subr_witness.c revision 184214
1/*-
2 * Copyright (c) 2008 Isilon Systems, Inc.
3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4 * Copyright (c) 1998 Berkeley Software Design, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Berkeley Software Design Inc's name may not be used to endorse or
16 *    promote products derived from this software without specific prior
17 *    written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33 */
34
35/*
36 * Implementation of the `witness' lock verifier.  Originally implemented for
37 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38 * classes in FreeBSD.
39 */
40
41/*
42 *	Main Entry: witness
43 *	Pronunciation: 'wit-n&s
44 *	Function: noun
45 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46 *	    testimony, witness, from 2wit
47 *	Date: before 12th century
48 *	1 : attestation of a fact or event : TESTIMONY
49 *	2 : one that gives evidence; specifically : one who testifies in
50 *	    a cause or before a judicial tribunal
51 *	3 : one asked to be present at a transaction so as to be able to
52 *	    testify to its having taken place
53 *	4 : one who has personal knowledge of something
54 *	5 a : something serving as evidence or proof : SIGN
55 *	  b : public affirmation by word or example of usually
56 *	      religious faith or conviction <the heroic witness to divine
57 *	      life -- Pilot>
58 *	6 capitalized : a member of the Jehovah's Witnesses
59 */
60
61/*
62 * Special rules concerning Giant and lock orders:
63 *
64 * 1) Giant must be acquired before any other mutexes.  Stated another way,
65 *    no other mutex may be held when Giant is acquired.
66 *
67 * 2) Giant must be released when blocking on a sleepable lock.
68 *
69 * This rule is less obvious, but is a result of Giant providing the same
70 * semantics as spl().  Basically, when a thread sleeps, it must release
71 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72 * 2).
73 *
74 * 3) Giant may be acquired before or after sleepable locks.
75 *
76 * This rule is also not quite as obvious.  Giant may be acquired after
77 * a sleepable lock because it is a non-sleepable lock and non-sleepable
78 * locks may always be acquired while holding a sleepable lock.  The second
79 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83 * execute.  Thus, acquiring Giant both before and after a sleepable lock
84 * will not result in a lock order reversal.
85 */
86
87#include <sys/cdefs.h>
88__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 184214 2008-10-23 20:26:15Z des $");
89
90#include "opt_ddb.h"
91#include "opt_hwpmc_hooks.h"
92#include "opt_stack.h"
93#include "opt_witness.h"
94
95#include <sys/param.h>
96#include <sys/bus.h>
97#include <sys/kdb.h>
98#include <sys/kernel.h>
99#include <sys/ktr.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mutex.h>
103#include <sys/priv.h>
104#include <sys/proc.h>
105#include <sys/sbuf.h>
106#include <sys/sched.h>
107#include <sys/stack.h>
108#include <sys/sysctl.h>
109#include <sys/systm.h>
110
111#ifdef DDB
112#include <ddb/ddb.h>
113#endif
114
115#include <machine/stdarg.h>
116
117#if !defined(DDB) && !defined(STACK)
118#error "DDB or STACK options are required for WITNESS"
119#endif
120
121/* Note that these traces do not work with KTR_ALQ. */
122#if 0
123#define	KTR_WITNESS	KTR_SUBSYS
124#else
125#define	KTR_WITNESS	0
126#endif
127
128#define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129#define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130
131/* Define this to check for blessed mutexes */
132#undef BLESSING
133
134#define	WITNESS_COUNT 		1024
135#define	WITNESS_CHILDCOUNT 	(WITNESS_COUNT * 4)
136#define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
137#define	WITNESS_PENDLIST	512
138
139/* Allocate 256 KB of stack data space */
140#define	WITNESS_LO_DATA_COUNT	2048
141
142/* Prime, gives load factor of ~2 at full load */
143#define	WITNESS_LO_HASH_SIZE	1021
144
145/*
146 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
147 * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
148 * probably be safe for the most part, but it's still a SWAG.
149 */
150#define	LOCK_NCHILDREN	5
151#define	LOCK_CHILDCOUNT	2048
152
153#define	MAX_W_NAME	64
154
155#define	BADSTACK_SBUF_SIZE	(256 * WITNESS_COUNT)
156#define	CYCLEGRAPH_SBUF_SIZE	8192
157#define	FULLGRAPH_SBUF_SIZE	32768
158
159/*
160 * These flags go in the witness relationship matrix and describe the
161 * relationship between any two struct witness objects.
162 */
163#define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
164#define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165#define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166#define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167#define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168#define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169#define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170#define	WITNESS_RELATED_MASK						\
171	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172#define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173					  * observed. */
174#define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175#define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176#define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178/* Descendant to ancestor flags */
179#define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
180
181/* Ancestor to descendant flags */
182#define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
183
184#define	WITNESS_INDEX_ASSERT(i)						\
185	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186
187MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189/*
190 * Lock instances.  A lock instance is the data associated with a lock while
191 * it is held by witness.  For example, a lock instance will hold the
192 * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193 * are held in a per-cpu list while sleep locks are held in per-thread list.
194 */
195struct lock_instance {
196	struct lock_object	*li_lock;
197	const char		*li_file;
198	int			li_line;
199	u_int			li_flags;
200};
201
202/*
203 * A simple list type used to build the list of locks held by a thread
204 * or CPU.  We can't simply embed the list in struct lock_object since a
205 * lock may be held by more than one thread if it is a shared lock.  Locks
206 * are added to the head of the list, so we fill up each list entry from
207 * "the back" logically.  To ease some of the arithmetic, we actually fill
208 * in each list entry the normal way (children[0] then children[1], etc.) but
209 * when we traverse the list we read children[count-1] as the first entry
210 * down to children[0] as the final entry.
211 */
212struct lock_list_entry {
213	struct lock_list_entry	*ll_next;
214	struct lock_instance	ll_children[LOCK_NCHILDREN];
215	u_int			ll_count;
216};
217
218/*
219 * The main witness structure. One of these per named lock type in the system
220 * (for example, "vnode interlock").
221 */
222struct witness {
223	char  			w_name[MAX_W_NAME];
224	uint32_t 		w_index;  /* Index in the relationship matrix */
225	struct lock_class	*w_class;
226	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
227	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
228	struct witness		*w_hash_next; /* Linked list in hash buckets. */
229	const char		*w_file; /* File where last acquired */
230	uint32_t 		w_line; /* Line where last acquired */
231	uint32_t 		w_refcount;
232	uint16_t 		w_num_ancestors; /* direct/indirect
233						  * ancestor count */
234	uint16_t 		w_num_descendants; /* direct/indirect
235						    * descendant count */
236	int16_t 		w_ddb_level;
237	int 			w_displayed:1;
238	int 			w_reversed:1;
239};
240
241STAILQ_HEAD(witness_list, witness);
242
243/*
244 * The witness hash table. Keys are witness names (const char *), elements are
245 * witness objects (struct witness *).
246 */
247struct witness_hash {
248	struct witness	*wh_array[WITNESS_HASH_SIZE];
249	uint32_t	wh_size;
250	uint32_t	wh_count;
251};
252
253/*
254 * Key type for the lock order data hash table.
255 */
256struct witness_lock_order_key {
257	uint16_t	from;
258	uint16_t	to;
259};
260
261struct witness_lock_order_data {
262	struct stack			wlod_stack;
263	struct witness_lock_order_key	wlod_key;
264	struct witness_lock_order_data	*wlod_next;
265};
266
267/*
268 * The witness lock order data hash table. Keys are witness index tuples
269 * (struct witness_lock_order_key), elements are lock order data objects
270 * (struct witness_lock_order_data).
271 */
272struct witness_lock_order_hash {
273	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
274	u_int	wloh_size;
275	u_int	wloh_count;
276};
277
278#ifdef BLESSING
279struct witness_blessed {
280	const char	*b_lock1;
281	const char	*b_lock2;
282};
283#endif
284
285struct witness_pendhelp {
286	const char		*wh_type;
287	struct lock_object	*wh_lock;
288};
289
290struct witness_order_list_entry {
291	const char		*w_name;
292	struct lock_class	*w_class;
293};
294
295/*
296 * Returns 0 if one of the locks is a spin lock and the other is not.
297 * Returns 1 otherwise.
298 */
299static __inline int
300witness_lock_type_equal(struct witness *w1, struct witness *w2)
301{
302
303	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305}
306
307static __inline int
308witness_lock_order_key_empty(const struct witness_lock_order_key *key)
309{
310
311	return (key->from == 0 && key->to == 0);
312}
313
314static __inline int
315witness_lock_order_key_equal(const struct witness_lock_order_key *a,
316    const struct witness_lock_order_key *b)
317{
318
319	return (a->from == b->from && a->to == b->to);
320}
321
322static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
323		    const char *fname);
324#ifdef KDB
325static void	_witness_debugger(int cond, const char *msg);
326#endif
327static void	adopt(struct witness *parent, struct witness *child);
328#ifdef BLESSING
329static int	blessed(struct witness *, struct witness *);
330#endif
331static void	depart(struct witness *w);
332static struct witness	*enroll(const char *description,
333			    struct lock_class *lock_class);
334static struct lock_instance	*find_instance(struct lock_list_entry *list,
335				    struct lock_object *lock);
336static int	isitmychild(struct witness *parent, struct witness *child);
337static int	isitmydescendant(struct witness *parent, struct witness *child);
338static void	itismychild(struct witness *parent, struct witness *child);
339static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
340static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
341static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
342static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
343#ifdef DDB
344static void	witness_ddb_compute_levels(void);
345static void	witness_ddb_display(void(*)(const char *fmt, ...));
346static void	witness_ddb_display_descendants(void(*)(const char *fmt, ...),
347		    struct witness *, int indent);
348static void	witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
349		    struct witness_list *list);
350static void	witness_ddb_level_descendants(struct witness *parent, int l);
351static void	witness_ddb_list(struct thread *td);
352#endif
353static void	witness_free(struct witness *m);
354static struct witness	*witness_get(void);
355static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
356static struct witness	*witness_hash_get(const char *key);
357static void	witness_hash_put(struct witness *w);
358static void	witness_init_hash_tables(void);
359static void	witness_increment_graph_generation(void);
360static void	witness_lock_list_free(struct lock_list_entry *lle);
361static struct lock_list_entry	*witness_lock_list_get(void);
362static int	witness_lock_order_add(struct witness *parent,
363		    struct witness *child);
364static int	witness_lock_order_check(struct witness *parent,
365		    struct witness *child);
366static struct witness_lock_order_data	*witness_lock_order_get(
367					    struct witness *parent,
368					    struct witness *child);
369static void	witness_list_lock(struct lock_instance *instance);
370
371#ifdef KDB
372#define	witness_debugger(c)	_witness_debugger(c, __func__)
373#else
374#define	witness_debugger(c)
375#endif
376
377SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
378
379/*
380 * If set to 0, lock order checking is disabled.  If set to -1,
381 * witness is completely disabled.  Otherwise witness performs full
382 * lock order checking for all locks.  At runtime, lock order checking
383 * may be toggled.  However, witness cannot be reenabled once it is
384 * completely disabled.
385 */
386static int witness_watch = 1;
387TUNABLE_INT("debug.witness.watch", &witness_watch);
388SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
389    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
390
391#ifdef KDB
392/*
393 * When KDB is enabled and witness_kdb is 1, it will cause the system
394 * to drop into kdebug() when:
395 *	- a lock hierarchy violation occurs
396 *	- locks are held when going to sleep.
397 */
398#ifdef WITNESS_KDB
399int	witness_kdb = 1;
400#else
401int	witness_kdb = 0;
402#endif
403TUNABLE_INT("debug.witness.kdb", &witness_kdb);
404SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
405
406/*
407 * When KDB is enabled and witness_trace is 1, it will cause the system
408 * to print a stack trace:
409 *	- a lock hierarchy violation occurs
410 *	- locks are held when going to sleep.
411 */
412int	witness_trace = 1;
413TUNABLE_INT("debug.witness.trace", &witness_trace);
414SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
415#endif /* KDB */
416
417#ifdef WITNESS_SKIPSPIN
418int	witness_skipspin = 1;
419#else
420int	witness_skipspin = 0;
421#endif
422TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
423SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
424    0, "");
425
426/*
427 * Call this to print out the relations between locks.
428 */
429SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
430    NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
431
432/*
433 * Call this to print out the witness faulty stacks.
434 */
435SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
436    NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
437
438static struct mtx w_mtx;
439
440/* w_list */
441static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
442static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
443
444/* w_typelist */
445static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
446static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
447
448/* lock list */
449static struct lock_list_entry *w_lock_list_free = NULL;
450static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
451static u_int pending_cnt;
452
453static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
454SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
455SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
456SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
457    "");
458
459static struct witness *w_data;
460static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
461static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
462static struct witness_hash w_hash;	/* The witness hash table. */
463
464/* The lock order data hash */
465static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
466static struct witness_lock_order_data *w_lofree = NULL;
467static struct witness_lock_order_hash w_lohash;
468static int w_max_used_index = 0;
469static unsigned int w_generation = 0;
470static const char *w_notrunning = "Witness not running\n";
471static const char *w_stillcold = "Witness is still cold\n";
472
473
474static struct witness_order_list_entry order_lists[] = {
475	/*
476	 * sx locks
477	 */
478	{ "proctree", &lock_class_sx },
479	{ "allproc", &lock_class_sx },
480	{ "allprison", &lock_class_sx },
481	{ NULL, NULL },
482	/*
483	 * Various mutexes
484	 */
485	{ "Giant", &lock_class_mtx_sleep },
486	{ "pipe mutex", &lock_class_mtx_sleep },
487	{ "sigio lock", &lock_class_mtx_sleep },
488	{ "process group", &lock_class_mtx_sleep },
489	{ "process lock", &lock_class_mtx_sleep },
490	{ "session", &lock_class_mtx_sleep },
491	{ "uidinfo hash", &lock_class_rw },
492#ifdef	HWPMC_HOOKS
493	{ "pmc-sleep", &lock_class_mtx_sleep },
494#endif
495	{ NULL, NULL },
496	/*
497	 * Sockets
498	 */
499	{ "accept", &lock_class_mtx_sleep },
500	{ "so_snd", &lock_class_mtx_sleep },
501	{ "so_rcv", &lock_class_mtx_sleep },
502	{ "sellck", &lock_class_mtx_sleep },
503	{ NULL, NULL },
504	/*
505	 * Routing
506	 */
507	{ "so_rcv", &lock_class_mtx_sleep },
508	{ "radix node head", &lock_class_mtx_sleep },
509	{ "rtentry", &lock_class_mtx_sleep },
510	{ "ifaddr", &lock_class_mtx_sleep },
511	{ NULL, NULL },
512	/*
513	 * Multicast - protocol locks before interface locks, after UDP locks.
514	 */
515	{ "udpinp", &lock_class_rw },
516	{ "in_multi_mtx", &lock_class_mtx_sleep },
517	{ "igmp_mtx", &lock_class_mtx_sleep },
518	{ "if_addr_mtx", &lock_class_mtx_sleep },
519	{ NULL, NULL },
520	/*
521	 * UNIX Domain Sockets
522	 */
523	{ "unp", &lock_class_mtx_sleep },
524	{ "so_snd", &lock_class_mtx_sleep },
525	{ NULL, NULL },
526	/*
527	 * UDP/IP
528	 */
529	{ "udp", &lock_class_rw },
530	{ "udpinp", &lock_class_rw },
531	{ "so_snd", &lock_class_mtx_sleep },
532	{ NULL, NULL },
533	/*
534	 * TCP/IP
535	 */
536	{ "tcp", &lock_class_rw },
537	{ "tcpinp", &lock_class_rw },
538	{ "so_snd", &lock_class_mtx_sleep },
539	{ NULL, NULL },
540	/*
541	 * SLIP
542	 */
543	{ "slip_mtx", &lock_class_mtx_sleep },
544	{ "slip sc_mtx", &lock_class_mtx_sleep },
545	{ NULL, NULL },
546	/*
547	 * netatalk
548	 */
549	{ "ddp_list_mtx", &lock_class_mtx_sleep },
550	{ "ddp_mtx", &lock_class_mtx_sleep },
551	{ NULL, NULL },
552	/*
553	 * BPF
554	 */
555	{ "bpf global lock", &lock_class_mtx_sleep },
556	{ "bpf interface lock", &lock_class_mtx_sleep },
557	{ "bpf cdev lock", &lock_class_mtx_sleep },
558	{ NULL, NULL },
559	/*
560	 * NFS server
561	 */
562	{ "nfsd_mtx", &lock_class_mtx_sleep },
563	{ "so_snd", &lock_class_mtx_sleep },
564	{ NULL, NULL },
565
566	/*
567	 * IEEE 802.11
568	 */
569	{ "802.11 com lock", &lock_class_mtx_sleep},
570	{ NULL, NULL },
571	/*
572	 * Network drivers
573	 */
574	{ "network driver", &lock_class_mtx_sleep},
575	{ NULL, NULL },
576
577	/*
578	 * Netgraph
579	 */
580	{ "ng_node", &lock_class_mtx_sleep },
581	{ "ng_worklist", &lock_class_mtx_sleep },
582	{ NULL, NULL },
583	/*
584	 * CDEV
585	 */
586	{ "system map", &lock_class_mtx_sleep },
587	{ "vm page queue mutex", &lock_class_mtx_sleep },
588	{ "vnode interlock", &lock_class_mtx_sleep },
589	{ "cdev", &lock_class_mtx_sleep },
590	{ NULL, NULL },
591	/*
592	 * kqueue/VFS interaction
593	 */
594	{ "kqueue", &lock_class_mtx_sleep },
595	{ "struct mount mtx", &lock_class_mtx_sleep },
596	{ "vnode interlock", &lock_class_mtx_sleep },
597	{ NULL, NULL },
598	/*
599	 * spin locks
600	 */
601#ifdef SMP
602	{ "ap boot", &lock_class_mtx_spin },
603#endif
604	{ "rm.mutex_mtx", &lock_class_mtx_spin },
605	{ "sio", &lock_class_mtx_spin },
606	{ "scrlock", &lock_class_mtx_spin },
607#ifdef __i386__
608	{ "cy", &lock_class_mtx_spin },
609#endif
610#ifdef __sparc64__
611	{ "pcib_mtx", &lock_class_mtx_spin },
612	{ "rtc_mtx", &lock_class_mtx_spin },
613#endif
614	{ "scc_hwmtx", &lock_class_mtx_spin },
615	{ "uart_hwmtx", &lock_class_mtx_spin },
616	{ "fast_taskqueue", &lock_class_mtx_spin },
617	{ "intr table", &lock_class_mtx_spin },
618#ifdef	HWPMC_HOOKS
619	{ "pmc-per-proc", &lock_class_mtx_spin },
620#endif
621	{ "process slock", &lock_class_mtx_spin },
622	{ "sleepq chain", &lock_class_mtx_spin },
623	{ "umtx lock", &lock_class_mtx_spin },
624	{ "rm_spinlock", &lock_class_mtx_spin },
625	{ "turnstile chain", &lock_class_mtx_spin },
626	{ "turnstile lock", &lock_class_mtx_spin },
627	{ "sched lock", &lock_class_mtx_spin },
628	{ "td_contested", &lock_class_mtx_spin },
629	{ "callout", &lock_class_mtx_spin },
630	{ "entropy harvest mutex", &lock_class_mtx_spin },
631	{ "syscons video lock", &lock_class_mtx_spin },
632	{ "time lock", &lock_class_mtx_spin },
633#ifdef SMP
634	{ "smp rendezvous", &lock_class_mtx_spin },
635#endif
636#ifdef __powerpc__
637	{ "tlb0", &lock_class_mtx_spin },
638#endif
639	/*
640	 * leaf locks
641	 */
642	{ "intrcnt", &lock_class_mtx_spin },
643	{ "icu", &lock_class_mtx_spin },
644#if defined(SMP) && defined(__sparc64__)
645	{ "ipi", &lock_class_mtx_spin },
646#endif
647#ifdef __i386__
648	{ "allpmaps", &lock_class_mtx_spin },
649	{ "descriptor tables", &lock_class_mtx_spin },
650#endif
651	{ "clk", &lock_class_mtx_spin },
652	{ "cpuset", &lock_class_mtx_spin },
653	{ "mprof lock", &lock_class_mtx_spin },
654	{ "zombie lock", &lock_class_mtx_spin },
655	{ "ALD Queue", &lock_class_mtx_spin },
656#ifdef __ia64__
657	{ "MCA spin lock", &lock_class_mtx_spin },
658#endif
659#if defined(__i386__) || defined(__amd64__)
660	{ "pcicfg", &lock_class_mtx_spin },
661	{ "NDIS thread lock", &lock_class_mtx_spin },
662#endif
663	{ "tw_osl_io_lock", &lock_class_mtx_spin },
664	{ "tw_osl_q_lock", &lock_class_mtx_spin },
665	{ "tw_cl_io_lock", &lock_class_mtx_spin },
666	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
667	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
668#ifdef	HWPMC_HOOKS
669	{ "pmc-leaf", &lock_class_mtx_spin },
670#endif
671	{ "blocked lock", &lock_class_mtx_spin },
672	{ NULL, NULL },
673	{ NULL, NULL }
674};
675
676#ifdef BLESSING
677/*
678 * Pairs of locks which have been blessed
679 * Don't complain about order problems with blessed locks
680 */
681static struct witness_blessed blessed_list[] = {
682};
683static int blessed_count =
684	sizeof(blessed_list) / sizeof(struct witness_blessed);
685#endif
686
687/*
688 * This global is set to 0 once it becomes safe to use the witness code.
689 */
690static int witness_cold = 1;
691
692/*
693 * This global is set to 1 once the static lock orders have been enrolled
694 * so that a warning can be issued for any spin locks enrolled later.
695 */
696static int witness_spin_warn = 0;
697
698/*
699 * The WITNESS-enabled diagnostic code.  Note that the witness code does
700 * assume that the early boot is single-threaded at least until after this
701 * routine is completed.
702 */
703static void
704witness_initialize(void *dummy __unused)
705{
706	struct lock_object *lock;
707	struct witness_order_list_entry *order;
708	struct witness *w, *w1;
709	int i;
710
711	w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
712	    M_NOWAIT | M_ZERO);
713
714	/*
715	 * We have to release Giant before initializing its witness
716	 * structure so that WITNESS doesn't get confused.
717	 */
718	mtx_unlock(&Giant);
719	mtx_assert(&Giant, MA_NOTOWNED);
720
721	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
722	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
723	    MTX_NOWITNESS | MTX_NOPROFILE);
724	for (i = WITNESS_COUNT - 1; i >= 0; i--) {
725		w = &w_data[i];
726		memset(w, 0, sizeof(*w));
727		w_data[i].w_index = i;	/* Witness index never changes. */
728		witness_free(w);
729	}
730	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
731	    ("%s: Invalid list of free witness objects", __func__));
732
733	/* Witness with index 0 is not used to aid in debugging. */
734	STAILQ_REMOVE_HEAD(&w_free, w_list);
735	w_free_cnt--;
736
737	memset(w_rmatrix, 0,
738	    (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
739
740	for (i = 0; i < LOCK_CHILDCOUNT; i++)
741		witness_lock_list_free(&w_locklistdata[i]);
742	witness_init_hash_tables();
743
744	/* First add in all the specified order lists. */
745	for (order = order_lists; order->w_name != NULL; order++) {
746		w = enroll(order->w_name, order->w_class);
747		if (w == NULL)
748			continue;
749		w->w_file = "order list";
750		for (order++; order->w_name != NULL; order++) {
751			w1 = enroll(order->w_name, order->w_class);
752			if (w1 == NULL)
753				continue;
754			w1->w_file = "order list";
755			itismychild(w, w1);
756			w = w1;
757		}
758	}
759	witness_spin_warn = 1;
760
761	/* Iterate through all locks and add them to witness. */
762	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
763		lock = pending_locks[i].wh_lock;
764		KASSERT(lock->lo_flags & LO_WITNESS,
765		    ("%s: lock %s is on pending list but not LO_WITNESS",
766		    __func__, lock->lo_name));
767		lock->lo_witness = enroll(pending_locks[i].wh_type,
768		    LOCK_CLASS(lock));
769	}
770
771	/* Mark the witness code as being ready for use. */
772	witness_cold = 0;
773
774	mtx_lock(&Giant);
775}
776SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
777    NULL);
778
779void
780witness_init(struct lock_object *lock, const char *type)
781{
782	struct lock_class *class;
783
784	/* Various sanity checks. */
785	class = LOCK_CLASS(lock);
786	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
787	    (class->lc_flags & LC_RECURSABLE) == 0)
788		panic("%s: lock (%s) %s can not be recursable", __func__,
789		    class->lc_name, lock->lo_name);
790	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
791	    (class->lc_flags & LC_SLEEPABLE) == 0)
792		panic("%s: lock (%s) %s can not be sleepable", __func__,
793		    class->lc_name, lock->lo_name);
794	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
795	    (class->lc_flags & LC_UPGRADABLE) == 0)
796		panic("%s: lock (%s) %s can not be upgradable", __func__,
797		    class->lc_name, lock->lo_name);
798
799	/*
800	 * If we shouldn't watch this lock, then just clear lo_witness.
801	 * Otherwise, if witness_cold is set, then it is too early to
802	 * enroll this lock, so defer it to witness_initialize() by adding
803	 * it to the pending_locks list.  If it is not too early, then enroll
804	 * the lock now.
805	 */
806	if (witness_watch < 1 || panicstr != NULL ||
807	    (lock->lo_flags & LO_WITNESS) == 0)
808		lock->lo_witness = NULL;
809	else if (witness_cold) {
810		pending_locks[pending_cnt].wh_lock = lock;
811		pending_locks[pending_cnt++].wh_type = type;
812		if (pending_cnt > WITNESS_PENDLIST)
813			panic("%s: pending locks list is too small, bump it\n",
814			    __func__);
815	} else
816		lock->lo_witness = enroll(type, class);
817}
818
819void
820witness_destroy(struct lock_object *lock)
821{
822	struct lock_class *class;
823	struct witness *w;
824
825	class = LOCK_CLASS(lock);
826
827	if (witness_cold)
828		panic("lock (%s) %s destroyed while witness_cold",
829		    class->lc_name, lock->lo_name);
830
831	/* XXX: need to verify that no one holds the lock */
832	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
833		return;
834	w = lock->lo_witness;
835
836	mtx_lock_spin(&w_mtx);
837	MPASS(w->w_refcount > 0);
838	w->w_refcount--;
839
840	if (w->w_refcount == 0)
841		depart(w);
842	mtx_unlock_spin(&w_mtx);
843}
844
845#ifdef DDB
846static void
847witness_ddb_compute_levels(void)
848{
849	struct witness *w;
850
851	/*
852	 * First clear all levels.
853	 */
854	STAILQ_FOREACH(w, &w_all, w_list)
855		w->w_ddb_level = -1;
856
857	/*
858	 * Look for locks with no parents and level all their descendants.
859	 */
860	STAILQ_FOREACH(w, &w_all, w_list) {
861
862		/* If the witness has ancestors (is not a root), skip it. */
863		if (w->w_num_ancestors > 0)
864			continue;
865		witness_ddb_level_descendants(w, 0);
866	}
867}
868
869static void
870witness_ddb_level_descendants(struct witness *w, int l)
871{
872	int i;
873
874	if (w->w_ddb_level >= l)
875		return;
876
877	w->w_ddb_level = l;
878	l++;
879
880	for (i = 1; i <= w_max_used_index; i++) {
881		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
882			witness_ddb_level_descendants(&w_data[i], l);
883	}
884}
885
886static void
887witness_ddb_display_descendants(void(*prnt)(const char *fmt, ...),
888    struct witness *w, int indent)
889{
890	int i;
891
892 	for (i = 0; i < indent; i++)
893 		prnt(" ");
894	prnt("%s (type: %s, depth: %d, active refs: %d)",
895	     w->w_name, w->w_class->lc_name,
896	     w->w_ddb_level, w->w_refcount);
897 	if (w->w_displayed) {
898 		prnt(" -- (already displayed)\n");
899 		return;
900 	}
901 	w->w_displayed = 1;
902	if (w->w_file != NULL && w->w_line != 0)
903		prnt(" -- last acquired @ %s:%d\n", w->w_file,
904		    w->w_line);
905	else
906		prnt(" -- never acquired\n");
907	indent++;
908	WITNESS_INDEX_ASSERT(w->w_index);
909	for (i = 1; i <= w_max_used_index; i++) {
910		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
911			witness_ddb_display_descendants(prnt, &w_data[i],
912			    indent);
913	}
914}
915
916static void
917witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
918    struct witness_list *list)
919{
920	struct witness *w;
921
922	STAILQ_FOREACH(w, list, w_typelist) {
923		if (w->w_file == NULL || w->w_ddb_level > 0)
924			continue;
925
926		/* This lock has no anscestors - display its descendants. */
927		witness_ddb_display_descendants(prnt, w, 0);
928	}
929}
930
931static void
932witness_ddb_display(void(*prnt)(const char *fmt, ...))
933{
934	struct witness *w;
935
936	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
937	witness_ddb_compute_levels();
938
939	/* Clear all the displayed flags. */
940	STAILQ_FOREACH(w, &w_all, w_list)
941		w->w_displayed = 0;
942
943	/*
944	 * First, handle sleep locks which have been acquired at least
945	 * once.
946	 */
947	prnt("Sleep locks:\n");
948	witness_ddb_display_list(prnt, &w_sleep);
949
950	/*
951	 * Now do spin locks which have been acquired at least once.
952	 */
953	prnt("\nSpin locks:\n");
954	witness_ddb_display_list(prnt, &w_spin);
955
956	/*
957	 * Finally, any locks which have not been acquired yet.
958	 */
959	prnt("\nLocks which were never acquired:\n");
960	STAILQ_FOREACH(w, &w_all, w_list) {
961		if (w->w_file != NULL || w->w_refcount == 0)
962			continue;
963		prnt("%s (type: %s, depth: %d)\n", w->w_name,
964		    w->w_class->lc_name, w->w_ddb_level);
965	}
966}
967#endif /* DDB */
968
969/* Trim useless garbage from filenames. */
970static const char *
971fixup_filename(const char *file)
972{
973
974	if (file == NULL)
975		return (NULL);
976	while (strncmp(file, "../", 3) == 0)
977		file += 3;
978	return (file);
979}
980
981int
982witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
983{
984
985	if (witness_watch == -1 || panicstr != NULL)
986		return (0);
987
988	/* Require locks that witness knows about. */
989	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
990	    lock2->lo_witness == NULL)
991		return (EINVAL);
992
993	mtx_assert(&w_mtx, MA_NOTOWNED);
994	mtx_lock_spin(&w_mtx);
995
996	/*
997	 * If we already have either an explicit or implied lock order that
998	 * is the other way around, then return an error.
999	 */
1000	if (witness_watch &&
1001	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1002		mtx_unlock_spin(&w_mtx);
1003		return (EDOOFUS);
1004	}
1005
1006	/* Try to add the new order. */
1007	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1008	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1009	itismychild(lock1->lo_witness, lock2->lo_witness);
1010	mtx_unlock_spin(&w_mtx);
1011	return (0);
1012}
1013
1014void
1015witness_checkorder(struct lock_object *lock, int flags, const char *file,
1016    int line, struct lock_object *interlock)
1017{
1018	struct lock_list_entry *lock_list, *lle;
1019	struct lock_instance *lock1, *lock2, *plock;
1020	struct lock_class *class;
1021	struct witness *w, *w1;
1022	struct thread *td;
1023	int i, j;
1024
1025	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1026	    panicstr != NULL)
1027		return;
1028
1029	w = lock->lo_witness;
1030	class = LOCK_CLASS(lock);
1031	td = curthread;
1032	file = fixup_filename(file);
1033
1034	if (class->lc_flags & LC_SLEEPLOCK) {
1035
1036		/*
1037		 * Since spin locks include a critical section, this check
1038		 * implicitly enforces a lock order of all sleep locks before
1039		 * all spin locks.
1040		 */
1041		if (td->td_critnest != 0 && !kdb_active)
1042			panic("blockable sleep lock (%s) %s @ %s:%d",
1043			    class->lc_name, lock->lo_name, file, line);
1044
1045		/*
1046		 * If this is the first lock acquired then just return as
1047		 * no order checking is needed.
1048		 */
1049		lock_list = td->td_sleeplocks;
1050		if (lock_list == NULL || lock_list->ll_count == 0)
1051			return;
1052	} else {
1053
1054		/*
1055		 * If this is the first lock, just return as no order
1056		 * checking is needed.  Avoid problems with thread
1057		 * migration pinning the thread while checking if
1058		 * spinlocks are held.  If at least one spinlock is held
1059		 * the thread is in a safe path and it is allowed to
1060		 * unpin it.
1061		 */
1062		sched_pin();
1063		lock_list = PCPU_GET(spinlocks);
1064		if (lock_list == NULL || lock_list->ll_count == 0) {
1065			sched_unpin();
1066			return;
1067		}
1068		sched_unpin();
1069	}
1070
1071	/*
1072	 * Check to see if we are recursing on a lock we already own.  If
1073	 * so, make sure that we don't mismatch exclusive and shared lock
1074	 * acquires.
1075	 */
1076	lock1 = find_instance(lock_list, lock);
1077	if (lock1 != NULL) {
1078		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1079		    (flags & LOP_EXCLUSIVE) == 0) {
1080			printf("shared lock of (%s) %s @ %s:%d\n",
1081			    class->lc_name, lock->lo_name, file, line);
1082			printf("while exclusively locked from %s:%d\n",
1083			    lock1->li_file, lock1->li_line);
1084			panic("share->excl");
1085		}
1086		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1087		    (flags & LOP_EXCLUSIVE) != 0) {
1088			printf("exclusive lock of (%s) %s @ %s:%d\n",
1089			    class->lc_name, lock->lo_name, file, line);
1090			printf("while share locked from %s:%d\n",
1091			    lock1->li_file, lock1->li_line);
1092			panic("excl->share");
1093		}
1094		return;
1095	}
1096
1097	/*
1098	 * Find the previously acquired lock, but ignore interlocks.
1099	 */
1100	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1101	if (interlock != NULL && plock->li_lock == interlock) {
1102		if (lock_list->ll_count > 1)
1103			plock =
1104			    &lock_list->ll_children[lock_list->ll_count - 2];
1105		else {
1106			lle = lock_list->ll_next;
1107
1108			/*
1109			 * The interlock is the only lock we hold, so
1110			 * simply return.
1111			 */
1112			if (lle == NULL)
1113				return;
1114			plock = &lle->ll_children[lle->ll_count - 1];
1115		}
1116	}
1117
1118	/*
1119	 * Try to perform most checks without a lock.  If this succeeds we
1120	 * can skip acquiring the lock and return success.
1121	 */
1122	w1 = plock->li_lock->lo_witness;
1123	if (witness_lock_order_check(w1, w))
1124		return;
1125
1126	/*
1127	 * Check for duplicate locks of the same type.  Note that we only
1128	 * have to check for this on the last lock we just acquired.  Any
1129	 * other cases will be caught as lock order violations.
1130	 */
1131	mtx_lock_spin(&w_mtx);
1132	witness_lock_order_add(w1, w);
1133	if (w1 == w) {
1134		i = w->w_index;
1135		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1136		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1137		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1138			w->w_reversed = 1;
1139			mtx_unlock_spin(&w_mtx);
1140			printf(
1141			    "acquiring duplicate lock of same type: \"%s\"\n",
1142			    w->w_name);
1143			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1144			       plock->li_file, plock->li_line);
1145			printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1146			witness_debugger(1);
1147		    } else
1148			    mtx_unlock_spin(&w_mtx);
1149		return;
1150	}
1151	mtx_assert(&w_mtx, MA_OWNED);
1152
1153	/*
1154	 * If we know that the the lock we are acquiring comes after
1155	 * the lock we most recently acquired in the lock order tree,
1156	 * then there is no need for any further checks.
1157	 */
1158	if (isitmychild(w1, w))
1159		goto out;
1160
1161	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1162		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1163
1164			MPASS(j < WITNESS_COUNT);
1165			lock1 = &lle->ll_children[i];
1166
1167			/*
1168			 * Ignore the interlock the first time we see it.
1169			 */
1170			if (interlock != NULL && interlock == lock1->li_lock) {
1171				interlock = NULL;
1172				continue;
1173			}
1174
1175			/*
1176			 * If this lock doesn't undergo witness checking,
1177			 * then skip it.
1178			 */
1179			w1 = lock1->li_lock->lo_witness;
1180			if (w1 == NULL) {
1181				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1182				    ("lock missing witness structure"));
1183				continue;
1184			}
1185
1186			/*
1187			 * If we are locking Giant and this is a sleepable
1188			 * lock, then skip it.
1189			 */
1190			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1191			    lock == &Giant.lock_object)
1192				continue;
1193
1194			/*
1195			 * If we are locking a sleepable lock and this lock
1196			 * is Giant, then skip it.
1197			 */
1198			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1199			    lock1->li_lock == &Giant.lock_object)
1200				continue;
1201
1202			/*
1203			 * If we are locking a sleepable lock and this lock
1204			 * isn't sleepable, we want to treat it as a lock
1205			 * order violation to enfore a general lock order of
1206			 * sleepable locks before non-sleepable locks.
1207			 */
1208			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1209			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1210				goto reversal;
1211
1212			/*
1213			 * If we are locking Giant and this is a non-sleepable
1214			 * lock, then treat it as a reversal.
1215			 */
1216			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1217			    lock == &Giant.lock_object)
1218				goto reversal;
1219
1220			/*
1221			 * Check the lock order hierarchy for a reveresal.
1222			 */
1223			if (!isitmydescendant(w, w1))
1224				continue;
1225		reversal:
1226
1227			/*
1228			 * We have a lock order violation, check to see if it
1229			 * is allowed or has already been yelled about.
1230			 */
1231#ifdef BLESSING
1232
1233			/*
1234			 * If the lock order is blessed, just bail.  We don't
1235			 * look for other lock order violations though, which
1236			 * may be a bug.
1237			 */
1238			if (blessed(w, w1))
1239				goto out;
1240#endif
1241
1242			/* Bail if this violation is known */
1243			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1244				goto out;
1245
1246			/* Record this as a violation */
1247			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1248			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1249			w->w_reversed = w1->w_reversed = 1;
1250			witness_increment_graph_generation();
1251			mtx_unlock_spin(&w_mtx);
1252
1253			/*
1254			 * Ok, yell about it.
1255			 */
1256			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1257			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1258				printf(
1259		"lock order reversal: (sleepable after non-sleepable)\n");
1260			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1261			    && lock == &Giant.lock_object)
1262				printf(
1263		"lock order reversal: (Giant after non-sleepable)\n");
1264			else
1265				printf("lock order reversal:\n");
1266
1267			/*
1268			 * Try to locate an earlier lock with
1269			 * witness w in our list.
1270			 */
1271			do {
1272				lock2 = &lle->ll_children[i];
1273				MPASS(lock2->li_lock != NULL);
1274				if (lock2->li_lock->lo_witness == w)
1275					break;
1276				if (i == 0 && lle->ll_next != NULL) {
1277					lle = lle->ll_next;
1278					i = lle->ll_count - 1;
1279					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1280				} else
1281					i--;
1282			} while (i >= 0);
1283			if (i < 0) {
1284				printf(" 1st %p %s (%s) @ %s:%d\n",
1285				    lock1->li_lock, lock1->li_lock->lo_name,
1286				    w1->w_name, lock1->li_file, lock1->li_line);
1287				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1288				    lock->lo_name, w->w_name, file, line);
1289			} else {
1290				printf(" 1st %p %s (%s) @ %s:%d\n",
1291				    lock2->li_lock, lock2->li_lock->lo_name,
1292				    lock2->li_lock->lo_witness->w_name,
1293				    lock2->li_file, lock2->li_line);
1294				printf(" 2nd %p %s (%s) @ %s:%d\n",
1295				    lock1->li_lock, lock1->li_lock->lo_name,
1296				    w1->w_name, lock1->li_file, lock1->li_line);
1297				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1298				    lock->lo_name, w->w_name, file, line);
1299			}
1300			witness_debugger(1);
1301			return;
1302		}
1303	}
1304
1305	/*
1306	 * If requested, build a new lock order.  However, don't build a new
1307	 * relationship between a sleepable lock and Giant if it is in the
1308	 * wrong direction.  The correct lock order is that sleepable locks
1309	 * always come before Giant.
1310	 */
1311	if (flags & LOP_NEWORDER &&
1312	    !(plock->li_lock == &Giant.lock_object &&
1313	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1314		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1315		    w->w_name, plock->li_lock->lo_witness->w_name);
1316		itismychild(plock->li_lock->lo_witness, w);
1317	}
1318out:
1319	mtx_unlock_spin(&w_mtx);
1320}
1321
1322void
1323witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1324{
1325	struct lock_list_entry **lock_list, *lle;
1326	struct lock_instance *instance;
1327	struct witness *w;
1328	struct thread *td;
1329
1330	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1331	    panicstr != NULL)
1332		return;
1333	w = lock->lo_witness;
1334	td = curthread;
1335	file = fixup_filename(file);
1336
1337	/* Determine lock list for this lock. */
1338	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1339		lock_list = &td->td_sleeplocks;
1340	else
1341		lock_list = PCPU_PTR(spinlocks);
1342
1343	/* Check to see if we are recursing on a lock we already own. */
1344	instance = find_instance(*lock_list, lock);
1345	if (instance != NULL) {
1346		instance->li_flags++;
1347		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1348		    td->td_proc->p_pid, lock->lo_name,
1349		    instance->li_flags & LI_RECURSEMASK);
1350		instance->li_file = file;
1351		instance->li_line = line;
1352		return;
1353	}
1354
1355	/* Update per-witness last file and line acquire. */
1356	w->w_file = file;
1357	w->w_line = line;
1358
1359	/* Find the next open lock instance in the list and fill it. */
1360	lle = *lock_list;
1361	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1362		lle = witness_lock_list_get();
1363		if (lle == NULL)
1364			return;
1365		lle->ll_next = *lock_list;
1366		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1367		    td->td_proc->p_pid, lle);
1368		*lock_list = lle;
1369	}
1370	instance = &lle->ll_children[lle->ll_count++];
1371	instance->li_lock = lock;
1372	instance->li_line = line;
1373	instance->li_file = file;
1374	if ((flags & LOP_EXCLUSIVE) != 0)
1375		instance->li_flags = LI_EXCLUSIVE;
1376	else
1377		instance->li_flags = 0;
1378	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1379	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1380}
1381
1382void
1383witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1384{
1385	struct lock_instance *instance;
1386	struct lock_class *class;
1387
1388	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1389	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1390		return;
1391	class = LOCK_CLASS(lock);
1392	file = fixup_filename(file);
1393	if (witness_watch) {
1394		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1395			panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1396			    class->lc_name, lock->lo_name, file, line);
1397		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1398			panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1399			    class->lc_name, lock->lo_name, file, line);
1400	}
1401	instance = find_instance(curthread->td_sleeplocks, lock);
1402	if (instance == NULL)
1403		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1404		    class->lc_name, lock->lo_name, file, line);
1405	if (witness_watch) {
1406		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1407			panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1408			    class->lc_name, lock->lo_name, file, line);
1409		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1410			panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1411			    class->lc_name, lock->lo_name,
1412			    instance->li_flags & LI_RECURSEMASK, file, line);
1413	}
1414	instance->li_flags |= LI_EXCLUSIVE;
1415}
1416
1417void
1418witness_downgrade(struct lock_object *lock, int flags, const char *file,
1419    int line)
1420{
1421	struct lock_instance *instance;
1422	struct lock_class *class;
1423
1424	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1425	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1426		return;
1427	class = LOCK_CLASS(lock);
1428	file = fixup_filename(file);
1429	if (witness_watch) {
1430		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1431		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1432			    class->lc_name, lock->lo_name, file, line);
1433		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1434			panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1435			    class->lc_name, lock->lo_name, file, line);
1436	}
1437	instance = find_instance(curthread->td_sleeplocks, lock);
1438	if (instance == NULL)
1439		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1440		    class->lc_name, lock->lo_name, file, line);
1441	if (witness_watch) {
1442		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1443			panic("downgrade of shared lock (%s) %s @ %s:%d",
1444			    class->lc_name, lock->lo_name, file, line);
1445		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1446			panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1447			    class->lc_name, lock->lo_name,
1448			    instance->li_flags & LI_RECURSEMASK, file, line);
1449	}
1450	instance->li_flags &= ~LI_EXCLUSIVE;
1451}
1452
1453void
1454witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1455{
1456	struct lock_list_entry **lock_list, *lle;
1457	struct lock_instance *instance;
1458	struct lock_class *class;
1459	struct thread *td;
1460	register_t s;
1461	int i, j;
1462
1463	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1464		return;
1465	td = curthread;
1466	class = LOCK_CLASS(lock);
1467	file = fixup_filename(file);
1468
1469	/* Find lock instance associated with this lock. */
1470	if (class->lc_flags & LC_SLEEPLOCK)
1471		lock_list = &td->td_sleeplocks;
1472	else
1473		lock_list = PCPU_PTR(spinlocks);
1474	lle = *lock_list;
1475	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1476		for (i = 0; i < (*lock_list)->ll_count; i++) {
1477			instance = &(*lock_list)->ll_children[i];
1478			if (instance->li_lock == lock)
1479				goto found;
1480		}
1481
1482	/*
1483	 * When disabling WITNESS through witness_watch we could end up in
1484	 * having registered locks in the td_sleeplocks queue.
1485	 * We have to make sure we flush these queues, so just search for
1486	 * eventual register locks and remove them.
1487	 */
1488	if (witness_watch > 0)
1489		panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1490		    lock->lo_name, file, line);
1491	else
1492		return;
1493found:
1494
1495	/* First, check for shared/exclusive mismatches. */
1496	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1497	    (flags & LOP_EXCLUSIVE) == 0) {
1498		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1499		    lock->lo_name, file, line);
1500		printf("while exclusively locked from %s:%d\n",
1501		    instance->li_file, instance->li_line);
1502		panic("excl->ushare");
1503	}
1504	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1505	    (flags & LOP_EXCLUSIVE) != 0) {
1506		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1507		    lock->lo_name, file, line);
1508		printf("while share locked from %s:%d\n", instance->li_file,
1509		    instance->li_line);
1510		panic("share->uexcl");
1511	}
1512
1513	/* If we are recursed, unrecurse. */
1514	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1515		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1516		    td->td_proc->p_pid, instance->li_lock->lo_name,
1517		    instance->li_flags);
1518		instance->li_flags--;
1519		return;
1520	}
1521
1522	/* Otherwise, remove this item from the list. */
1523	s = intr_disable();
1524	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1525	    td->td_proc->p_pid, instance->li_lock->lo_name,
1526	    (*lock_list)->ll_count - 1);
1527	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1528		(*lock_list)->ll_children[j] =
1529		    (*lock_list)->ll_children[j + 1];
1530	(*lock_list)->ll_count--;
1531	intr_restore(s);
1532
1533	/*
1534	 * In order to reduce contention on w_mtx, we want to keep always an
1535	 * head object into lists so that frequent allocation from the
1536	 * free witness pool (and subsequent locking) is avoided.
1537	 * In order to maintain the current code simple, when the head
1538	 * object is totally unloaded it means also that we do not have
1539	 * further objects in the list, so the list ownership needs to be
1540	 * hand over to another object if the current head needs to be freed.
1541	 */
1542	if ((*lock_list)->ll_count == 0) {
1543		if (*lock_list == lle) {
1544			if (lle->ll_next == NULL)
1545				return;
1546		} else
1547			lle = *lock_list;
1548		*lock_list = lle->ll_next;
1549		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1550		    td->td_proc->p_pid, lle);
1551		witness_lock_list_free(lle);
1552	}
1553}
1554
1555void
1556witness_thread_exit(struct thread *td)
1557{
1558	struct lock_list_entry *lle;
1559	int i, n;
1560
1561	lle = td->td_sleeplocks;
1562	if (lle == NULL || panicstr != NULL)
1563		return;
1564	if (lle->ll_count != 0) {
1565		for (n = 0; lle != NULL; lle = lle->ll_next)
1566			for (i = lle->ll_count - 1; i >= 0; i--) {
1567				if (n == 0)
1568		printf("Thread %p exiting with the following locks held:\n",
1569					    td);
1570				n++;
1571				witness_list_lock(&lle->ll_children[i]);
1572
1573			}
1574		panic("Thread %p cannot exit while holding sleeplocks\n", td);
1575	}
1576	witness_lock_list_free(lle);
1577}
1578
1579/*
1580 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1581 * exempt Giant and sleepable locks from the checks as well.  If any
1582 * non-exempt locks are held, then a supplied message is printed to the
1583 * console along with a list of the offending locks.  If indicated in the
1584 * flags then a failure results in a panic as well.
1585 */
1586int
1587witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1588{
1589	struct lock_list_entry *lock_list, *lle;
1590	struct lock_instance *lock1;
1591	struct thread *td;
1592	va_list ap;
1593	int i, n;
1594
1595	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1596		return (0);
1597	n = 0;
1598	td = curthread;
1599	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1600		for (i = lle->ll_count - 1; i >= 0; i--) {
1601			lock1 = &lle->ll_children[i];
1602			if (lock1->li_lock == lock)
1603				continue;
1604			if (flags & WARN_GIANTOK &&
1605			    lock1->li_lock == &Giant.lock_object)
1606				continue;
1607			if (flags & WARN_SLEEPOK &&
1608			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1609				continue;
1610			if (n == 0) {
1611				va_start(ap, fmt);
1612				vprintf(fmt, ap);
1613				va_end(ap);
1614				printf(" with the following");
1615				if (flags & WARN_SLEEPOK)
1616					printf(" non-sleepable");
1617				printf(" locks held:\n");
1618			}
1619			n++;
1620			witness_list_lock(lock1);
1621		}
1622
1623	/*
1624	 * Pin the thread in order to avoid problems with thread migration.
1625	 * Once that all verifies are passed about spinlocks ownership,
1626	 * the thread is in a safe path and it can be unpinned.
1627	 */
1628	sched_pin();
1629	lock_list = PCPU_GET(spinlocks);
1630	if (lock_list != NULL && lock_list->ll_count != 0) {
1631		sched_unpin();
1632
1633		/*
1634		 * We should only have one spinlock and as long as
1635		 * the flags cannot match for this locks class,
1636		 * check if the first spinlock is the one curthread
1637		 * should hold.
1638		 */
1639		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1640		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1641		    lock1->li_lock == lock && n == 0)
1642			return (0);
1643
1644		va_start(ap, fmt);
1645		vprintf(fmt, ap);
1646		va_end(ap);
1647		printf(" with the following");
1648		if (flags & WARN_SLEEPOK)
1649			printf(" non-sleepable");
1650		printf(" locks held:\n");
1651		n += witness_list_locks(&lock_list);
1652	} else
1653		sched_unpin();
1654	if (flags & WARN_PANIC && n)
1655		panic("%s", __func__);
1656	else
1657		witness_debugger(n);
1658	return (n);
1659}
1660
1661const char *
1662witness_file(struct lock_object *lock)
1663{
1664	struct witness *w;
1665
1666	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1667		return ("?");
1668	w = lock->lo_witness;
1669	return (w->w_file);
1670}
1671
1672int
1673witness_line(struct lock_object *lock)
1674{
1675	struct witness *w;
1676
1677	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1678		return (0);
1679	w = lock->lo_witness;
1680	return (w->w_line);
1681}
1682
1683static struct witness *
1684enroll(const char *description, struct lock_class *lock_class)
1685{
1686	struct witness *w;
1687	struct witness_list *typelist;
1688
1689	MPASS(description != NULL);
1690
1691	if (witness_watch == -1 || panicstr != NULL)
1692		return (NULL);
1693	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1694		if (witness_skipspin)
1695			return (NULL);
1696		else
1697			typelist = &w_spin;
1698	} else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1699		typelist = &w_sleep;
1700	else
1701		panic("lock class %s is not sleep or spin",
1702		    lock_class->lc_name);
1703
1704	mtx_lock_spin(&w_mtx);
1705	w = witness_hash_get(description);
1706	if (w)
1707		goto found;
1708	if ((w = witness_get()) == NULL)
1709		return (NULL);
1710	MPASS(strlen(description) < MAX_W_NAME);
1711	strcpy(w->w_name, description);
1712	w->w_class = lock_class;
1713	w->w_refcount = 1;
1714	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1715	if (lock_class->lc_flags & LC_SPINLOCK) {
1716		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1717		w_spin_cnt++;
1718	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1719		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1720		w_sleep_cnt++;
1721	}
1722
1723	/* Insert new witness into the hash */
1724	witness_hash_put(w);
1725	witness_increment_graph_generation();
1726	mtx_unlock_spin(&w_mtx);
1727	return (w);
1728found:
1729	w->w_refcount++;
1730	mtx_unlock_spin(&w_mtx);
1731	if (lock_class != w->w_class)
1732		panic(
1733			"lock (%s) %s does not match earlier (%s) lock",
1734			description, lock_class->lc_name,
1735			w->w_class->lc_name);
1736	return (w);
1737}
1738
1739static void
1740depart(struct witness *w)
1741{
1742	struct witness_list *list;
1743
1744	MPASS(w->w_refcount == 0);
1745	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1746		list = &w_sleep;
1747		w_sleep_cnt--;
1748	} else {
1749		list = &w_spin;
1750		w_spin_cnt--;
1751	}
1752	/*
1753	 * Set file to NULL as it may point into a loadable module.
1754	 */
1755	w->w_file = NULL;
1756	w->w_line = 0;
1757	witness_increment_graph_generation();
1758}
1759
1760
1761static void
1762adopt(struct witness *parent, struct witness *child)
1763{
1764	int pi, ci, i, j;
1765
1766	if (witness_cold == 0)
1767		mtx_assert(&w_mtx, MA_OWNED);
1768
1769	/* If the relationship is already known, there's no work to be done. */
1770	if (isitmychild(parent, child))
1771		return;
1772
1773	/* When the structure of the graph changes, bump up the generation. */
1774	witness_increment_graph_generation();
1775
1776	/*
1777	 * The hard part ... create the direct relationship, then propagate all
1778	 * indirect relationships.
1779	 */
1780	pi = parent->w_index;
1781	ci = child->w_index;
1782	WITNESS_INDEX_ASSERT(pi);
1783	WITNESS_INDEX_ASSERT(ci);
1784	MPASS(pi != ci);
1785	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1786	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1787
1788	/*
1789	 * If parent was not already an ancestor of child,
1790	 * then we increment the descendant and ancestor counters.
1791	 */
1792	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1793		parent->w_num_descendants++;
1794		child->w_num_ancestors++;
1795	}
1796
1797	/*
1798	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1799	 * an ancestor of 'pi' during this loop.
1800	 */
1801	for (i = 1; i <= w_max_used_index; i++) {
1802		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1803		    (i != pi))
1804			continue;
1805
1806		/* Find each descendant of 'i' and mark it as a descendant. */
1807		for (j = 1; j <= w_max_used_index; j++) {
1808
1809			/*
1810			 * Skip children that are already marked as
1811			 * descendants of 'i'.
1812			 */
1813			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1814				continue;
1815
1816			/*
1817			 * We are only interested in descendants of 'ci'. Note
1818			 * that 'ci' itself is counted as a descendant of 'ci'.
1819			 */
1820			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1821			    (j != ci))
1822				continue;
1823			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1824			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1825			w_data[i].w_num_descendants++;
1826			w_data[j].w_num_ancestors++;
1827
1828			/*
1829			 * Make sure we aren't marking a node as both an
1830			 * ancestor and descendant. We should have caught
1831			 * this as a lock order reversal earlier.
1832			 */
1833			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1834			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1835				printf("witness rmatrix paradox! [%d][%d]=%d "
1836				    "both ancestor and descendant\n",
1837				    i, j, w_rmatrix[i][j]);
1838				kdb_backtrace();
1839				printf("Witness disabled.\n");
1840				witness_watch = -1;
1841			}
1842			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1843			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1844				printf("witness rmatrix paradox! [%d][%d]=%d "
1845				    "both ancestor and descendant\n",
1846				    j, i, w_rmatrix[j][i]);
1847				kdb_backtrace();
1848				printf("Witness disabled.\n");
1849				witness_watch = -1;
1850			}
1851		}
1852	}
1853}
1854
1855static void
1856itismychild(struct witness *parent, struct witness *child)
1857{
1858
1859	MPASS(child != NULL && parent != NULL);
1860	if (witness_cold == 0)
1861		mtx_assert(&w_mtx, MA_OWNED);
1862
1863	if (!witness_lock_type_equal(parent, child)) {
1864		if (witness_cold == 0)
1865			mtx_unlock_spin(&w_mtx);
1866		panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1867		    "the same lock type", __func__, parent->w_name,
1868		    parent->w_class->lc_name, child->w_name,
1869		    child->w_class->lc_name);
1870	}
1871	adopt(parent, child);
1872}
1873
1874/*
1875 * Generic code for the isitmy*() functions. The rmask parameter is the
1876 * expected relationship of w1 to w2.
1877 */
1878static int
1879_isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1880{
1881	unsigned char r1, r2;
1882	int i1, i2;
1883
1884	i1 = w1->w_index;
1885	i2 = w2->w_index;
1886	WITNESS_INDEX_ASSERT(i1);
1887	WITNESS_INDEX_ASSERT(i2);
1888	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1889	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1890
1891	/* The flags on one better be the inverse of the flags on the other */
1892	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1893		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1894		printf("%s: rmatrix mismatch between %s (index %d) and %s "
1895		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
1896		    "w_rmatrix[%d][%d] == %hhx\n",
1897		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1898		    i2, i1, r2);
1899		kdb_backtrace();
1900		printf("Witness disabled.\n");
1901		witness_watch = -1;
1902	}
1903	return (r1 & rmask);
1904}
1905
1906/*
1907 * Checks if @child is a direct child of @parent.
1908 */
1909static int
1910isitmychild(struct witness *parent, struct witness *child)
1911{
1912
1913	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1914}
1915
1916/*
1917 * Checks if @descendant is a direct or inderect descendant of @ancestor.
1918 */
1919static int
1920isitmydescendant(struct witness *ancestor, struct witness *descendant)
1921{
1922
1923	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1924	    __func__));
1925}
1926
1927#ifdef BLESSING
1928static int
1929blessed(struct witness *w1, struct witness *w2)
1930{
1931	int i;
1932	struct witness_blessed *b;
1933
1934	for (i = 0; i < blessed_count; i++) {
1935		b = &blessed_list[i];
1936		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1937			if (strcmp(w2->w_name, b->b_lock2) == 0)
1938				return (1);
1939			continue;
1940		}
1941		if (strcmp(w1->w_name, b->b_lock2) == 0)
1942			if (strcmp(w2->w_name, b->b_lock1) == 0)
1943				return (1);
1944	}
1945	return (0);
1946}
1947#endif
1948
1949static struct witness *
1950witness_get(void)
1951{
1952	struct witness *w;
1953	int index;
1954
1955	if (witness_cold == 0)
1956		mtx_assert(&w_mtx, MA_OWNED);
1957
1958	if (witness_watch == -1) {
1959		mtx_unlock_spin(&w_mtx);
1960		return (NULL);
1961	}
1962	if (STAILQ_EMPTY(&w_free)) {
1963		witness_watch = -1;
1964		mtx_unlock_spin(&w_mtx);
1965		printf("WITNESS: unable to allocate a new witness object\n");
1966		return (NULL);
1967	}
1968	w = STAILQ_FIRST(&w_free);
1969	STAILQ_REMOVE_HEAD(&w_free, w_list);
1970	w_free_cnt--;
1971	index = w->w_index;
1972	MPASS(index > 0 && index == w_max_used_index+1 &&
1973	    index < WITNESS_COUNT);
1974	bzero(w, sizeof(*w));
1975	w->w_index = index;
1976	if (index > w_max_used_index)
1977		w_max_used_index = index;
1978	return (w);
1979}
1980
1981static void
1982witness_free(struct witness *w)
1983{
1984
1985	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1986	w_free_cnt++;
1987}
1988
1989static struct lock_list_entry *
1990witness_lock_list_get(void)
1991{
1992	struct lock_list_entry *lle;
1993
1994	if (witness_watch == -1)
1995		return (NULL);
1996	mtx_lock_spin(&w_mtx);
1997	lle = w_lock_list_free;
1998	if (lle == NULL) {
1999		witness_watch = -1;
2000		mtx_unlock_spin(&w_mtx);
2001		printf("%s: witness exhausted\n", __func__);
2002		return (NULL);
2003	}
2004	w_lock_list_free = lle->ll_next;
2005	mtx_unlock_spin(&w_mtx);
2006	bzero(lle, sizeof(*lle));
2007	return (lle);
2008}
2009
2010static void
2011witness_lock_list_free(struct lock_list_entry *lle)
2012{
2013
2014	mtx_lock_spin(&w_mtx);
2015	lle->ll_next = w_lock_list_free;
2016	w_lock_list_free = lle;
2017	mtx_unlock_spin(&w_mtx);
2018}
2019
2020static struct lock_instance *
2021find_instance(struct lock_list_entry *list, struct lock_object *lock)
2022{
2023	struct lock_list_entry *lle;
2024	struct lock_instance *instance;
2025	int i;
2026
2027	for (lle = list; lle != NULL; lle = lle->ll_next)
2028		for (i = lle->ll_count - 1; i >= 0; i--) {
2029			instance = &lle->ll_children[i];
2030			if (instance->li_lock == lock)
2031				return (instance);
2032		}
2033	return (NULL);
2034}
2035
2036static void
2037witness_list_lock(struct lock_instance *instance)
2038{
2039	struct lock_object *lock;
2040
2041	lock = instance->li_lock;
2042	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2043	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2044	if (lock->lo_witness->w_name != lock->lo_name)
2045		printf(" (%s)", lock->lo_witness->w_name);
2046	printf(" r = %d (%p) locked @ %s:%d\n",
2047	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2048	    instance->li_line);
2049}
2050
2051#ifdef DDB
2052static int
2053witness_thread_has_locks(struct thread *td)
2054{
2055
2056	if (td->td_sleeplocks == NULL)
2057		return (0);
2058	return (td->td_sleeplocks->ll_count != 0);
2059}
2060
2061static int
2062witness_proc_has_locks(struct proc *p)
2063{
2064	struct thread *td;
2065
2066	FOREACH_THREAD_IN_PROC(p, td) {
2067		if (witness_thread_has_locks(td))
2068			return (1);
2069	}
2070	return (0);
2071}
2072#endif
2073
2074int
2075witness_list_locks(struct lock_list_entry **lock_list)
2076{
2077	struct lock_list_entry *lle;
2078	int i, nheld;
2079
2080	nheld = 0;
2081	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2082		for (i = lle->ll_count - 1; i >= 0; i--) {
2083			witness_list_lock(&lle->ll_children[i]);
2084			nheld++;
2085		}
2086	return (nheld);
2087}
2088
2089/*
2090 * This is a bit risky at best.  We call this function when we have timed
2091 * out acquiring a spin lock, and we assume that the other CPU is stuck
2092 * with this lock held.  So, we go groveling around in the other CPU's
2093 * per-cpu data to try to find the lock instance for this spin lock to
2094 * see when it was last acquired.
2095 */
2096void
2097witness_display_spinlock(struct lock_object *lock, struct thread *owner)
2098{
2099	struct lock_instance *instance;
2100	struct pcpu *pc;
2101
2102	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2103		return;
2104	pc = pcpu_find(owner->td_oncpu);
2105	instance = find_instance(pc->pc_spinlocks, lock);
2106	if (instance != NULL)
2107		witness_list_lock(instance);
2108}
2109
2110void
2111witness_save(struct lock_object *lock, const char **filep, int *linep)
2112{
2113	struct lock_list_entry *lock_list;
2114	struct lock_instance *instance;
2115	struct lock_class *class;
2116
2117	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2118	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2119		return;
2120	class = LOCK_CLASS(lock);
2121	if (class->lc_flags & LC_SLEEPLOCK)
2122		lock_list = curthread->td_sleeplocks;
2123	else {
2124		if (witness_skipspin)
2125			return;
2126		lock_list = PCPU_GET(spinlocks);
2127	}
2128	instance = find_instance(lock_list, lock);
2129	if (instance == NULL)
2130		panic("%s: lock (%s) %s not locked", __func__,
2131		    class->lc_name, lock->lo_name);
2132	*filep = instance->li_file;
2133	*linep = instance->li_line;
2134}
2135
2136void
2137witness_restore(struct lock_object *lock, const char *file, int line)
2138{
2139	struct lock_list_entry *lock_list;
2140	struct lock_instance *instance;
2141	struct lock_class *class;
2142
2143	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2144	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2145		return;
2146	class = LOCK_CLASS(lock);
2147	if (class->lc_flags & LC_SLEEPLOCK)
2148		lock_list = curthread->td_sleeplocks;
2149	else {
2150		if (witness_skipspin)
2151			return;
2152		lock_list = PCPU_GET(spinlocks);
2153	}
2154	instance = find_instance(lock_list, lock);
2155	if (instance == NULL)
2156		panic("%s: lock (%s) %s not locked", __func__,
2157		    class->lc_name, lock->lo_name);
2158	lock->lo_witness->w_file = file;
2159	lock->lo_witness->w_line = line;
2160	instance->li_file = file;
2161	instance->li_line = line;
2162}
2163
2164void
2165witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2166{
2167#ifdef INVARIANT_SUPPORT
2168	struct lock_instance *instance;
2169	struct lock_class *class;
2170
2171	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2172		return;
2173	class = LOCK_CLASS(lock);
2174	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2175		instance = find_instance(curthread->td_sleeplocks, lock);
2176	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2177		instance = find_instance(PCPU_GET(spinlocks), lock);
2178	else {
2179		panic("Lock (%s) %s is not sleep or spin!",
2180		    class->lc_name, lock->lo_name);
2181	}
2182	file = fixup_filename(file);
2183	switch (flags) {
2184	case LA_UNLOCKED:
2185		if (instance != NULL)
2186			panic("Lock (%s) %s locked @ %s:%d.",
2187			    class->lc_name, lock->lo_name, file, line);
2188		break;
2189	case LA_LOCKED:
2190	case LA_LOCKED | LA_RECURSED:
2191	case LA_LOCKED | LA_NOTRECURSED:
2192	case LA_SLOCKED:
2193	case LA_SLOCKED | LA_RECURSED:
2194	case LA_SLOCKED | LA_NOTRECURSED:
2195	case LA_XLOCKED:
2196	case LA_XLOCKED | LA_RECURSED:
2197	case LA_XLOCKED | LA_NOTRECURSED:
2198		if (instance == NULL) {
2199			panic("Lock (%s) %s not locked @ %s:%d.",
2200			    class->lc_name, lock->lo_name, file, line);
2201			break;
2202		}
2203		if ((flags & LA_XLOCKED) != 0 &&
2204		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2205			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2206			    class->lc_name, lock->lo_name, file, line);
2207		if ((flags & LA_SLOCKED) != 0 &&
2208		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2209			panic("Lock (%s) %s exclusively locked @ %s:%d.",
2210			    class->lc_name, lock->lo_name, file, line);
2211		if ((flags & LA_RECURSED) != 0 &&
2212		    (instance->li_flags & LI_RECURSEMASK) == 0)
2213			panic("Lock (%s) %s not recursed @ %s:%d.",
2214			    class->lc_name, lock->lo_name, file, line);
2215		if ((flags & LA_NOTRECURSED) != 0 &&
2216		    (instance->li_flags & LI_RECURSEMASK) != 0)
2217			panic("Lock (%s) %s recursed @ %s:%d.",
2218			    class->lc_name, lock->lo_name, file, line);
2219		break;
2220	default:
2221		panic("Invalid lock assertion at %s:%d.", file, line);
2222
2223	}
2224#endif	/* INVARIANT_SUPPORT */
2225}
2226
2227#ifdef DDB
2228static void
2229witness_ddb_list(struct thread *td)
2230{
2231
2232	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2233	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2234
2235	if (witness_watch < 1)
2236		return;
2237
2238	witness_list_locks(&td->td_sleeplocks);
2239
2240	/*
2241	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2242	 * if td is currently executing on some other CPU and holds spin locks
2243	 * as we won't display those locks.  If we had a MI way of getting
2244	 * the per-cpu data for a given cpu then we could use
2245	 * td->td_oncpu to get the list of spinlocks for this thread
2246	 * and "fix" this.
2247	 *
2248	 * That still wouldn't really fix this unless we locked the scheduler
2249	 * lock or stopped the other CPU to make sure it wasn't changing the
2250	 * list out from under us.  It is probably best to just not try to
2251	 * handle threads on other CPU's for now.
2252	 */
2253	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2254		witness_list_locks(PCPU_PTR(spinlocks));
2255}
2256
2257DB_SHOW_COMMAND(locks, db_witness_list)
2258{
2259	struct thread *td;
2260
2261	if (have_addr)
2262		td = db_lookup_thread(addr, TRUE);
2263	else
2264		td = kdb_thread;
2265	witness_ddb_list(td);
2266}
2267
2268DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2269{
2270	struct thread *td;
2271	struct proc *p;
2272
2273	/*
2274	 * It would be nice to list only threads and processes that actually
2275	 * held sleep locks, but that information is currently not exported
2276	 * by WITNESS.
2277	 */
2278	FOREACH_PROC_IN_SYSTEM(p) {
2279		if (!witness_proc_has_locks(p))
2280			continue;
2281		FOREACH_THREAD_IN_PROC(p, td) {
2282			if (!witness_thread_has_locks(td))
2283				continue;
2284			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2285			    p->p_comm, td, td->td_tid);
2286			witness_ddb_list(td);
2287		}
2288	}
2289}
2290DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2291
2292DB_SHOW_COMMAND(witness, db_witness_display)
2293{
2294
2295	witness_ddb_display(db_printf);
2296}
2297#endif
2298
2299static int
2300sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2301{
2302	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2303	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2304	struct sbuf *sb;
2305	u_int w_rmatrix1, w_rmatrix2;
2306	int error, generation, i, j;
2307
2308	tmp_data1 = NULL;
2309	tmp_data2 = NULL;
2310	tmp_w1 = NULL;
2311	tmp_w2 = NULL;
2312	if (witness_watch < 1) {
2313		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2314		return (error);
2315	}
2316	if (witness_cold) {
2317		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2318		return (error);
2319	}
2320	error = 0;
2321	sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2322	if (sb == NULL)
2323		return (ENOMEM);
2324
2325	/* Allocate and init temporary storage space. */
2326	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2327	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2328	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2329	    M_WAITOK | M_ZERO);
2330	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2331	    M_WAITOK | M_ZERO);
2332	stack_zero(&tmp_data1->wlod_stack);
2333	stack_zero(&tmp_data2->wlod_stack);
2334
2335restart:
2336	mtx_lock_spin(&w_mtx);
2337	generation = w_generation;
2338	mtx_unlock_spin(&w_mtx);
2339	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2340	    w_lohash.wloh_count);
2341	for (i = 1; i < w_max_used_index; i++) {
2342		mtx_lock_spin(&w_mtx);
2343		if (generation != w_generation) {
2344			mtx_unlock_spin(&w_mtx);
2345
2346			/* The graph has changed, try again. */
2347			req->oldidx = 0;
2348			sbuf_clear(sb);
2349			goto restart;
2350		}
2351
2352		w1 = &w_data[i];
2353		if (w1->w_reversed == 0) {
2354			mtx_unlock_spin(&w_mtx);
2355			continue;
2356		}
2357
2358		/* Copy w1 locally so we can release the spin lock. */
2359		*tmp_w1 = *w1;
2360		mtx_unlock_spin(&w_mtx);
2361
2362		if (tmp_w1->w_reversed == 0)
2363			continue;
2364		for (j = 1; j < w_max_used_index; j++) {
2365			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2366				continue;
2367
2368			mtx_lock_spin(&w_mtx);
2369			if (generation != w_generation) {
2370				mtx_unlock_spin(&w_mtx);
2371
2372				/* The graph has changed, try again. */
2373				req->oldidx = 0;
2374				sbuf_clear(sb);
2375				goto restart;
2376			}
2377
2378			w2 = &w_data[j];
2379			data1 = witness_lock_order_get(w1, w2);
2380			data2 = witness_lock_order_get(w2, w1);
2381
2382			/*
2383			 * Copy information locally so we can release the
2384			 * spin lock.
2385			 */
2386			*tmp_w2 = *w2;
2387			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2388			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2389
2390			if (data1) {
2391				stack_zero(&tmp_data1->wlod_stack);
2392				stack_copy(&data1->wlod_stack,
2393				    &tmp_data1->wlod_stack);
2394			}
2395			if (data2 && data2 != data1) {
2396				stack_zero(&tmp_data2->wlod_stack);
2397				stack_copy(&data2->wlod_stack,
2398				    &tmp_data2->wlod_stack);
2399			}
2400			mtx_unlock_spin(&w_mtx);
2401
2402			sbuf_printf(sb,
2403	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2404			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2405			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2406#if 0
2407 			sbuf_printf(sb,
2408			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2409 			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2410 			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2411#endif
2412			if (data1) {
2413				sbuf_printf(sb,
2414			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2415				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2416				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2417				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2418				sbuf_printf(sb, "\n");
2419			}
2420			if (data2 && data2 != data1) {
2421				sbuf_printf(sb,
2422			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2423				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2424				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2425				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2426				sbuf_printf(sb, "\n");
2427			}
2428		}
2429	}
2430	mtx_lock_spin(&w_mtx);
2431	if (generation != w_generation) {
2432		mtx_unlock_spin(&w_mtx);
2433
2434		/*
2435		 * The graph changed while we were printing stack data,
2436		 * try again.
2437		 */
2438		req->oldidx = 0;
2439		sbuf_clear(sb);
2440		goto restart;
2441	}
2442	mtx_unlock_spin(&w_mtx);
2443
2444	/* Free temporary storage space. */
2445	free(tmp_data1, M_TEMP);
2446	free(tmp_data2, M_TEMP);
2447	free(tmp_w1, M_TEMP);
2448	free(tmp_w2, M_TEMP);
2449
2450	sbuf_finish(sb);
2451	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2452	sbuf_delete(sb);
2453
2454	return (error);
2455}
2456
2457static int
2458sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2459{
2460	struct witness *w;
2461	struct sbuf *sb;
2462	int error;
2463
2464	if (witness_watch < 1) {
2465		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2466		return (error);
2467	}
2468	if (witness_cold) {
2469		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2470		return (error);
2471	}
2472	error = 0;
2473	sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
2474	if (sb == NULL)
2475		return (ENOMEM);
2476	sbuf_printf(sb, "\n");
2477
2478	mtx_lock_spin(&w_mtx);
2479	STAILQ_FOREACH(w, &w_all, w_list)
2480		w->w_displayed = 0;
2481	STAILQ_FOREACH(w, &w_all, w_list)
2482		witness_add_fullgraph(sb, w);
2483	mtx_unlock_spin(&w_mtx);
2484
2485	/*
2486	 * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
2487	 */
2488	if (sbuf_overflowed(sb)) {
2489		sbuf_delete(sb);
2490		panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
2491		    __func__);
2492	}
2493
2494	/*
2495	 * Close the sbuf and return to userland.
2496	 */
2497	sbuf_finish(sb);
2498	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2499	sbuf_delete(sb);
2500
2501	return (error);
2502}
2503
2504static int
2505sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2506{
2507	int error, value;
2508
2509	value = witness_watch;
2510	error = sysctl_handle_int(oidp, &value, 0, req);
2511	if (error != 0 || req->newptr == NULL)
2512		return (error);
2513	if (value > 1 || value < -1 ||
2514	    (witness_watch == -1 && value != witness_watch))
2515		return (EINVAL);
2516	witness_watch = value;
2517	return (0);
2518}
2519
2520static void
2521witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2522{
2523	int i;
2524
2525	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2526		return;
2527	w->w_displayed = 1;
2528
2529	WITNESS_INDEX_ASSERT(w->w_index);
2530	for (i = 1; i <= w_max_used_index; i++) {
2531		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2532			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2533			    w_data[i].w_name);
2534			witness_add_fullgraph(sb, &w_data[i]);
2535		}
2536	}
2537}
2538
2539/*
2540 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2541 * interprets the key as a string and reads until the null
2542 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2543 * hash value computed from the key.
2544 */
2545static uint32_t
2546witness_hash_djb2(const uint8_t *key, uint32_t size)
2547{
2548	unsigned int hash = 5381;
2549	int i;
2550
2551	/* hash = hash * 33 + key[i] */
2552	if (size)
2553		for (i = 0; i < size; i++)
2554			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2555	else
2556		for (i = 0; key[i] != 0; i++)
2557			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2558
2559	return (hash);
2560}
2561
2562
2563/*
2564 * Initializes the two witness hash tables. Called exactly once from
2565 * witness_initialize().
2566 */
2567static void
2568witness_init_hash_tables(void)
2569{
2570	int i;
2571
2572	MPASS(witness_cold);
2573
2574	/* Initialize the hash tables. */
2575	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2576		w_hash.wh_array[i] = NULL;
2577
2578	w_hash.wh_size = WITNESS_HASH_SIZE;
2579	w_hash.wh_count = 0;
2580
2581	/* Initialize the lock order data hash. */
2582	w_lofree = NULL;
2583	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2584		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2585		w_lodata[i].wlod_next = w_lofree;
2586		w_lofree = &w_lodata[i];
2587	}
2588	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2589	w_lohash.wloh_count = 0;
2590	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2591		w_lohash.wloh_array[i] = NULL;
2592}
2593
2594static struct witness *
2595witness_hash_get(const char *key)
2596{
2597	struct witness *w;
2598	uint32_t hash;
2599
2600	MPASS(key != NULL);
2601	if (witness_cold == 0)
2602		mtx_assert(&w_mtx, MA_OWNED);
2603	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2604	w = w_hash.wh_array[hash];
2605	while (w != NULL) {
2606		if (strcmp(w->w_name, key) == 0)
2607			goto out;
2608		w = w->w_hash_next;
2609	}
2610
2611out:
2612	return (w);
2613}
2614
2615static void
2616witness_hash_put(struct witness *w)
2617{
2618	uint32_t hash;
2619
2620	MPASS(w != NULL);
2621	MPASS(w->w_name != NULL);
2622	if (witness_cold == 0)
2623		mtx_assert(&w_mtx, MA_OWNED);
2624	KASSERT(witness_hash_get(w->w_name) == NULL,
2625	    ("%s: trying to add a hash entry that already exists!", __func__));
2626	KASSERT(w->w_hash_next == NULL,
2627	    ("%s: w->w_hash_next != NULL", __func__));
2628
2629	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2630	w->w_hash_next = w_hash.wh_array[hash];
2631	w_hash.wh_array[hash] = w;
2632	w_hash.wh_count++;
2633}
2634
2635
2636static struct witness_lock_order_data *
2637witness_lock_order_get(struct witness *parent, struct witness *child)
2638{
2639	struct witness_lock_order_data *data = NULL;
2640	struct witness_lock_order_key key;
2641	unsigned int hash;
2642
2643	MPASS(parent != NULL && child != NULL);
2644	key.from = parent->w_index;
2645	key.to = child->w_index;
2646	WITNESS_INDEX_ASSERT(key.from);
2647	WITNESS_INDEX_ASSERT(key.to);
2648	if ((w_rmatrix[parent->w_index][child->w_index]
2649	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2650		goto out;
2651
2652	hash = witness_hash_djb2((const char*)&key,
2653	    sizeof(key)) % w_lohash.wloh_size;
2654	data = w_lohash.wloh_array[hash];
2655	while (data != NULL) {
2656		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2657			break;
2658		data = data->wlod_next;
2659	}
2660
2661out:
2662	return (data);
2663}
2664
2665/*
2666 * Verify that parent and child have a known relationship, are not the same,
2667 * and child is actually a child of parent.  This is done without w_mtx
2668 * to avoid contention in the common case.
2669 */
2670static int
2671witness_lock_order_check(struct witness *parent, struct witness *child)
2672{
2673
2674	if (parent != child &&
2675	    w_rmatrix[parent->w_index][child->w_index]
2676	    & WITNESS_LOCK_ORDER_KNOWN &&
2677	    isitmychild(parent, child))
2678		return (1);
2679
2680	return (0);
2681}
2682
2683static int
2684witness_lock_order_add(struct witness *parent, struct witness *child)
2685{
2686	struct witness_lock_order_data *data = NULL;
2687	struct witness_lock_order_key key;
2688	unsigned int hash;
2689
2690	MPASS(parent != NULL && child != NULL);
2691	key.from = parent->w_index;
2692	key.to = child->w_index;
2693	WITNESS_INDEX_ASSERT(key.from);
2694	WITNESS_INDEX_ASSERT(key.to);
2695	if (w_rmatrix[parent->w_index][child->w_index]
2696	    & WITNESS_LOCK_ORDER_KNOWN)
2697		return (1);
2698
2699	hash = witness_hash_djb2((const char*)&key,
2700	    sizeof(key)) % w_lohash.wloh_size;
2701	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2702	data = w_lofree;
2703	if (data == NULL)
2704		return (0);
2705	w_lofree = data->wlod_next;
2706	data->wlod_next = w_lohash.wloh_array[hash];
2707	data->wlod_key = key;
2708	w_lohash.wloh_array[hash] = data;
2709	w_lohash.wloh_count++;
2710	stack_zero(&data->wlod_stack);
2711	stack_save(&data->wlod_stack);
2712	return (1);
2713}
2714
2715/* Call this whenver the structure of the witness graph changes. */
2716static void
2717witness_increment_graph_generation(void)
2718{
2719
2720	if (witness_cold == 0)
2721		mtx_assert(&w_mtx, MA_OWNED);
2722	w_generation++;
2723}
2724
2725#ifdef KDB
2726static void
2727_witness_debugger(int cond, const char *msg)
2728{
2729
2730	if (witness_trace && cond)
2731		kdb_backtrace();
2732	if (witness_kdb && cond)
2733		kdb_enter(KDB_WHY_WITNESS, msg);
2734}
2735#endif
2736