 * don't know how to break up the non-contiguous memory when
1984		 * doing DMA.
1985		 */
1986		n = m_getcl(how, m->m_type, m->m_flags);
1987		if (n == NULL) {
1988			m_freem(m0);
1989			return (NULL);
1990		}
1991		len = m->m_len;
1992		off = 0;
1993		mfirst = n;
1994		mlast = NULL;
1995		for (;;) {
1996			int cc = min(len, MCLBYTES);
1997			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1998			n->m_len = cc;
1999			if (mlast != NULL)
2000				mlast->m_next = n;
2001			mlast = n;
2002#if 0
2003			newipsecstat.ips_clcopied++;
2004#endif
2005
2006			len -= cc;
2007			if (len <= 0)
2008				break;
2009			off += cc;
2010
2011			n = m_getcl(how, m->m_type, m->m_flags);
2012			if (n == NULL) {
2013				m_freem(mfirst);
2014				m_freem(m0);
2015				return (NULL);
2016			}
2017		}
2018		n->m_next = m->m_next;
2019		if (mprev == NULL)
2020			m0 = mfirst;		/* new head of chain */
2021		else
2022			mprev->m_next = mfirst;	/* replace old mbuf */
2023		m_free(m);			/* release old mbuf */
2024		mprev = mfirst;
2025	}
2026	return (m0);
2027}
2028
2029#ifdef MBUF_PROFILING
2030
2031#define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2032struct mbufprofile {
2033	uintmax_t wasted[MP_BUCKETS];
2034	uintmax_t used[MP_BUCKETS];
2035	uintmax_t segments[MP_BUCKETS];
2036} mbprof;
2037
2038#define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2039#define MP_NUMLINES 6
2040#define MP_NUMSPERLINE 16
2041#define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2042/* work out max space needed and add a bit of spare space too */
2043#define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2044#define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2045
2046char mbprofbuf[MP_BUFSIZE];
2047
2048void
2049m_profile(struct mbuf *m)
2050{
2051	int segments = 0;
2052	int used = 0;
2053	int wasted = 0;
2054
2055	while (m) {
2056		segments++;
2057		used += m->m_len;
2058		if (m->m_flags & M_EXT) {
2059			wasted += MHLEN - sizeof(m->m_ext) +
2060			    m->m_ext.ext_size - m->m_len;
2061		} else {
2062			if (m->m_flags & M_PKTHDR)
2063				wasted += MHLEN - m->m_len;
2064			else
2065				wasted += MLEN - m->m_len;
2066		}
2067		m = m->m_next;
2068	}
2069	/* be paranoid.. it helps */
2070	if (segments > MP_BUCKETS - 1)
2071		segments = MP_BUCKETS - 1;
2072	if (used > 100000)
2073		used = 100000;
2074	if (wasted > 100000)
2075		wasted = 100000;
2076	/* store in the appropriate bucket */
2077	/* don't bother locking. if it's slightly off, so what? */
2078	mbprof.segments[segments]++;
2079	mbprof.used[fls(used)]++;
2080	mbprof.wasted[fls(wasted)]++;
2081}
2082
2083static void
2084mbprof_textify(void)
2085{
2086	int offset;
2087	char *c;
2088	uint64_t *p;
2089
2090
2091	p = &mbprof.wasted[0];
2092	c = mbprofbuf;
2093	offset = snprintf(c, MP_MAXLINE + 10,
2094	    "wasted:\n"
2095	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2096	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2097	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2098	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2099#ifdef BIG_ARRAY
2100	p = &mbprof.wasted[16];
2101	c += offset;
2102	offset = snprintf(c, MP_MAXLINE,
2103	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2104	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2105	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2106	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2107#endif
2108	p = &mbprof.used[0];
2109	c += offset;
2110	offset = snprintf(c, MP_MAXLINE + 10,
2111	    "used:\n"
2112	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2113	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2114	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2115	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2116#ifdef BIG_ARRAY
2117	p = &mbprof.used[16];
2118	c += offset;
2119	offset = snprintf(c, MP_MAXLINE,
2120	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2121	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2122	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2123	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2124#endif
2125	p = &mbprof.segments[0];
2126	c += offset;
2127	offset = snprintf(c, MP_MAXLINE + 10,
2128	    "segments:\n"
2129	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2130	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2131	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2132	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2133#ifdef BIG_ARRAY
2134	p = &mbprof.segments[16];
2135	c += offset;
2136	offset = snprintf(c, MP_MAXLINE,
2137	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2138	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2139	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2140	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2141#endif
2142}
2143
2144static int
2145mbprof_handler(SYSCTL_HANDLER_ARGS)
2146{
2147	int error;
2148
2149	mbprof_textify();
2150	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2151	return (error);
2152}
2153
2154static int
2155mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2156{
2157	int clear, error;
2158
2159	clear = 0;
2160	error = sysctl_handle_int(oidp, &clear, 0, req);
2161	if (error || !req->newptr)
2162		return (error);
2163
2164	if (clear) {
2165		bzero(&mbprof, sizeof(mbprof));
2166	}
2167
2168	return (error);
2169}
2170
2171
2172SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2173	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2174
2175SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2176	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2177#endif
2178
2179