uipc_mbuf.c revision 253361
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/uipc_mbuf.c 253361 2013-07-15 12:18:36Z glebius $");
34
35#include "opt_param.h"
36#include "opt_mbuf_stress_test.h"
37#include "opt_mbuf_profiling.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/sysctl.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/uio.h>
50
51int	max_linkhdr;
52int	max_protohdr;
53int	max_hdr;
54int	max_datalen;
55#ifdef MBUF_STRESS_TEST
56int	m_defragpackets;
57int	m_defragbytes;
58int	m_defraguseless;
59int	m_defragfailure;
60int	m_defragrandomfailures;
61#endif
62
63/*
64 * sysctl(8) exported objects
65 */
66SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67	   &max_linkhdr, 0, "Size of largest link layer header");
68SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69	   &max_protohdr, 0, "Size of largest protocol layer header");
70SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71	   &max_hdr, 0, "Size of largest link plus protocol header");
72SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74#ifdef MBUF_STRESS_TEST
75SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76	   &m_defragpackets, 0, "");
77SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78	   &m_defragbytes, 0, "");
79SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80	   &m_defraguseless, 0, "");
81SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82	   &m_defragfailure, 0, "");
83SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84	   &m_defragrandomfailures, 0, "");
85#endif
86
87/*
88 * m_get2() allocates minimum mbuf that would fit "size" argument.
89 */
90struct mbuf *
91m_get2(int size, int how, short type, int flags)
92{
93	struct mb_args args;
94	struct mbuf *m, *n;
95
96	args.flags = flags;
97	args.type = type;
98
99	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
100		return (uma_zalloc_arg(zone_mbuf, &args, how));
101	if (size <= MCLBYTES)
102		return (uma_zalloc_arg(zone_pack, &args, how));
103
104	if (size > MJUMPAGESIZE)
105		return (NULL);
106
107	m = uma_zalloc_arg(zone_mbuf, &args, how);
108	if (m == NULL)
109		return (NULL);
110
111	n = uma_zalloc_arg(zone_jumbop, m, how);
112	if (n == NULL) {
113		uma_zfree(zone_mbuf, m);
114		return (NULL);
115	}
116
117	return (m);
118}
119
120/*
121 * m_getjcl() returns an mbuf with a cluster of the specified size attached.
122 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
123 */
124struct mbuf *
125m_getjcl(int how, short type, int flags, int size)
126{
127	struct mb_args args;
128	struct mbuf *m, *n;
129	uma_zone_t zone;
130
131	if (size == MCLBYTES)
132		return m_getcl(how, type, flags);
133
134	args.flags = flags;
135	args.type = type;
136
137	m = uma_zalloc_arg(zone_mbuf, &args, how);
138	if (m == NULL)
139		return (NULL);
140
141	zone = m_getzone(size);
142	n = uma_zalloc_arg(zone, m, how);
143	if (n == NULL) {
144		uma_zfree(zone_mbuf, m);
145		return (NULL);
146	}
147	return (m);
148}
149
150/*
151 * Allocate a given length worth of mbufs and/or clusters (whatever fits
152 * best) and return a pointer to the top of the allocated chain.  If an
153 * existing mbuf chain is provided, then we will append the new chain
154 * to the existing one but still return the top of the newly allocated
155 * chain.
156 */
157struct mbuf *
158m_getm2(struct mbuf *m, int len, int how, short type, int flags)
159{
160	struct mbuf *mb, *nm = NULL, *mtail = NULL;
161
162	KASSERT(len >= 0, ("%s: len is < 0", __func__));
163
164	/* Validate flags. */
165	flags &= (M_PKTHDR | M_EOR);
166
167	/* Packet header mbuf must be first in chain. */
168	if ((flags & M_PKTHDR) && m != NULL)
169		flags &= ~M_PKTHDR;
170
171	/* Loop and append maximum sized mbufs to the chain tail. */
172	while (len > 0) {
173		if (len > MCLBYTES)
174			mb = m_getjcl(how, type, (flags & M_PKTHDR),
175			    MJUMPAGESIZE);
176		else if (len >= MINCLSIZE)
177			mb = m_getcl(how, type, (flags & M_PKTHDR));
178		else if (flags & M_PKTHDR)
179			mb = m_gethdr(how, type);
180		else
181			mb = m_get(how, type);
182
183		/* Fail the whole operation if one mbuf can't be allocated. */
184		if (mb == NULL) {
185			if (nm != NULL)
186				m_freem(nm);
187			return (NULL);
188		}
189
190		/* Book keeping. */
191		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
192			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
193		if (mtail != NULL)
194			mtail->m_next = mb;
195		else
196			nm = mb;
197		mtail = mb;
198		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
199	}
200	if (flags & M_EOR)
201		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
202
203	/* If mbuf was supplied, append new chain to the end of it. */
204	if (m != NULL) {
205		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
206			;
207		mtail->m_next = nm;
208		mtail->m_flags &= ~M_EOR;
209	} else
210		m = nm;
211
212	return (m);
213}
214
215/*
216 * Free an entire chain of mbufs and associated external buffers, if
217 * applicable.
218 */
219void
220m_freem(struct mbuf *mb)
221{
222
223	while (mb != NULL)
224		mb = m_free(mb);
225}
226
227/*-
228 * Configure a provided mbuf to refer to the provided external storage
229 * buffer and setup a reference count for said buffer.  If the setting
230 * up of the reference count fails, the M_EXT bit will not be set.  If
231 * successfull, the M_EXT bit is set in the mbuf's flags.
232 *
233 * Arguments:
234 *    mb     The existing mbuf to which to attach the provided buffer.
235 *    buf    The address of the provided external storage buffer.
236 *    size   The size of the provided buffer.
237 *    freef  A pointer to a routine that is responsible for freeing the
238 *           provided external storage buffer.
239 *    args   A pointer to an argument structure (of any type) to be passed
240 *           to the provided freef routine (may be NULL).
241 *    flags  Any other flags to be passed to the provided mbuf.
242 *    type   The type that the external storage buffer should be
243 *           labeled with.
244 *
245 * Returns:
246 *    Nothing.
247 */
248int
249m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
250    void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type,
251    int wait)
252{
253	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
254
255	if (type != EXT_EXTREF)
256		mb->m_ext.ref_cnt = uma_zalloc(zone_ext_refcnt, wait);
257
258	if (mb->m_ext.ref_cnt == NULL)
259		return (ENOMEM);
260
261	*(mb->m_ext.ref_cnt) = 1;
262	mb->m_flags |= (M_EXT | flags);
263	mb->m_ext.ext_buf = buf;
264	mb->m_data = mb->m_ext.ext_buf;
265	mb->m_ext.ext_size = size;
266	mb->m_ext.ext_free = freef;
267	mb->m_ext.ext_arg1 = arg1;
268	mb->m_ext.ext_arg2 = arg2;
269	mb->m_ext.ext_type = type;
270
271	return (0);
272}
273
274/*
275 * Non-directly-exported function to clean up after mbufs with M_EXT
276 * storage attached to them if the reference count hits 1.
277 */
278void
279mb_free_ext(struct mbuf *m)
280{
281	int skipmbuf;
282
283	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
284	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
285
286
287	/*
288	 * check if the header is embedded in the cluster
289	 */
290	skipmbuf = (m->m_flags & M_NOFREE);
291
292	/* Free attached storage if this mbuf is the only reference to it. */
293	if (*(m->m_ext.ref_cnt) == 1 ||
294	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
295		switch (m->m_ext.ext_type) {
296		case EXT_PACKET:	/* The packet zone is special. */
297			if (*(m->m_ext.ref_cnt) == 0)
298				*(m->m_ext.ref_cnt) = 1;
299			uma_zfree(zone_pack, m);
300			return;		/* Job done. */
301		case EXT_CLUSTER:
302			uma_zfree(zone_clust, m->m_ext.ext_buf);
303			break;
304		case EXT_JUMBOP:
305			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
306			break;
307		case EXT_JUMBO9:
308			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
309			break;
310		case EXT_JUMBO16:
311			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
312			break;
313		case EXT_SFBUF:
314		case EXT_NET_DRV:
315		case EXT_MOD_TYPE:
316		case EXT_DISPOSABLE:
317			*(m->m_ext.ref_cnt) = 0;
318			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
319				m->m_ext.ref_cnt));
320			/* FALLTHROUGH */
321		case EXT_EXTREF:
322			KASSERT(m->m_ext.ext_free != NULL,
323				("%s: ext_free not set", __func__));
324			(*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
325			    m->m_ext.ext_arg2);
326			break;
327		default:
328			KASSERT(m->m_ext.ext_type == 0,
329				("%s: unknown ext_type", __func__));
330		}
331	}
332	if (skipmbuf)
333		return;
334
335	/*
336	 * Free this mbuf back to the mbuf zone with all m_ext
337	 * information purged.
338	 */
339	m->m_ext.ext_buf = NULL;
340	m->m_ext.ext_free = NULL;
341	m->m_ext.ext_arg1 = NULL;
342	m->m_ext.ext_arg2 = NULL;
343	m->m_ext.ref_cnt = NULL;
344	m->m_ext.ext_size = 0;
345	m->m_ext.ext_type = 0;
346	m->m_flags &= ~M_EXT;
347	uma_zfree(zone_mbuf, m);
348}
349
350/*
351 * Attach the cluster from *m to *n, set up m_ext in *n
352 * and bump the refcount of the cluster.
353 */
354static void
355mb_dupcl(struct mbuf *n, struct mbuf *m)
356{
357	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
358	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
359	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
360
361	if (*(m->m_ext.ref_cnt) == 1)
362		*(m->m_ext.ref_cnt) += 1;
363	else
364		atomic_add_int(m->m_ext.ref_cnt, 1);
365	n->m_ext.ext_buf = m->m_ext.ext_buf;
366	n->m_ext.ext_free = m->m_ext.ext_free;
367	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
368	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
369	n->m_ext.ext_size = m->m_ext.ext_size;
370	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
371	n->m_ext.ext_type = m->m_ext.ext_type;
372	n->m_flags |= M_EXT;
373	n->m_flags |= m->m_flags & M_RDONLY;
374}
375
376/*
377 * Clean up mbuf (chain) from any tags and packet headers.
378 * If "all" is set then the first mbuf in the chain will be
379 * cleaned too.
380 */
381void
382m_demote(struct mbuf *m0, int all)
383{
384	struct mbuf *m;
385
386	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
387		if (m->m_flags & M_PKTHDR) {
388			m_tag_delete_chain(m, NULL);
389			m->m_flags &= ~M_PKTHDR;
390			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
391		}
392		if (m != m0 && m->m_nextpkt != NULL) {
393			KASSERT(m->m_nextpkt == NULL,
394			    ("%s: m_nextpkt not NULL", __func__));
395			m_freem(m->m_nextpkt);
396			m->m_nextpkt = NULL;
397		}
398		m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_NOFREE);
399	}
400}
401
402/*
403 * Sanity checks on mbuf (chain) for use in KASSERT() and general
404 * debugging.
405 * Returns 0 or panics when bad and 1 on all tests passed.
406 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
407 * blow up later.
408 */
409int
410m_sanity(struct mbuf *m0, int sanitize)
411{
412	struct mbuf *m;
413	caddr_t a, b;
414	int pktlen = 0;
415
416#ifdef INVARIANTS
417#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
418#else
419#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
420#endif
421
422	for (m = m0; m != NULL; m = m->m_next) {
423		/*
424		 * Basic pointer checks.  If any of these fails then some
425		 * unrelated kernel memory before or after us is trashed.
426		 * No way to recover from that.
427		 */
428		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
429			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
430			 (caddr_t)(&m->m_dat)) );
431		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
432			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
433		if ((caddr_t)m->m_data < a)
434			M_SANITY_ACTION("m_data outside mbuf data range left");
435		if ((caddr_t)m->m_data > b)
436			M_SANITY_ACTION("m_data outside mbuf data range right");
437		if ((caddr_t)m->m_data + m->m_len > b)
438			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
439		if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
440			if ((caddr_t)m->m_pkthdr.header < a ||
441			    (caddr_t)m->m_pkthdr.header > b)
442				M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
443		}
444
445		/* m->m_nextpkt may only be set on first mbuf in chain. */
446		if (m != m0 && m->m_nextpkt != NULL) {
447			if (sanitize) {
448				m_freem(m->m_nextpkt);
449				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
450			} else
451				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
452		}
453
454		/* packet length (not mbuf length!) calculation */
455		if (m0->m_flags & M_PKTHDR)
456			pktlen += m->m_len;
457
458		/* m_tags may only be attached to first mbuf in chain. */
459		if (m != m0 && m->m_flags & M_PKTHDR &&
460		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
461			if (sanitize) {
462				m_tag_delete_chain(m, NULL);
463				/* put in 0xDEADC0DE perhaps? */
464			} else
465				M_SANITY_ACTION("m_tags on in-chain mbuf");
466		}
467
468		/* M_PKTHDR may only be set on first mbuf in chain */
469		if (m != m0 && m->m_flags & M_PKTHDR) {
470			if (sanitize) {
471				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
472				m->m_flags &= ~M_PKTHDR;
473				/* put in 0xDEADCODE and leave hdr flag in */
474			} else
475				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
476		}
477	}
478	m = m0;
479	if (pktlen && pktlen != m->m_pkthdr.len) {
480		if (sanitize)
481			m->m_pkthdr.len = 0;
482		else
483			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
484	}
485	return 1;
486
487#undef	M_SANITY_ACTION
488}
489
490
491/*
492 * "Move" mbuf pkthdr from "from" to "to".
493 * "from" must have M_PKTHDR set, and "to" must be empty.
494 */
495void
496m_move_pkthdr(struct mbuf *to, struct mbuf *from)
497{
498
499#if 0
500	/* see below for why these are not enabled */
501	M_ASSERTPKTHDR(to);
502	/* Note: with MAC, this may not be a good assertion. */
503	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
504	    ("m_move_pkthdr: to has tags"));
505#endif
506#ifdef MAC
507	/*
508	 * XXXMAC: It could be this should also occur for non-MAC?
509	 */
510	if (to->m_flags & M_PKTHDR)
511		m_tag_delete_chain(to, NULL);
512#endif
513	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
514	if ((to->m_flags & M_EXT) == 0)
515		to->m_data = to->m_pktdat;
516	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
517	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
518	from->m_flags &= ~M_PKTHDR;
519}
520
521/*
522 * Duplicate "from"'s mbuf pkthdr in "to".
523 * "from" must have M_PKTHDR set, and "to" must be empty.
524 * In particular, this does a deep copy of the packet tags.
525 */
526int
527m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
528{
529
530#if 0
531	/*
532	 * The mbuf allocator only initializes the pkthdr
533	 * when the mbuf is allocated with m_gethdr(). Many users
534	 * (e.g. m_copy*, m_prepend) use m_get() and then
535	 * smash the pkthdr as needed causing these
536	 * assertions to trip.  For now just disable them.
537	 */
538	M_ASSERTPKTHDR(to);
539	/* Note: with MAC, this may not be a good assertion. */
540	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
541#endif
542	MBUF_CHECKSLEEP(how);
543#ifdef MAC
544	if (to->m_flags & M_PKTHDR)
545		m_tag_delete_chain(to, NULL);
546#endif
547	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
548	if ((to->m_flags & M_EXT) == 0)
549		to->m_data = to->m_pktdat;
550	to->m_pkthdr = from->m_pkthdr;
551	SLIST_INIT(&to->m_pkthdr.tags);
552	return (m_tag_copy_chain(to, from, MBTOM(how)));
553}
554
555/*
556 * Lesser-used path for M_PREPEND:
557 * allocate new mbuf to prepend to chain,
558 * copy junk along.
559 */
560struct mbuf *
561m_prepend(struct mbuf *m, int len, int how)
562{
563	struct mbuf *mn;
564
565	if (m->m_flags & M_PKTHDR)
566		mn = m_gethdr(how, m->m_type);
567	else
568		mn = m_get(how, m->m_type);
569	if (mn == NULL) {
570		m_freem(m);
571		return (NULL);
572	}
573	if (m->m_flags & M_PKTHDR)
574		m_move_pkthdr(mn, m);
575	mn->m_next = m;
576	m = mn;
577	if(m->m_flags & M_PKTHDR) {
578		if (len < MHLEN)
579			MH_ALIGN(m, len);
580	} else {
581		if (len < MLEN)
582			M_ALIGN(m, len);
583	}
584	m->m_len = len;
585	return (m);
586}
587
588/*
589 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
590 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
591 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
592 * Note that the copy is read-only, because clusters are not copied,
593 * only their reference counts are incremented.
594 */
595struct mbuf *
596m_copym(struct mbuf *m, int off0, int len, int wait)
597{
598	struct mbuf *n, **np;
599	int off = off0;
600	struct mbuf *top;
601	int copyhdr = 0;
602
603	KASSERT(off >= 0, ("m_copym, negative off %d", off));
604	KASSERT(len >= 0, ("m_copym, negative len %d", len));
605	MBUF_CHECKSLEEP(wait);
606	if (off == 0 && m->m_flags & M_PKTHDR)
607		copyhdr = 1;
608	while (off > 0) {
609		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
610		if (off < m->m_len)
611			break;
612		off -= m->m_len;
613		m = m->m_next;
614	}
615	np = &top;
616	top = 0;
617	while (len > 0) {
618		if (m == NULL) {
619			KASSERT(len == M_COPYALL,
620			    ("m_copym, length > size of mbuf chain"));
621			break;
622		}
623		if (copyhdr)
624			n = m_gethdr(wait, m->m_type);
625		else
626			n = m_get(wait, m->m_type);
627		*np = n;
628		if (n == NULL)
629			goto nospace;
630		if (copyhdr) {
631			if (!m_dup_pkthdr(n, m, wait))
632				goto nospace;
633			if (len == M_COPYALL)
634				n->m_pkthdr.len -= off0;
635			else
636				n->m_pkthdr.len = len;
637			copyhdr = 0;
638		}
639		n->m_len = min(len, m->m_len - off);
640		if (m->m_flags & M_EXT) {
641			n->m_data = m->m_data + off;
642			mb_dupcl(n, m);
643		} else
644			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
645			    (u_int)n->m_len);
646		if (len != M_COPYALL)
647			len -= n->m_len;
648		off = 0;
649		m = m->m_next;
650		np = &n->m_next;
651	}
652
653	return (top);
654nospace:
655	m_freem(top);
656	return (NULL);
657}
658
659/*
660 * Returns mbuf chain with new head for the prepending case.
661 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
662 * either prepending or appending the data.
663 * The resulting mbuf (chain) m is fully writeable.
664 * m is destination (is made writeable)
665 * n is source, off is offset in source, len is len from offset
666 * dir, 0 append, 1 prepend
667 * how, wait or nowait
668 */
669
670static int
671m_bcopyxxx(void *s, void *t, u_int len)
672{
673	bcopy(s, t, (size_t)len);
674	return 0;
675}
676
677struct mbuf *
678m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
679    int prep, int how)
680{
681	struct mbuf *mm, *x, *z, *prev = NULL;
682	caddr_t p;
683	int i, nlen = 0;
684	caddr_t buf[MLEN];
685
686	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
687	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
688	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
689	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
690
691	mm = m;
692	if (!prep) {
693		while(mm->m_next) {
694			prev = mm;
695			mm = mm->m_next;
696		}
697	}
698	for (z = n; z != NULL; z = z->m_next)
699		nlen += z->m_len;
700	if (len == M_COPYALL)
701		len = nlen - off;
702	if (off + len > nlen || len < 1)
703		return NULL;
704
705	if (!M_WRITABLE(mm)) {
706		/* XXX: Use proper m_xxx function instead. */
707		x = m_getcl(how, MT_DATA, mm->m_flags);
708		if (x == NULL)
709			return NULL;
710		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
711		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
712		x->m_data = p;
713		mm->m_next = NULL;
714		if (mm != m)
715			prev->m_next = x;
716		m_free(mm);
717		mm = x;
718	}
719
720	/*
721	 * Append/prepend the data.  Allocating mbufs as necessary.
722	 */
723	/* Shortcut if enough free space in first/last mbuf. */
724	if (!prep && M_TRAILINGSPACE(mm) >= len) {
725		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
726			 mm->m_len);
727		mm->m_len += len;
728		mm->m_pkthdr.len += len;
729		return m;
730	}
731	if (prep && M_LEADINGSPACE(mm) >= len) {
732		mm->m_data = mtod(mm, caddr_t) - len;
733		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
734		mm->m_len += len;
735		mm->m_pkthdr.len += len;
736		return mm;
737	}
738
739	/* Expand first/last mbuf to cluster if possible. */
740	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
741		bcopy(mm->m_data, &buf, mm->m_len);
742		m_clget(mm, how);
743		if (!(mm->m_flags & M_EXT))
744			return NULL;
745		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
746		mm->m_data = mm->m_ext.ext_buf;
747		mm->m_pkthdr.header = NULL;
748	}
749	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
750		bcopy(mm->m_data, &buf, mm->m_len);
751		m_clget(mm, how);
752		if (!(mm->m_flags & M_EXT))
753			return NULL;
754		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
755		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
756		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
757			      mm->m_ext.ext_size - mm->m_len;
758		mm->m_pkthdr.header = NULL;
759	}
760
761	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
762	if (!prep && len > M_TRAILINGSPACE(mm)) {
763		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
764			return NULL;
765	}
766	if (prep && len > M_LEADINGSPACE(mm)) {
767		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
768			return NULL;
769		i = 0;
770		for (x = z; x != NULL; x = x->m_next) {
771			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
772			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
773			if (!x->m_next)
774				break;
775		}
776		z->m_data += i - len;
777		m_move_pkthdr(mm, z);
778		x->m_next = mm;
779		mm = z;
780	}
781
782	/* Seek to start position in source mbuf. Optimization for long chains. */
783	while (off > 0) {
784		if (off < n->m_len)
785			break;
786		off -= n->m_len;
787		n = n->m_next;
788	}
789
790	/* Copy data into target mbuf. */
791	z = mm;
792	while (len > 0) {
793		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
794		i = M_TRAILINGSPACE(z);
795		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
796		z->m_len += i;
797		/* fixup pkthdr.len if necessary */
798		if ((prep ? mm : m)->m_flags & M_PKTHDR)
799			(prep ? mm : m)->m_pkthdr.len += i;
800		off += i;
801		len -= i;
802		z = z->m_next;
803	}
804	return (prep ? mm : m);
805}
806
807/*
808 * Copy an entire packet, including header (which must be present).
809 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
810 * Note that the copy is read-only, because clusters are not copied,
811 * only their reference counts are incremented.
812 * Preserve alignment of the first mbuf so if the creator has left
813 * some room at the beginning (e.g. for inserting protocol headers)
814 * the copies still have the room available.
815 */
816struct mbuf *
817m_copypacket(struct mbuf *m, int how)
818{
819	struct mbuf *top, *n, *o;
820
821	MBUF_CHECKSLEEP(how);
822	n = m_get(how, m->m_type);
823	top = n;
824	if (n == NULL)
825		goto nospace;
826
827	if (!m_dup_pkthdr(n, m, how))
828		goto nospace;
829	n->m_len = m->m_len;
830	if (m->m_flags & M_EXT) {
831		n->m_data = m->m_data;
832		mb_dupcl(n, m);
833	} else {
834		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
835		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
836	}
837
838	m = m->m_next;
839	while (m) {
840		o = m_get(how, m->m_type);
841		if (o == NULL)
842			goto nospace;
843
844		n->m_next = o;
845		n = n->m_next;
846
847		n->m_len = m->m_len;
848		if (m->m_flags & M_EXT) {
849			n->m_data = m->m_data;
850			mb_dupcl(n, m);
851		} else {
852			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
853		}
854
855		m = m->m_next;
856	}
857	return top;
858nospace:
859	m_freem(top);
860	return (NULL);
861}
862
863/*
864 * Copy data from an mbuf chain starting "off" bytes from the beginning,
865 * continuing for "len" bytes, into the indicated buffer.
866 */
867void
868m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
869{
870	u_int count;
871
872	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
873	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
874	while (off > 0) {
875		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
876		if (off < m->m_len)
877			break;
878		off -= m->m_len;
879		m = m->m_next;
880	}
881	while (len > 0) {
882		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
883		count = min(m->m_len - off, len);
884		bcopy(mtod(m, caddr_t) + off, cp, count);
885		len -= count;
886		cp += count;
887		off = 0;
888		m = m->m_next;
889	}
890}
891
892/*
893 * Copy a packet header mbuf chain into a completely new chain, including
894 * copying any mbuf clusters.  Use this instead of m_copypacket() when
895 * you need a writable copy of an mbuf chain.
896 */
897struct mbuf *
898m_dup(struct mbuf *m, int how)
899{
900	struct mbuf **p, *top = NULL;
901	int remain, moff, nsize;
902
903	MBUF_CHECKSLEEP(how);
904	/* Sanity check */
905	if (m == NULL)
906		return (NULL);
907	M_ASSERTPKTHDR(m);
908
909	/* While there's more data, get a new mbuf, tack it on, and fill it */
910	remain = m->m_pkthdr.len;
911	moff = 0;
912	p = &top;
913	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
914		struct mbuf *n;
915
916		/* Get the next new mbuf */
917		if (remain >= MINCLSIZE) {
918			n = m_getcl(how, m->m_type, 0);
919			nsize = MCLBYTES;
920		} else {
921			n = m_get(how, m->m_type);
922			nsize = MLEN;
923		}
924		if (n == NULL)
925			goto nospace;
926
927		if (top == NULL) {		/* First one, must be PKTHDR */
928			if (!m_dup_pkthdr(n, m, how)) {
929				m_free(n);
930				goto nospace;
931			}
932			if ((n->m_flags & M_EXT) == 0)
933				nsize = MHLEN;
934		}
935		n->m_len = 0;
936
937		/* Link it into the new chain */
938		*p = n;
939		p = &n->m_next;
940
941		/* Copy data from original mbuf(s) into new mbuf */
942		while (n->m_len < nsize && m != NULL) {
943			int chunk = min(nsize - n->m_len, m->m_len - moff);
944
945			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
946			moff += chunk;
947			n->m_len += chunk;
948			remain -= chunk;
949			if (moff == m->m_len) {
950				m = m->m_next;
951				moff = 0;
952			}
953		}
954
955		/* Check correct total mbuf length */
956		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
957		    	("%s: bogus m_pkthdr.len", __func__));
958	}
959	return (top);
960
961nospace:
962	m_freem(top);
963	return (NULL);
964}
965
966/*
967 * Concatenate mbuf chain n to m.
968 * Both chains must be of the same type (e.g. MT_DATA).
969 * Any m_pkthdr is not updated.
970 */
971void
972m_cat(struct mbuf *m, struct mbuf *n)
973{
974	while (m->m_next)
975		m = m->m_next;
976	while (n) {
977		if (!M_WRITABLE(m) ||
978		    M_TRAILINGSPACE(m) < n->m_len) {
979			/* just join the two chains */
980			m->m_next = n;
981			return;
982		}
983		/* splat the data from one into the other */
984		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
985		    (u_int)n->m_len);
986		m->m_len += n->m_len;
987		n = m_free(n);
988	}
989}
990
991void
992m_adj(struct mbuf *mp, int req_len)
993{
994	int len = req_len;
995	struct mbuf *m;
996	int count;
997
998	if ((m = mp) == NULL)
999		return;
1000	if (len >= 0) {
1001		/*
1002		 * Trim from head.
1003		 */
1004		while (m != NULL && len > 0) {
1005			if (m->m_len <= len) {
1006				len -= m->m_len;
1007				m->m_len = 0;
1008				m = m->m_next;
1009			} else {
1010				m->m_len -= len;
1011				m->m_data += len;
1012				len = 0;
1013			}
1014		}
1015		if (mp->m_flags & M_PKTHDR)
1016			mp->m_pkthdr.len -= (req_len - len);
1017	} else {
1018		/*
1019		 * Trim from tail.  Scan the mbuf chain,
1020		 * calculating its length and finding the last mbuf.
1021		 * If the adjustment only affects this mbuf, then just
1022		 * adjust and return.  Otherwise, rescan and truncate
1023		 * after the remaining size.
1024		 */
1025		len = -len;
1026		count = 0;
1027		for (;;) {
1028			count += m->m_len;
1029			if (m->m_next == (struct mbuf *)0)
1030				break;
1031			m = m->m_next;
1032		}
1033		if (m->m_len >= len) {
1034			m->m_len -= len;
1035			if (mp->m_flags & M_PKTHDR)
1036				mp->m_pkthdr.len -= len;
1037			return;
1038		}
1039		count -= len;
1040		if (count < 0)
1041			count = 0;
1042		/*
1043		 * Correct length for chain is "count".
1044		 * Find the mbuf with last data, adjust its length,
1045		 * and toss data from remaining mbufs on chain.
1046		 */
1047		m = mp;
1048		if (m->m_flags & M_PKTHDR)
1049			m->m_pkthdr.len = count;
1050		for (; m; m = m->m_next) {
1051			if (m->m_len >= count) {
1052				m->m_len = count;
1053				if (m->m_next != NULL) {
1054					m_freem(m->m_next);
1055					m->m_next = NULL;
1056				}
1057				break;
1058			}
1059			count -= m->m_len;
1060		}
1061	}
1062}
1063
1064/*
1065 * Rearange an mbuf chain so that len bytes are contiguous
1066 * and in the data area of an mbuf (so that mtod will work
1067 * for a structure of size len).  Returns the resulting
1068 * mbuf chain on success, frees it and returns null on failure.
1069 * If there is room, it will add up to max_protohdr-len extra bytes to the
1070 * contiguous region in an attempt to avoid being called next time.
1071 */
1072struct mbuf *
1073m_pullup(struct mbuf *n, int len)
1074{
1075	struct mbuf *m;
1076	int count;
1077	int space;
1078
1079	/*
1080	 * If first mbuf has no cluster, and has room for len bytes
1081	 * without shifting current data, pullup into it,
1082	 * otherwise allocate a new mbuf to prepend to the chain.
1083	 */
1084	if ((n->m_flags & M_EXT) == 0 &&
1085	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1086		if (n->m_len >= len)
1087			return (n);
1088		m = n;
1089		n = n->m_next;
1090		len -= m->m_len;
1091	} else {
1092		if (len > MHLEN)
1093			goto bad;
1094		m = m_get(M_NOWAIT, n->m_type);
1095		if (m == NULL)
1096			goto bad;
1097		if (n->m_flags & M_PKTHDR)
1098			m_move_pkthdr(m, n);
1099	}
1100	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1101	do {
1102		count = min(min(max(len, max_protohdr), space), n->m_len);
1103		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1104		  (u_int)count);
1105		len -= count;
1106		m->m_len += count;
1107		n->m_len -= count;
1108		space -= count;
1109		if (n->m_len)
1110			n->m_data += count;
1111		else
1112			n = m_free(n);
1113	} while (len > 0 && n);
1114	if (len > 0) {
1115		(void) m_free(m);
1116		goto bad;
1117	}
1118	m->m_next = n;
1119	return (m);
1120bad:
1121	m_freem(n);
1122	return (NULL);
1123}
1124
1125/*
1126 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1127 * the amount of empty space before the data in the new mbuf to be specified
1128 * (in the event that the caller expects to prepend later).
1129 */
1130int MSFail;
1131
1132struct mbuf *
1133m_copyup(struct mbuf *n, int len, int dstoff)
1134{
1135	struct mbuf *m;
1136	int count, space;
1137
1138	if (len > (MHLEN - dstoff))
1139		goto bad;
1140	m = m_get(M_NOWAIT, n->m_type);
1141	if (m == NULL)
1142		goto bad;
1143	if (n->m_flags & M_PKTHDR)
1144		m_move_pkthdr(m, n);
1145	m->m_data += dstoff;
1146	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1147	do {
1148		count = min(min(max(len, max_protohdr), space), n->m_len);
1149		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1150		    (unsigned)count);
1151		len -= count;
1152		m->m_len += count;
1153		n->m_len -= count;
1154		space -= count;
1155		if (n->m_len)
1156			n->m_data += count;
1157		else
1158			n = m_free(n);
1159	} while (len > 0 && n);
1160	if (len > 0) {
1161		(void) m_free(m);
1162		goto bad;
1163	}
1164	m->m_next = n;
1165	return (m);
1166 bad:
1167	m_freem(n);
1168	MSFail++;
1169	return (NULL);
1170}
1171
1172/*
1173 * Partition an mbuf chain in two pieces, returning the tail --
1174 * all but the first len0 bytes.  In case of failure, it returns NULL and
1175 * attempts to restore the chain to its original state.
1176 *
1177 * Note that the resulting mbufs might be read-only, because the new
1178 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1179 * the "breaking point" happens to lie within a cluster mbuf. Use the
1180 * M_WRITABLE() macro to check for this case.
1181 */
1182struct mbuf *
1183m_split(struct mbuf *m0, int len0, int wait)
1184{
1185	struct mbuf *m, *n;
1186	u_int len = len0, remain;
1187
1188	MBUF_CHECKSLEEP(wait);
1189	for (m = m0; m && len > m->m_len; m = m->m_next)
1190		len -= m->m_len;
1191	if (m == NULL)
1192		return (NULL);
1193	remain = m->m_len - len;
1194	if (m0->m_flags & M_PKTHDR && remain == 0) {
1195		n = m_gethdr(wait, m0->m_type);
1196			return (NULL);
1197		n->m_next = m->m_next;
1198		m->m_next = NULL;
1199		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1200		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1201		m0->m_pkthdr.len = len0;
1202		return (n);
1203	} else if (m0->m_flags & M_PKTHDR) {
1204		n = m_gethdr(wait, m0->m_type);
1205		if (n == NULL)
1206			return (NULL);
1207		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1208		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1209		m0->m_pkthdr.len = len0;
1210		if (m->m_flags & M_EXT)
1211			goto extpacket;
1212		if (remain > MHLEN) {
1213			/* m can't be the lead packet */
1214			MH_ALIGN(n, 0);
1215			n->m_next = m_split(m, len, wait);
1216			if (n->m_next == NULL) {
1217				(void) m_free(n);
1218				return (NULL);
1219			} else {
1220				n->m_len = 0;
1221				return (n);
1222			}
1223		} else
1224			MH_ALIGN(n, remain);
1225	} else if (remain == 0) {
1226		n = m->m_next;
1227		m->m_next = NULL;
1228		return (n);
1229	} else {
1230		n = m_get(wait, m->m_type);
1231		if (n == NULL)
1232			return (NULL);
1233		M_ALIGN(n, remain);
1234	}
1235extpacket:
1236	if (m->m_flags & M_EXT) {
1237		n->m_data = m->m_data + len;
1238		mb_dupcl(n, m);
1239	} else {
1240		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1241	}
1242	n->m_len = remain;
1243	m->m_len = len;
1244	n->m_next = m->m_next;
1245	m->m_next = NULL;
1246	return (n);
1247}
1248/*
1249 * Routine to copy from device local memory into mbufs.
1250 * Note that `off' argument is offset into first mbuf of target chain from
1251 * which to begin copying the data to.
1252 */
1253struct mbuf *
1254m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1255    void (*copy)(char *from, caddr_t to, u_int len))
1256{
1257	struct mbuf *m;
1258	struct mbuf *top = NULL, **mp = &top;
1259	int len;
1260
1261	if (off < 0 || off > MHLEN)
1262		return (NULL);
1263
1264	while (totlen > 0) {
1265		if (top == NULL) {	/* First one, must be PKTHDR */
1266			if (totlen + off >= MINCLSIZE) {
1267				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1268				len = MCLBYTES;
1269			} else {
1270				m = m_gethdr(M_NOWAIT, MT_DATA);
1271				len = MHLEN;
1272
1273				/* Place initial small packet/header at end of mbuf */
1274				if (m && totlen + off + max_linkhdr <= MLEN) {
1275					m->m_data += max_linkhdr;
1276					len -= max_linkhdr;
1277				}
1278			}
1279			if (m == NULL)
1280				return NULL;
1281			m->m_pkthdr.rcvif = ifp;
1282			m->m_pkthdr.len = totlen;
1283		} else {
1284			if (totlen + off >= MINCLSIZE) {
1285				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1286				len = MCLBYTES;
1287			} else {
1288				m = m_get(M_NOWAIT, MT_DATA);
1289				len = MLEN;
1290			}
1291			if (m == NULL) {
1292				m_freem(top);
1293				return NULL;
1294			}
1295		}
1296		if (off) {
1297			m->m_data += off;
1298			len -= off;
1299			off = 0;
1300		}
1301		m->m_len = len = min(totlen, len);
1302		if (copy)
1303			copy(buf, mtod(m, caddr_t), (u_int)len);
1304		else
1305			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1306		buf += len;
1307		*mp = m;
1308		mp = &m->m_next;
1309		totlen -= len;
1310	}
1311	return (top);
1312}
1313
1314/*
1315 * Copy data from a buffer back into the indicated mbuf chain,
1316 * starting "off" bytes from the beginning, extending the mbuf
1317 * chain if necessary.
1318 */
1319void
1320m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1321{
1322	int mlen;
1323	struct mbuf *m = m0, *n;
1324	int totlen = 0;
1325
1326	if (m0 == NULL)
1327		return;
1328	while (off > (mlen = m->m_len)) {
1329		off -= mlen;
1330		totlen += mlen;
1331		if (m->m_next == NULL) {
1332			n = m_get(M_NOWAIT, m->m_type);
1333			if (n == NULL)
1334				goto out;
1335			bzero(mtod(n, caddr_t), MLEN);
1336			n->m_len = min(MLEN, len + off);
1337			m->m_next = n;
1338		}
1339		m = m->m_next;
1340	}
1341	while (len > 0) {
1342		if (m->m_next == NULL && (len > m->m_len - off)) {
1343			m->m_len += min(len - (m->m_len - off),
1344			    M_TRAILINGSPACE(m));
1345		}
1346		mlen = min (m->m_len - off, len);
1347		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1348		cp += mlen;
1349		len -= mlen;
1350		mlen += off;
1351		off = 0;
1352		totlen += mlen;
1353		if (len == 0)
1354			break;
1355		if (m->m_next == NULL) {
1356			n = m_get(M_NOWAIT, m->m_type);
1357			if (n == NULL)
1358				break;
1359			n->m_len = min(MLEN, len);
1360			m->m_next = n;
1361		}
1362		m = m->m_next;
1363	}
1364out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1365		m->m_pkthdr.len = totlen;
1366}
1367
1368/*
1369 * Append the specified data to the indicated mbuf chain,
1370 * Extend the mbuf chain if the new data does not fit in
1371 * existing space.
1372 *
1373 * Return 1 if able to complete the job; otherwise 0.
1374 */
1375int
1376m_append(struct mbuf *m0, int len, c_caddr_t cp)
1377{
1378	struct mbuf *m, *n;
1379	int remainder, space;
1380
1381	for (m = m0; m->m_next != NULL; m = m->m_next)
1382		;
1383	remainder = len;
1384	space = M_TRAILINGSPACE(m);
1385	if (space > 0) {
1386		/*
1387		 * Copy into available space.
1388		 */
1389		if (space > remainder)
1390			space = remainder;
1391		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1392		m->m_len += space;
1393		cp += space, remainder -= space;
1394	}
1395	while (remainder > 0) {
1396		/*
1397		 * Allocate a new mbuf; could check space
1398		 * and allocate a cluster instead.
1399		 */
1400		n = m_get(M_NOWAIT, m->m_type);
1401		if (n == NULL)
1402			break;
1403		n->m_len = min(MLEN, remainder);
1404		bcopy(cp, mtod(n, caddr_t), n->m_len);
1405		cp += n->m_len, remainder -= n->m_len;
1406		m->m_next = n;
1407		m = n;
1408	}
1409	if (m0->m_flags & M_PKTHDR)
1410		m0->m_pkthdr.len += len - remainder;
1411	return (remainder == 0);
1412}
1413
1414/*
1415 * Apply function f to the data in an mbuf chain starting "off" bytes from
1416 * the beginning, continuing for "len" bytes.
1417 */
1418int
1419m_apply(struct mbuf *m, int off, int len,
1420    int (*f)(void *, void *, u_int), void *arg)
1421{
1422	u_int count;
1423	int rval;
1424
1425	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1426	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1427	while (off > 0) {
1428		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1429		if (off < m->m_len)
1430			break;
1431		off -= m->m_len;
1432		m = m->m_next;
1433	}
1434	while (len > 0) {
1435		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1436		count = min(m->m_len - off, len);
1437		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1438		if (rval)
1439			return (rval);
1440		len -= count;
1441		off = 0;
1442		m = m->m_next;
1443	}
1444	return (0);
1445}
1446
1447/*
1448 * Return a pointer to mbuf/offset of location in mbuf chain.
1449 */
1450struct mbuf *
1451m_getptr(struct mbuf *m, int loc, int *off)
1452{
1453
1454	while (loc >= 0) {
1455		/* Normal end of search. */
1456		if (m->m_len > loc) {
1457			*off = loc;
1458			return (m);
1459		} else {
1460			loc -= m->m_len;
1461			if (m->m_next == NULL) {
1462				if (loc == 0) {
1463					/* Point at the end of valid data. */
1464					*off = m->m_len;
1465					return (m);
1466				}
1467				return (NULL);
1468			}
1469			m = m->m_next;
1470		}
1471	}
1472	return (NULL);
1473}
1474
1475void
1476m_print(const struct mbuf *m, int maxlen)
1477{
1478	int len;
1479	int pdata;
1480	const struct mbuf *m2;
1481
1482	if (m == NULL) {
1483		printf("mbuf: %p\n", m);
1484		return;
1485	}
1486
1487	if (m->m_flags & M_PKTHDR)
1488		len = m->m_pkthdr.len;
1489	else
1490		len = -1;
1491	m2 = m;
1492	while (m2 != NULL && (len == -1 || len)) {
1493		pdata = m2->m_len;
1494		if (maxlen != -1 && pdata > maxlen)
1495			pdata = maxlen;
1496		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1497		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1498		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1499		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1500		if (pdata)
1501			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1502		if (len != -1)
1503			len -= m2->m_len;
1504		m2 = m2->m_next;
1505	}
1506	if (len > 0)
1507		printf("%d bytes unaccounted for.\n", len);
1508	return;
1509}
1510
1511u_int
1512m_fixhdr(struct mbuf *m0)
1513{
1514	u_int len;
1515
1516	len = m_length(m0, NULL);
1517	m0->m_pkthdr.len = len;
1518	return (len);
1519}
1520
1521u_int
1522m_length(struct mbuf *m0, struct mbuf **last)
1523{
1524	struct mbuf *m;
1525	u_int len;
1526
1527	len = 0;
1528	for (m = m0; m != NULL; m = m->m_next) {
1529		len += m->m_len;
1530		if (m->m_next == NULL)
1531			break;
1532	}
1533	if (last != NULL)
1534		*last = m;
1535	return (len);
1536}
1537
1538/*
1539 * Defragment a mbuf chain, returning the shortest possible
1540 * chain of mbufs and clusters.  If allocation fails and
1541 * this cannot be completed, NULL will be returned, but
1542 * the passed in chain will be unchanged.  Upon success,
1543 * the original chain will be freed, and the new chain
1544 * will be returned.
1545 *
1546 * If a non-packet header is passed in, the original
1547 * mbuf (chain?) will be returned unharmed.
1548 */
1549struct mbuf *
1550m_defrag(struct mbuf *m0, int how)
1551{
1552	struct mbuf *m_new = NULL, *m_final = NULL;
1553	int progress = 0, length;
1554
1555	MBUF_CHECKSLEEP(how);
1556	if (!(m0->m_flags & M_PKTHDR))
1557		return (m0);
1558
1559	m_fixhdr(m0); /* Needed sanity check */
1560
1561#ifdef MBUF_STRESS_TEST
1562	if (m_defragrandomfailures) {
1563		int temp = arc4random() & 0xff;
1564		if (temp == 0xba)
1565			goto nospace;
1566	}
1567#endif
1568
1569	if (m0->m_pkthdr.len > MHLEN)
1570		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1571	else
1572		m_final = m_gethdr(how, MT_DATA);
1573
1574	if (m_final == NULL)
1575		goto nospace;
1576
1577	if (m_dup_pkthdr(m_final, m0, how) == 0)
1578		goto nospace;
1579
1580	m_new = m_final;
1581
1582	while (progress < m0->m_pkthdr.len) {
1583		length = m0->m_pkthdr.len - progress;
1584		if (length > MCLBYTES)
1585			length = MCLBYTES;
1586
1587		if (m_new == NULL) {
1588			if (length > MLEN)
1589				m_new = m_getcl(how, MT_DATA, 0);
1590			else
1591				m_new = m_get(how, MT_DATA);
1592			if (m_new == NULL)
1593				goto nospace;
1594		}
1595
1596		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1597		progress += length;
1598		m_new->m_len = length;
1599		if (m_new != m_final)
1600			m_cat(m_final, m_new);
1601		m_new = NULL;
1602	}
1603#ifdef MBUF_STRESS_TEST
1604	if (m0->m_next == NULL)
1605		m_defraguseless++;
1606#endif
1607	m_freem(m0);
1608	m0 = m_final;
1609#ifdef MBUF_STRESS_TEST
1610	m_defragpackets++;
1611	m_defragbytes += m0->m_pkthdr.len;
1612#endif
1613	return (m0);
1614nospace:
1615#ifdef MBUF_STRESS_TEST
1616	m_defragfailure++;
1617#endif
1618	if (m_final)
1619		m_freem(m_final);
1620	return (NULL);
1621}
1622
1623/*
1624 * Defragment an mbuf chain, returning at most maxfrags separate
1625 * mbufs+clusters.  If this is not possible NULL is returned and
1626 * the original mbuf chain is left in it's present (potentially
1627 * modified) state.  We use two techniques: collapsing consecutive
1628 * mbufs and replacing consecutive mbufs by a cluster.
1629 *
1630 * NB: this should really be named m_defrag but that name is taken
1631 */
1632struct mbuf *
1633m_collapse(struct mbuf *m0, int how, int maxfrags)
1634{
1635	struct mbuf *m, *n, *n2, **prev;
1636	u_int curfrags;
1637
1638	/*
1639	 * Calculate the current number of frags.
1640	 */
1641	curfrags = 0;
1642	for (m = m0; m != NULL; m = m->m_next)
1643		curfrags++;
1644	/*
1645	 * First, try to collapse mbufs.  Note that we always collapse
1646	 * towards the front so we don't need to deal with moving the
1647	 * pkthdr.  This may be suboptimal if the first mbuf has much
1648	 * less data than the following.
1649	 */
1650	m = m0;
1651again:
1652	for (;;) {
1653		n = m->m_next;
1654		if (n == NULL)
1655			break;
1656		if (M_WRITABLE(m) &&
1657		    n->m_len < M_TRAILINGSPACE(m)) {
1658			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1659				n->m_len);
1660			m->m_len += n->m_len;
1661			m->m_next = n->m_next;
1662			m_free(n);
1663			if (--curfrags <= maxfrags)
1664				return m0;
1665		} else
1666			m = n;
1667	}
1668	KASSERT(maxfrags > 1,
1669		("maxfrags %u, but normal collapse failed", maxfrags));
1670	/*
1671	 * Collapse consecutive mbufs to a cluster.
1672	 */
1673	prev = &m0->m_next;		/* NB: not the first mbuf */
1674	while ((n = *prev) != NULL) {
1675		if ((n2 = n->m_next) != NULL &&
1676		    n->m_len + n2->m_len < MCLBYTES) {
1677			m = m_getcl(how, MT_DATA, 0);
1678			if (m == NULL)
1679				goto bad;
1680			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1681			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1682				n2->m_len);
1683			m->m_len = n->m_len + n2->m_len;
1684			m->m_next = n2->m_next;
1685			*prev = m;
1686			m_free(n);
1687			m_free(n2);
1688			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1689				return m0;
1690			/*
1691			 * Still not there, try the normal collapse
1692			 * again before we allocate another cluster.
1693			 */
1694			goto again;
1695		}
1696		prev = &n->m_next;
1697	}
1698	/*
1699	 * No place where we can collapse to a cluster; punt.
1700	 * This can occur if, for example, you request 2 frags
1701	 * but the packet requires that both be clusters (we
1702	 * never reallocate the first mbuf to avoid moving the
1703	 * packet header).
1704	 */
1705bad:
1706	return NULL;
1707}
1708
1709#ifdef MBUF_STRESS_TEST
1710
1711/*
1712 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1713 * this in normal usage, but it's great for stress testing various
1714 * mbuf consumers.
1715 *
1716 * If fragmentation is not possible, the original chain will be
1717 * returned.
1718 *
1719 * Possible length values:
1720 * 0	 no fragmentation will occur
1721 * > 0	each fragment will be of the specified length
1722 * -1	each fragment will be the same random value in length
1723 * -2	each fragment's length will be entirely random
1724 * (Random values range from 1 to 256)
1725 */
1726struct mbuf *
1727m_fragment(struct mbuf *m0, int how, int length)
1728{
1729	struct mbuf *m_new = NULL, *m_final = NULL;
1730	int progress = 0;
1731
1732	if (!(m0->m_flags & M_PKTHDR))
1733		return (m0);
1734
1735	if ((length == 0) || (length < -2))
1736		return (m0);
1737
1738	m_fixhdr(m0); /* Needed sanity check */
1739
1740	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1741
1742	if (m_final == NULL)
1743		goto nospace;
1744
1745	if (m_dup_pkthdr(m_final, m0, how) == 0)
1746		goto nospace;
1747
1748	m_new = m_final;
1749
1750	if (length == -1)
1751		length = 1 + (arc4random() & 255);
1752
1753	while (progress < m0->m_pkthdr.len) {
1754		int fraglen;
1755
1756		if (length > 0)
1757			fraglen = length;
1758		else
1759			fraglen = 1 + (arc4random() & 255);
1760		if (fraglen > m0->m_pkthdr.len - progress)
1761			fraglen = m0->m_pkthdr.len - progress;
1762
1763		if (fraglen > MCLBYTES)
1764			fraglen = MCLBYTES;
1765
1766		if (m_new == NULL) {
1767			m_new = m_getcl(how, MT_DATA, 0);
1768			if (m_new == NULL)
1769				goto nospace;
1770		}
1771
1772		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1773		progress += fraglen;
1774		m_new->m_len = fraglen;
1775		if (m_new != m_final)
1776			m_cat(m_final, m_new);
1777		m_new = NULL;
1778	}
1779	m_freem(m0);
1780	m0 = m_final;
1781	return (m0);
1782nospace:
1783	if (m_final)
1784		m_freem(m_final);
1785	/* Return the original chain on failure */
1786	return (m0);
1787}
1788
1789#endif
1790
1791/*
1792 * Copy the contents of uio into a properly sized mbuf chain.
1793 */
1794struct mbuf *
1795m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1796{
1797	struct mbuf *m, *mb;
1798	int error, length;
1799	ssize_t total;
1800	int progress = 0;
1801
1802	/*
1803	 * len can be zero or an arbitrary large value bound by
1804	 * the total data supplied by the uio.
1805	 */
1806	if (len > 0)
1807		total = min(uio->uio_resid, len);
1808	else
1809		total = uio->uio_resid;
1810
1811	/*
1812	 * The smallest unit returned by m_getm2() is a single mbuf
1813	 * with pkthdr.  We can't align past it.
1814	 */
1815	if (align >= MHLEN)
1816		return (NULL);
1817
1818	/*
1819	 * Give us the full allocation or nothing.
1820	 * If len is zero return the smallest empty mbuf.
1821	 */
1822	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1823	if (m == NULL)
1824		return (NULL);
1825	m->m_data += align;
1826
1827	/* Fill all mbufs with uio data and update header information. */
1828	for (mb = m; mb != NULL; mb = mb->m_next) {
1829		length = min(M_TRAILINGSPACE(mb), total - progress);
1830
1831		error = uiomove(mtod(mb, void *), length, uio);
1832		if (error) {
1833			m_freem(m);
1834			return (NULL);
1835		}
1836
1837		mb->m_len = length;
1838		progress += length;
1839		if (flags & M_PKTHDR)
1840			m->m_pkthdr.len += length;
1841	}
1842	KASSERT(progress == total, ("%s: progress != total", __func__));
1843
1844	return (m);
1845}
1846
1847/*
1848 * Copy an mbuf chain into a uio limited by len if set.
1849 */
1850int
1851m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1852{
1853	int error, length, total;
1854	int progress = 0;
1855
1856	if (len > 0)
1857		total = min(uio->uio_resid, len);
1858	else
1859		total = uio->uio_resid;
1860
1861	/* Fill the uio with data from the mbufs. */
1862	for (; m != NULL; m = m->m_next) {
1863		length = min(m->m_len, total - progress);
1864
1865		error = uiomove(mtod(m, void *), length, uio);
1866		if (error)
1867			return (error);
1868
1869		progress += length;
1870	}
1871
1872	return (0);
1873}
1874
1875/*
1876 * Set the m_data pointer of a newly-allocated mbuf
1877 * to place an object of the specified size at the
1878 * end of the mbuf, longword aligned.
1879 */
1880void
1881m_align(struct mbuf *m, int len)
1882{
1883#ifdef INVARIANTS
1884	const char *msg = "%s: not a virgin mbuf";
1885#endif
1886	int adjust;
1887
1888	if (m->m_flags & M_EXT) {
1889		KASSERT(m->m_data == m->m_ext.ext_buf, (msg, __func__));
1890		adjust = m->m_ext.ext_size - len;
1891	} else if (m->m_flags & M_PKTHDR) {
1892		KASSERT(m->m_data == m->m_pktdat, (msg, __func__));
1893		adjust = MHLEN - len;
1894	} else {
1895		KASSERT(m->m_data == m->m_dat, (msg, __func__));
1896		adjust = MLEN - len;
1897	}
1898
1899	m->m_data += adjust &~ (sizeof(long)-1);
1900}
1901
1902/*
1903 * Create a writable copy of the mbuf chain.  While doing this
1904 * we compact the chain with a goal of producing a chain with
1905 * at most two mbufs.  The second mbuf in this chain is likely
1906 * to be a cluster.  The primary purpose of this work is to create
1907 * a writable packet for encryption, compression, etc.  The
1908 * secondary goal is to linearize the data so the data can be
1909 * passed to crypto hardware in the most efficient manner possible.
1910 */
1911struct mbuf *
1912m_unshare(struct mbuf *m0, int how)
1913{
1914	struct mbuf *m, *mprev;
1915	struct mbuf *n, *mfirst, *mlast;
1916	int len, off;
1917
1918	mprev = NULL;
1919	for (m = m0; m != NULL; m = mprev->m_next) {
1920		/*
1921		 * Regular mbufs are ignored unless there's a cluster
1922		 * in front of it that we can use to coalesce.  We do
1923		 * the latter mainly so later clusters can be coalesced
1924		 * also w/o having to handle them specially (i.e. convert
1925		 * mbuf+cluster -> cluster).  This optimization is heavily
1926		 * influenced by the assumption that we're running over
1927		 * Ethernet where MCLBYTES is large enough that the max
1928		 * packet size will permit lots of coalescing into a
1929		 * single cluster.  This in turn permits efficient
1930		 * crypto operations, especially when using hardware.
1931		 */
1932		if ((m->m_flags & M_EXT) == 0) {
1933			if (mprev && (mprev->m_flags & M_EXT) &&
1934			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1935				/* XXX: this ignores mbuf types */
1936				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1937				       mtod(m, caddr_t), m->m_len);
1938				mprev->m_len += m->m_len;
1939				mprev->m_next = m->m_next;	/* unlink from chain */
1940				m_free(m);			/* reclaim mbuf */
1941#if 0
1942				newipsecstat.ips_mbcoalesced++;
1943#endif
1944			} else {
1945				mprev = m;
1946			}
1947			continue;
1948		}
1949		/*
1950		 * Writable mbufs are left alone (for now).
1951		 */
1952		if (M_WRITABLE(m)) {
1953			mprev = m;
1954			continue;
1955		}
1956
1957		/*
1958		 * Not writable, replace with a copy or coalesce with
1959		 * the previous mbuf if possible (since we have to copy
1960		 * it anyway, we try to reduce the number of mbufs and
1961		 * clusters so that future work is easier).
1962		 */
1963		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1964		/* NB: we only coalesce into a cluster or larger */
1965		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1966		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1967			/* XXX: this ignores mbuf types */
1968			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1969			       mtod(m, caddr_t), m->m_len);
1970			mprev->m_len += m->m_len;
1971			mprev->m_next = m->m_next;	/* unlink from chain */
1972			m_free(m);			/* reclaim mbuf */
1973#if 0
1974			newipsecstat.ips_clcoalesced++;
1975#endif
1976			continue;
1977		}
1978
1979		/*
1980		 * Allocate new space to hold the copy and copy the data.
1981		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1982		 * splitting them into clusters.  We could just malloc a
1983		 * buffer and make it external but too many device drivers
1984		 * don't know how to break up the non-contiguous memory when
1985		 * doing DMA.
1986		 */
1987		n = m_getcl(how, m->m_type, m->m_flags);
1988		if (n == NULL) {
1989			m_freem(m0);
1990			return (NULL);
1991		}
1992		len = m->m_len;
1993		off = 0;
1994		mfirst = n;
1995		mlast = NULL;
1996		for (;;) {
1997			int cc = min(len, MCLBYTES);
1998			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1999			n->m_len = cc;
2000			if (mlast != NULL)
2001				mlast->m_next = n;
2002			mlast = n;
2003#if 0
2004			newipsecstat.ips_clcopied++;
2005#endif
2006
2007			len -= cc;
2008			if (len <= 0)
2009				break;
2010			off += cc;
2011
2012			n = m_getcl(how, m->m_type, m->m_flags);
2013			if (n == NULL) {
2014				m_freem(mfirst);
2015				m_freem(m0);
2016				return (NULL);
2017			}
2018		}
2019		n->m_next = m->m_next;
2020		if (mprev == NULL)
2021			m0 = mfirst;		/* new head of chain */
2022		else
2023			mprev->m_next = mfirst;	/* replace old mbuf */
2024		m_free(m);			/* release old mbuf */
2025		mprev = mfirst;
2026	}
2027	return (m0);
2028}
2029
2030#ifdef MBUF_PROFILING
2031
2032#define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2033struct mbufprofile {
2034	uintmax_t wasted[MP_BUCKETS];
2035	uintmax_t used[MP_BUCKETS];
2036	uintmax_t segments[MP_BUCKETS];
2037} mbprof;
2038
2039#define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2040#define MP_NUMLINES 6
2041#define MP_NUMSPERLINE 16
2042#define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2043/* work out max space needed and add a bit of spare space too */
2044#define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2045#define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2046
2047char mbprofbuf[MP_BUFSIZE];
2048
2049void
2050m_profile(struct mbuf *m)
2051{
2052	int segments = 0;
2053	int used = 0;
2054	int wasted = 0;
2055
2056	while (m) {
2057		segments++;
2058		used += m->m_len;
2059		if (m->m_flags & M_EXT) {
2060			wasted += MHLEN - sizeof(m->m_ext) +
2061			    m->m_ext.ext_size - m->m_len;
2062		} else {
2063			if (m->m_flags & M_PKTHDR)
2064				wasted += MHLEN - m->m_len;
2065			else
2066				wasted += MLEN - m->m_len;
2067		}
2068		m = m->m_next;
2069	}
2070	/* be paranoid.. it helps */
2071	if (segments > MP_BUCKETS - 1)
2072		segments = MP_BUCKETS - 1;
2073	if (used > 100000)
2074		used = 100000;
2075	if (wasted > 100000)
2076		wasted = 100000;
2077	/* store in the appropriate bucket */
2078	/* don't bother locking. if it's slightly off, so what? */
2079	mbprof.segments[segments]++;
2080	mbprof.used[fls(used)]++;
2081	mbprof.wasted[fls(wasted)]++;
2082}
2083
2084static void
2085mbprof_textify(void)
2086{
2087	int offset;
2088	char *c;
2089	uint64_t *p;
2090
2091
2092	p = &mbprof.wasted[0];
2093	c = mbprofbuf;
2094	offset = snprintf(c, MP_MAXLINE + 10,
2095	    "wasted:\n"
2096	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2097	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2098	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2099	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2100#ifdef BIG_ARRAY
2101	p = &mbprof.wasted[16];
2102	c += offset;
2103	offset = snprintf(c, MP_MAXLINE,
2104	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2105	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2106	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2107	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2108#endif
2109	p = &mbprof.used[0];
2110	c += offset;
2111	offset = snprintf(c, MP_MAXLINE + 10,
2112	    "used:\n"
2113	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2114	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2115	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2116	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2117#ifdef BIG_ARRAY
2118	p = &mbprof.used[16];
2119	c += offset;
2120	offset = snprintf(c, MP_MAXLINE,
2121	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2122	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2123	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2124	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2125#endif
2126	p = &mbprof.segments[0];
2127	c += offset;
2128	offset = snprintf(c, MP_MAXLINE + 10,
2129	    "segments:\n"
2130	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2131	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2132	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2133	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2134#ifdef BIG_ARRAY
2135	p = &mbprof.segments[16];
2136	c += offset;
2137	offset = snprintf(c, MP_MAXLINE,
2138	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2139	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2140	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2141	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2142#endif
2143}
2144
2145static int
2146mbprof_handler(SYSCTL_HANDLER_ARGS)
2147{
2148	int error;
2149
2150	mbprof_textify();
2151	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2152	return (error);
2153}
2154
2155static int
2156mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2157{
2158	int clear, error;
2159
2160	clear = 0;
2161	error = sysctl_handle_int(oidp, &clear, 0, req);
2162	if (error || !req->newptr)
2163		return (error);
2164
2165	if (clear) {
2166		bzero(&mbprof, sizeof(mbprof));
2167	}
2168
2169	return (error);
2170}
2171
2172
2173SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2174	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2175
2176SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2177	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2178#endif
2179
2180