subr_vmem.c revision 254543
1/*-
2 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
3 * Copyright (c) 2013 EMC Corp.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * From:
30 *	$NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $
31 *	$NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $
32 */
33
34/*
35 * reference:
36 * -	Magazines and Vmem: Extending the Slab Allocator
37 *	to Many CPUs and Arbitrary Resources
38 *	http://www.usenix.org/event/usenix01/bonwick.html
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/subr_vmem.c 254543 2013-08-19 23:02:39Z jeff $");
43
44#include "opt_ddb.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/kernel.h>
49#include <sys/queue.h>
50#include <sys/callout.h>
51#include <sys/hash.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mutex.h>
55#include <sys/smp.h>
56#include <sys/condvar.h>
57#include <sys/taskqueue.h>
58#include <sys/vmem.h>
59
60#include "opt_vm.h"
61
62#include <vm/uma.h>
63#include <vm/vm.h>
64#include <vm/pmap.h>
65#include <vm/vm_map.h>
66#include <vm/vm_object.h>
67#include <vm/vm_kern.h>
68#include <vm/vm_extern.h>
69#include <vm/vm_param.h>
70#include <vm/vm_pageout.h>
71
72#define	VMEM_MAXORDER		(sizeof(vmem_size_t) * NBBY)
73
74#define	VMEM_HASHSIZE_MIN	16
75#define	VMEM_HASHSIZE_MAX	131072
76
77#define	VMEM_QCACHE_IDX_MAX	16
78
79#define	VMEM_FITMASK	(M_BESTFIT | M_FIRSTFIT)
80
81#define	VMEM_FLAGS						\
82    (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM | M_BESTFIT | M_FIRSTFIT)
83
84#define	BT_FLAGS	(M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM)
85
86#define	QC_NAME_MAX	16
87
88/*
89 * Data structures private to vmem.
90 */
91MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures");
92
93typedef struct vmem_btag bt_t;
94
95TAILQ_HEAD(vmem_seglist, vmem_btag);
96LIST_HEAD(vmem_freelist, vmem_btag);
97LIST_HEAD(vmem_hashlist, vmem_btag);
98
99struct qcache {
100	uma_zone_t	qc_cache;
101	vmem_t 		*qc_vmem;
102	vmem_size_t	qc_size;
103	char		qc_name[QC_NAME_MAX];
104};
105typedef struct qcache qcache_t;
106#define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
107
108#define	VMEM_NAME_MAX	16
109
110/* vmem arena */
111struct vmem {
112	struct mtx_padalign	vm_lock;
113	struct cv		vm_cv;
114	char			vm_name[VMEM_NAME_MAX+1];
115	LIST_ENTRY(vmem)	vm_alllist;
116	struct vmem_hashlist	vm_hash0[VMEM_HASHSIZE_MIN];
117	struct vmem_freelist	vm_freelist[VMEM_MAXORDER];
118	struct vmem_seglist	vm_seglist;
119	struct vmem_hashlist	*vm_hashlist;
120	vmem_size_t		vm_hashsize;
121
122	/* Constant after init */
123	vmem_size_t		vm_qcache_max;
124	vmem_size_t		vm_quantum_mask;
125	vmem_size_t		vm_import_quantum;
126	int			vm_quantum_shift;
127
128	/* Written on alloc/free */
129	LIST_HEAD(, vmem_btag)	vm_freetags;
130	int			vm_nfreetags;
131	int			vm_nbusytag;
132	vmem_size_t		vm_inuse;
133	vmem_size_t		vm_size;
134
135	/* Used on import. */
136	vmem_import_t		*vm_importfn;
137	vmem_release_t		*vm_releasefn;
138	void			*vm_arg;
139
140	/* Space exhaustion callback. */
141	vmem_reclaim_t		*vm_reclaimfn;
142
143	/* quantum cache */
144	qcache_t		vm_qcache[VMEM_QCACHE_IDX_MAX];
145};
146
147/* boundary tag */
148struct vmem_btag {
149	TAILQ_ENTRY(vmem_btag) bt_seglist;
150	union {
151		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
152		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
153	} bt_u;
154#define	bt_hashlist	bt_u.u_hashlist
155#define	bt_freelist	bt_u.u_freelist
156	vmem_addr_t	bt_start;
157	vmem_size_t	bt_size;
158	int		bt_type;
159};
160
161#define	BT_TYPE_SPAN		1	/* Allocated from importfn */
162#define	BT_TYPE_SPAN_STATIC	2	/* vmem_add() or create. */
163#define	BT_TYPE_FREE		3	/* Available space. */
164#define	BT_TYPE_BUSY		4	/* Used space. */
165#define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
166
167#define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
168
169#if defined(DIAGNOSTIC)
170static void vmem_check(vmem_t *);
171#endif
172
173static struct callout	vmem_periodic_ch;
174static int		vmem_periodic_interval;
175static struct task	vmem_periodic_wk;
176
177static struct mtx_padalign vmem_list_lock;
178static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
179
180/* ---- misc */
181#define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
182#define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
183#define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
184#define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
185
186
187#define	VMEM_LOCK(vm)		mtx_lock(&vm->vm_lock)
188#define	VMEM_TRYLOCK(vm)	mtx_trylock(&vm->vm_lock)
189#define	VMEM_UNLOCK(vm)		mtx_unlock(&vm->vm_lock)
190#define	VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF)
191#define	VMEM_LOCK_DESTROY(vm)	mtx_destroy(&vm->vm_lock)
192#define	VMEM_ASSERT_LOCKED(vm)	mtx_assert(&vm->vm_lock, MA_OWNED);
193
194#define	VMEM_ALIGNUP(addr, align)	(-(-(addr) & -(align)))
195
196#define	VMEM_CROSS_P(addr1, addr2, boundary) \
197	((((addr1) ^ (addr2)) & -(boundary)) != 0)
198
199#define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
200#define	SIZE2ORDER(size)	((int)flsl(size) - 1)
201
202/*
203 * Maximum number of boundary tags that may be required to satisfy an
204 * allocation.  Two may be required to import.  Another two may be
205 * required to clip edges.
206 */
207#define	BT_MAXALLOC	4
208
209/*
210 * Max free limits the number of locally cached boundary tags.  We
211 * just want to avoid hitting the zone allocator for every call.
212 */
213#define BT_MAXFREE	(BT_MAXALLOC * 8)
214
215/* Allocator for boundary tags. */
216static uma_zone_t vmem_bt_zone;
217
218/* boot time arena storage. */
219static struct vmem kernel_arena_storage;
220static struct vmem kmem_arena_storage;
221static struct vmem buffer_arena_storage;
222static struct vmem transient_arena_storage;
223vmem_t *kernel_arena = &kernel_arena_storage;
224vmem_t *kmem_arena = &kmem_arena_storage;
225vmem_t *buffer_arena = &buffer_arena_storage;
226vmem_t *transient_arena = &transient_arena_storage;
227
228#ifdef DEBUG_MEMGUARD
229static struct vmem memguard_arena_storage;
230vmem_t *memguard_arena = &memguard_arena_storage;
231#endif
232
233/*
234 * Fill the vmem's boundary tag cache.  We guarantee that boundary tag
235 * allocation will not fail once bt_fill() passes.  To do so we cache
236 * at least the maximum possible tag allocations in the arena.
237 */
238static int
239bt_fill(vmem_t *vm, int flags)
240{
241	bt_t *bt;
242
243	VMEM_ASSERT_LOCKED(vm);
244
245	/*
246	 * Only allow the kmem arena to dip into reserve tags.  It is the
247	 * vmem where new tags come from.
248	 */
249	flags &= BT_FLAGS;
250	if (vm != kmem_arena)
251		flags &= ~M_USE_RESERVE;
252
253	/*
254	 * Loop until we meet the reserve.  To minimize the lock shuffle
255	 * and prevent simultaneous fills we first try a NOWAIT regardless
256	 * of the caller's flags.  Specify M_NOVM so we don't recurse while
257	 * holding a vmem lock.
258	 */
259	while (vm->vm_nfreetags < BT_MAXALLOC) {
260		bt = uma_zalloc(vmem_bt_zone,
261		    (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM);
262		if (bt == NULL) {
263			VMEM_UNLOCK(vm);
264			bt = uma_zalloc(vmem_bt_zone, flags);
265			VMEM_LOCK(vm);
266			if (bt == NULL && (flags & M_NOWAIT) != 0)
267				break;
268		}
269		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
270		vm->vm_nfreetags++;
271	}
272
273	if (vm->vm_nfreetags < BT_MAXALLOC)
274		return ENOMEM;
275
276	return 0;
277}
278
279/*
280 * Pop a tag off of the freetag stack.
281 */
282static bt_t *
283bt_alloc(vmem_t *vm)
284{
285	bt_t *bt;
286
287	VMEM_ASSERT_LOCKED(vm);
288	bt = LIST_FIRST(&vm->vm_freetags);
289	MPASS(bt != NULL);
290	LIST_REMOVE(bt, bt_freelist);
291	vm->vm_nfreetags--;
292
293	return bt;
294}
295
296/*
297 * Trim the per-vmem free list.  Returns with the lock released to
298 * avoid allocator recursions.
299 */
300static void
301bt_freetrim(vmem_t *vm, int freelimit)
302{
303	LIST_HEAD(, vmem_btag) freetags;
304	bt_t *bt;
305
306	LIST_INIT(&freetags);
307	VMEM_ASSERT_LOCKED(vm);
308	while (vm->vm_nfreetags > freelimit) {
309		bt = LIST_FIRST(&vm->vm_freetags);
310		LIST_REMOVE(bt, bt_freelist);
311		vm->vm_nfreetags--;
312		LIST_INSERT_HEAD(&freetags, bt, bt_freelist);
313	}
314	VMEM_UNLOCK(vm);
315	while ((bt = LIST_FIRST(&freetags)) != NULL) {
316		LIST_REMOVE(bt, bt_freelist);
317		uma_zfree(vmem_bt_zone, bt);
318	}
319}
320
321static inline void
322bt_free(vmem_t *vm, bt_t *bt)
323{
324
325	VMEM_ASSERT_LOCKED(vm);
326	MPASS(LIST_FIRST(&vm->vm_freetags) != bt);
327	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
328	vm->vm_nfreetags++;
329}
330
331/*
332 * freelist[0] ... [1, 1]
333 * freelist[1] ... [2, 3]
334 * freelist[2] ... [4, 7]
335 * freelist[3] ... [8, 15]
336 *  :
337 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
338 *  :
339 */
340
341static struct vmem_freelist *
342bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
343{
344	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
345	const int idx = SIZE2ORDER(qsize);
346
347	MPASS(size != 0 && qsize != 0);
348	MPASS((size & vm->vm_quantum_mask) == 0);
349	MPASS(idx >= 0);
350	MPASS(idx < VMEM_MAXORDER);
351
352	return &vm->vm_freelist[idx];
353}
354
355/*
356 * bt_freehead_toalloc: return the freelist for the given size and allocation
357 * strategy.
358 *
359 * For M_FIRSTFIT, return the list in which any blocks are large enough
360 * for the requested size.  otherwise, return the list which can have blocks
361 * large enough for the requested size.
362 */
363static struct vmem_freelist *
364bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat)
365{
366	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
367	int idx = SIZE2ORDER(qsize);
368
369	MPASS(size != 0 && qsize != 0);
370	MPASS((size & vm->vm_quantum_mask) == 0);
371
372	if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) {
373		idx++;
374		/* check too large request? */
375	}
376	MPASS(idx >= 0);
377	MPASS(idx < VMEM_MAXORDER);
378
379	return &vm->vm_freelist[idx];
380}
381
382/* ---- boundary tag hash */
383
384static struct vmem_hashlist *
385bt_hashhead(vmem_t *vm, vmem_addr_t addr)
386{
387	struct vmem_hashlist *list;
388	unsigned int hash;
389
390	hash = hash32_buf(&addr, sizeof(addr), 0);
391	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
392
393	return list;
394}
395
396static bt_t *
397bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
398{
399	struct vmem_hashlist *list;
400	bt_t *bt;
401
402	VMEM_ASSERT_LOCKED(vm);
403	list = bt_hashhead(vm, addr);
404	LIST_FOREACH(bt, list, bt_hashlist) {
405		if (bt->bt_start == addr) {
406			break;
407		}
408	}
409
410	return bt;
411}
412
413static void
414bt_rembusy(vmem_t *vm, bt_t *bt)
415{
416
417	VMEM_ASSERT_LOCKED(vm);
418	MPASS(vm->vm_nbusytag > 0);
419	vm->vm_inuse -= bt->bt_size;
420	vm->vm_nbusytag--;
421	LIST_REMOVE(bt, bt_hashlist);
422}
423
424static void
425bt_insbusy(vmem_t *vm, bt_t *bt)
426{
427	struct vmem_hashlist *list;
428
429	VMEM_ASSERT_LOCKED(vm);
430	MPASS(bt->bt_type == BT_TYPE_BUSY);
431
432	list = bt_hashhead(vm, bt->bt_start);
433	LIST_INSERT_HEAD(list, bt, bt_hashlist);
434	vm->vm_nbusytag++;
435	vm->vm_inuse += bt->bt_size;
436}
437
438/* ---- boundary tag list */
439
440static void
441bt_remseg(vmem_t *vm, bt_t *bt)
442{
443
444	TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
445	bt_free(vm, bt);
446}
447
448static void
449bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
450{
451
452	TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
453}
454
455static void
456bt_insseg_tail(vmem_t *vm, bt_t *bt)
457{
458
459	TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
460}
461
462static void
463bt_remfree(vmem_t *vm, bt_t *bt)
464{
465
466	MPASS(bt->bt_type == BT_TYPE_FREE);
467
468	LIST_REMOVE(bt, bt_freelist);
469}
470
471static void
472bt_insfree(vmem_t *vm, bt_t *bt)
473{
474	struct vmem_freelist *list;
475
476	list = bt_freehead_tofree(vm, bt->bt_size);
477	LIST_INSERT_HEAD(list, bt, bt_freelist);
478}
479
480/* ---- vmem internal functions */
481
482/*
483 * Import from the arena into the quantum cache in UMA.
484 */
485static int
486qc_import(void *arg, void **store, int cnt, int flags)
487{
488	qcache_t *qc;
489	vmem_addr_t addr;
490	int i;
491
492	qc = arg;
493	flags |= M_BESTFIT;
494	for (i = 0; i < cnt; i++) {
495		if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0,
496		    VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, &addr) != 0)
497			break;
498		store[i] = (void *)addr;
499		/* Only guarantee one allocation. */
500		flags &= ~M_WAITOK;
501		flags |= M_NOWAIT;
502	}
503	return i;
504}
505
506/*
507 * Release memory from the UMA cache to the arena.
508 */
509static void
510qc_release(void *arg, void **store, int cnt)
511{
512	qcache_t *qc;
513	int i;
514
515	qc = arg;
516	for (i = 0; i < cnt; i++)
517		vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size);
518}
519
520static void
521qc_init(vmem_t *vm, vmem_size_t qcache_max)
522{
523	qcache_t *qc;
524	vmem_size_t size;
525	int qcache_idx_max;
526	int i;
527
528	MPASS((qcache_max & vm->vm_quantum_mask) == 0);
529	qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift,
530	    VMEM_QCACHE_IDX_MAX);
531	vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift;
532	for (i = 0; i < qcache_idx_max; i++) {
533		qc = &vm->vm_qcache[i];
534		size = (i + 1) << vm->vm_quantum_shift;
535		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
536		    vm->vm_name, size);
537		qc->qc_vmem = vm;
538		qc->qc_size = size;
539		qc->qc_cache = uma_zcache_create(qc->qc_name, size,
540		    NULL, NULL, NULL, NULL, qc_import, qc_release, qc,
541		    UMA_ZONE_VM);
542		MPASS(qc->qc_cache);
543	}
544}
545
546static void
547qc_destroy(vmem_t *vm)
548{
549	int qcache_idx_max;
550	int i;
551
552	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
553	for (i = 0; i < qcache_idx_max; i++)
554		uma_zdestroy(vm->vm_qcache[i].qc_cache);
555}
556
557static void
558qc_drain(vmem_t *vm)
559{
560	int qcache_idx_max;
561	int i;
562
563	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
564	for (i = 0; i < qcache_idx_max; i++)
565		zone_drain(vm->vm_qcache[i].qc_cache);
566}
567
568#ifndef UMA_MD_SMALL_ALLOC
569
570static struct mtx_padalign vmem_bt_lock;
571
572/*
573 * vmem_bt_alloc:  Allocate a new page of boundary tags.
574 *
575 * On architectures with uma_small_alloc there is no recursion; no address
576 * space need be allocated to allocate boundary tags.  For the others, we
577 * must handle recursion.  Boundary tags are necessary to allocate new
578 * boundary tags.
579 *
580 * UMA guarantees that enough tags are held in reserve to allocate a new
581 * page of kva.  We dip into this reserve by specifying M_USE_RESERVE only
582 * when allocating the page to hold new boundary tags.  In this way the
583 * reserve is automatically filled by the allocation that uses the reserve.
584 *
585 * We still have to guarantee that the new tags are allocated atomically since
586 * many threads may try concurrently.  The bt_lock provides this guarantee.
587 * We convert WAITOK allocations to NOWAIT and then handle the blocking here
588 * on failure.  It's ok to return NULL for a WAITOK allocation as UMA will
589 * loop again after checking to see if we lost the race to allocate.
590 *
591 * There is a small race between vmem_bt_alloc() returning the page and the
592 * zone lock being acquired to add the page to the zone.  For WAITOK
593 * allocations we just pause briefly.  NOWAIT may experience a transient
594 * failure.  To alleviate this we permit a small number of simultaneous
595 * fills to proceed concurrently so NOWAIT is less likely to fail unless
596 * we are really out of KVA.
597 */
598static void *
599vmem_bt_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
600{
601	vmem_addr_t addr;
602
603	*pflag = UMA_SLAB_KMEM;
604
605	/*
606	 * Single thread boundary tag allocation so that the address space
607	 * and memory are added in one atomic operation.
608	 */
609	mtx_lock(&vmem_bt_lock);
610	if (vmem_xalloc(kmem_arena, bytes, 0, 0, 0, VMEM_ADDR_MIN,
611	    VMEM_ADDR_MAX, M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT,
612	    &addr) == 0) {
613		if (kmem_back(kmem_object, addr, bytes,
614		    M_NOWAIT | M_USE_RESERVE) == 0) {
615			mtx_unlock(&vmem_bt_lock);
616			return ((void *)addr);
617		}
618		vmem_xfree(kmem_arena, addr, bytes);
619		mtx_unlock(&vmem_bt_lock);
620		/*
621		 * Out of memory, not address space.  This may not even be
622		 * possible due to M_USE_RESERVE page allocation.
623		 */
624		if (wait & M_WAITOK)
625			VM_WAIT;
626		return (NULL);
627	}
628	mtx_unlock(&vmem_bt_lock);
629	/*
630	 * We're either out of address space or lost a fill race.
631	 */
632	if (wait & M_WAITOK)
633		pause("btalloc", 1);
634
635	return (NULL);
636}
637#endif
638
639void
640vmem_startup(void)
641{
642
643	mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF);
644	vmem_bt_zone = uma_zcreate("vmem btag",
645	    sizeof(struct vmem_btag), NULL, NULL, NULL, NULL,
646	    UMA_ALIGN_PTR, UMA_ZONE_VM);
647#ifndef UMA_MD_SMALL_ALLOC
648	mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF);
649	uma_prealloc(vmem_bt_zone, BT_MAXALLOC);
650	/*
651	 * Reserve enough tags to allocate new tags.  We allow multiple
652	 * CPUs to attempt to allocate new tags concurrently to limit
653	 * false restarts in UMA.
654	 */
655	uma_zone_reserve(vmem_bt_zone, BT_MAXALLOC * (mp_ncpus + 1) / 2);
656	uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc);
657#endif
658}
659
660/* ---- rehash */
661
662static int
663vmem_rehash(vmem_t *vm, vmem_size_t newhashsize)
664{
665	bt_t *bt;
666	int i;
667	struct vmem_hashlist *newhashlist;
668	struct vmem_hashlist *oldhashlist;
669	vmem_size_t oldhashsize;
670
671	MPASS(newhashsize > 0);
672
673	newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize,
674	    M_VMEM, M_NOWAIT);
675	if (newhashlist == NULL)
676		return ENOMEM;
677	for (i = 0; i < newhashsize; i++) {
678		LIST_INIT(&newhashlist[i]);
679	}
680
681	VMEM_LOCK(vm);
682	oldhashlist = vm->vm_hashlist;
683	oldhashsize = vm->vm_hashsize;
684	vm->vm_hashlist = newhashlist;
685	vm->vm_hashsize = newhashsize;
686	if (oldhashlist == NULL) {
687		VMEM_UNLOCK(vm);
688		return 0;
689	}
690	for (i = 0; i < oldhashsize; i++) {
691		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
692			bt_rembusy(vm, bt);
693			bt_insbusy(vm, bt);
694		}
695	}
696	VMEM_UNLOCK(vm);
697
698	if (oldhashlist != vm->vm_hash0) {
699		free(oldhashlist, M_VMEM);
700	}
701
702	return 0;
703}
704
705static void
706vmem_periodic_kick(void *dummy)
707{
708
709	taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk);
710}
711
712static void
713vmem_periodic(void *unused, int pending)
714{
715	vmem_t *vm;
716	vmem_size_t desired;
717	vmem_size_t current;
718
719	mtx_lock(&vmem_list_lock);
720	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
721#ifdef DIAGNOSTIC
722		/* Convenient time to verify vmem state. */
723		VMEM_LOCK(vm);
724		vmem_check(vm);
725		VMEM_UNLOCK(vm);
726#endif
727		desired = 1 << flsl(vm->vm_nbusytag);
728		desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN),
729		    VMEM_HASHSIZE_MAX);
730		current = vm->vm_hashsize;
731
732		/* Grow in powers of two.  Shrink less aggressively. */
733		if (desired >= current * 2 || desired * 4 <= current)
734			vmem_rehash(vm, desired);
735	}
736	mtx_unlock(&vmem_list_lock);
737
738	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
739	    vmem_periodic_kick, NULL);
740}
741
742static void
743vmem_start_callout(void *unused)
744{
745
746	TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL);
747	vmem_periodic_interval = hz * 10;
748	callout_init(&vmem_periodic_ch, CALLOUT_MPSAFE);
749	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
750	    vmem_periodic_kick, NULL);
751}
752SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL);
753
754static void
755vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type)
756{
757	bt_t *btspan;
758	bt_t *btfree;
759
760	MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC);
761	MPASS((size & vm->vm_quantum_mask) == 0);
762
763	btspan = bt_alloc(vm);
764	btspan->bt_type = type;
765	btspan->bt_start = addr;
766	btspan->bt_size = size;
767	bt_insseg_tail(vm, btspan);
768
769	btfree = bt_alloc(vm);
770	btfree->bt_type = BT_TYPE_FREE;
771	btfree->bt_start = addr;
772	btfree->bt_size = size;
773	bt_insseg(vm, btfree, btspan);
774	bt_insfree(vm, btfree);
775
776	vm->vm_size += size;
777}
778
779static void
780vmem_destroy1(vmem_t *vm)
781{
782	bt_t *bt;
783
784	/*
785	 * Drain per-cpu quantum caches.
786	 */
787	qc_destroy(vm);
788
789	/*
790	 * The vmem should now only contain empty segments.
791	 */
792	VMEM_LOCK(vm);
793	MPASS(vm->vm_nbusytag == 0);
794
795	while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL)
796		bt_remseg(vm, bt);
797
798	if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0)
799		free(vm->vm_hashlist, M_VMEM);
800
801	bt_freetrim(vm, 0);
802
803	VMEM_CONDVAR_DESTROY(vm);
804	VMEM_LOCK_DESTROY(vm);
805	free(vm, M_VMEM);
806}
807
808static int
809vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags)
810{
811	vmem_addr_t addr;
812	int error;
813
814	if (vm->vm_importfn == NULL)
815		return EINVAL;
816
817	/*
818	 * To make sure we get a span that meets the alignment we double it
819	 * and add the size to the tail.  This slightly overestimates.
820	 */
821	if (align != vm->vm_quantum_mask + 1)
822		size = (align * 2) + size;
823	size = roundup(size, vm->vm_import_quantum);
824
825	/*
826	 * Hide MAXALLOC tags so we're guaranteed to be able to add this
827	 * span and the tag we want to allocate from it.
828	 */
829	MPASS(vm->vm_nfreetags >= BT_MAXALLOC);
830	vm->vm_nfreetags -= BT_MAXALLOC;
831	VMEM_UNLOCK(vm);
832	error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
833	VMEM_LOCK(vm);
834	vm->vm_nfreetags += BT_MAXALLOC;
835	if (error)
836		return ENOMEM;
837
838	vmem_add1(vm, addr, size, BT_TYPE_SPAN);
839
840	return 0;
841}
842
843/*
844 * vmem_fit: check if a bt can satisfy the given restrictions.
845 *
846 * it's a caller's responsibility to ensure the region is big enough
847 * before calling us.
848 */
849static int
850vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
851    vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr,
852    vmem_addr_t maxaddr, vmem_addr_t *addrp)
853{
854	vmem_addr_t start;
855	vmem_addr_t end;
856
857	MPASS(size > 0);
858	MPASS(bt->bt_size >= size); /* caller's responsibility */
859
860	/*
861	 * XXX assumption: vmem_addr_t and vmem_size_t are
862	 * unsigned integer of the same size.
863	 */
864
865	start = bt->bt_start;
866	if (start < minaddr) {
867		start = minaddr;
868	}
869	end = BT_END(bt);
870	if (end > maxaddr)
871		end = maxaddr;
872	if (start > end)
873		return (ENOMEM);
874
875	start = VMEM_ALIGNUP(start - phase, align) + phase;
876	if (start < bt->bt_start)
877		start += align;
878	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
879		MPASS(align < nocross);
880		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
881	}
882	if (start <= end && end - start >= size - 1) {
883		MPASS((start & (align - 1)) == phase);
884		MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross));
885		MPASS(minaddr <= start);
886		MPASS(maxaddr == 0 || start + size - 1 <= maxaddr);
887		MPASS(bt->bt_start <= start);
888		MPASS(BT_END(bt) - start >= size - 1);
889		*addrp = start;
890
891		return (0);
892	}
893	return (ENOMEM);
894}
895
896/*
897 * vmem_clip:  Trim the boundary tag edges to the requested start and size.
898 */
899static void
900vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size)
901{
902	bt_t *btnew;
903	bt_t *btprev;
904
905	VMEM_ASSERT_LOCKED(vm);
906	MPASS(bt->bt_type == BT_TYPE_FREE);
907	MPASS(bt->bt_size >= size);
908	bt_remfree(vm, bt);
909	if (bt->bt_start != start) {
910		btprev = bt_alloc(vm);
911		btprev->bt_type = BT_TYPE_FREE;
912		btprev->bt_start = bt->bt_start;
913		btprev->bt_size = start - bt->bt_start;
914		bt->bt_start = start;
915		bt->bt_size -= btprev->bt_size;
916		bt_insfree(vm, btprev);
917		bt_insseg(vm, btprev,
918		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
919	}
920	MPASS(bt->bt_start == start);
921	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
922		/* split */
923		btnew = bt_alloc(vm);
924		btnew->bt_type = BT_TYPE_BUSY;
925		btnew->bt_start = bt->bt_start;
926		btnew->bt_size = size;
927		bt->bt_start = bt->bt_start + size;
928		bt->bt_size -= size;
929		bt_insfree(vm, bt);
930		bt_insseg(vm, btnew,
931		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
932		bt_insbusy(vm, btnew);
933		bt = btnew;
934	} else {
935		bt->bt_type = BT_TYPE_BUSY;
936		bt_insbusy(vm, bt);
937	}
938	MPASS(bt->bt_size >= size);
939	bt->bt_type = BT_TYPE_BUSY;
940}
941
942/* ---- vmem API */
943
944void
945vmem_set_import(vmem_t *vm, vmem_import_t *importfn,
946     vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum)
947{
948
949	VMEM_LOCK(vm);
950	vm->vm_importfn = importfn;
951	vm->vm_releasefn = releasefn;
952	vm->vm_arg = arg;
953	vm->vm_import_quantum = import_quantum;
954	VMEM_UNLOCK(vm);
955}
956
957void
958vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn)
959{
960
961	VMEM_LOCK(vm);
962	vm->vm_reclaimfn = reclaimfn;
963	VMEM_UNLOCK(vm);
964}
965
966/*
967 * vmem_init: Initializes vmem arena.
968 */
969vmem_t *
970vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size,
971    vmem_size_t quantum, vmem_size_t qcache_max, int flags)
972{
973	int i;
974
975	MPASS(quantum > 0);
976
977	bzero(vm, sizeof(*vm));
978
979	VMEM_CONDVAR_INIT(vm, name);
980	VMEM_LOCK_INIT(vm, name);
981	vm->vm_nfreetags = 0;
982	LIST_INIT(&vm->vm_freetags);
983	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
984	vm->vm_quantum_mask = quantum - 1;
985	vm->vm_quantum_shift = SIZE2ORDER(quantum);
986	MPASS(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
987	vm->vm_nbusytag = 0;
988	vm->vm_size = 0;
989	vm->vm_inuse = 0;
990	qc_init(vm, qcache_max);
991
992	TAILQ_INIT(&vm->vm_seglist);
993	for (i = 0; i < VMEM_MAXORDER; i++) {
994		LIST_INIT(&vm->vm_freelist[i]);
995	}
996	memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
997	vm->vm_hashsize = VMEM_HASHSIZE_MIN;
998	vm->vm_hashlist = vm->vm_hash0;
999
1000	if (size != 0) {
1001		if (vmem_add(vm, base, size, flags) != 0) {
1002			vmem_destroy1(vm);
1003			return NULL;
1004		}
1005	}
1006
1007	mtx_lock(&vmem_list_lock);
1008	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1009	mtx_unlock(&vmem_list_lock);
1010
1011	return vm;
1012}
1013
1014/*
1015 * vmem_create: create an arena.
1016 */
1017vmem_t *
1018vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1019    vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1020{
1021
1022	vmem_t *vm;
1023
1024	vm = malloc(sizeof(*vm), M_VMEM, flags & (M_WAITOK|M_NOWAIT));
1025	if (vm == NULL)
1026		return (NULL);
1027	if (vmem_init(vm, name, base, size, quantum, qcache_max,
1028	    flags) == NULL) {
1029		free(vm, M_VMEM);
1030		return (NULL);
1031	}
1032	return (vm);
1033}
1034
1035void
1036vmem_destroy(vmem_t *vm)
1037{
1038
1039	mtx_lock(&vmem_list_lock);
1040	LIST_REMOVE(vm, vm_alllist);
1041	mtx_unlock(&vmem_list_lock);
1042
1043	vmem_destroy1(vm);
1044}
1045
1046vmem_size_t
1047vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1048{
1049
1050	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1051}
1052
1053/*
1054 * vmem_alloc: allocate resource from the arena.
1055 */
1056int
1057vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp)
1058{
1059	const int strat __unused = flags & VMEM_FITMASK;
1060	qcache_t *qc;
1061
1062	flags &= VMEM_FLAGS;
1063	MPASS(size > 0);
1064	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
1065	if ((flags & M_NOWAIT) == 0)
1066		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc");
1067
1068	if (size <= vm->vm_qcache_max) {
1069		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1070		*addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache, flags);
1071		if (*addrp == 0)
1072			return (ENOMEM);
1073		return (0);
1074	}
1075
1076	return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1077	    flags, addrp);
1078}
1079
1080int
1081vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1082    const vmem_size_t phase, const vmem_size_t nocross,
1083    const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags,
1084    vmem_addr_t *addrp)
1085{
1086	const vmem_size_t size = vmem_roundup_size(vm, size0);
1087	struct vmem_freelist *list;
1088	struct vmem_freelist *first;
1089	struct vmem_freelist *end;
1090	vmem_size_t avail;
1091	bt_t *bt;
1092	int error;
1093	int strat;
1094
1095	flags &= VMEM_FLAGS;
1096	strat = flags & VMEM_FITMASK;
1097	MPASS(size0 > 0);
1098	MPASS(size > 0);
1099	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
1100	MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK));
1101	if ((flags & M_NOWAIT) == 0)
1102		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc");
1103	MPASS((align & vm->vm_quantum_mask) == 0);
1104	MPASS((align & (align - 1)) == 0);
1105	MPASS((phase & vm->vm_quantum_mask) == 0);
1106	MPASS((nocross & vm->vm_quantum_mask) == 0);
1107	MPASS((nocross & (nocross - 1)) == 0);
1108	MPASS((align == 0 && phase == 0) || phase < align);
1109	MPASS(nocross == 0 || nocross >= size);
1110	MPASS(minaddr <= maxaddr);
1111	MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1112
1113	if (align == 0)
1114		align = vm->vm_quantum_mask + 1;
1115
1116	*addrp = 0;
1117	end = &vm->vm_freelist[VMEM_MAXORDER];
1118	/*
1119	 * choose a free block from which we allocate.
1120	 */
1121	first = bt_freehead_toalloc(vm, size, strat);
1122	VMEM_LOCK(vm);
1123	for (;;) {
1124		/*
1125		 * Make sure we have enough tags to complete the
1126		 * operation.
1127		 */
1128		if (vm->vm_nfreetags < BT_MAXALLOC &&
1129		    bt_fill(vm, flags) != 0) {
1130			error = ENOMEM;
1131			break;
1132		}
1133		/*
1134	 	 * Scan freelists looking for a tag that satisfies the
1135		 * allocation.  If we're doing BESTFIT we may encounter
1136		 * sizes below the request.  If we're doing FIRSTFIT we
1137		 * inspect only the first element from each list.
1138		 */
1139		for (list = first; list < end; list++) {
1140			LIST_FOREACH(bt, list, bt_freelist) {
1141				if (bt->bt_size >= size) {
1142					error = vmem_fit(bt, size, align, phase,
1143					    nocross, minaddr, maxaddr, addrp);
1144					if (error == 0) {
1145						vmem_clip(vm, bt, *addrp, size);
1146						goto out;
1147					}
1148				}
1149				/* FIRST skips to the next list. */
1150				if (strat == M_FIRSTFIT)
1151					break;
1152			}
1153		}
1154		/*
1155		 * Retry if the fast algorithm failed.
1156		 */
1157		if (strat == M_FIRSTFIT) {
1158			strat = M_BESTFIT;
1159			first = bt_freehead_toalloc(vm, size, strat);
1160			continue;
1161		}
1162		/*
1163		 * XXX it is possible to fail to meet restrictions with the
1164		 * imported region.  It is up to the user to specify the
1165		 * import quantum such that it can satisfy any allocation.
1166		 */
1167		if (vmem_import(vm, size, align, flags) == 0)
1168			continue;
1169
1170		/*
1171		 * Try to free some space from the quantum cache or reclaim
1172		 * functions if available.
1173		 */
1174		if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) {
1175			avail = vm->vm_size - vm->vm_inuse;
1176			VMEM_UNLOCK(vm);
1177			if (vm->vm_qcache_max != 0)
1178				qc_drain(vm);
1179			if (vm->vm_reclaimfn != NULL)
1180				vm->vm_reclaimfn(vm, flags);
1181			VMEM_LOCK(vm);
1182			/* If we were successful retry even NOWAIT. */
1183			if (vm->vm_size - vm->vm_inuse > avail)
1184				continue;
1185		}
1186		if ((flags & M_NOWAIT) != 0) {
1187			error = ENOMEM;
1188			break;
1189		}
1190		VMEM_CONDVAR_WAIT(vm);
1191	}
1192out:
1193	VMEM_UNLOCK(vm);
1194	if (error != 0 && (flags & M_NOWAIT) == 0)
1195		panic("failed to allocate waiting allocation\n");
1196
1197	return (error);
1198}
1199
1200/*
1201 * vmem_free: free the resource to the arena.
1202 */
1203void
1204vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1205{
1206	qcache_t *qc;
1207	MPASS(size > 0);
1208
1209	if (size <= vm->vm_qcache_max) {
1210		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1211		uma_zfree(qc->qc_cache, (void *)addr);
1212	} else
1213		vmem_xfree(vm, addr, size);
1214}
1215
1216void
1217vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1218{
1219	bt_t *bt;
1220	bt_t *t;
1221
1222	MPASS(size > 0);
1223
1224	VMEM_LOCK(vm);
1225	bt = bt_lookupbusy(vm, addr);
1226	MPASS(bt != NULL);
1227	MPASS(bt->bt_start == addr);
1228	MPASS(bt->bt_size == vmem_roundup_size(vm, size) ||
1229	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1230	MPASS(bt->bt_type == BT_TYPE_BUSY);
1231	bt_rembusy(vm, bt);
1232	bt->bt_type = BT_TYPE_FREE;
1233
1234	/* coalesce */
1235	t = TAILQ_NEXT(bt, bt_seglist);
1236	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1237		MPASS(BT_END(bt) < t->bt_start);	/* YYY */
1238		bt->bt_size += t->bt_size;
1239		bt_remfree(vm, t);
1240		bt_remseg(vm, t);
1241	}
1242	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1243	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1244		MPASS(BT_END(t) < bt->bt_start);	/* YYY */
1245		bt->bt_size += t->bt_size;
1246		bt->bt_start = t->bt_start;
1247		bt_remfree(vm, t);
1248		bt_remseg(vm, t);
1249	}
1250
1251	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1252	MPASS(t != NULL);
1253	MPASS(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1254	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1255	    t->bt_size == bt->bt_size) {
1256		vmem_addr_t spanaddr;
1257		vmem_size_t spansize;
1258
1259		MPASS(t->bt_start == bt->bt_start);
1260		spanaddr = bt->bt_start;
1261		spansize = bt->bt_size;
1262		bt_remseg(vm, bt);
1263		bt_remseg(vm, t);
1264		vm->vm_size -= spansize;
1265		VMEM_CONDVAR_BROADCAST(vm);
1266		bt_freetrim(vm, BT_MAXFREE);
1267		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1268	} else {
1269		bt_insfree(vm, bt);
1270		VMEM_CONDVAR_BROADCAST(vm);
1271		bt_freetrim(vm, BT_MAXFREE);
1272	}
1273}
1274
1275/*
1276 * vmem_add:
1277 *
1278 */
1279int
1280vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags)
1281{
1282	int error;
1283
1284	error = 0;
1285	flags &= VMEM_FLAGS;
1286	VMEM_LOCK(vm);
1287	if (vm->vm_nfreetags >= BT_MAXALLOC || bt_fill(vm, flags) == 0)
1288		vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC);
1289	else
1290		error = ENOMEM;
1291	VMEM_UNLOCK(vm);
1292
1293	return (error);
1294}
1295
1296/*
1297 * vmem_size: information about arenas size
1298 */
1299vmem_size_t
1300vmem_size(vmem_t *vm, int typemask)
1301{
1302
1303	switch (typemask) {
1304	case VMEM_ALLOC:
1305		return vm->vm_inuse;
1306	case VMEM_FREE:
1307		return vm->vm_size - vm->vm_inuse;
1308	case VMEM_FREE|VMEM_ALLOC:
1309		return vm->vm_size;
1310	default:
1311		panic("vmem_size");
1312	}
1313}
1314
1315/* ---- debug */
1316
1317#if defined(DDB) || defined(DIAGNOSTIC)
1318
1319static void bt_dump(const bt_t *, int (*)(const char *, ...)
1320    __printflike(1, 2));
1321
1322static const char *
1323bt_type_string(int type)
1324{
1325
1326	switch (type) {
1327	case BT_TYPE_BUSY:
1328		return "busy";
1329	case BT_TYPE_FREE:
1330		return "free";
1331	case BT_TYPE_SPAN:
1332		return "span";
1333	case BT_TYPE_SPAN_STATIC:
1334		return "static span";
1335	default:
1336		break;
1337	}
1338	return "BOGUS";
1339}
1340
1341static void
1342bt_dump(const bt_t *bt, int (*pr)(const char *, ...))
1343{
1344
1345	(*pr)("\t%p: %jx %jx, %d(%s)\n",
1346	    bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size,
1347	    bt->bt_type, bt_type_string(bt->bt_type));
1348}
1349
1350static void
1351vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2))
1352{
1353	const bt_t *bt;
1354	int i;
1355
1356	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1357	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1358		bt_dump(bt, pr);
1359	}
1360
1361	for (i = 0; i < VMEM_MAXORDER; i++) {
1362		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1363
1364		if (LIST_EMPTY(fl)) {
1365			continue;
1366		}
1367
1368		(*pr)("freelist[%d]\n", i);
1369		LIST_FOREACH(bt, fl, bt_freelist) {
1370			bt_dump(bt, pr);
1371		}
1372	}
1373}
1374
1375#endif /* defined(DDB) || defined(DIAGNOSTIC) */
1376
1377#if defined(DDB)
1378static bt_t *
1379vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr)
1380{
1381	bt_t *bt;
1382
1383	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1384		if (BT_ISSPAN_P(bt)) {
1385			continue;
1386		}
1387		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1388			return bt;
1389		}
1390	}
1391
1392	return NULL;
1393}
1394
1395void
1396vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...))
1397{
1398	vmem_t *vm;
1399
1400	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1401		bt_t *bt;
1402
1403		bt = vmem_whatis_lookup(vm, addr);
1404		if (bt == NULL) {
1405			continue;
1406		}
1407		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1408		    (void *)addr, (void *)bt->bt_start,
1409		    (vmem_size_t)(addr - bt->bt_start), vm->vm_name,
1410		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1411	}
1412}
1413
1414void
1415vmem_printall(const char *modif, int (*pr)(const char *, ...))
1416{
1417	const vmem_t *vm;
1418
1419	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1420		vmem_dump(vm, pr);
1421	}
1422}
1423
1424void
1425vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...))
1426{
1427	const vmem_t *vm = (const void *)addr;
1428
1429	vmem_dump(vm, pr);
1430}
1431#endif /* defined(DDB) */
1432
1433#define vmem_printf printf
1434
1435#if defined(DIAGNOSTIC)
1436
1437static bool
1438vmem_check_sanity(vmem_t *vm)
1439{
1440	const bt_t *bt, *bt2;
1441
1442	MPASS(vm != NULL);
1443
1444	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1445		if (bt->bt_start > BT_END(bt)) {
1446			printf("corrupted tag\n");
1447			bt_dump(bt, vmem_printf);
1448			return false;
1449		}
1450	}
1451	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1452		TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1453			if (bt == bt2) {
1454				continue;
1455			}
1456			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1457				continue;
1458			}
1459			if (bt->bt_start <= BT_END(bt2) &&
1460			    bt2->bt_start <= BT_END(bt)) {
1461				printf("overwrapped tags\n");
1462				bt_dump(bt, vmem_printf);
1463				bt_dump(bt2, vmem_printf);
1464				return false;
1465			}
1466		}
1467	}
1468
1469	return true;
1470}
1471
1472static void
1473vmem_check(vmem_t *vm)
1474{
1475
1476	if (!vmem_check_sanity(vm)) {
1477		panic("insanity vmem %p", vm);
1478	}
1479}
1480
1481#endif /* defined(DIAGNOSTIC) */
1482