subr_sleepqueue.c revision 177132
1/*-
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the author nor the names of any co-contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * Implementation of sleep queues used to hold queue of threads blocked on
32 * a wait channel.  Sleep queues different from turnstiles in that wait
33 * channels are not owned by anyone, so there is no priority propagation.
34 * Sleep queues can also provide a timeout and can also be interrupted by
35 * signals.  That said, there are several similarities between the turnstile
36 * and sleep queue implementations.  (Note: turnstiles were implemented
37 * first.)  For example, both use a hash table of the same size where each
38 * bucket is referred to as a "chain" that contains both a spin lock and
39 * a linked list of queues.  An individual queue is located by using a hash
40 * to pick a chain, locking the chain, and then walking the chain searching
41 * for the queue.  This means that a wait channel object does not need to
42 * embed it's queue head just as locks do not embed their turnstile queue
43 * head.  Threads also carry around a sleep queue that they lend to the
44 * wait channel when blocking.  Just as in turnstiles, the queue includes
45 * a free list of the sleep queues of other threads blocked on the same
46 * wait channel in the case of multiple waiters.
47 *
48 * Some additional functionality provided by sleep queues include the
49 * ability to set a timeout.  The timeout is managed using a per-thread
50 * callout that resumes a thread if it is asleep.  A thread may also
51 * catch signals while it is asleep (aka an interruptible sleep).  The
52 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53 * sleep queues also provide some extra assertions.  One is not allowed to
54 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55 * must consistently use the same lock to synchronize with a wait channel,
56 * though this check is currently only a warning for sleep/wakeup due to
57 * pre-existing abuse of that API.  The same lock must also be held when
58 * awakening threads, though that is currently only enforced for condition
59 * variables.
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: head/sys/kern/subr_sleepqueue.c 177132 2008-03-13 00:46:12Z jeff $");
64
65#include "opt_sleepqueue_profiling.h"
66#include "opt_ddb.h"
67#include "opt_sched.h"
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/lock.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/sched.h>
77#include <sys/signalvar.h>
78#include <sys/sleepqueue.h>
79#include <sys/sysctl.h>
80
81#include <vm/uma.h>
82
83#ifdef DDB
84#include <ddb/ddb.h>
85#endif
86
87/*
88 * Constants for the hash table of sleep queue chains.  These constants are
89 * the same ones that 4BSD (and possibly earlier versions of BSD) used.
90 * Basically, we ignore the lower 8 bits of the address since most wait
91 * channel pointers are aligned and only look at the next 7 bits for the
92 * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
93 */
94#define	SC_TABLESIZE	128			/* Must be power of 2. */
95#define	SC_MASK		(SC_TABLESIZE - 1)
96#define	SC_SHIFT	8
97#define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
98#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
99#define NR_SLEEPQS      2
100/*
101 * There two different lists of sleep queues.  Both lists are connected
102 * via the sq_hash entries.  The first list is the sleep queue chain list
103 * that a sleep queue is on when it is attached to a wait channel.  The
104 * second list is the free list hung off of a sleep queue that is attached
105 * to a wait channel.
106 *
107 * Each sleep queue also contains the wait channel it is attached to, the
108 * list of threads blocked on that wait channel, flags specific to the
109 * wait channel, and the lock used to synchronize with a wait channel.
110 * The flags are used to catch mismatches between the various consumers
111 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
112 * The lock pointer is only used when invariants are enabled for various
113 * debugging checks.
114 *
115 * Locking key:
116 *  c - sleep queue chain lock
117 */
118struct sleepqueue {
119	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
120	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
121	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
122	void	*sq_wchan;			/* (c) Wait channel. */
123#ifdef INVARIANTS
124	int	sq_type;			/* (c) Queue type. */
125	struct lock_object *sq_lock;		/* (c) Associated lock. */
126#endif
127};
128
129struct sleepqueue_chain {
130	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
131	struct mtx sc_lock;			/* Spin lock for this chain. */
132#ifdef SLEEPQUEUE_PROFILING
133	u_int	sc_depth;			/* Length of sc_queues. */
134	u_int	sc_max_depth;			/* Max length of sc_queues. */
135#endif
136};
137
138#ifdef SLEEPQUEUE_PROFILING
139u_int sleepq_max_depth;
140SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
141SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
142    "sleepq chain stats");
143SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
144    0, "maxmimum depth achieved of a single chain");
145#endif
146static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
147static uma_zone_t sleepq_zone;
148
149/*
150 * Prototypes for non-exported routines.
151 */
152static int	sleepq_catch_signals(void *wchan, int pri);
153static int	sleepq_check_signals(void);
154static int	sleepq_check_timeout(void);
155#ifdef INVARIANTS
156static void	sleepq_dtor(void *mem, int size, void *arg);
157#endif
158static int	sleepq_init(void *mem, int size, int flags);
159static void	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
160		    int pri);
161static void	sleepq_switch(void *wchan, int pri);
162static void	sleepq_timeout(void *arg);
163
164/*
165 * Early initialization of sleep queues that is called from the sleepinit()
166 * SYSINIT.
167 */
168void
169init_sleepqueues(void)
170{
171#ifdef SLEEPQUEUE_PROFILING
172	struct sysctl_oid *chain_oid;
173	char chain_name[10];
174#endif
175	int i;
176
177	for (i = 0; i < SC_TABLESIZE; i++) {
178		LIST_INIT(&sleepq_chains[i].sc_queues);
179		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
180		    MTX_SPIN | MTX_RECURSE);
181#ifdef SLEEPQUEUE_PROFILING
182		snprintf(chain_name, sizeof(chain_name), "%d", i);
183		chain_oid = SYSCTL_ADD_NODE(NULL,
184		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
185		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
186		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
187		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
188		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
189		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
190		    NULL);
191#endif
192	}
193	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
194#ifdef INVARIANTS
195	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
196#else
197	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
198#endif
199
200	thread0.td_sleepqueue = sleepq_alloc();
201}
202
203/*
204 * Get a sleep queue for a new thread.
205 */
206struct sleepqueue *
207sleepq_alloc(void)
208{
209
210	return (uma_zalloc(sleepq_zone, M_WAITOK));
211}
212
213/*
214 * Free a sleep queue when a thread is destroyed.
215 */
216void
217sleepq_free(struct sleepqueue *sq)
218{
219
220	uma_zfree(sleepq_zone, sq);
221}
222
223/*
224 * Lock the sleep queue chain associated with the specified wait channel.
225 */
226void
227sleepq_lock(void *wchan)
228{
229	struct sleepqueue_chain *sc;
230
231	sc = SC_LOOKUP(wchan);
232	mtx_lock_spin(&sc->sc_lock);
233}
234
235/*
236 * Look up the sleep queue associated with a given wait channel in the hash
237 * table locking the associated sleep queue chain.  If no queue is found in
238 * the table, NULL is returned.
239 */
240struct sleepqueue *
241sleepq_lookup(void *wchan)
242{
243	struct sleepqueue_chain *sc;
244	struct sleepqueue *sq;
245
246	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
247	sc = SC_LOOKUP(wchan);
248	mtx_assert(&sc->sc_lock, MA_OWNED);
249	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
250		if (sq->sq_wchan == wchan)
251			return (sq);
252	return (NULL);
253}
254
255/*
256 * Unlock the sleep queue chain associated with a given wait channel.
257 */
258void
259sleepq_release(void *wchan)
260{
261	struct sleepqueue_chain *sc;
262
263	sc = SC_LOOKUP(wchan);
264	mtx_unlock_spin(&sc->sc_lock);
265}
266
267/*
268 * Places the current thread on the sleep queue for the specified wait
269 * channel.  If INVARIANTS is enabled, then it associates the passed in
270 * lock with the sleepq to make sure it is held when that sleep queue is
271 * woken up.
272 */
273void
274sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
275    int queue)
276{
277	struct sleepqueue_chain *sc;
278	struct sleepqueue *sq;
279	struct thread *td;
280
281	td = curthread;
282	sc = SC_LOOKUP(wchan);
283	mtx_assert(&sc->sc_lock, MA_OWNED);
284	MPASS(td->td_sleepqueue != NULL);
285	MPASS(wchan != NULL);
286	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
287
288	/* If this thread is not allowed to sleep, die a horrible death. */
289	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
290	    ("Trying sleep, but thread marked as sleeping prohibited"));
291
292	/* Look up the sleep queue associated with the wait channel 'wchan'. */
293	sq = sleepq_lookup(wchan);
294
295	/*
296	 * If the wait channel does not already have a sleep queue, use
297	 * this thread's sleep queue.  Otherwise, insert the current thread
298	 * into the sleep queue already in use by this wait channel.
299	 */
300	if (sq == NULL) {
301#ifdef INVARIANTS
302		int i;
303
304		sq = td->td_sleepqueue;
305		for (i = 0; i < NR_SLEEPQS; i++)
306			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
307				("thread's sleep queue %d is not empty", i));
308		KASSERT(LIST_EMPTY(&sq->sq_free),
309		    ("thread's sleep queue has a non-empty free list"));
310		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
311		sq->sq_lock = lock;
312		sq->sq_type = flags & SLEEPQ_TYPE;
313#endif
314#ifdef SLEEPQUEUE_PROFILING
315		sc->sc_depth++;
316		if (sc->sc_depth > sc->sc_max_depth) {
317			sc->sc_max_depth = sc->sc_depth;
318			if (sc->sc_max_depth > sleepq_max_depth)
319				sleepq_max_depth = sc->sc_max_depth;
320		}
321#endif
322		sq = td->td_sleepqueue;
323		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
324		sq->sq_wchan = wchan;
325	} else {
326		MPASS(wchan == sq->sq_wchan);
327		MPASS(lock == sq->sq_lock);
328		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
329		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
330	}
331	thread_lock(td);
332	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
333	td->td_sleepqueue = NULL;
334	td->td_sqqueue = queue;
335	td->td_wchan = wchan;
336	td->td_wmesg = wmesg;
337	if (flags & SLEEPQ_INTERRUPTIBLE) {
338		td->td_flags |= TDF_SINTR;
339		td->td_flags &= ~TDF_SLEEPABORT;
340	}
341	thread_unlock(td);
342}
343
344/*
345 * Sets a timeout that will remove the current thread from the specified
346 * sleep queue after timo ticks if the thread has not already been awakened.
347 */
348void
349sleepq_set_timeout(void *wchan, int timo)
350{
351	struct sleepqueue_chain *sc;
352	struct thread *td;
353
354	td = curthread;
355	sc = SC_LOOKUP(wchan);
356	mtx_assert(&sc->sc_lock, MA_OWNED);
357	MPASS(TD_ON_SLEEPQ(td));
358	MPASS(td->td_sleepqueue == NULL);
359	MPASS(wchan != NULL);
360	callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
361}
362
363/*
364 * Marks the pending sleep of the current thread as interruptible and
365 * makes an initial check for pending signals before putting a thread
366 * to sleep. Enters and exits with the thread lock held.  Thread lock
367 * may have transitioned from the sleepq lock to a run lock.
368 */
369static int
370sleepq_catch_signals(void *wchan, int pri)
371{
372	struct sleepqueue_chain *sc;
373	struct sleepqueue *sq;
374	struct thread *td;
375	struct proc *p;
376	struct sigacts *ps;
377	int sig, ret;
378
379	td = curthread;
380	p = curproc;
381	sc = SC_LOOKUP(wchan);
382	mtx_assert(&sc->sc_lock, MA_OWNED);
383	MPASS(wchan != NULL);
384	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
385		(void *)td, (long)p->p_pid, td->td_name);
386
387	mtx_unlock_spin(&sc->sc_lock);
388
389	/* See if there are any pending signals for this thread. */
390	PROC_LOCK(p);
391	ps = p->p_sigacts;
392	mtx_lock(&ps->ps_mtx);
393	sig = cursig(td);
394	if (sig == 0) {
395		mtx_unlock(&ps->ps_mtx);
396		ret = thread_suspend_check(1);
397		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
398	} else {
399		if (SIGISMEMBER(ps->ps_sigintr, sig))
400			ret = EINTR;
401		else
402			ret = ERESTART;
403		mtx_unlock(&ps->ps_mtx);
404	}
405	/*
406	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
407	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
408	 * thread_lock() are currently held in tdsignal().
409	 */
410	PROC_SLOCK(p);
411	mtx_lock_spin(&sc->sc_lock);
412	PROC_UNLOCK(p);
413	thread_lock(td);
414	PROC_SUNLOCK(p);
415	if (ret == 0) {
416		sleepq_switch(wchan, pri);
417		return (0);
418	}
419	/*
420	 * There were pending signals and this thread is still
421	 * on the sleep queue, remove it from the sleep queue.
422	 */
423	if (TD_ON_SLEEPQ(td)) {
424		sq = sleepq_lookup(wchan);
425		sleepq_resume_thread(sq, td, 0);
426	}
427	mtx_unlock_spin(&sc->sc_lock);
428	MPASS(td->td_lock != &sc->sc_lock);
429	return (ret);
430}
431
432/*
433 * Switches to another thread if we are still asleep on a sleep queue.
434 * Returns with thread lock.
435 */
436static void
437sleepq_switch(void *wchan, int pri)
438{
439	struct sleepqueue_chain *sc;
440	struct sleepqueue *sq;
441	struct thread *td;
442
443	td = curthread;
444	sc = SC_LOOKUP(wchan);
445	mtx_assert(&sc->sc_lock, MA_OWNED);
446	THREAD_LOCK_ASSERT(td, MA_OWNED);
447
448	/*
449	 * If we have a sleep queue, then we've already been woken up, so
450	 * just return.
451	 */
452	if (td->td_sleepqueue != NULL) {
453		mtx_unlock_spin(&sc->sc_lock);
454		return;
455	}
456
457	/*
458	 * If TDF_TIMEOUT is set, then our sleep has been timed out
459	 * already but we are still on the sleep queue, so dequeue the
460	 * thread and return.
461	 */
462	if (td->td_flags & TDF_TIMEOUT) {
463		MPASS(TD_ON_SLEEPQ(td));
464		sq = sleepq_lookup(wchan);
465		sleepq_resume_thread(sq, td, 0);
466		mtx_unlock_spin(&sc->sc_lock);
467		return;
468	}
469
470	MPASS(td->td_sleepqueue == NULL);
471	sched_sleep(td, pri);
472	thread_lock_set(td, &sc->sc_lock);
473	TD_SET_SLEEPING(td);
474	SCHED_STAT_INC(switch_sleepq);
475	mi_switch(SW_VOL, NULL);
476	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
477	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
478	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
479}
480
481/*
482 * Check to see if we timed out.
483 */
484static int
485sleepq_check_timeout(void)
486{
487	struct thread *td;
488
489	td = curthread;
490	THREAD_LOCK_ASSERT(td, MA_OWNED);
491
492	/*
493	 * If TDF_TIMEOUT is set, we timed out.
494	 */
495	if (td->td_flags & TDF_TIMEOUT) {
496		td->td_flags &= ~TDF_TIMEOUT;
497		return (EWOULDBLOCK);
498	}
499
500	/*
501	 * If TDF_TIMOFAIL is set, the timeout ran after we had
502	 * already been woken up.
503	 */
504	if (td->td_flags & TDF_TIMOFAIL)
505		td->td_flags &= ~TDF_TIMOFAIL;
506
507	/*
508	 * If callout_stop() fails, then the timeout is running on
509	 * another CPU, so synchronize with it to avoid having it
510	 * accidentally wake up a subsequent sleep.
511	 */
512	else if (callout_stop(&td->td_slpcallout) == 0) {
513		td->td_flags |= TDF_TIMEOUT;
514		TD_SET_SLEEPING(td);
515		SCHED_STAT_INC(switch_sleepqtimo);
516		mi_switch(SW_INVOL, NULL);
517	}
518	return (0);
519}
520
521/*
522 * Check to see if we were awoken by a signal.
523 */
524static int
525sleepq_check_signals(void)
526{
527	struct thread *td;
528
529	td = curthread;
530	THREAD_LOCK_ASSERT(td, MA_OWNED);
531
532	/* We are no longer in an interruptible sleep. */
533	if (td->td_flags & TDF_SINTR)
534		td->td_flags &= ~TDF_SINTR;
535
536	if (td->td_flags & TDF_SLEEPABORT) {
537		td->td_flags &= ~TDF_SLEEPABORT;
538		return (td->td_intrval);
539	}
540
541	return (0);
542}
543
544/*
545 * Block the current thread until it is awakened from its sleep queue.
546 */
547void
548sleepq_wait(void *wchan, int pri)
549{
550	struct thread *td;
551
552	td = curthread;
553	MPASS(!(td->td_flags & TDF_SINTR));
554	thread_lock(td);
555	sleepq_switch(wchan, pri);
556	thread_unlock(td);
557}
558
559/*
560 * Block the current thread until it is awakened from its sleep queue
561 * or it is interrupted by a signal.
562 */
563int
564sleepq_wait_sig(void *wchan, int pri)
565{
566	int rcatch;
567	int rval;
568
569	rcatch = sleepq_catch_signals(wchan, pri);
570	rval = sleepq_check_signals();
571	thread_unlock(curthread);
572	if (rcatch)
573		return (rcatch);
574	return (rval);
575}
576
577/*
578 * Block the current thread until it is awakened from its sleep queue
579 * or it times out while waiting.
580 */
581int
582sleepq_timedwait(void *wchan, int pri)
583{
584	struct thread *td;
585	int rval;
586
587	td = curthread;
588	MPASS(!(td->td_flags & TDF_SINTR));
589	thread_lock(td);
590	sleepq_switch(wchan, pri);
591	rval = sleepq_check_timeout();
592	thread_unlock(td);
593
594	return (rval);
595}
596
597/*
598 * Block the current thread until it is awakened from its sleep queue,
599 * it is interrupted by a signal, or it times out waiting to be awakened.
600 */
601int
602sleepq_timedwait_sig(void *wchan, int pri)
603{
604	int rcatch, rvalt, rvals;
605
606	rcatch = sleepq_catch_signals(wchan, pri);
607	rvalt = sleepq_check_timeout();
608	rvals = sleepq_check_signals();
609	thread_unlock(curthread);
610	if (rcatch)
611		return (rcatch);
612	if (rvals)
613		return (rvals);
614	return (rvalt);
615}
616
617/*
618 * Removes a thread from a sleep queue and makes it
619 * runnable.
620 */
621static void
622sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
623{
624	struct sleepqueue_chain *sc;
625
626	MPASS(td != NULL);
627	MPASS(sq->sq_wchan != NULL);
628	MPASS(td->td_wchan == sq->sq_wchan);
629	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
630	THREAD_LOCK_ASSERT(td, MA_OWNED);
631	sc = SC_LOOKUP(sq->sq_wchan);
632	mtx_assert(&sc->sc_lock, MA_OWNED);
633
634	/* Remove the thread from the queue. */
635	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
636
637	/*
638	 * Get a sleep queue for this thread.  If this is the last waiter,
639	 * use the queue itself and take it out of the chain, otherwise,
640	 * remove a queue from the free list.
641	 */
642	if (LIST_EMPTY(&sq->sq_free)) {
643		td->td_sleepqueue = sq;
644#ifdef INVARIANTS
645		sq->sq_wchan = NULL;
646#endif
647#ifdef SLEEPQUEUE_PROFILING
648		sc->sc_depth--;
649#endif
650	} else
651		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
652	LIST_REMOVE(td->td_sleepqueue, sq_hash);
653
654	td->td_wmesg = NULL;
655	td->td_wchan = NULL;
656	td->td_flags &= ~TDF_SINTR;
657
658	/*
659	 * Note that thread td might not be sleeping if it is running
660	 * sleepq_catch_signals() on another CPU or is blocked on
661	 * its proc lock to check signals.  It doesn't hurt to clear
662	 * the sleeping flag if it isn't set though, so we just always
663	 * do it.  However, we can't assert that it is set.
664	 */
665	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
666	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
667	TD_CLR_SLEEPING(td);
668
669	/* Adjust priority if requested. */
670	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
671	if (pri != 0 && td->td_priority > pri)
672		sched_prio(td, pri);
673	setrunnable(td);
674}
675
676#ifdef INVARIANTS
677/*
678 * UMA zone item deallocator.
679 */
680static void
681sleepq_dtor(void *mem, int size, void *arg)
682{
683	struct sleepqueue *sq;
684	int i;
685
686	sq = mem;
687	for (i = 0; i < NR_SLEEPQS; i++)
688		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
689}
690#endif
691
692/*
693 * UMA zone item initializer.
694 */
695static int
696sleepq_init(void *mem, int size, int flags)
697{
698	struct sleepqueue *sq;
699	int i;
700
701	bzero(mem, size);
702	sq = mem;
703	for (i = 0; i < NR_SLEEPQS; i++)
704		TAILQ_INIT(&sq->sq_blocked[i]);
705	LIST_INIT(&sq->sq_free);
706	return (0);
707}
708
709/*
710 * Find the highest priority thread sleeping on a wait channel and resume it.
711 */
712void
713sleepq_signal(void *wchan, int flags, int pri, int queue)
714{
715	struct sleepqueue *sq;
716	struct thread *td, *besttd;
717
718	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
719	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
720	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
721	sq = sleepq_lookup(wchan);
722	if (sq == NULL)
723		return;
724	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
725	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
726
727	/*
728	 * Find the highest priority thread on the queue.  If there is a
729	 * tie, use the thread that first appears in the queue as it has
730	 * been sleeping the longest since threads are always added to
731	 * the tail of sleep queues.
732	 */
733	besttd = NULL;
734	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
735		if (besttd == NULL || td->td_priority < besttd->td_priority)
736			besttd = td;
737	}
738	MPASS(besttd != NULL);
739	thread_lock(besttd);
740	sleepq_resume_thread(sq, besttd, pri);
741	thread_unlock(besttd);
742}
743
744/*
745 * Resume all threads sleeping on a specified wait channel.
746 */
747void
748sleepq_broadcast(void *wchan, int flags, int pri, int queue)
749{
750	struct sleepqueue *sq;
751	struct thread *td;
752
753	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
754	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
755	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
756	sq = sleepq_lookup(wchan);
757	if (sq == NULL)
758		return;
759	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
760	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
761
762	/* Resume all blocked threads on the sleep queue. */
763	while (!TAILQ_EMPTY(&sq->sq_blocked[queue])) {
764		td = TAILQ_FIRST(&sq->sq_blocked[queue]);
765		thread_lock(td);
766		sleepq_resume_thread(sq, td, pri);
767		thread_unlock(td);
768	}
769}
770
771/*
772 * Time sleeping threads out.  When the timeout expires, the thread is
773 * removed from the sleep queue and made runnable if it is still asleep.
774 */
775static void
776sleepq_timeout(void *arg)
777{
778	struct sleepqueue_chain *sc;
779	struct sleepqueue *sq;
780	struct thread *td;
781	void *wchan;
782
783	td = arg;
784	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
785	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
786
787	/*
788	 * First, see if the thread is asleep and get the wait channel if
789	 * it is.
790	 */
791	thread_lock(td);
792	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
793		wchan = td->td_wchan;
794		sc = SC_LOOKUP(wchan);
795		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
796		sq = sleepq_lookup(wchan);
797		MPASS(sq != NULL);
798		td->td_flags |= TDF_TIMEOUT;
799		sleepq_resume_thread(sq, td, 0);
800		thread_unlock(td);
801		return;
802	}
803
804	/*
805	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
806	 * can either be on another CPU in between sleepq_add() and
807	 * one of the sleepq_*wait*() routines or it can be in
808	 * sleepq_catch_signals().
809	 */
810	if (TD_ON_SLEEPQ(td)) {
811		td->td_flags |= TDF_TIMEOUT;
812		thread_unlock(td);
813		return;
814	}
815
816	/*
817	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
818	 * then the other thread has already yielded to us, so clear
819	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
820	 * we know that the other thread is not on a sleep queue, but it
821	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
822	 * to let it know that the timeout has already run and doesn't
823	 * need to be canceled.
824	 */
825	if (td->td_flags & TDF_TIMEOUT) {
826		MPASS(TD_IS_SLEEPING(td));
827		td->td_flags &= ~TDF_TIMEOUT;
828		TD_CLR_SLEEPING(td);
829		setrunnable(td);
830	} else
831		td->td_flags |= TDF_TIMOFAIL;
832	thread_unlock(td);
833}
834
835/*
836 * Resumes a specific thread from the sleep queue associated with a specific
837 * wait channel if it is on that queue.
838 */
839void
840sleepq_remove(struct thread *td, void *wchan)
841{
842	struct sleepqueue *sq;
843
844	/*
845	 * Look up the sleep queue for this wait channel, then re-check
846	 * that the thread is asleep on that channel, if it is not, then
847	 * bail.
848	 */
849	MPASS(wchan != NULL);
850	sleepq_lock(wchan);
851	sq = sleepq_lookup(wchan);
852	/*
853	 * We can not lock the thread here as it may be sleeping on a
854	 * different sleepq.  However, holding the sleepq lock for this
855	 * wchan can guarantee that we do not miss a wakeup for this
856	 * channel.  The asserts below will catch any false positives.
857	 */
858	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
859		sleepq_release(wchan);
860		return;
861	}
862	/* Thread is asleep on sleep queue sq, so wake it up. */
863	thread_lock(td);
864	MPASS(sq != NULL);
865	MPASS(td->td_wchan == wchan);
866	sleepq_resume_thread(sq, td, 0);
867	thread_unlock(td);
868	sleepq_release(wchan);
869}
870
871/*
872 * Abort a thread as if an interrupt had occurred.  Only abort
873 * interruptible waits (unfortunately it isn't safe to abort others).
874 */
875void
876sleepq_abort(struct thread *td, int intrval)
877{
878	struct sleepqueue *sq;
879	void *wchan;
880
881	THREAD_LOCK_ASSERT(td, MA_OWNED);
882	MPASS(TD_ON_SLEEPQ(td));
883	MPASS(td->td_flags & TDF_SINTR);
884	MPASS(intrval == EINTR || intrval == ERESTART);
885
886	/*
887	 * If the TDF_TIMEOUT flag is set, just leave. A
888	 * timeout is scheduled anyhow.
889	 */
890	if (td->td_flags & TDF_TIMEOUT)
891		return;
892
893	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
894	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
895	td->td_intrval = intrval;
896	td->td_flags |= TDF_SLEEPABORT;
897	/*
898	 * If the thread has not slept yet it will find the signal in
899	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
900	 * we have to do it here.
901	 */
902	if (!TD_IS_SLEEPING(td))
903		return;
904	wchan = td->td_wchan;
905	MPASS(wchan != NULL);
906	sq = sleepq_lookup(wchan);
907	MPASS(sq != NULL);
908
909	/* Thread is asleep on sleep queue sq, so wake it up. */
910	sleepq_resume_thread(sq, td, 0);
911}
912
913#ifdef DDB
914DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
915{
916	struct sleepqueue_chain *sc;
917	struct sleepqueue *sq;
918#ifdef INVARIANTS
919	struct lock_object *lock;
920#endif
921	struct thread *td;
922	void *wchan;
923	int i;
924
925	if (!have_addr)
926		return;
927
928	/*
929	 * First, see if there is an active sleep queue for the wait channel
930	 * indicated by the address.
931	 */
932	wchan = (void *)addr;
933	sc = SC_LOOKUP(wchan);
934	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
935		if (sq->sq_wchan == wchan)
936			goto found;
937
938	/*
939	 * Second, see if there is an active sleep queue at the address
940	 * indicated.
941	 */
942	for (i = 0; i < SC_TABLESIZE; i++)
943		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
944			if (sq == (struct sleepqueue *)addr)
945				goto found;
946		}
947
948	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
949	return;
950found:
951	db_printf("Wait channel: %p\n", sq->sq_wchan);
952#ifdef INVARIANTS
953	db_printf("Queue type: %d\n", sq->sq_type);
954	if (sq->sq_lock) {
955		lock = sq->sq_lock;
956		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
957		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
958	}
959#endif
960	db_printf("Blocked threads:\n");
961	for (i = 0; i < NR_SLEEPQS; i++) {
962		db_printf("\nQueue[%d]:\n", i);
963		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
964			db_printf("\tempty\n");
965		else
966			TAILQ_FOREACH(td, &sq->sq_blocked[0],
967				      td_slpq) {
968				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
969					  td->td_tid, td->td_proc->p_pid,
970					  td->td_name[i] != '\0' ? td->td_name :
971					  td->td_name);
972			}
973	}
974}
975
976/* Alias 'show sleepqueue' to 'show sleepq'. */
977DB_SET(sleepqueue, db_show_sleepqueue, db_show_cmd_set, 0, NULL);
978#endif
979