subr_trap.c revision 71527
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 71527 2001-01-24 09:53:49Z jhb $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_clock.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_ktrace.h"
49#include "opt_npx.h"
50#include "opt_trap.h"
51
52#include <sys/param.h>
53#include <sys/bus.h>
54#include <sys/systm.h>
55#include <sys/proc.h>
56#include <sys/pioctl.h>
57#include <sys/ipl.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/mutex.h>
61#include <sys/resourcevar.h>
62#include <sys/signalvar.h>
63#include <sys/syscall.h>
64#include <sys/sysctl.h>
65#include <sys/sysent.h>
66#include <sys/uio.h>
67#include <sys/vmmeter.h>
68#ifdef KTRACE
69#include <sys/ktrace.h>
70#endif
71
72#include <vm/vm.h>
73#include <vm/vm_param.h>
74#include <sys/lock.h>
75#include <vm/pmap.h>
76#include <vm/vm_kern.h>
77#include <vm/vm_map.h>
78#include <vm/vm_page.h>
79#include <vm/vm_extern.h>
80
81#include <machine/cpu.h>
82#include <machine/md_var.h>
83#include <machine/pcb.h>
84#ifdef SMP
85#include <machine/smp.h>
86#endif
87#include <machine/tss.h>
88
89#include <i386/isa/icu.h>
90#include <i386/isa/intr_machdep.h>
91
92#ifdef POWERFAIL_NMI
93#include <sys/syslog.h>
94#include <machine/clock.h>
95#endif
96
97#include <machine/vm86.h>
98
99#include <ddb/ddb.h>
100
101#include "isa.h"
102
103#include <sys/sysctl.h>
104
105int (*pmath_emulate) __P((struct trapframe *));
106
107extern void trap __P((struct trapframe frame));
108extern int trapwrite __P((unsigned addr));
109extern void syscall2 __P((struct trapframe frame));
110extern void ast __P((struct trapframe frame));
111
112static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
113static void trap_fatal __P((struct trapframe *, vm_offset_t));
114void dblfault_handler __P((void));
115
116extern inthand_t IDTVEC(syscall);
117
118#define MAX_TRAP_MSG		28
119static char *trap_msg[] = {
120	"",					/*  0 unused */
121	"privileged instruction fault",		/*  1 T_PRIVINFLT */
122	"",					/*  2 unused */
123	"breakpoint instruction fault",		/*  3 T_BPTFLT */
124	"",					/*  4 unused */
125	"",					/*  5 unused */
126	"arithmetic trap",			/*  6 T_ARITHTRAP */
127	"system forced exception",		/*  7 T_ASTFLT */
128	"",					/*  8 unused */
129	"general protection fault",		/*  9 T_PROTFLT */
130	"trace trap",				/* 10 T_TRCTRAP */
131	"",					/* 11 unused */
132	"page fault",				/* 12 T_PAGEFLT */
133	"",					/* 13 unused */
134	"alignment fault",			/* 14 T_ALIGNFLT */
135	"",					/* 15 unused */
136	"",					/* 16 unused */
137	"",					/* 17 unused */
138	"integer divide fault",			/* 18 T_DIVIDE */
139	"non-maskable interrupt trap",		/* 19 T_NMI */
140	"overflow trap",			/* 20 T_OFLOW */
141	"FPU bounds check fault",		/* 21 T_BOUND */
142	"FPU device not available",		/* 22 T_DNA */
143	"double fault",				/* 23 T_DOUBLEFLT */
144	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
145	"invalid TSS fault",			/* 25 T_TSSFLT */
146	"segment not present fault",		/* 26 T_SEGNPFLT */
147	"stack fault",				/* 27 T_STKFLT */
148	"machine check trap",			/* 28 T_MCHK */
149};
150
151#if defined(I586_CPU) && !defined(NO_F00F_HACK)
152extern int has_f00f_bug;
153#endif
154
155#ifdef DDB
156static int ddb_on_nmi = 1;
157SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
158	&ddb_on_nmi, 0, "Go to DDB on NMI");
159#endif
160static int panic_on_nmi = 1;
161SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
162	&panic_on_nmi, 0, "Panic on NMI");
163
164#ifdef WITNESS
165extern char *syscallnames[];
166#endif
167
168void
169userret(p, frame, oticks)
170	struct proc *p;
171	struct trapframe *frame;
172	u_quad_t oticks;
173{
174	int sig;
175
176	while ((sig = CURSIG(p)) != 0) {
177		if (!mtx_owned(&Giant))
178			mtx_enter(&Giant, MTX_DEF);
179		postsig(sig);
180	}
181
182	mtx_enter(&sched_lock, MTX_SPIN);
183	p->p_priority = p->p_usrpri;
184	if (resched_wanted()) {
185		/*
186		 * Since we are curproc, clock will normally just change
187		 * our priority without moving us from one queue to another
188		 * (since the running process is not on a queue.)
189		 * If that happened after we setrunqueue ourselves but before we
190		 * mi_switch()'ed, we might not be on the queue indicated by
191		 * our priority.
192		 */
193		DROP_GIANT_NOSWITCH();
194		setrunqueue(p);
195		p->p_stats->p_ru.ru_nivcsw++;
196		mi_switch();
197		mtx_exit(&sched_lock, MTX_SPIN);
198		PICKUP_GIANT();
199		while ((sig = CURSIG(p)) != 0) {
200			if (!mtx_owned(&Giant))
201				mtx_enter(&Giant, MTX_DEF);
202			postsig(sig);
203		}
204		mtx_enter(&sched_lock, MTX_SPIN);
205	}
206
207	/*
208	 * Charge system time if profiling.
209	 */
210	if (p->p_sflag & PS_PROFIL) {
211		mtx_exit(&sched_lock, MTX_SPIN);
212		/* XXX - do we need Giant? */
213		if (!mtx_owned(&Giant))
214			mtx_enter(&Giant, MTX_DEF);
215		mtx_enter(&sched_lock, MTX_SPIN);
216		addupc_task(p, frame->tf_eip,
217			    (u_int)(p->p_sticks - oticks) * psratio);
218	}
219	curpriority = p->p_priority;
220	mtx_exit(&sched_lock, MTX_SPIN);
221}
222
223/*
224 * Exception, fault, and trap interface to the FreeBSD kernel.
225 * This common code is called from assembly language IDT gate entry
226 * routines that prepare a suitable stack frame, and restore this
227 * frame after the exception has been processed.
228 */
229
230void
231trap(frame)
232	struct trapframe frame;
233{
234	struct proc *p = curproc;
235	u_quad_t sticks = 0;
236	int i = 0, ucode = 0, type, code;
237	vm_offset_t eva;
238#ifdef POWERFAIL_NMI
239	static int lastalert = 0;
240#endif
241
242	atomic_add_int(&cnt.v_trap, 1);
243
244	if ((frame.tf_eflags & PSL_I) == 0) {
245		/*
246		 * Buggy application or kernel code has disabled
247		 * interrupts and then trapped.  Enabling interrupts
248		 * now is wrong, but it is better than running with
249		 * interrupts disabled until they are accidentally
250		 * enabled later.  XXX This is really bad if we trap
251		 * while holding a spin lock.
252		 */
253		type = frame.tf_trapno;
254		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
255			printf(
256			    "pid %ld (%s): trap %d with interrupts disabled\n",
257			    (long)curproc->p_pid, curproc->p_comm, type);
258		else if (type != T_BPTFLT && type != T_TRCTRAP)
259			/*
260			 * XXX not quite right, since this may be for a
261			 * multiple fault in user mode.
262			 */
263			printf("kernel trap %d with interrupts disabled\n",
264			    type);
265		/*
266		 * We should walk p_heldmtx here and see if any are
267		 * spin mutexes, and not do this if so.
268		 */
269		enable_intr();
270	}
271
272	eva = 0;
273	if (frame.tf_trapno == T_PAGEFLT) {
274		/*
275		 * For some Cyrix CPUs, %cr2 is clobbered by
276		 * interrupts.  This problem is worked around by using
277		 * an interrupt gate for the pagefault handler.  We
278		 * are finally ready to read %cr2 and then must
279		 * reenable interrupts.
280		 */
281		eva = rcr2();
282		enable_intr();
283	}
284
285	mtx_enter(&Giant, MTX_DEF);
286
287#if defined(I586_CPU) && !defined(NO_F00F_HACK)
288restart:
289#endif
290
291	type = frame.tf_trapno;
292	code = frame.tf_err;
293
294        if ((ISPL(frame.tf_cs) == SEL_UPL) ||
295	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
296		/* user trap */
297
298		mtx_enter(&sched_lock, MTX_SPIN);
299		sticks = p->p_sticks;
300		mtx_exit(&sched_lock, MTX_SPIN);
301		p->p_md.md_regs = &frame;
302
303		switch (type) {
304		case T_PRIVINFLT:	/* privileged instruction fault */
305			ucode = type;
306			i = SIGILL;
307			break;
308
309		case T_BPTFLT:		/* bpt instruction fault */
310		case T_TRCTRAP:		/* trace trap */
311			frame.tf_eflags &= ~PSL_T;
312			i = SIGTRAP;
313			break;
314
315		case T_ARITHTRAP:	/* arithmetic trap */
316			ucode = code;
317			i = SIGFPE;
318			break;
319
320			/*
321			 * The following two traps can happen in
322			 * vm86 mode, and, if so, we want to handle
323			 * them specially.
324			 */
325		case T_PROTFLT:		/* general protection fault */
326		case T_STKFLT:		/* stack fault */
327			if (frame.tf_eflags & PSL_VM) {
328				i = vm86_emulate((struct vm86frame *)&frame);
329				if (i == 0)
330					goto user;
331				break;
332			}
333			/* FALL THROUGH */
334
335		case T_SEGNPFLT:	/* segment not present fault */
336		case T_TSSFLT:		/* invalid TSS fault */
337		case T_DOUBLEFLT:	/* double fault */
338		default:
339			ucode = code + BUS_SEGM_FAULT ;
340			i = SIGBUS;
341			break;
342
343		case T_PAGEFLT:		/* page fault */
344			i = trap_pfault(&frame, TRUE, eva);
345#if defined(I586_CPU) && !defined(NO_F00F_HACK)
346			if (i == -2) {
347				/*
348				 * f00f hack workaround has triggered, treat
349				 * as illegal instruction not page fault.
350				 */
351				frame.tf_trapno = T_PRIVINFLT;
352				goto restart;
353			}
354#endif
355			if (i == -1)
356				goto out;
357			if (i == 0)
358				goto user;
359
360			ucode = T_PAGEFLT;
361			break;
362
363		case T_DIVIDE:		/* integer divide fault */
364			ucode = FPE_INTDIV;
365			i = SIGFPE;
366			break;
367
368#if NISA > 0
369		case T_NMI:
370#ifdef POWERFAIL_NMI
371#ifndef TIMER_FREQ
372#  define TIMER_FREQ 1193182
373#endif
374			if (time_second - lastalert > 10) {
375				log(LOG_WARNING, "NMI: power fail\n");
376				sysbeep(TIMER_FREQ/880, hz);
377				lastalert = time_second;
378			}
379			goto out;
380#else /* !POWERFAIL_NMI */
381			/* machine/parity/power fail/"kitchen sink" faults */
382			if (isa_nmi(code) == 0) {
383#ifdef DDB
384				/*
385				 * NMI can be hooked up to a pushbutton
386				 * for debugging.
387				 */
388				if (ddb_on_nmi) {
389					printf ("NMI ... going to debugger\n");
390					kdb_trap (type, 0, &frame);
391				}
392#endif /* DDB */
393				goto out;
394			} else if (panic_on_nmi)
395				panic("NMI indicates hardware failure");
396			break;
397#endif /* POWERFAIL_NMI */
398#endif /* NISA > 0 */
399
400		case T_OFLOW:		/* integer overflow fault */
401			ucode = FPE_INTOVF;
402			i = SIGFPE;
403			break;
404
405		case T_BOUND:		/* bounds check fault */
406			ucode = FPE_FLTSUB;
407			i = SIGFPE;
408			break;
409
410		case T_DNA:
411#ifdef DEV_NPX
412			/* transparent fault (due to context switch "late") */
413			if (npxdna())
414				goto out;
415#endif
416			if (!pmath_emulate) {
417				i = SIGFPE;
418				ucode = FPE_FPU_NP_TRAP;
419				break;
420			}
421			i = (*pmath_emulate)(&frame);
422			if (i == 0) {
423				if (!(frame.tf_eflags & PSL_T))
424					goto out;
425				frame.tf_eflags &= ~PSL_T;
426				i = SIGTRAP;
427			}
428			/* else ucode = emulator_only_knows() XXX */
429			break;
430
431		case T_FPOPFLT:		/* FPU operand fetch fault */
432			ucode = T_FPOPFLT;
433			i = SIGILL;
434			break;
435		}
436	} else {
437		/* kernel trap */
438
439		switch (type) {
440		case T_PAGEFLT:			/* page fault */
441			(void) trap_pfault(&frame, FALSE, eva);
442			goto out;
443
444		case T_DNA:
445#ifdef DEV_NPX
446			/*
447			 * The kernel is apparently using npx for copying.
448			 * XXX this should be fatal unless the kernel has
449			 * registered such use.
450			 */
451			if (npxdna())
452				goto out;
453#endif
454			break;
455
456			/*
457			 * The following two traps can happen in
458			 * vm86 mode, and, if so, we want to handle
459			 * them specially.
460			 */
461		case T_PROTFLT:		/* general protection fault */
462		case T_STKFLT:		/* stack fault */
463			if (frame.tf_eflags & PSL_VM) {
464				i = vm86_emulate((struct vm86frame *)&frame);
465				if (i != 0)
466					/*
467					 * returns to original process
468					 */
469					mtx_exit(&Giant, MTX_DEF);
470					vm86_trap((struct vm86frame *)&frame);
471				goto out;
472			}
473			if (type == T_STKFLT)
474				break;
475
476			/* FALL THROUGH */
477
478		case T_SEGNPFLT:	/* segment not present fault */
479			if (in_vm86call)
480				break;
481
482			if (p->p_intr_nesting_level != 0)
483				break;
484
485			/*
486			 * Invalid %fs's and %gs's can be created using
487			 * procfs or PT_SETREGS or by invalidating the
488			 * underlying LDT entry.  This causes a fault
489			 * in kernel mode when the kernel attempts to
490			 * switch contexts.  Lose the bad context
491			 * (XXX) so that we can continue, and generate
492			 * a signal.
493			 */
494			if (frame.tf_eip == (int)cpu_switch_load_gs) {
495				PCPU_GET(curpcb)->pcb_gs = 0;
496				psignal(p, SIGBUS);
497				goto out;
498			}
499
500			/*
501			 * Invalid segment selectors and out of bounds
502			 * %eip's and %esp's can be set up in user mode.
503			 * This causes a fault in kernel mode when the
504			 * kernel tries to return to user mode.  We want
505			 * to get this fault so that we can fix the
506			 * problem here and not have to check all the
507			 * selectors and pointers when the user changes
508			 * them.
509			 */
510			if (frame.tf_eip == (int)doreti_iret) {
511				frame.tf_eip = (int)doreti_iret_fault;
512				goto out;
513			}
514			if (frame.tf_eip == (int)doreti_popl_ds) {
515				frame.tf_eip = (int)doreti_popl_ds_fault;
516				goto out;
517			}
518			if (frame.tf_eip == (int)doreti_popl_es) {
519				frame.tf_eip = (int)doreti_popl_es_fault;
520				goto out;
521			}
522			if (frame.tf_eip == (int)doreti_popl_fs) {
523				frame.tf_eip = (int)doreti_popl_fs_fault;
524				goto out;
525			}
526			if (PCPU_GET(curpcb) != NULL &&
527			    PCPU_GET(curpcb)->pcb_onfault != NULL) {
528				frame.tf_eip =
529				    (int)PCPU_GET(curpcb)->pcb_onfault;
530				goto out;
531			}
532			break;
533
534		case T_TSSFLT:
535			/*
536			 * PSL_NT can be set in user mode and isn't cleared
537			 * automatically when the kernel is entered.  This
538			 * causes a TSS fault when the kernel attempts to
539			 * `iret' because the TSS link is uninitialized.  We
540			 * want to get this fault so that we can fix the
541			 * problem here and not every time the kernel is
542			 * entered.
543			 */
544			if (frame.tf_eflags & PSL_NT) {
545				frame.tf_eflags &= ~PSL_NT;
546				goto out;
547			}
548			break;
549
550		case T_TRCTRAP:	 /* trace trap */
551			if (frame.tf_eip == (int)IDTVEC(syscall)) {
552				/*
553				 * We've just entered system mode via the
554				 * syscall lcall.  Continue single stepping
555				 * silently until the syscall handler has
556				 * saved the flags.
557				 */
558				goto out;
559			}
560			if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
561				/*
562				 * The syscall handler has now saved the
563				 * flags.  Stop single stepping it.
564				 */
565				frame.tf_eflags &= ~PSL_T;
566				goto out;
567			}
568			/*
569			 * Ignore debug register trace traps due to
570			 * accesses in the user's address space, which
571			 * can happen under several conditions such as
572			 * if a user sets a watchpoint on a buffer and
573			 * then passes that buffer to a system call.
574			 * We still want to get TRCTRAPS for addresses
575			 * in kernel space because that is useful when
576			 * debugging the kernel.
577			 */
578			if (user_dbreg_trap() && !in_vm86call) {
579				/*
580				 * Reset breakpoint bits because the
581				 * processor doesn't
582				 */
583				load_dr6(rdr6() & 0xfffffff0);
584				goto out;
585			}
586			/*
587			 * Fall through (TRCTRAP kernel mode, kernel address)
588			 */
589		case T_BPTFLT:
590			/*
591			 * If DDB is enabled, let it handle the debugger trap.
592			 * Otherwise, debugger traps "can't happen".
593			 */
594#ifdef DDB
595			if (kdb_trap (type, 0, &frame))
596				goto out;
597#endif
598			break;
599
600#if NISA > 0
601		case T_NMI:
602#ifdef POWERFAIL_NMI
603			if (time_second - lastalert > 10) {
604				log(LOG_WARNING, "NMI: power fail\n");
605				sysbeep(TIMER_FREQ/880, hz);
606				lastalert = time_second;
607			}
608			goto out;
609#else /* !POWERFAIL_NMI */
610			/* machine/parity/power fail/"kitchen sink" faults */
611			if (isa_nmi(code) == 0) {
612#ifdef DDB
613				/*
614				 * NMI can be hooked up to a pushbutton
615				 * for debugging.
616				 */
617				if (ddb_on_nmi) {
618					printf ("NMI ... going to debugger\n");
619					kdb_trap (type, 0, &frame);
620				}
621#endif /* DDB */
622				goto out;
623			} else if (panic_on_nmi == 0)
624				goto out;
625			/* FALL THROUGH */
626#endif /* POWERFAIL_NMI */
627#endif /* NISA > 0 */
628		}
629
630		trap_fatal(&frame, eva);
631		goto out;
632	}
633
634	/* Translate fault for emulators (e.g. Linux) */
635	if (*p->p_sysent->sv_transtrap)
636		i = (*p->p_sysent->sv_transtrap)(i, type);
637
638	trapsignal(p, i, ucode);
639
640#ifdef DEBUG
641	if (type <= MAX_TRAP_MSG) {
642		uprintf("fatal process exception: %s",
643			trap_msg[type]);
644		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
645			uprintf(", fault VA = 0x%lx", (u_long)eva);
646		uprintf("\n");
647	}
648#endif
649
650user:
651	userret(p, &frame, sticks);
652out:
653	if (mtx_owned(&Giant))
654		mtx_exit(&Giant, MTX_DEF);
655}
656
657#ifdef notyet
658/*
659 * This version doesn't allow a page fault to user space while
660 * in the kernel. The rest of the kernel needs to be made "safe"
661 * before this can be used. I think the only things remaining
662 * to be made safe are the iBCS2 code and the process tracing/
663 * debugging code.
664 */
665static int
666trap_pfault(frame, usermode, eva)
667	struct trapframe *frame;
668	int usermode;
669	vm_offset_t eva;
670{
671	vm_offset_t va;
672	struct vmspace *vm = NULL;
673	vm_map_t map = 0;
674	int rv = 0;
675	vm_prot_t ftype;
676	struct proc *p = curproc;
677
678	if (frame->tf_err & PGEX_W)
679		ftype = VM_PROT_WRITE;
680	else
681		ftype = VM_PROT_READ;
682
683	va = trunc_page(eva);
684	if (va < VM_MIN_KERNEL_ADDRESS) {
685		vm_offset_t v;
686		vm_page_t mpte;
687
688		if (p == NULL ||
689		    (!usermode && va < VM_MAXUSER_ADDRESS &&
690		     (p->p_intr_nesting_level != 0 ||
691		      PCPU_GET(curpcb) == NULL ||
692		      PCPU_GET(curpcb)->pcb_onfault == NULL))) {
693			trap_fatal(frame, eva);
694			return (-1);
695		}
696
697		/*
698		 * This is a fault on non-kernel virtual memory.
699		 * vm is initialized above to NULL. If curproc is NULL
700		 * or curproc->p_vmspace is NULL the fault is fatal.
701		 */
702		vm = p->p_vmspace;
703		if (vm == NULL)
704			goto nogo;
705
706		map = &vm->vm_map;
707
708		/*
709		 * Keep swapout from messing with us during this
710		 *	critical time.
711		 */
712		PROC_LOCK(p);
713		++p->p_lock;
714		PROC_UNLOCK(p);
715
716		/*
717		 * Grow the stack if necessary
718		 */
719		/* grow_stack returns false only if va falls into
720		 * a growable stack region and the stack growth
721		 * fails.  It returns true if va was not within
722		 * a growable stack region, or if the stack
723		 * growth succeeded.
724		 */
725		if (!grow_stack (p, va)) {
726			rv = KERN_FAILURE;
727			PROC_LOCK(p);
728			--p->p_lock;
729			PROC_UNLOCK(p);
730			goto nogo;
731		}
732
733		/* Fault in the user page: */
734		rv = vm_fault(map, va, ftype,
735			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
736						      : VM_FAULT_NORMAL);
737
738		PROC_LOCK(p);
739		--p->p_lock;
740		PROC_UNLOCK(p);
741	} else {
742		/*
743		 * Don't allow user-mode faults in kernel address space.
744		 */
745		if (usermode)
746			goto nogo;
747
748		/*
749		 * Since we know that kernel virtual address addresses
750		 * always have pte pages mapped, we just have to fault
751		 * the page.
752		 */
753		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
754	}
755
756	if (rv == KERN_SUCCESS)
757		return (0);
758nogo:
759	if (!usermode) {
760		if (p->p_intr_nesting_level == 0 &&
761		    PCPU_GET(curpcb) != NULL &&
762		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
763			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
764			return (0);
765		}
766		trap_fatal(frame, eva);
767		return (-1);
768	}
769
770	/* kludge to pass faulting virtual address to sendsig */
771	frame->tf_err = eva;
772
773	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
774}
775#endif
776
777int
778trap_pfault(frame, usermode, eva)
779	struct trapframe *frame;
780	int usermode;
781	vm_offset_t eva;
782{
783	vm_offset_t va;
784	struct vmspace *vm = NULL;
785	vm_map_t map = 0;
786	int rv = 0;
787	vm_prot_t ftype;
788	struct proc *p = curproc;
789
790	va = trunc_page(eva);
791	if (va >= KERNBASE) {
792		/*
793		 * Don't allow user-mode faults in kernel address space.
794		 * An exception:  if the faulting address is the invalid
795		 * instruction entry in the IDT, then the Intel Pentium
796		 * F00F bug workaround was triggered, and we need to
797		 * treat it is as an illegal instruction, and not a page
798		 * fault.
799		 */
800#if defined(I586_CPU) && !defined(NO_F00F_HACK)
801		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
802			return -2;
803#endif
804		if (usermode)
805			goto nogo;
806
807		map = kernel_map;
808	} else {
809		/*
810		 * This is a fault on non-kernel virtual memory.
811		 * vm is initialized above to NULL. If curproc is NULL
812		 * or curproc->p_vmspace is NULL the fault is fatal.
813		 */
814		if (p != NULL)
815			vm = p->p_vmspace;
816
817		if (vm == NULL)
818			goto nogo;
819
820		map = &vm->vm_map;
821	}
822
823	if (frame->tf_err & PGEX_W)
824		ftype = VM_PROT_WRITE;
825	else
826		ftype = VM_PROT_READ;
827
828	if (map != kernel_map) {
829		/*
830		 * Keep swapout from messing with us during this
831		 *	critical time.
832		 */
833		PROC_LOCK(p);
834		++p->p_lock;
835		PROC_UNLOCK(p);
836
837		/*
838		 * Grow the stack if necessary
839		 */
840		/* grow_stack returns false only if va falls into
841		 * a growable stack region and the stack growth
842		 * fails.  It returns true if va was not within
843		 * a growable stack region, or if the stack
844		 * growth succeeded.
845		 */
846		if (!grow_stack (p, va)) {
847			rv = KERN_FAILURE;
848			PROC_LOCK(p);
849			--p->p_lock;
850			PROC_UNLOCK(p);
851			goto nogo;
852		}
853
854		/* Fault in the user page: */
855		rv = vm_fault(map, va, ftype,
856			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
857						      : VM_FAULT_NORMAL);
858
859		PROC_LOCK(p);
860		--p->p_lock;
861		PROC_UNLOCK(p);
862	} else {
863		/*
864		 * Don't have to worry about process locking or stacks in the
865		 * kernel.
866		 */
867		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
868	}
869
870	if (rv == KERN_SUCCESS)
871		return (0);
872nogo:
873	if (!usermode) {
874		if (p->p_intr_nesting_level == 0 &&
875		    PCPU_GET(curpcb) != NULL &&
876		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
877			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
878			return (0);
879		}
880		trap_fatal(frame, eva);
881		return (-1);
882	}
883
884	/* kludge to pass faulting virtual address to sendsig */
885	frame->tf_err = eva;
886
887	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
888}
889
890static void
891trap_fatal(frame, eva)
892	struct trapframe *frame;
893	vm_offset_t eva;
894{
895	int code, type, ss, esp;
896	struct soft_segment_descriptor softseg;
897
898	code = frame->tf_err;
899	type = frame->tf_trapno;
900	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
901
902	if (type <= MAX_TRAP_MSG)
903		printf("\n\nFatal trap %d: %s while in %s mode\n",
904			type, trap_msg[type],
905        		frame->tf_eflags & PSL_VM ? "vm86" :
906			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
907#ifdef SMP
908	/* two seperate prints in case of a trap on an unmapped page */
909	printf("cpuid = %d; ", PCPU_GET(cpuid));
910	printf("lapic.id = %08x\n", lapic.id);
911#endif
912	if (type == T_PAGEFLT) {
913		printf("fault virtual address	= 0x%x\n", eva);
914		printf("fault code		= %s %s, %s\n",
915			code & PGEX_U ? "user" : "supervisor",
916			code & PGEX_W ? "write" : "read",
917			code & PGEX_P ? "protection violation" : "page not present");
918	}
919	printf("instruction pointer	= 0x%x:0x%x\n",
920	       frame->tf_cs & 0xffff, frame->tf_eip);
921        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
922		ss = frame->tf_ss & 0xffff;
923		esp = frame->tf_esp;
924	} else {
925		ss = GSEL(GDATA_SEL, SEL_KPL);
926		esp = (int)&frame->tf_esp;
927	}
928	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
929	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
930	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
931	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
932	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
933	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
934	       softseg.ssd_gran);
935	printf("processor eflags	= ");
936	if (frame->tf_eflags & PSL_T)
937		printf("trace trap, ");
938	if (frame->tf_eflags & PSL_I)
939		printf("interrupt enabled, ");
940	if (frame->tf_eflags & PSL_NT)
941		printf("nested task, ");
942	if (frame->tf_eflags & PSL_RF)
943		printf("resume, ");
944	if (frame->tf_eflags & PSL_VM)
945		printf("vm86, ");
946	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
947	printf("current process		= ");
948	if (curproc) {
949		printf("%lu (%s)\n",
950		    (u_long)curproc->p_pid, curproc->p_comm ?
951		    curproc->p_comm : "");
952	} else {
953		printf("Idle\n");
954	}
955
956#ifdef KDB
957	if (kdb_trap(&psl))
958		return;
959#endif
960#ifdef DDB
961	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
962		return;
963#endif
964	printf("trap number		= %d\n", type);
965	if (type <= MAX_TRAP_MSG)
966		panic(trap_msg[type]);
967	else
968		panic("unknown/reserved trap");
969}
970
971/*
972 * Double fault handler. Called when a fault occurs while writing
973 * a frame for a trap/exception onto the stack. This usually occurs
974 * when the stack overflows (such is the case with infinite recursion,
975 * for example).
976 *
977 * XXX Note that the current PTD gets replaced by IdlePTD when the
978 * task switch occurs. This means that the stack that was active at
979 * the time of the double fault is not available at <kstack> unless
980 * the machine was idle when the double fault occurred. The downside
981 * of this is that "trace <ebp>" in ddb won't work.
982 */
983void
984dblfault_handler()
985{
986	printf("\nFatal double fault:\n");
987	printf("eip = 0x%x\n", PCPU_GET(common_tss.tss_eip));
988	printf("esp = 0x%x\n", PCPU_GET(common_tss.tss_esp));
989	printf("ebp = 0x%x\n", PCPU_GET(common_tss.tss_ebp));
990#ifdef SMP
991	/* two seperate prints in case of a trap on an unmapped page */
992	printf("cpuid = %d; ", PCPU_GET(cpuid));
993	printf("lapic.id = %08x\n", lapic.id);
994#endif
995	panic("double fault");
996}
997
998/*
999 * Compensate for 386 brain damage (missing URKR).
1000 * This is a little simpler than the pagefault handler in trap() because
1001 * it the page tables have already been faulted in and high addresses
1002 * are thrown out early for other reasons.
1003 */
1004int trapwrite(addr)
1005	unsigned addr;
1006{
1007	struct proc *p;
1008	vm_offset_t va;
1009	struct vmspace *vm;
1010	int rv;
1011
1012	va = trunc_page((vm_offset_t)addr);
1013	/*
1014	 * XXX - MAX is END.  Changed > to >= for temp. fix.
1015	 */
1016	if (va >= VM_MAXUSER_ADDRESS)
1017		return (1);
1018
1019	p = curproc;
1020	vm = p->p_vmspace;
1021
1022	PROC_LOCK(p);
1023	++p->p_lock;
1024	PROC_UNLOCK(p);
1025
1026	if (!grow_stack (p, va)) {
1027		PROC_LOCK(p);
1028		--p->p_lock;
1029		PROC_UNLOCK(p);
1030		return (1);
1031	}
1032
1033	/*
1034	 * fault the data page
1035	 */
1036	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1037
1038	PROC_LOCK(p);
1039	--p->p_lock;
1040	PROC_UNLOCK(p);
1041
1042	if (rv != KERN_SUCCESS)
1043		return 1;
1044
1045	return (0);
1046}
1047
1048/*
1049 *	syscall2 -	MP aware system call request C handler
1050 *
1051 *	A system call is essentially treated as a trap except that the
1052 *	MP lock is not held on entry or return.  We are responsible for
1053 *	obtaining the MP lock if necessary and for handling ASTs
1054 *	(e.g. a task switch) prior to return.
1055 *
1056 *	In general, only simple access and manipulation of curproc and
1057 *	the current stack is allowed without having to hold MP lock.
1058 */
1059void
1060syscall2(frame)
1061	struct trapframe frame;
1062{
1063	caddr_t params;
1064	int i;
1065	struct sysent *callp;
1066	struct proc *p = curproc;
1067	u_quad_t sticks;
1068	int error;
1069	int narg;
1070	int args[8];
1071	u_int code;
1072
1073	atomic_add_int(&cnt.v_syscall, 1);
1074
1075#ifdef DIAGNOSTIC
1076	if (ISPL(frame.tf_cs) != SEL_UPL) {
1077		mtx_enter(&Giant, MTX_DEF);
1078		panic("syscall");
1079		/* NOT REACHED */
1080	}
1081#endif
1082
1083	mtx_enter(&sched_lock, MTX_SPIN);
1084	sticks = p->p_sticks;
1085	mtx_exit(&sched_lock, MTX_SPIN);
1086
1087	p->p_md.md_regs = &frame;
1088	params = (caddr_t)frame.tf_esp + sizeof(int);
1089	code = frame.tf_eax;
1090
1091	if (p->p_sysent->sv_prepsyscall) {
1092		/*
1093		 * The prep code is not MP aware.
1094		 */
1095		mtx_enter(&Giant, MTX_DEF);
1096		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1097		mtx_exit(&Giant, MTX_DEF);
1098	} else {
1099		/*
1100		 * Need to check if this is a 32 bit or 64 bit syscall.
1101		 * fuword is MP aware.
1102		 */
1103		if (code == SYS_syscall) {
1104			/*
1105			 * Code is first argument, followed by actual args.
1106			 */
1107			code = fuword(params);
1108			params += sizeof(int);
1109		} else if (code == SYS___syscall) {
1110			/*
1111			 * Like syscall, but code is a quad, so as to maintain
1112			 * quad alignment for the rest of the arguments.
1113			 */
1114			code = fuword(params);
1115			params += sizeof(quad_t);
1116		}
1117	}
1118
1119 	if (p->p_sysent->sv_mask)
1120 		code &= p->p_sysent->sv_mask;
1121
1122 	if (code >= p->p_sysent->sv_size)
1123 		callp = &p->p_sysent->sv_table[0];
1124  	else
1125 		callp = &p->p_sysent->sv_table[code];
1126
1127	narg = callp->sy_narg & SYF_ARGMASK;
1128
1129	/*
1130	 * copyin is MP aware, but the tracing code is not
1131	 */
1132	if (params && (i = narg * sizeof(int)) &&
1133	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1134		mtx_enter(&Giant, MTX_DEF);
1135#ifdef KTRACE
1136		if (KTRPOINT(p, KTR_SYSCALL))
1137			ktrsyscall(p->p_tracep, code, narg, args);
1138#endif
1139		goto bad;
1140	}
1141
1142	/*
1143	 * Try to run the syscall without the MP lock if the syscall
1144	 * is MP safe.  We have to obtain the MP lock no matter what if
1145	 * we are ktracing
1146	 */
1147	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1148		mtx_enter(&Giant, MTX_DEF);
1149	}
1150
1151#ifdef KTRACE
1152	if (KTRPOINT(p, KTR_SYSCALL)) {
1153		if (!mtx_owned(&Giant))
1154			mtx_enter(&Giant, MTX_DEF);
1155		ktrsyscall(p->p_tracep, code, narg, args);
1156	}
1157#endif
1158	p->p_retval[0] = 0;
1159	p->p_retval[1] = frame.tf_edx;
1160
1161	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1162
1163	error = (*callp->sy_call)(p, args);
1164
1165	/*
1166	 * MP SAFE (we may or may not have the MP lock at this point)
1167	 */
1168	switch (error) {
1169	case 0:
1170		frame.tf_eax = p->p_retval[0];
1171		frame.tf_edx = p->p_retval[1];
1172		frame.tf_eflags &= ~PSL_C;
1173		break;
1174
1175	case ERESTART:
1176		/*
1177		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1178		 * int 0x80 is 2 bytes. We saved this in tf_err.
1179		 */
1180		frame.tf_eip -= frame.tf_err;
1181		break;
1182
1183	case EJUSTRETURN:
1184		break;
1185
1186	default:
1187bad:
1188 		if (p->p_sysent->sv_errsize) {
1189 			if (error >= p->p_sysent->sv_errsize)
1190  				error = -1;	/* XXX */
1191   			else
1192  				error = p->p_sysent->sv_errtbl[error];
1193		}
1194		frame.tf_eax = error;
1195		frame.tf_eflags |= PSL_C;
1196		break;
1197	}
1198
1199	/*
1200	 * Traced syscall.  trapsignal() is not MP aware.
1201	 */
1202	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1203		if (!mtx_owned(&Giant))
1204			mtx_enter(&Giant, MTX_DEF);
1205		frame.tf_eflags &= ~PSL_T;
1206		trapsignal(p, SIGTRAP, 0);
1207	}
1208
1209	/*
1210	 * Handle reschedule and other end-of-syscall issues
1211	 */
1212	userret(p, &frame, sticks);
1213
1214#ifdef KTRACE
1215	if (KTRPOINT(p, KTR_SYSRET)) {
1216		if (!mtx_owned(&Giant))
1217			mtx_enter(&Giant, MTX_DEF);
1218		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1219	}
1220#endif
1221
1222	/*
1223	 * This works because errno is findable through the
1224	 * register set.  If we ever support an emulation where this
1225	 * is not the case, this code will need to be revisited.
1226	 */
1227	STOPEVENT(p, S_SCX, code);
1228
1229	/*
1230	 * Release Giant if we had to get it
1231	 */
1232	if (mtx_owned(&Giant))
1233		mtx_exit(&Giant, MTX_DEF);
1234
1235#ifdef WITNESS
1236	if (witness_list(p)) {
1237		panic("system call %s returning with mutex(s) held\n",
1238		    syscallnames[code]);
1239	}
1240#endif
1241	mtx_assert(&sched_lock, MA_NOTOWNED);
1242	mtx_assert(&Giant, MA_NOTOWNED);
1243}
1244
1245void
1246ast(frame)
1247	struct trapframe frame;
1248{
1249	struct proc *p = CURPROC;
1250	u_quad_t sticks;
1251
1252	mtx_enter(&sched_lock, MTX_SPIN);
1253	sticks = p->p_sticks;
1254
1255	astoff();
1256	atomic_add_int(&cnt.v_soft, 1);
1257	if (p->p_sflag & PS_OWEUPC) {
1258		p->p_sflag &= ~PS_OWEUPC;
1259		mtx_exit(&sched_lock, MTX_SPIN);
1260		mtx_enter(&Giant, MTX_DEF);
1261		mtx_enter(&sched_lock, MTX_SPIN);
1262		addupc_task(p, p->p_stats->p_prof.pr_addr,
1263			    p->p_stats->p_prof.pr_ticks);
1264	}
1265	if (p->p_sflag & PS_ALRMPEND) {
1266		p->p_sflag &= ~PS_ALRMPEND;
1267		mtx_exit(&sched_lock, MTX_SPIN);
1268		if (!mtx_owned(&Giant))
1269			mtx_enter(&Giant, MTX_DEF);
1270		psignal(p, SIGVTALRM);
1271		mtx_enter(&sched_lock, MTX_SPIN);
1272	}
1273	if (p->p_sflag & PS_PROFPEND) {
1274		p->p_sflag &= ~PS_PROFPEND;
1275		mtx_exit(&sched_lock, MTX_SPIN);
1276		if (!mtx_owned(&Giant))
1277			mtx_enter(&Giant, MTX_DEF);
1278		psignal(p, SIGPROF);
1279	} else
1280		mtx_exit(&sched_lock, MTX_SPIN);
1281
1282	userret(p, &frame, sticks);
1283
1284	if (mtx_owned(&Giant))
1285		mtx_exit(&Giant, MTX_DEF);
1286}
1287