subr_taskqueue.c revision 211928
1/*-
2 * Copyright (c) 2000 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_taskqueue.c 211928 2010-08-28 08:38:03Z pjd $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bus.h>
33#include <sys/interrupt.h>
34#include <sys/kernel.h>
35#include <sys/kthread.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mutex.h>
39#include <sys/proc.h>
40#include <sys/sched.h>
41#include <sys/taskqueue.h>
42#include <sys/unistd.h>
43#include <machine/stdarg.h>
44
45static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
46static void	*taskqueue_giant_ih;
47static void	*taskqueue_ih;
48
49struct taskqueue {
50	STAILQ_HEAD(, task)	tq_queue;
51	const char		*tq_name;
52	taskqueue_enqueue_fn	tq_enqueue;
53	void			*tq_context;
54	struct task		*tq_running;
55	struct mtx		tq_mutex;
56	struct thread		**tq_threads;
57	int			tq_tcount;
58	int			tq_spin;
59	int			tq_flags;
60};
61
62#define	TQ_FLAGS_ACTIVE		(1 << 0)
63#define	TQ_FLAGS_BLOCKED	(1 << 1)
64#define	TQ_FLAGS_PENDING	(1 << 2)
65
66static void taskqueue_run(struct taskqueue *, struct task **);
67
68static __inline void
69TQ_LOCK(struct taskqueue *tq)
70{
71	if (tq->tq_spin)
72		mtx_lock_spin(&tq->tq_mutex);
73	else
74		mtx_lock(&tq->tq_mutex);
75}
76
77static __inline void
78TQ_UNLOCK(struct taskqueue *tq)
79{
80	if (tq->tq_spin)
81		mtx_unlock_spin(&tq->tq_mutex);
82	else
83		mtx_unlock(&tq->tq_mutex);
84}
85
86static __inline int
87TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
88    int t)
89{
90	if (tq->tq_spin)
91		return (msleep_spin(p, m, wm, t));
92	return (msleep(p, m, pri, wm, t));
93}
94
95static struct taskqueue *
96_taskqueue_create(const char *name, int mflags,
97		 taskqueue_enqueue_fn enqueue, void *context,
98		 int mtxflags, const char *mtxname)
99{
100	struct taskqueue *queue;
101
102	queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
103	if (!queue)
104		return NULL;
105
106	STAILQ_INIT(&queue->tq_queue);
107	queue->tq_name = name;
108	queue->tq_enqueue = enqueue;
109	queue->tq_context = context;
110	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
111	queue->tq_flags |= TQ_FLAGS_ACTIVE;
112	mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
113
114	return queue;
115}
116
117struct taskqueue *
118taskqueue_create(const char *name, int mflags,
119		 taskqueue_enqueue_fn enqueue, void *context)
120{
121	return _taskqueue_create(name, mflags, enqueue, context,
122			MTX_DEF, "taskqueue");
123}
124
125/*
126 * Signal a taskqueue thread to terminate.
127 */
128static void
129taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
130{
131
132	while (tq->tq_tcount > 0) {
133		wakeup(tq);
134		TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
135	}
136}
137
138void
139taskqueue_free(struct taskqueue *queue)
140{
141
142	TQ_LOCK(queue);
143	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
144	taskqueue_terminate(queue->tq_threads, queue);
145	mtx_destroy(&queue->tq_mutex);
146	free(queue->tq_threads, M_TASKQUEUE);
147	free(queue, M_TASKQUEUE);
148}
149
150int
151taskqueue_enqueue(struct taskqueue *queue, struct task *task)
152{
153	struct task *ins;
154	struct task *prev;
155
156	TQ_LOCK(queue);
157
158	/*
159	 * Count multiple enqueues.
160	 */
161	if (task->ta_pending) {
162		task->ta_pending++;
163		TQ_UNLOCK(queue);
164		return 0;
165	}
166
167	/*
168	 * Optimise the case when all tasks have the same priority.
169	 */
170	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
171	if (!prev || prev->ta_priority >= task->ta_priority) {
172		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
173	} else {
174		prev = NULL;
175		for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
176		     prev = ins, ins = STAILQ_NEXT(ins, ta_link))
177			if (ins->ta_priority < task->ta_priority)
178				break;
179
180		if (prev)
181			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
182		else
183			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
184	}
185
186	task->ta_pending = 1;
187	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
188		queue->tq_enqueue(queue->tq_context);
189	else
190		queue->tq_flags |= TQ_FLAGS_PENDING;
191
192	TQ_UNLOCK(queue);
193
194	return 0;
195}
196
197void
198taskqueue_block(struct taskqueue *queue)
199{
200
201	TQ_LOCK(queue);
202	queue->tq_flags |= TQ_FLAGS_BLOCKED;
203	TQ_UNLOCK(queue);
204}
205
206void
207taskqueue_unblock(struct taskqueue *queue)
208{
209
210	TQ_LOCK(queue);
211	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
212	if (queue->tq_flags & TQ_FLAGS_PENDING) {
213		queue->tq_flags &= ~TQ_FLAGS_PENDING;
214		queue->tq_enqueue(queue->tq_context);
215	}
216	TQ_UNLOCK(queue);
217}
218
219static void
220taskqueue_run(struct taskqueue *queue, struct task **tpp)
221{
222	struct task *task;
223	int pending;
224
225	mtx_assert(&queue->tq_mutex, MA_OWNED);
226	while (STAILQ_FIRST(&queue->tq_queue)) {
227		/*
228		 * Carefully remove the first task from the queue and
229		 * zero its pending count.
230		 */
231		task = STAILQ_FIRST(&queue->tq_queue);
232		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
233		pending = task->ta_pending;
234		task->ta_pending = 0;
235		task->ta_running = tpp;
236		*tpp = task;
237		TQ_UNLOCK(queue);
238
239		task->ta_func(task->ta_context, pending);
240
241		TQ_LOCK(queue);
242		*tpp = NULL;
243		wakeup(task);
244	}
245}
246
247void
248taskqueue_drain(struct taskqueue *queue, struct task *task)
249{
250
251	if (!queue->tq_spin)
252		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
253
254	TQ_LOCK(queue);
255	while (task->ta_pending != 0 ||
256	    (task->ta_running != NULL && task == *task->ta_running)) {
257		TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
258	}
259	TQ_UNLOCK(queue);
260}
261
262static void
263taskqueue_swi_enqueue(void *context)
264{
265	swi_sched(taskqueue_ih, 0);
266}
267
268static void
269taskqueue_swi_run(void *dummy)
270{
271	TQ_LOCK(taskqueue_swi);
272	taskqueue_run(taskqueue_swi, &taskqueue_swi->tq_running);
273	TQ_UNLOCK(taskqueue_swi);
274}
275
276static void
277taskqueue_swi_giant_enqueue(void *context)
278{
279	swi_sched(taskqueue_giant_ih, 0);
280}
281
282static void
283taskqueue_swi_giant_run(void *dummy)
284{
285	TQ_LOCK(taskqueue_swi_giant);
286	taskqueue_run(taskqueue_swi_giant, &taskqueue_swi_giant->tq_running);
287	TQ_UNLOCK(taskqueue_swi_giant);
288}
289
290int
291taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
292			const char *name, ...)
293{
294	va_list ap;
295	struct thread *td;
296	struct taskqueue *tq;
297	int i, error;
298	char ktname[MAXCOMLEN + 1];
299
300	if (count <= 0)
301		return (EINVAL);
302
303	tq = *tqp;
304
305	va_start(ap, name);
306	vsnprintf(ktname, sizeof(ktname), name, ap);
307	va_end(ap);
308
309	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
310	    M_NOWAIT | M_ZERO);
311	if (tq->tq_threads == NULL) {
312		printf("%s: no memory for %s threads\n", __func__, ktname);
313		return (ENOMEM);
314	}
315
316	for (i = 0; i < count; i++) {
317		if (count == 1)
318			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
319			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
320		else
321			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
322			    &tq->tq_threads[i], RFSTOPPED, 0,
323			    "%s_%d", ktname, i);
324		if (error) {
325			/* should be ok to continue, taskqueue_free will dtrt */
326			printf("%s: kthread_add(%s): error %d", __func__,
327			    ktname, error);
328			tq->tq_threads[i] = NULL;		/* paranoid */
329		} else
330			tq->tq_tcount++;
331	}
332	for (i = 0; i < count; i++) {
333		if (tq->tq_threads[i] == NULL)
334			continue;
335		td = tq->tq_threads[i];
336		thread_lock(td);
337		sched_prio(td, pri);
338		sched_add(td, SRQ_BORING);
339		thread_unlock(td);
340	}
341
342	return (0);
343}
344
345void
346taskqueue_thread_loop(void *arg)
347{
348	struct taskqueue **tqp, *tq;
349	struct task *running;
350
351	/*
352	 * The kernel stack space is globaly addressable, and it would
353	 * be an error to ask whether a task is running after the
354	 * taskqueue has been released.  So it is safe to have the
355	 * task point back to an address in the taskqueue's stack to
356	 * determine if the task is running.
357	 */
358	running = NULL;
359
360	tqp = arg;
361	tq = *tqp;
362	TQ_LOCK(tq);
363	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
364		taskqueue_run(tq, &running);
365		/*
366		 * Because taskqueue_run() can drop tq_mutex, we need to
367		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
368		 * meantime, which means we missed a wakeup.
369		 */
370		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
371			break;
372		TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
373	}
374	taskqueue_run(tq, &running);
375
376	/* rendezvous with thread that asked us to terminate */
377	tq->tq_tcount--;
378	wakeup_one(tq->tq_threads);
379	TQ_UNLOCK(tq);
380	kthread_exit();
381}
382
383void
384taskqueue_thread_enqueue(void *context)
385{
386	struct taskqueue **tqp, *tq;
387
388	tqp = context;
389	tq = *tqp;
390
391	mtx_assert(&tq->tq_mutex, MA_OWNED);
392	wakeup_one(tq);
393}
394
395TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
396		 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
397		     INTR_MPSAFE, &taskqueue_ih));
398
399TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
400		 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
401		     NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
402
403TASKQUEUE_DEFINE_THREAD(thread);
404
405struct taskqueue *
406taskqueue_create_fast(const char *name, int mflags,
407		 taskqueue_enqueue_fn enqueue, void *context)
408{
409	return _taskqueue_create(name, mflags, enqueue, context,
410			MTX_SPIN, "fast_taskqueue");
411}
412
413/* NB: for backwards compatibility */
414int
415taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
416{
417	return taskqueue_enqueue(queue, task);
418}
419
420static void	*taskqueue_fast_ih;
421
422static void
423taskqueue_fast_enqueue(void *context)
424{
425	swi_sched(taskqueue_fast_ih, 0);
426}
427
428static void
429taskqueue_fast_run(void *dummy)
430{
431	TQ_LOCK(taskqueue_fast);
432	taskqueue_run(taskqueue_fast, &taskqueue_fast->tq_running);
433	TQ_UNLOCK(taskqueue_fast);
434}
435
436TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
437	swi_add(NULL, "Fast task queue", taskqueue_fast_run, NULL,
438	SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
439
440int
441taskqueue_member(struct taskqueue *queue, struct thread *td)
442{
443	int i, j, ret = 0;
444
445	TQ_LOCK(queue);
446	for (i = 0, j = 0; ; i++) {
447		if (queue->tq_threads[i] == NULL)
448			continue;
449		if (queue->tq_threads[i] == td) {
450			ret = 1;
451			break;
452		}
453		if (++j >= queue->tq_tcount)
454			break;
455	}
456	TQ_UNLOCK(queue);
457	return (ret);
458}
459