uipc_mbuf.c revision 254520
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/uipc_mbuf.c 254520 2013-08-19 11:16:53Z andre $");
34
35#include "opt_param.h"
36#include "opt_mbuf_stress_test.h"
37#include "opt_mbuf_profiling.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/sysctl.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/uio.h>
50
51int	max_linkhdr;
52int	max_protohdr;
53int	max_hdr;
54int	max_datalen;
55#ifdef MBUF_STRESS_TEST
56int	m_defragpackets;
57int	m_defragbytes;
58int	m_defraguseless;
59int	m_defragfailure;
60int	m_defragrandomfailures;
61#endif
62
63/*
64 * sysctl(8) exported objects
65 */
66SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67	   &max_linkhdr, 0, "Size of largest link layer header");
68SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69	   &max_protohdr, 0, "Size of largest protocol layer header");
70SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71	   &max_hdr, 0, "Size of largest link plus protocol header");
72SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74#ifdef MBUF_STRESS_TEST
75SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76	   &m_defragpackets, 0, "");
77SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78	   &m_defragbytes, 0, "");
79SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80	   &m_defraguseless, 0, "");
81SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82	   &m_defragfailure, 0, "");
83SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84	   &m_defragrandomfailures, 0, "");
85#endif
86
87/*
88 * m_get2() allocates minimum mbuf that would fit "size" argument.
89 */
90struct mbuf *
91m_get2(int size, int how, short type, int flags)
92{
93	struct mb_args args;
94	struct mbuf *m, *n;
95
96	args.flags = flags;
97	args.type = type;
98
99	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
100		return (uma_zalloc_arg(zone_mbuf, &args, how));
101	if (size <= MCLBYTES)
102		return (uma_zalloc_arg(zone_pack, &args, how));
103
104	if (size > MJUMPAGESIZE)
105		return (NULL);
106
107	m = uma_zalloc_arg(zone_mbuf, &args, how);
108	if (m == NULL)
109		return (NULL);
110
111	n = uma_zalloc_arg(zone_jumbop, m, how);
112	if (n == NULL) {
113		uma_zfree(zone_mbuf, m);
114		return (NULL);
115	}
116
117	return (m);
118}
119
120/*
121 * m_getjcl() returns an mbuf with a cluster of the specified size attached.
122 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
123 */
124struct mbuf *
125m_getjcl(int how, short type, int flags, int size)
126{
127	struct mb_args args;
128	struct mbuf *m, *n;
129	uma_zone_t zone;
130
131	if (size == MCLBYTES)
132		return m_getcl(how, type, flags);
133
134	args.flags = flags;
135	args.type = type;
136
137	m = uma_zalloc_arg(zone_mbuf, &args, how);
138	if (m == NULL)
139		return (NULL);
140
141	zone = m_getzone(size);
142	n = uma_zalloc_arg(zone, m, how);
143	if (n == NULL) {
144		uma_zfree(zone_mbuf, m);
145		return (NULL);
146	}
147	return (m);
148}
149
150/*
151 * Allocate a given length worth of mbufs and/or clusters (whatever fits
152 * best) and return a pointer to the top of the allocated chain.  If an
153 * existing mbuf chain is provided, then we will append the new chain
154 * to the existing one but still return the top of the newly allocated
155 * chain.
156 */
157struct mbuf *
158m_getm2(struct mbuf *m, int len, int how, short type, int flags)
159{
160	struct mbuf *mb, *nm = NULL, *mtail = NULL;
161
162	KASSERT(len >= 0, ("%s: len is < 0", __func__));
163
164	/* Validate flags. */
165	flags &= (M_PKTHDR | M_EOR);
166
167	/* Packet header mbuf must be first in chain. */
168	if ((flags & M_PKTHDR) && m != NULL)
169		flags &= ~M_PKTHDR;
170
171	/* Loop and append maximum sized mbufs to the chain tail. */
172	while (len > 0) {
173		if (len > MCLBYTES)
174			mb = m_getjcl(how, type, (flags & M_PKTHDR),
175			    MJUMPAGESIZE);
176		else if (len >= MINCLSIZE)
177			mb = m_getcl(how, type, (flags & M_PKTHDR));
178		else if (flags & M_PKTHDR)
179			mb = m_gethdr(how, type);
180		else
181			mb = m_get(how, type);
182
183		/* Fail the whole operation if one mbuf can't be allocated. */
184		if (mb == NULL) {
185			if (nm != NULL)
186				m_freem(nm);
187			return (NULL);
188		}
189
190		/* Book keeping. */
191		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
192			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
193		if (mtail != NULL)
194			mtail->m_next = mb;
195		else
196			nm = mb;
197		mtail = mb;
198		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
199	}
200	if (flags & M_EOR)
201		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
202
203	/* If mbuf was supplied, append new chain to the end of it. */
204	if (m != NULL) {
205		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
206			;
207		mtail->m_next = nm;
208		mtail->m_flags &= ~M_EOR;
209	} else
210		m = nm;
211
212	return (m);
213}
214
215/*
216 * Free an entire chain of mbufs and associated external buffers, if
217 * applicable.
218 */
219void
220m_freem(struct mbuf *mb)
221{
222
223	while (mb != NULL)
224		mb = m_free(mb);
225}
226
227/*-
228 * Configure a provided mbuf to refer to the provided external storage
229 * buffer and setup a reference count for said buffer.  If the setting
230 * up of the reference count fails, the M_EXT bit will not be set.  If
231 * successfull, the M_EXT bit is set in the mbuf's flags.
232 *
233 * Arguments:
234 *    mb     The existing mbuf to which to attach the provided buffer.
235 *    buf    The address of the provided external storage buffer.
236 *    size   The size of the provided buffer.
237 *    freef  A pointer to a routine that is responsible for freeing the
238 *           provided external storage buffer.
239 *    args   A pointer to an argument structure (of any type) to be passed
240 *           to the provided freef routine (may be NULL).
241 *    flags  Any other flags to be passed to the provided mbuf.
242 *    type   The type that the external storage buffer should be
243 *           labeled with.
244 *
245 * Returns:
246 *    Nothing.
247 */
248int
249m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
250    void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type,
251    int wait)
252{
253	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
254
255	if (type != EXT_EXTREF)
256		mb->m_ext.ref_cnt = uma_zalloc(zone_ext_refcnt, wait);
257
258	if (mb->m_ext.ref_cnt == NULL)
259		return (ENOMEM);
260
261	*(mb->m_ext.ref_cnt) = 1;
262	mb->m_flags |= (M_EXT | flags);
263	mb->m_ext.ext_buf = buf;
264	mb->m_data = mb->m_ext.ext_buf;
265	mb->m_ext.ext_size = size;
266	mb->m_ext.ext_free = freef;
267	mb->m_ext.ext_arg1 = arg1;
268	mb->m_ext.ext_arg2 = arg2;
269	mb->m_ext.ext_type = type;
270
271	return (0);
272}
273
274/*
275 * Non-directly-exported function to clean up after mbufs with M_EXT
276 * storage attached to them if the reference count hits 1.
277 */
278void
279mb_free_ext(struct mbuf *m)
280{
281
282	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
283	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
284
285	/* Free attached storage if this mbuf is the only reference to it. */
286	if (*(m->m_ext.ref_cnt) == 1 ||
287	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
288		switch (m->m_ext.ext_type) {
289		case EXT_PACKET:	/* The packet zone is special. */
290			if (*(m->m_ext.ref_cnt) == 0)
291				*(m->m_ext.ref_cnt) = 1;
292			uma_zfree(zone_pack, m);
293			return;		/* Job done. */
294		case EXT_CLUSTER:
295			uma_zfree(zone_clust, m->m_ext.ext_buf);
296			break;
297		case EXT_JUMBOP:
298			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
299			break;
300		case EXT_JUMBO9:
301			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
302			break;
303		case EXT_JUMBO16:
304			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
305			break;
306		case EXT_SFBUF:
307		case EXT_NET_DRV:
308		case EXT_MOD_TYPE:
309		case EXT_DISPOSABLE:
310			*(m->m_ext.ref_cnt) = 0;
311			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
312				m->m_ext.ref_cnt));
313			/* FALLTHROUGH */
314		case EXT_EXTREF:
315			KASSERT(m->m_ext.ext_free != NULL,
316				("%s: ext_free not set", __func__));
317			(*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
318			    m->m_ext.ext_arg2);
319			break;
320		default:
321			KASSERT(m->m_ext.ext_type == 0,
322				("%s: unknown ext_type", __func__));
323		}
324	}
325
326	/*
327	 * Free this mbuf back to the mbuf zone with all m_ext
328	 * information purged.
329	 */
330	m->m_ext.ext_buf = NULL;
331	m->m_ext.ext_free = NULL;
332	m->m_ext.ext_arg1 = NULL;
333	m->m_ext.ext_arg2 = NULL;
334	m->m_ext.ref_cnt = NULL;
335	m->m_ext.ext_size = 0;
336	m->m_ext.ext_type = 0;
337	m->m_flags &= ~M_EXT;
338	uma_zfree(zone_mbuf, m);
339}
340
341/*
342 * Attach the cluster from *m to *n, set up m_ext in *n
343 * and bump the refcount of the cluster.
344 */
345static void
346mb_dupcl(struct mbuf *n, struct mbuf *m)
347{
348	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
349	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
350	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
351
352	if (*(m->m_ext.ref_cnt) == 1)
353		*(m->m_ext.ref_cnt) += 1;
354	else
355		atomic_add_int(m->m_ext.ref_cnt, 1);
356	n->m_ext.ext_buf = m->m_ext.ext_buf;
357	n->m_ext.ext_free = m->m_ext.ext_free;
358	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
359	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
360	n->m_ext.ext_size = m->m_ext.ext_size;
361	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
362	n->m_ext.ext_type = m->m_ext.ext_type;
363	n->m_flags |= M_EXT;
364	n->m_flags |= m->m_flags & M_RDONLY;
365}
366
367/*
368 * Clean up mbuf (chain) from any tags and packet headers.
369 * If "all" is set then the first mbuf in the chain will be
370 * cleaned too.
371 */
372void
373m_demote(struct mbuf *m0, int all)
374{
375	struct mbuf *m;
376
377	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
378		if (m->m_flags & M_PKTHDR) {
379			m_tag_delete_chain(m, NULL);
380			m->m_flags &= ~M_PKTHDR;
381			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
382		}
383		if (m != m0 && m->m_nextpkt != NULL) {
384			KASSERT(m->m_nextpkt == NULL,
385			    ("%s: m_nextpkt not NULL", __func__));
386			m_freem(m->m_nextpkt);
387			m->m_nextpkt = NULL;
388		}
389		m->m_flags = m->m_flags & (M_EXT|M_RDONLY);
390	}
391}
392
393/*
394 * Sanity checks on mbuf (chain) for use in KASSERT() and general
395 * debugging.
396 * Returns 0 or panics when bad and 1 on all tests passed.
397 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
398 * blow up later.
399 */
400int
401m_sanity(struct mbuf *m0, int sanitize)
402{
403	struct mbuf *m;
404	caddr_t a, b;
405	int pktlen = 0;
406
407#ifdef INVARIANTS
408#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
409#else
410#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
411#endif
412
413	for (m = m0; m != NULL; m = m->m_next) {
414		/*
415		 * Basic pointer checks.  If any of these fails then some
416		 * unrelated kernel memory before or after us is trashed.
417		 * No way to recover from that.
418		 */
419		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
420			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
421			 (caddr_t)(&m->m_dat)) );
422		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
423			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
424		if ((caddr_t)m->m_data < a)
425			M_SANITY_ACTION("m_data outside mbuf data range left");
426		if ((caddr_t)m->m_data > b)
427			M_SANITY_ACTION("m_data outside mbuf data range right");
428		if ((caddr_t)m->m_data + m->m_len > b)
429			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
430		if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
431			if ((caddr_t)m->m_pkthdr.header < a ||
432			    (caddr_t)m->m_pkthdr.header > b)
433				M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
434		}
435
436		/* m->m_nextpkt may only be set on first mbuf in chain. */
437		if (m != m0 && m->m_nextpkt != NULL) {
438			if (sanitize) {
439				m_freem(m->m_nextpkt);
440				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
441			} else
442				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
443		}
444
445		/* packet length (not mbuf length!) calculation */
446		if (m0->m_flags & M_PKTHDR)
447			pktlen += m->m_len;
448
449		/* m_tags may only be attached to first mbuf in chain. */
450		if (m != m0 && m->m_flags & M_PKTHDR &&
451		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
452			if (sanitize) {
453				m_tag_delete_chain(m, NULL);
454				/* put in 0xDEADC0DE perhaps? */
455			} else
456				M_SANITY_ACTION("m_tags on in-chain mbuf");
457		}
458
459		/* M_PKTHDR may only be set on first mbuf in chain */
460		if (m != m0 && m->m_flags & M_PKTHDR) {
461			if (sanitize) {
462				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
463				m->m_flags &= ~M_PKTHDR;
464				/* put in 0xDEADCODE and leave hdr flag in */
465			} else
466				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
467		}
468	}
469	m = m0;
470	if (pktlen && pktlen != m->m_pkthdr.len) {
471		if (sanitize)
472			m->m_pkthdr.len = 0;
473		else
474			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
475	}
476	return 1;
477
478#undef	M_SANITY_ACTION
479}
480
481
482/*
483 * "Move" mbuf pkthdr from "from" to "to".
484 * "from" must have M_PKTHDR set, and "to" must be empty.
485 */
486void
487m_move_pkthdr(struct mbuf *to, struct mbuf *from)
488{
489
490#if 0
491	/* see below for why these are not enabled */
492	M_ASSERTPKTHDR(to);
493	/* Note: with MAC, this may not be a good assertion. */
494	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
495	    ("m_move_pkthdr: to has tags"));
496#endif
497#ifdef MAC
498	/*
499	 * XXXMAC: It could be this should also occur for non-MAC?
500	 */
501	if (to->m_flags & M_PKTHDR)
502		m_tag_delete_chain(to, NULL);
503#endif
504	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
505	if ((to->m_flags & M_EXT) == 0)
506		to->m_data = to->m_pktdat;
507	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
508	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
509	from->m_flags &= ~M_PKTHDR;
510}
511
512/*
513 * Duplicate "from"'s mbuf pkthdr in "to".
514 * "from" must have M_PKTHDR set, and "to" must be empty.
515 * In particular, this does a deep copy of the packet tags.
516 */
517int
518m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
519{
520
521#if 0
522	/*
523	 * The mbuf allocator only initializes the pkthdr
524	 * when the mbuf is allocated with m_gethdr(). Many users
525	 * (e.g. m_copy*, m_prepend) use m_get() and then
526	 * smash the pkthdr as needed causing these
527	 * assertions to trip.  For now just disable them.
528	 */
529	M_ASSERTPKTHDR(to);
530	/* Note: with MAC, this may not be a good assertion. */
531	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
532#endif
533	MBUF_CHECKSLEEP(how);
534#ifdef MAC
535	if (to->m_flags & M_PKTHDR)
536		m_tag_delete_chain(to, NULL);
537#endif
538	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
539	if ((to->m_flags & M_EXT) == 0)
540		to->m_data = to->m_pktdat;
541	to->m_pkthdr = from->m_pkthdr;
542	SLIST_INIT(&to->m_pkthdr.tags);
543	return (m_tag_copy_chain(to, from, MBTOM(how)));
544}
545
546/*
547 * Lesser-used path for M_PREPEND:
548 * allocate new mbuf to prepend to chain,
549 * copy junk along.
550 */
551struct mbuf *
552m_prepend(struct mbuf *m, int len, int how)
553{
554	struct mbuf *mn;
555
556	if (m->m_flags & M_PKTHDR)
557		mn = m_gethdr(how, m->m_type);
558	else
559		mn = m_get(how, m->m_type);
560	if (mn == NULL) {
561		m_freem(m);
562		return (NULL);
563	}
564	if (m->m_flags & M_PKTHDR)
565		m_move_pkthdr(mn, m);
566	mn->m_next = m;
567	m = mn;
568	if(m->m_flags & M_PKTHDR) {
569		if (len < MHLEN)
570			MH_ALIGN(m, len);
571	} else {
572		if (len < MLEN)
573			M_ALIGN(m, len);
574	}
575	m->m_len = len;
576	return (m);
577}
578
579/*
580 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
581 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
582 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
583 * Note that the copy is read-only, because clusters are not copied,
584 * only their reference counts are incremented.
585 */
586struct mbuf *
587m_copym(struct mbuf *m, int off0, int len, int wait)
588{
589	struct mbuf *n, **np;
590	int off = off0;
591	struct mbuf *top;
592	int copyhdr = 0;
593
594	KASSERT(off >= 0, ("m_copym, negative off %d", off));
595	KASSERT(len >= 0, ("m_copym, negative len %d", len));
596	MBUF_CHECKSLEEP(wait);
597	if (off == 0 && m->m_flags & M_PKTHDR)
598		copyhdr = 1;
599	while (off > 0) {
600		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
601		if (off < m->m_len)
602			break;
603		off -= m->m_len;
604		m = m->m_next;
605	}
606	np = &top;
607	top = 0;
608	while (len > 0) {
609		if (m == NULL) {
610			KASSERT(len == M_COPYALL,
611			    ("m_copym, length > size of mbuf chain"));
612			break;
613		}
614		if (copyhdr)
615			n = m_gethdr(wait, m->m_type);
616		else
617			n = m_get(wait, m->m_type);
618		*np = n;
619		if (n == NULL)
620			goto nospace;
621		if (copyhdr) {
622			if (!m_dup_pkthdr(n, m, wait))
623				goto nospace;
624			if (len == M_COPYALL)
625				n->m_pkthdr.len -= off0;
626			else
627				n->m_pkthdr.len = len;
628			copyhdr = 0;
629		}
630		n->m_len = min(len, m->m_len - off);
631		if (m->m_flags & M_EXT) {
632			n->m_data = m->m_data + off;
633			mb_dupcl(n, m);
634		} else
635			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
636			    (u_int)n->m_len);
637		if (len != M_COPYALL)
638			len -= n->m_len;
639		off = 0;
640		m = m->m_next;
641		np = &n->m_next;
642	}
643
644	return (top);
645nospace:
646	m_freem(top);
647	return (NULL);
648}
649
650/*
651 * Returns mbuf chain with new head for the prepending case.
652 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
653 * either prepending or appending the data.
654 * The resulting mbuf (chain) m is fully writeable.
655 * m is destination (is made writeable)
656 * n is source, off is offset in source, len is len from offset
657 * dir, 0 append, 1 prepend
658 * how, wait or nowait
659 */
660
661static int
662m_bcopyxxx(void *s, void *t, u_int len)
663{
664	bcopy(s, t, (size_t)len);
665	return 0;
666}
667
668struct mbuf *
669m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
670    int prep, int how)
671{
672	struct mbuf *mm, *x, *z, *prev = NULL;
673	caddr_t p;
674	int i, nlen = 0;
675	caddr_t buf[MLEN];
676
677	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
678	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
679	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
680	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
681
682	mm = m;
683	if (!prep) {
684		while(mm->m_next) {
685			prev = mm;
686			mm = mm->m_next;
687		}
688	}
689	for (z = n; z != NULL; z = z->m_next)
690		nlen += z->m_len;
691	if (len == M_COPYALL)
692		len = nlen - off;
693	if (off + len > nlen || len < 1)
694		return NULL;
695
696	if (!M_WRITABLE(mm)) {
697		/* XXX: Use proper m_xxx function instead. */
698		x = m_getcl(how, MT_DATA, mm->m_flags);
699		if (x == NULL)
700			return NULL;
701		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
702		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
703		x->m_data = p;
704		mm->m_next = NULL;
705		if (mm != m)
706			prev->m_next = x;
707		m_free(mm);
708		mm = x;
709	}
710
711	/*
712	 * Append/prepend the data.  Allocating mbufs as necessary.
713	 */
714	/* Shortcut if enough free space in first/last mbuf. */
715	if (!prep && M_TRAILINGSPACE(mm) >= len) {
716		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
717			 mm->m_len);
718		mm->m_len += len;
719		mm->m_pkthdr.len += len;
720		return m;
721	}
722	if (prep && M_LEADINGSPACE(mm) >= len) {
723		mm->m_data = mtod(mm, caddr_t) - len;
724		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
725		mm->m_len += len;
726		mm->m_pkthdr.len += len;
727		return mm;
728	}
729
730	/* Expand first/last mbuf to cluster if possible. */
731	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
732		bcopy(mm->m_data, &buf, mm->m_len);
733		m_clget(mm, how);
734		if (!(mm->m_flags & M_EXT))
735			return NULL;
736		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
737		mm->m_data = mm->m_ext.ext_buf;
738		mm->m_pkthdr.header = NULL;
739	}
740	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
741		bcopy(mm->m_data, &buf, mm->m_len);
742		m_clget(mm, how);
743		if (!(mm->m_flags & M_EXT))
744			return NULL;
745		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
746		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
747		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
748			      mm->m_ext.ext_size - mm->m_len;
749		mm->m_pkthdr.header = NULL;
750	}
751
752	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
753	if (!prep && len > M_TRAILINGSPACE(mm)) {
754		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
755			return NULL;
756	}
757	if (prep && len > M_LEADINGSPACE(mm)) {
758		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
759			return NULL;
760		i = 0;
761		for (x = z; x != NULL; x = x->m_next) {
762			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
763			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
764			if (!x->m_next)
765				break;
766		}
767		z->m_data += i - len;
768		m_move_pkthdr(mm, z);
769		x->m_next = mm;
770		mm = z;
771	}
772
773	/* Seek to start position in source mbuf. Optimization for long chains. */
774	while (off > 0) {
775		if (off < n->m_len)
776			break;
777		off -= n->m_len;
778		n = n->m_next;
779	}
780
781	/* Copy data into target mbuf. */
782	z = mm;
783	while (len > 0) {
784		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
785		i = M_TRAILINGSPACE(z);
786		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
787		z->m_len += i;
788		/* fixup pkthdr.len if necessary */
789		if ((prep ? mm : m)->m_flags & M_PKTHDR)
790			(prep ? mm : m)->m_pkthdr.len += i;
791		off += i;
792		len -= i;
793		z = z->m_next;
794	}
795	return (prep ? mm : m);
796}
797
798/*
799 * Copy an entire packet, including header (which must be present).
800 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
801 * Note that the copy is read-only, because clusters are not copied,
802 * only their reference counts are incremented.
803 * Preserve alignment of the first mbuf so if the creator has left
804 * some room at the beginning (e.g. for inserting protocol headers)
805 * the copies still have the room available.
806 */
807struct mbuf *
808m_copypacket(struct mbuf *m, int how)
809{
810	struct mbuf *top, *n, *o;
811
812	MBUF_CHECKSLEEP(how);
813	n = m_get(how, m->m_type);
814	top = n;
815	if (n == NULL)
816		goto nospace;
817
818	if (!m_dup_pkthdr(n, m, how))
819		goto nospace;
820	n->m_len = m->m_len;
821	if (m->m_flags & M_EXT) {
822		n->m_data = m->m_data;
823		mb_dupcl(n, m);
824	} else {
825		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
826		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
827	}
828
829	m = m->m_next;
830	while (m) {
831		o = m_get(how, m->m_type);
832		if (o == NULL)
833			goto nospace;
834
835		n->m_next = o;
836		n = n->m_next;
837
838		n->m_len = m->m_len;
839		if (m->m_flags & M_EXT) {
840			n->m_data = m->m_data;
841			mb_dupcl(n, m);
842		} else {
843			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
844		}
845
846		m = m->m_next;
847	}
848	return top;
849nospace:
850	m_freem(top);
851	return (NULL);
852}
853
854/*
855 * Copy data from an mbuf chain starting "off" bytes from the beginning,
856 * continuing for "len" bytes, into the indicated buffer.
857 */
858void
859m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
860{
861	u_int count;
862
863	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
864	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
865	while (off > 0) {
866		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
867		if (off < m->m_len)
868			break;
869		off -= m->m_len;
870		m = m->m_next;
871	}
872	while (len > 0) {
873		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
874		count = min(m->m_len - off, len);
875		bcopy(mtod(m, caddr_t) + off, cp, count);
876		len -= count;
877		cp += count;
878		off = 0;
879		m = m->m_next;
880	}
881}
882
883/*
884 * Copy a packet header mbuf chain into a completely new chain, including
885 * copying any mbuf clusters.  Use this instead of m_copypacket() when
886 * you need a writable copy of an mbuf chain.
887 */
888struct mbuf *
889m_dup(struct mbuf *m, int how)
890{
891	struct mbuf **p, *top = NULL;
892	int remain, moff, nsize;
893
894	MBUF_CHECKSLEEP(how);
895	/* Sanity check */
896	if (m == NULL)
897		return (NULL);
898	M_ASSERTPKTHDR(m);
899
900	/* While there's more data, get a new mbuf, tack it on, and fill it */
901	remain = m->m_pkthdr.len;
902	moff = 0;
903	p = &top;
904	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
905		struct mbuf *n;
906
907		/* Get the next new mbuf */
908		if (remain >= MINCLSIZE) {
909			n = m_getcl(how, m->m_type, 0);
910			nsize = MCLBYTES;
911		} else {
912			n = m_get(how, m->m_type);
913			nsize = MLEN;
914		}
915		if (n == NULL)
916			goto nospace;
917
918		if (top == NULL) {		/* First one, must be PKTHDR */
919			if (!m_dup_pkthdr(n, m, how)) {
920				m_free(n);
921				goto nospace;
922			}
923			if ((n->m_flags & M_EXT) == 0)
924				nsize = MHLEN;
925		}
926		n->m_len = 0;
927
928		/* Link it into the new chain */
929		*p = n;
930		p = &n->m_next;
931
932		/* Copy data from original mbuf(s) into new mbuf */
933		while (n->m_len < nsize && m != NULL) {
934			int chunk = min(nsize - n->m_len, m->m_len - moff);
935
936			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
937			moff += chunk;
938			n->m_len += chunk;
939			remain -= chunk;
940			if (moff == m->m_len) {
941				m = m->m_next;
942				moff = 0;
943			}
944		}
945
946		/* Check correct total mbuf length */
947		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
948		    	("%s: bogus m_pkthdr.len", __func__));
949	}
950	return (top);
951
952nospace:
953	m_freem(top);
954	return (NULL);
955}
956
957/*
958 * Concatenate mbuf chain n to m.
959 * Both chains must be of the same type (e.g. MT_DATA).
960 * Any m_pkthdr is not updated.
961 */
962void
963m_cat(struct mbuf *m, struct mbuf *n)
964{
965	while (m->m_next)
966		m = m->m_next;
967	while (n) {
968		if (!M_WRITABLE(m) ||
969		    M_TRAILINGSPACE(m) < n->m_len) {
970			/* just join the two chains */
971			m->m_next = n;
972			return;
973		}
974		/* splat the data from one into the other */
975		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
976		    (u_int)n->m_len);
977		m->m_len += n->m_len;
978		n = m_free(n);
979	}
980}
981
982void
983m_adj(struct mbuf *mp, int req_len)
984{
985	int len = req_len;
986	struct mbuf *m;
987	int count;
988
989	if ((m = mp) == NULL)
990		return;
991	if (len >= 0) {
992		/*
993		 * Trim from head.
994		 */
995		while (m != NULL && len > 0) {
996			if (m->m_len <= len) {
997				len -= m->m_len;
998				m->m_len = 0;
999				m = m->m_next;
1000			} else {
1001				m->m_len -= len;
1002				m->m_data += len;
1003				len = 0;
1004			}
1005		}
1006		if (mp->m_flags & M_PKTHDR)
1007			mp->m_pkthdr.len -= (req_len - len);
1008	} else {
1009		/*
1010		 * Trim from tail.  Scan the mbuf chain,
1011		 * calculating its length and finding the last mbuf.
1012		 * If the adjustment only affects this mbuf, then just
1013		 * adjust and return.  Otherwise, rescan and truncate
1014		 * after the remaining size.
1015		 */
1016		len = -len;
1017		count = 0;
1018		for (;;) {
1019			count += m->m_len;
1020			if (m->m_next == (struct mbuf *)0)
1021				break;
1022			m = m->m_next;
1023		}
1024		if (m->m_len >= len) {
1025			m->m_len -= len;
1026			if (mp->m_flags & M_PKTHDR)
1027				mp->m_pkthdr.len -= len;
1028			return;
1029		}
1030		count -= len;
1031		if (count < 0)
1032			count = 0;
1033		/*
1034		 * Correct length for chain is "count".
1035		 * Find the mbuf with last data, adjust its length,
1036		 * and toss data from remaining mbufs on chain.
1037		 */
1038		m = mp;
1039		if (m->m_flags & M_PKTHDR)
1040			m->m_pkthdr.len = count;
1041		for (; m; m = m->m_next) {
1042			if (m->m_len >= count) {
1043				m->m_len = count;
1044				if (m->m_next != NULL) {
1045					m_freem(m->m_next);
1046					m->m_next = NULL;
1047				}
1048				break;
1049			}
1050			count -= m->m_len;
1051		}
1052	}
1053}
1054
1055/*
1056 * Rearange an mbuf chain so that len bytes are contiguous
1057 * and in the data area of an mbuf (so that mtod will work
1058 * for a structure of size len).  Returns the resulting
1059 * mbuf chain on success, frees it and returns null on failure.
1060 * If there is room, it will add up to max_protohdr-len extra bytes to the
1061 * contiguous region in an attempt to avoid being called next time.
1062 */
1063struct mbuf *
1064m_pullup(struct mbuf *n, int len)
1065{
1066	struct mbuf *m;
1067	int count;
1068	int space;
1069
1070	/*
1071	 * If first mbuf has no cluster, and has room for len bytes
1072	 * without shifting current data, pullup into it,
1073	 * otherwise allocate a new mbuf to prepend to the chain.
1074	 */
1075	if ((n->m_flags & M_EXT) == 0 &&
1076	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1077		if (n->m_len >= len)
1078			return (n);
1079		m = n;
1080		n = n->m_next;
1081		len -= m->m_len;
1082	} else {
1083		if (len > MHLEN)
1084			goto bad;
1085		m = m_get(M_NOWAIT, n->m_type);
1086		if (m == NULL)
1087			goto bad;
1088		if (n->m_flags & M_PKTHDR)
1089			m_move_pkthdr(m, n);
1090	}
1091	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1092	do {
1093		count = min(min(max(len, max_protohdr), space), n->m_len);
1094		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1095		  (u_int)count);
1096		len -= count;
1097		m->m_len += count;
1098		n->m_len -= count;
1099		space -= count;
1100		if (n->m_len)
1101			n->m_data += count;
1102		else
1103			n = m_free(n);
1104	} while (len > 0 && n);
1105	if (len > 0) {
1106		(void) m_free(m);
1107		goto bad;
1108	}
1109	m->m_next = n;
1110	return (m);
1111bad:
1112	m_freem(n);
1113	return (NULL);
1114}
1115
1116/*
1117 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1118 * the amount of empty space before the data in the new mbuf to be specified
1119 * (in the event that the caller expects to prepend later).
1120 */
1121int MSFail;
1122
1123struct mbuf *
1124m_copyup(struct mbuf *n, int len, int dstoff)
1125{
1126	struct mbuf *m;
1127	int count, space;
1128
1129	if (len > (MHLEN - dstoff))
1130		goto bad;
1131	m = m_get(M_NOWAIT, n->m_type);
1132	if (m == NULL)
1133		goto bad;
1134	if (n->m_flags & M_PKTHDR)
1135		m_move_pkthdr(m, n);
1136	m->m_data += dstoff;
1137	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1138	do {
1139		count = min(min(max(len, max_protohdr), space), n->m_len);
1140		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1141		    (unsigned)count);
1142		len -= count;
1143		m->m_len += count;
1144		n->m_len -= count;
1145		space -= count;
1146		if (n->m_len)
1147			n->m_data += count;
1148		else
1149			n = m_free(n);
1150	} while (len > 0 && n);
1151	if (len > 0) {
1152		(void) m_free(m);
1153		goto bad;
1154	}
1155	m->m_next = n;
1156	return (m);
1157 bad:
1158	m_freem(n);
1159	MSFail++;
1160	return (NULL);
1161}
1162
1163/*
1164 * Partition an mbuf chain in two pieces, returning the tail --
1165 * all but the first len0 bytes.  In case of failure, it returns NULL and
1166 * attempts to restore the chain to its original state.
1167 *
1168 * Note that the resulting mbufs might be read-only, because the new
1169 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1170 * the "breaking point" happens to lie within a cluster mbuf. Use the
1171 * M_WRITABLE() macro to check for this case.
1172 */
1173struct mbuf *
1174m_split(struct mbuf *m0, int len0, int wait)
1175{
1176	struct mbuf *m, *n;
1177	u_int len = len0, remain;
1178
1179	MBUF_CHECKSLEEP(wait);
1180	for (m = m0; m && len > m->m_len; m = m->m_next)
1181		len -= m->m_len;
1182	if (m == NULL)
1183		return (NULL);
1184	remain = m->m_len - len;
1185	if (m0->m_flags & M_PKTHDR && remain == 0) {
1186		n = m_gethdr(wait, m0->m_type);
1187			return (NULL);
1188		n->m_next = m->m_next;
1189		m->m_next = NULL;
1190		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1191		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1192		m0->m_pkthdr.len = len0;
1193		return (n);
1194	} else if (m0->m_flags & M_PKTHDR) {
1195		n = m_gethdr(wait, m0->m_type);
1196		if (n == NULL)
1197			return (NULL);
1198		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1199		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1200		m0->m_pkthdr.len = len0;
1201		if (m->m_flags & M_EXT)
1202			goto extpacket;
1203		if (remain > MHLEN) {
1204			/* m can't be the lead packet */
1205			MH_ALIGN(n, 0);
1206			n->m_next = m_split(m, len, wait);
1207			if (n->m_next == NULL) {
1208				(void) m_free(n);
1209				return (NULL);
1210			} else {
1211				n->m_len = 0;
1212				return (n);
1213			}
1214		} else
1215			MH_ALIGN(n, remain);
1216	} else if (remain == 0) {
1217		n = m->m_next;
1218		m->m_next = NULL;
1219		return (n);
1220	} else {
1221		n = m_get(wait, m->m_type);
1222		if (n == NULL)
1223			return (NULL);
1224		M_ALIGN(n, remain);
1225	}
1226extpacket:
1227	if (m->m_flags & M_EXT) {
1228		n->m_data = m->m_data + len;
1229		mb_dupcl(n, m);
1230	} else {
1231		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1232	}
1233	n->m_len = remain;
1234	m->m_len = len;
1235	n->m_next = m->m_next;
1236	m->m_next = NULL;
1237	return (n);
1238}
1239/*
1240 * Routine to copy from device local memory into mbufs.
1241 * Note that `off' argument is offset into first mbuf of target chain from
1242 * which to begin copying the data to.
1243 */
1244struct mbuf *
1245m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1246    void (*copy)(char *from, caddr_t to, u_int len))
1247{
1248	struct mbuf *m;
1249	struct mbuf *top = NULL, **mp = &top;
1250	int len;
1251
1252	if (off < 0 || off > MHLEN)
1253		return (NULL);
1254
1255	while (totlen > 0) {
1256		if (top == NULL) {	/* First one, must be PKTHDR */
1257			if (totlen + off >= MINCLSIZE) {
1258				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1259				len = MCLBYTES;
1260			} else {
1261				m = m_gethdr(M_NOWAIT, MT_DATA);
1262				len = MHLEN;
1263
1264				/* Place initial small packet/header at end of mbuf */
1265				if (m && totlen + off + max_linkhdr <= MLEN) {
1266					m->m_data += max_linkhdr;
1267					len -= max_linkhdr;
1268				}
1269			}
1270			if (m == NULL)
1271				return NULL;
1272			m->m_pkthdr.rcvif = ifp;
1273			m->m_pkthdr.len = totlen;
1274		} else {
1275			if (totlen + off >= MINCLSIZE) {
1276				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1277				len = MCLBYTES;
1278			} else {
1279				m = m_get(M_NOWAIT, MT_DATA);
1280				len = MLEN;
1281			}
1282			if (m == NULL) {
1283				m_freem(top);
1284				return NULL;
1285			}
1286		}
1287		if (off) {
1288			m->m_data += off;
1289			len -= off;
1290			off = 0;
1291		}
1292		m->m_len = len = min(totlen, len);
1293		if (copy)
1294			copy(buf, mtod(m, caddr_t), (u_int)len);
1295		else
1296			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1297		buf += len;
1298		*mp = m;
1299		mp = &m->m_next;
1300		totlen -= len;
1301	}
1302	return (top);
1303}
1304
1305/*
1306 * Copy data from a buffer back into the indicated mbuf chain,
1307 * starting "off" bytes from the beginning, extending the mbuf
1308 * chain if necessary.
1309 */
1310void
1311m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1312{
1313	int mlen;
1314	struct mbuf *m = m0, *n;
1315	int totlen = 0;
1316
1317	if (m0 == NULL)
1318		return;
1319	while (off > (mlen = m->m_len)) {
1320		off -= mlen;
1321		totlen += mlen;
1322		if (m->m_next == NULL) {
1323			n = m_get(M_NOWAIT, m->m_type);
1324			if (n == NULL)
1325				goto out;
1326			bzero(mtod(n, caddr_t), MLEN);
1327			n->m_len = min(MLEN, len + off);
1328			m->m_next = n;
1329		}
1330		m = m->m_next;
1331	}
1332	while (len > 0) {
1333		if (m->m_next == NULL && (len > m->m_len - off)) {
1334			m->m_len += min(len - (m->m_len - off),
1335			    M_TRAILINGSPACE(m));
1336		}
1337		mlen = min (m->m_len - off, len);
1338		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1339		cp += mlen;
1340		len -= mlen;
1341		mlen += off;
1342		off = 0;
1343		totlen += mlen;
1344		if (len == 0)
1345			break;
1346		if (m->m_next == NULL) {
1347			n = m_get(M_NOWAIT, m->m_type);
1348			if (n == NULL)
1349				break;
1350			n->m_len = min(MLEN, len);
1351			m->m_next = n;
1352		}
1353		m = m->m_next;
1354	}
1355out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1356		m->m_pkthdr.len = totlen;
1357}
1358
1359/*
1360 * Append the specified data to the indicated mbuf chain,
1361 * Extend the mbuf chain if the new data does not fit in
1362 * existing space.
1363 *
1364 * Return 1 if able to complete the job; otherwise 0.
1365 */
1366int
1367m_append(struct mbuf *m0, int len, c_caddr_t cp)
1368{
1369	struct mbuf *m, *n;
1370	int remainder, space;
1371
1372	for (m = m0; m->m_next != NULL; m = m->m_next)
1373		;
1374	remainder = len;
1375	space = M_TRAILINGSPACE(m);
1376	if (space > 0) {
1377		/*
1378		 * Copy into available space.
1379		 */
1380		if (space > remainder)
1381			space = remainder;
1382		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1383		m->m_len += space;
1384		cp += space, remainder -= space;
1385	}
1386	while (remainder > 0) {
1387		/*
1388		 * Allocate a new mbuf; could check space
1389		 * and allocate a cluster instead.
1390		 */
1391		n = m_get(M_NOWAIT, m->m_type);
1392		if (n == NULL)
1393			break;
1394		n->m_len = min(MLEN, remainder);
1395		bcopy(cp, mtod(n, caddr_t), n->m_len);
1396		cp += n->m_len, remainder -= n->m_len;
1397		m->m_next = n;
1398		m = n;
1399	}
1400	if (m0->m_flags & M_PKTHDR)
1401		m0->m_pkthdr.len += len - remainder;
1402	return (remainder == 0);
1403}
1404
1405/*
1406 * Apply function f to the data in an mbuf chain starting "off" bytes from
1407 * the beginning, continuing for "len" bytes.
1408 */
1409int
1410m_apply(struct mbuf *m, int off, int len,
1411    int (*f)(void *, void *, u_int), void *arg)
1412{
1413	u_int count;
1414	int rval;
1415
1416	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1417	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1418	while (off > 0) {
1419		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1420		if (off < m->m_len)
1421			break;
1422		off -= m->m_len;
1423		m = m->m_next;
1424	}
1425	while (len > 0) {
1426		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1427		count = min(m->m_len - off, len);
1428		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1429		if (rval)
1430			return (rval);
1431		len -= count;
1432		off = 0;
1433		m = m->m_next;
1434	}
1435	return (0);
1436}
1437
1438/*
1439 * Return a pointer to mbuf/offset of location in mbuf chain.
1440 */
1441struct mbuf *
1442m_getptr(struct mbuf *m, int loc, int *off)
1443{
1444
1445	while (loc >= 0) {
1446		/* Normal end of search. */
1447		if (m->m_len > loc) {
1448			*off = loc;
1449			return (m);
1450		} else {
1451			loc -= m->m_len;
1452			if (m->m_next == NULL) {
1453				if (loc == 0) {
1454					/* Point at the end of valid data. */
1455					*off = m->m_len;
1456					return (m);
1457				}
1458				return (NULL);
1459			}
1460			m = m->m_next;
1461		}
1462	}
1463	return (NULL);
1464}
1465
1466void
1467m_print(const struct mbuf *m, int maxlen)
1468{
1469	int len;
1470	int pdata;
1471	const struct mbuf *m2;
1472
1473	if (m == NULL) {
1474		printf("mbuf: %p\n", m);
1475		return;
1476	}
1477
1478	if (m->m_flags & M_PKTHDR)
1479		len = m->m_pkthdr.len;
1480	else
1481		len = -1;
1482	m2 = m;
1483	while (m2 != NULL && (len == -1 || len)) {
1484		pdata = m2->m_len;
1485		if (maxlen != -1 && pdata > maxlen)
1486			pdata = maxlen;
1487		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1488		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1489		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1490		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1491		if (pdata)
1492			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1493		if (len != -1)
1494			len -= m2->m_len;
1495		m2 = m2->m_next;
1496	}
1497	if (len > 0)
1498		printf("%d bytes unaccounted for.\n", len);
1499	return;
1500}
1501
1502u_int
1503m_fixhdr(struct mbuf *m0)
1504{
1505	u_int len;
1506
1507	len = m_length(m0, NULL);
1508	m0->m_pkthdr.len = len;
1509	return (len);
1510}
1511
1512u_int
1513m_length(struct mbuf *m0, struct mbuf **last)
1514{
1515	struct mbuf *m;
1516	u_int len;
1517
1518	len = 0;
1519	for (m = m0; m != NULL; m = m->m_next) {
1520		len += m->m_len;
1521		if (m->m_next == NULL)
1522			break;
1523	}
1524	if (last != NULL)
1525		*last = m;
1526	return (len);
1527}
1528
1529/*
1530 * Defragment a mbuf chain, returning the shortest possible
1531 * chain of mbufs and clusters.  If allocation fails and
1532 * this cannot be completed, NULL will be returned, but
1533 * the passed in chain will be unchanged.  Upon success,
1534 * the original chain will be freed, and the new chain
1535 * will be returned.
1536 *
1537 * If a non-packet header is passed in, the original
1538 * mbuf (chain?) will be returned unharmed.
1539 */
1540struct mbuf *
1541m_defrag(struct mbuf *m0, int how)
1542{
1543	struct mbuf *m_new = NULL, *m_final = NULL;
1544	int progress = 0, length;
1545
1546	MBUF_CHECKSLEEP(how);
1547	if (!(m0->m_flags & M_PKTHDR))
1548		return (m0);
1549
1550	m_fixhdr(m0); /* Needed sanity check */
1551
1552#ifdef MBUF_STRESS_TEST
1553	if (m_defragrandomfailures) {
1554		int temp = arc4random() & 0xff;
1555		if (temp == 0xba)
1556			goto nospace;
1557	}
1558#endif
1559
1560	if (m0->m_pkthdr.len > MHLEN)
1561		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1562	else
1563		m_final = m_gethdr(how, MT_DATA);
1564
1565	if (m_final == NULL)
1566		goto nospace;
1567
1568	if (m_dup_pkthdr(m_final, m0, how) == 0)
1569		goto nospace;
1570
1571	m_new = m_final;
1572
1573	while (progress < m0->m_pkthdr.len) {
1574		length = m0->m_pkthdr.len - progress;
1575		if (length > MCLBYTES)
1576			length = MCLBYTES;
1577
1578		if (m_new == NULL) {
1579			if (length > MLEN)
1580				m_new = m_getcl(how, MT_DATA, 0);
1581			else
1582				m_new = m_get(how, MT_DATA);
1583			if (m_new == NULL)
1584				goto nospace;
1585		}
1586
1587		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1588		progress += length;
1589		m_new->m_len = length;
1590		if (m_new != m_final)
1591			m_cat(m_final, m_new);
1592		m_new = NULL;
1593	}
1594#ifdef MBUF_STRESS_TEST
1595	if (m0->m_next == NULL)
1596		m_defraguseless++;
1597#endif
1598	m_freem(m0);
1599	m0 = m_final;
1600#ifdef MBUF_STRESS_TEST
1601	m_defragpackets++;
1602	m_defragbytes += m0->m_pkthdr.len;
1603#endif
1604	return (m0);
1605nospace:
1606#ifdef MBUF_STRESS_TEST
1607	m_defragfailure++;
1608#endif
1609	if (m_final)
1610		m_freem(m_final);
1611	return (NULL);
1612}
1613
1614/*
1615 * Defragment an mbuf chain, returning at most maxfrags separate
1616 * mbufs+clusters.  If this is not possible NULL is returned and
1617 * the original mbuf chain is left in it's present (potentially
1618 * modified) state.  We use two techniques: collapsing consecutive
1619 * mbufs and replacing consecutive mbufs by a cluster.
1620 *
1621 * NB: this should really be named m_defrag but that name is taken
1622 */
1623struct mbuf *
1624m_collapse(struct mbuf *m0, int how, int maxfrags)
1625{
1626	struct mbuf *m, *n, *n2, **prev;
1627	u_int curfrags;
1628
1629	/*
1630	 * Calculate the current number of frags.
1631	 */
1632	curfrags = 0;
1633	for (m = m0; m != NULL; m = m->m_next)
1634		curfrags++;
1635	/*
1636	 * First, try to collapse mbufs.  Note that we always collapse
1637	 * towards the front so we don't need to deal with moving the
1638	 * pkthdr.  This may be suboptimal if the first mbuf has much
1639	 * less data than the following.
1640	 */
1641	m = m0;
1642again:
1643	for (;;) {
1644		n = m->m_next;
1645		if (n == NULL)
1646			break;
1647		if (M_WRITABLE(m) &&
1648		    n->m_len < M_TRAILINGSPACE(m)) {
1649			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1650				n->m_len);
1651			m->m_len += n->m_len;
1652			m->m_next = n->m_next;
1653			m_free(n);
1654			if (--curfrags <= maxfrags)
1655				return m0;
1656		} else
1657			m = n;
1658	}
1659	KASSERT(maxfrags > 1,
1660		("maxfrags %u, but normal collapse failed", maxfrags));
1661	/*
1662	 * Collapse consecutive mbufs to a cluster.
1663	 */
1664	prev = &m0->m_next;		/* NB: not the first mbuf */
1665	while ((n = *prev) != NULL) {
1666		if ((n2 = n->m_next) != NULL &&
1667		    n->m_len + n2->m_len < MCLBYTES) {
1668			m = m_getcl(how, MT_DATA, 0);
1669			if (m == NULL)
1670				goto bad;
1671			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1672			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1673				n2->m_len);
1674			m->m_len = n->m_len + n2->m_len;
1675			m->m_next = n2->m_next;
1676			*prev = m;
1677			m_free(n);
1678			m_free(n2);
1679			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1680				return m0;
1681			/*
1682			 * Still not there, try the normal collapse
1683			 * again before we allocate another cluster.
1684			 */
1685			goto again;
1686		}
1687		prev = &n->m_next;
1688	}
1689	/*
1690	 * No place where we can collapse to a cluster; punt.
1691	 * This can occur if, for example, you request 2 frags
1692	 * but the packet requires that both be clusters (we
1693	 * never reallocate the first mbuf to avoid moving the
1694	 * packet header).
1695	 */
1696bad:
1697	return NULL;
1698}
1699
1700#ifdef MBUF_STRESS_TEST
1701
1702/*
1703 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1704 * this in normal usage, but it's great for stress testing various
1705 * mbuf consumers.
1706 *
1707 * If fragmentation is not possible, the original chain will be
1708 * returned.
1709 *
1710 * Possible length values:
1711 * 0	 no fragmentation will occur
1712 * > 0	each fragment will be of the specified length
1713 * -1	each fragment will be the same random value in length
1714 * -2	each fragment's length will be entirely random
1715 * (Random values range from 1 to 256)
1716 */
1717struct mbuf *
1718m_fragment(struct mbuf *m0, int how, int length)
1719{
1720	struct mbuf *m_new = NULL, *m_final = NULL;
1721	int progress = 0;
1722
1723	if (!(m0->m_flags & M_PKTHDR))
1724		return (m0);
1725
1726	if ((length == 0) || (length < -2))
1727		return (m0);
1728
1729	m_fixhdr(m0); /* Needed sanity check */
1730
1731	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1732
1733	if (m_final == NULL)
1734		goto nospace;
1735
1736	if (m_dup_pkthdr(m_final, m0, how) == 0)
1737		goto nospace;
1738
1739	m_new = m_final;
1740
1741	if (length == -1)
1742		length = 1 + (arc4random() & 255);
1743
1744	while (progress < m0->m_pkthdr.len) {
1745		int fraglen;
1746
1747		if (length > 0)
1748			fraglen = length;
1749		else
1750			fraglen = 1 + (arc4random() & 255);
1751		if (fraglen > m0->m_pkthdr.len - progress)
1752			fraglen = m0->m_pkthdr.len - progress;
1753
1754		if (fraglen > MCLBYTES)
1755			fraglen = MCLBYTES;
1756
1757		if (m_new == NULL) {
1758			m_new = m_getcl(how, MT_DATA, 0);
1759			if (m_new == NULL)
1760				goto nospace;
1761		}
1762
1763		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1764		progress += fraglen;
1765		m_new->m_len = fraglen;
1766		if (m_new != m_final)
1767			m_cat(m_final, m_new);
1768		m_new = NULL;
1769	}
1770	m_freem(m0);
1771	m0 = m_final;
1772	return (m0);
1773nospace:
1774	if (m_final)
1775		m_freem(m_final);
1776	/* Return the original chain on failure */
1777	return (m0);
1778}
1779
1780#endif
1781
1782/*
1783 * Copy the contents of uio into a properly sized mbuf chain.
1784 */
1785struct mbuf *
1786m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1787{
1788	struct mbuf *m, *mb;
1789	int error, length;
1790	ssize_t total;
1791	int progress = 0;
1792
1793	/*
1794	 * len can be zero or an arbitrary large value bound by
1795	 * the total data supplied by the uio.
1796	 */
1797	if (len > 0)
1798		total = min(uio->uio_resid, len);
1799	else
1800		total = uio->uio_resid;
1801
1802	/*
1803	 * The smallest unit returned by m_getm2() is a single mbuf
1804	 * with pkthdr.  We can't align past it.
1805	 */
1806	if (align >= MHLEN)
1807		return (NULL);
1808
1809	/*
1810	 * Give us the full allocation or nothing.
1811	 * If len is zero return the smallest empty mbuf.
1812	 */
1813	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1814	if (m == NULL)
1815		return (NULL);
1816	m->m_data += align;
1817
1818	/* Fill all mbufs with uio data and update header information. */
1819	for (mb = m; mb != NULL; mb = mb->m_next) {
1820		length = min(M_TRAILINGSPACE(mb), total - progress);
1821
1822		error = uiomove(mtod(mb, void *), length, uio);
1823		if (error) {
1824			m_freem(m);
1825			return (NULL);
1826		}
1827
1828		mb->m_len = length;
1829		progress += length;
1830		if (flags & M_PKTHDR)
1831			m->m_pkthdr.len += length;
1832	}
1833	KASSERT(progress == total, ("%s: progress != total", __func__));
1834
1835	return (m);
1836}
1837
1838/*
1839 * Copy an mbuf chain into a uio limited by len if set.
1840 */
1841int
1842m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1843{
1844	int error, length, total;
1845	int progress = 0;
1846
1847	if (len > 0)
1848		total = min(uio->uio_resid, len);
1849	else
1850		total = uio->uio_resid;
1851
1852	/* Fill the uio with data from the mbufs. */
1853	for (; m != NULL; m = m->m_next) {
1854		length = min(m->m_len, total - progress);
1855
1856		error = uiomove(mtod(m, void *), length, uio);
1857		if (error)
1858			return (error);
1859
1860		progress += length;
1861	}
1862
1863	return (0);
1864}
1865
1866/*
1867 * Set the m_data pointer of a newly-allocated mbuf
1868 * to place an object of the specified size at the
1869 * end of the mbuf, longword aligned.
1870 */
1871void
1872m_align(struct mbuf *m, int len)
1873{
1874#ifdef INVARIANTS
1875	const char *msg = "%s: not a virgin mbuf";
1876#endif
1877	int adjust;
1878
1879	if (m->m_flags & M_EXT) {
1880		KASSERT(m->m_data == m->m_ext.ext_buf, (msg, __func__));
1881		adjust = m->m_ext.ext_size - len;
1882	} else if (m->m_flags & M_PKTHDR) {
1883		KASSERT(m->m_data == m->m_pktdat, (msg, __func__));
1884		adjust = MHLEN - len;
1885	} else {
1886		KASSERT(m->m_data == m->m_dat, (msg, __func__));
1887		adjust = MLEN - len;
1888	}
1889
1890	m->m_data += adjust &~ (sizeof(long)-1);
1891}
1892
1893/*
1894 * Create a writable copy of the mbuf chain.  While doing this
1895 * we compact the chain with a goal of producing a chain with
1896 * at most two mbufs.  The second mbuf in this chain is likely
1897 * to be a cluster.  The primary purpose of this work is to create
1898 * a writable packet for encryption, compression, etc.  The
1899 * secondary goal is to linearize the data so the data can be
1900 * passed to crypto hardware in the most efficient manner possible.
1901 */
1902struct mbuf *
1903m_unshare(struct mbuf *m0, int how)
1904{
1905	struct mbuf *m, *mprev;
1906	struct mbuf *n, *mfirst, *mlast;
1907	int len, off;
1908
1909	mprev = NULL;
1910	for (m = m0; m != NULL; m = mprev->m_next) {
1911		/*
1912		 * Regular mbufs are ignored unless there's a cluster
1913		 * in front of it that we can use to coalesce.  We do
1914		 * the latter mainly so later clusters can be coalesced
1915		 * also w/o having to handle them specially (i.e. convert
1916		 * mbuf+cluster -> cluster).  This optimization is heavily
1917		 * influenced by the assumption that we're running over
1918		 * Ethernet where MCLBYTES is large enough that the max
1919		 * packet size will permit lots of coalescing into a
1920		 * single cluster.  This in turn permits efficient
1921		 * crypto operations, especially when using hardware.
1922		 */
1923		if ((m->m_flags & M_EXT) == 0) {
1924			if (mprev && (mprev->m_flags & M_EXT) &&
1925			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1926				/* XXX: this ignores mbuf types */
1927				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1928				       mtod(m, caddr_t), m->m_len);
1929				mprev->m_len += m->m_len;
1930				mprev->m_next = m->m_next;	/* unlink from chain */
1931				m_free(m);			/* reclaim mbuf */
1932#if 0
1933				newipsecstat.ips_mbcoalesced++;
1934#endif
1935			} else {
1936				mprev = m;
1937			}
1938			continue;
1939		}
1940		/*
1941		 * Writable mbufs are left alone (for now).
1942		 */
1943		if (M_WRITABLE(m)) {
1944			mprev = m;
1945			continue;
1946		}
1947
1948		/*
1949		 * Not writable, replace with a copy or coalesce with
1950		 * the previous mbuf if possible (since we have to copy
1951		 * it anyway, we try to reduce the number of mbufs and
1952		 * clusters so that future work is easier).
1953		 */
1954		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1955		/* NB: we only coalesce into a cluster or larger */
1956		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1957		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1958			/* XXX: this ignores mbuf types */
1959			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1960			       mtod(m, caddr_t), m->m_len);
1961			mprev->m_len += m->m_len;
1962			mprev->m_next = m->m_next;	/* unlink from chain */
1963			m_free(m);			/* reclaim mbuf */
1964#if 0
1965			newipsecstat.ips_clcoalesced++;
1966#endif
1967			continue;
1968		}
1969
1970		/*
1971		 * Allocate new space to hold the copy and copy the data.
1972		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1973		 * splitting them into clusters.  We could just malloc a
1974		 * buffer and make it external but too many device drivers
1975		 * don't know how to break up the non-contiguous memory when
1976		 * doing DMA.
1977		 */
1978		n = m_getcl(how, m->m_type, m->m_flags);
1979		if (n == NULL) {
1980			m_freem(m0);
1981			return (NULL);
1982		}
1983		len = m->m_len;
1984		off = 0;
1985		mfirst = n;
1986		mlast = NULL;
1987		for (;;) {
1988			int cc = min(len, MCLBYTES);
1989			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1990			n->m_len = cc;
1991			if (mlast != NULL)
1992				mlast->m_next = n;
1993			mlast = n;
1994#if 0
1995			newipsecstat.ips_clcopied++;
1996#endif
1997
1998			len -= cc;
1999			if (len <= 0)
2000				break;
2001			off += cc;
2002
2003			n = m_getcl(how, m->m_type, m->m_flags);
2004			if (n == NULL) {
2005				m_freem(mfirst);
2006				m_freem(m0);
2007				return (NULL);
2008			}
2009		}
2010		n->m_next = m->m_next;
2011		if (mprev == NULL)
2012			m0 = mfirst;		/* new head of chain */
2013		else
2014			mprev->m_next = mfirst;	/* replace old mbuf */
2015		m_free(m);			/* release old mbuf */
2016		mprev = mfirst;
2017	}
2018	return (m0);
2019}
2020
2021#ifdef MBUF_PROFILING
2022
2023#define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2024struct mbufprofile {
2025	uintmax_t wasted[MP_BUCKETS];
2026	uintmax_t used[MP_BUCKETS];
2027	uintmax_t segments[MP_BUCKETS];
2028} mbprof;
2029
2030#define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2031#define MP_NUMLINES 6
2032#define MP_NUMSPERLINE 16
2033#define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2034/* work out max space needed and add a bit of spare space too */
2035#define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2036#define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2037
2038char mbprofbuf[MP_BUFSIZE];
2039
2040void
2041m_profile(struct mbuf *m)
2042{
2043	int segments = 0;
2044	int used = 0;
2045	int wasted = 0;
2046
2047	while (m) {
2048		segments++;
2049		used += m->m_len;
2050		if (m->m_flags & M_EXT) {
2051			wasted += MHLEN - sizeof(m->m_ext) +
2052			    m->m_ext.ext_size - m->m_len;
2053		} else {
2054			if (m->m_flags & M_PKTHDR)
2055				wasted += MHLEN - m->m_len;
2056			else
2057				wasted += MLEN - m->m_len;
2058		}
2059		m = m->m_next;
2060	}
2061	/* be paranoid.. it helps */
2062	if (segments > MP_BUCKETS - 1)
2063		segments = MP_BUCKETS - 1;
2064	if (used > 100000)
2065		used = 100000;
2066	if (wasted > 100000)
2067		wasted = 100000;
2068	/* store in the appropriate bucket */
2069	/* don't bother locking. if it's slightly off, so what? */
2070	mbprof.segments[segments]++;
2071	mbprof.used[fls(used)]++;
2072	mbprof.wasted[fls(wasted)]++;
2073}
2074
2075static void
2076mbprof_textify(void)
2077{
2078	int offset;
2079	char *c;
2080	uint64_t *p;
2081
2082
2083	p = &mbprof.wasted[0];
2084	c = mbprofbuf;
2085	offset = snprintf(c, MP_MAXLINE + 10,
2086	    "wasted:\n"
2087	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2088	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2089	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2090	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2091#ifdef BIG_ARRAY
2092	p = &mbprof.wasted[16];
2093	c += offset;
2094	offset = snprintf(c, MP_MAXLINE,
2095	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2096	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2097	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2098	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2099#endif
2100	p = &mbprof.used[0];
2101	c += offset;
2102	offset = snprintf(c, MP_MAXLINE + 10,
2103	    "used:\n"
2104	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2105	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2106	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2107	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2108#ifdef BIG_ARRAY
2109	p = &mbprof.used[16];
2110	c += offset;
2111	offset = snprintf(c, MP_MAXLINE,
2112	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2113	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2114	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2115	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2116#endif
2117	p = &mbprof.segments[0];
2118	c += offset;
2119	offset = snprintf(c, MP_MAXLINE + 10,
2120	    "segments:\n"
2121	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2122	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2123	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2124	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2125#ifdef BIG_ARRAY
2126	p = &mbprof.segments[16];
2127	c += offset;
2128	offset = snprintf(c, MP_MAXLINE,
2129	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2130	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2131	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2132	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2133#endif
2134}
2135
2136static int
2137mbprof_handler(SYSCTL_HANDLER_ARGS)
2138{
2139	int error;
2140
2141	mbprof_textify();
2142	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2143	return (error);
2144}
2145
2146static int
2147mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2148{
2149	int clear, error;
2150
2151	clear = 0;
2152	error = sysctl_handle_int(oidp, &clear, 0, req);
2153	if (error || !req->newptr)
2154		return (error);
2155
2156	if (clear) {
2157		bzero(&mbprof, sizeof(mbprof));
2158	}
2159
2160	return (error);
2161}
2162
2163
2164SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2165	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2166
2167SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2168	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2169#endif
2170
2171