subr_sleepqueue.c revision 129188
1/*
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the author nor the names of any co-contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * Implementation of sleep queues used to hold queue of threads blocked on
32 * a wait channel.  Sleep queues different from turnstiles in that wait
33 * channels are not owned by anyone, so there is no priority propagation.
34 * Sleep queues can also provide a timeout and can also be interrupted by
35 * signals.  That said, there are several similarities between the turnstile
36 * and sleep queue implementations.  (Note: turnstiles were implemented
37 * first.)  For example, both use a hash table of the same size where each
38 * bucket is referred to as a "chain" that contains both a spin lock and
39 * a linked list of queues.  An individual queue is located by using a hash
40 * to pick a chain, locking the chain, and then walking the chain searching
41 * for the queue.  This means that a wait channel object does not need to
42 * embed it's queue head just as locks do not embed their turnstile queue
43 * head.  Threads also carry around a sleep queue that they lend to the
44 * wait channel when blocking.  Just as in turnstiles, the queue includes
45 * a free list of the sleep queues of other threads blocked on the same
46 * wait channel in the case of multiple waiters.
47 *
48 * Some additional functionality provided by sleep queues include the
49 * ability to set a timeout.  The timeout is managed using a per-thread
50 * callout that resumes a thread if it is asleep.  A thread may also
51 * catch signals while it is asleep (aka an interruptible sleep).  The
52 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53 * sleep queues also provide some extra assertions.  One is not allowed to
54 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55 * must consistently use the same lock to synchronize with a wait channel,
56 * though this check is currently only a warning for sleep/wakeup due to
57 * pre-existing abuse of that API.  The same lock must also be held when
58 * awakening threads, though that is currently only enforced for condition
59 * variables.
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: head/sys/kern/subr_sleepqueue.c 129188 2004-05-13 20:00:43Z jhb $");
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/lock.h>
68#include <sys/kernel.h>
69#include <sys/ktr.h>
70#include <sys/malloc.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/sched.h>
74#include <sys/signalvar.h>
75#include <sys/sleepqueue.h>
76
77/*
78 * Constants for the hash table of sleep queue chains.  These constants are
79 * the same ones that 4BSD (and possibly earlier versions of BSD) used.
80 * Basically, we ignore the lower 8 bits of the address since most wait
81 * channel pointers are aligned and only look at the next 7 bits for the
82 * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
83 */
84#define	SC_TABLESIZE	128			/* Must be power of 2. */
85#define	SC_MASK		(SC_TABLESIZE - 1)
86#define	SC_SHIFT	8
87#define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
88#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
89
90/*
91 * There two different lists of sleep queues.  Both lists are connected
92 * via the sq_hash entries.  The first list is the sleep queue chain list
93 * that a sleep queue is on when it is attached to a wait channel.  The
94 * second list is the free list hung off of a sleep queue that is attached
95 * to a wait channel.
96 *
97 * Each sleep queue also contains the wait channel it is attached to, the
98 * list of threads blocked on that wait channel, flags specific to the
99 * wait channel, and the lock used to synchronize with a wait channel.
100 * The flags are used to catch mismatches between the various consumers
101 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
102 * The lock pointer is only used when invariants are enabled for various
103 * debugging checks.
104 *
105 * Locking key:
106 *  c - sleep queue chain lock
107 */
108struct sleepqueue {
109	TAILQ_HEAD(, thread) sq_blocked;	/* (c) Blocked threads. */
110	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
111	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
112	void	*sq_wchan;			/* (c) Wait channel. */
113	int	sq_flags;			/* (c) Flags. */
114#ifdef INVARIANTS
115	struct mtx *sq_lock;			/* (c) Associated lock. */
116#endif
117};
118
119struct sleepqueue_chain {
120	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
121	struct mtx sc_lock;			/* Spin lock for this chain. */
122};
123
124static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
125
126MALLOC_DEFINE(M_SLEEPQUEUE, "sleep queues", "sleep queues");
127
128/*
129 * Prototypes for non-exported routines.
130 */
131static int	sleepq_check_timeout(void);
132static void	sleepq_switch(void *wchan);
133static void	sleepq_timeout(void *arg);
134static void	sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
135static void	sleepq_resume_thread(struct thread *td, int pri);
136
137/*
138 * Early initialization of sleep queues that is called from the sleepinit()
139 * SYSINIT.
140 */
141void
142init_sleepqueues(void)
143{
144	int i;
145
146	for (i = 0; i < SC_TABLESIZE; i++) {
147		LIST_INIT(&sleepq_chains[i].sc_queues);
148		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
149		    MTX_SPIN);
150	}
151	thread0.td_sleepqueue = sleepq_alloc();
152}
153
154/*
155 * Malloc and initialize a new sleep queue for a new thread.
156 */
157struct sleepqueue *
158sleepq_alloc(void)
159{
160	struct sleepqueue *sq;
161
162	sq = malloc(sizeof(struct sleepqueue), M_SLEEPQUEUE, M_WAITOK | M_ZERO);
163	TAILQ_INIT(&sq->sq_blocked);
164	LIST_INIT(&sq->sq_free);
165	return (sq);
166}
167
168/*
169 * Free a sleep queue when a thread is destroyed.
170 */
171void
172sleepq_free(struct sleepqueue *sq)
173{
174
175	MPASS(sq != NULL);
176	MPASS(TAILQ_EMPTY(&sq->sq_blocked));
177	free(sq, M_SLEEPQUEUE);
178}
179
180/*
181 * Look up the sleep queue associated with a given wait channel in the hash
182 * table locking the associated sleep queue chain.  Return holdind the sleep
183 * queue chain lock.  If no queue is found in the table, NULL is returned.
184 */
185struct sleepqueue *
186sleepq_lookup(void *wchan)
187{
188	struct sleepqueue_chain *sc;
189	struct sleepqueue *sq;
190
191	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
192	sc = SC_LOOKUP(wchan);
193	mtx_lock_spin(&sc->sc_lock);
194	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
195		if (sq->sq_wchan == wchan)
196			return (sq);
197	return (NULL);
198}
199
200/*
201 * Unlock the sleep queue chain associated with a given wait channel.
202 */
203void
204sleepq_release(void *wchan)
205{
206	struct sleepqueue_chain *sc;
207
208	sc = SC_LOOKUP(wchan);
209	mtx_unlock_spin(&sc->sc_lock);
210}
211
212/*
213 * Places the current thread on the sleepqueue for the specified wait
214 * channel.  If INVARIANTS is enabled, then it associates the passed in
215 * lock with the sleepq to make sure it is held when that sleep queue is
216 * woken up.
217 */
218void
219sleepq_add(struct sleepqueue *sq, void *wchan, struct mtx *lock,
220    const char *wmesg, int flags)
221{
222	struct sleepqueue_chain *sc;
223	struct thread *td, *td1;
224
225	td = curthread;
226	sc = SC_LOOKUP(wchan);
227	mtx_assert(&sc->sc_lock, MA_OWNED);
228	MPASS(td->td_sleepqueue != NULL);
229	MPASS(wchan != NULL);
230
231	/* If the passed in sleep queue is NULL, use this thread's queue. */
232	if (sq == NULL) {
233		sq = td->td_sleepqueue;
234		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
235		KASSERT(TAILQ_EMPTY(&sq->sq_blocked),
236		    ("thread's sleep queue has a non-empty queue"));
237		KASSERT(LIST_EMPTY(&sq->sq_free),
238		    ("thread's sleep queue has a non-empty free list"));
239		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
240		sq->sq_wchan = wchan;
241#ifdef INVARIANTS
242		sq->sq_lock = lock;
243#endif
244		sq->sq_flags = flags;
245		TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
246	} else {
247		MPASS(wchan == sq->sq_wchan);
248		MPASS(lock == sq->sq_lock);
249		TAILQ_FOREACH(td1, &sq->sq_blocked, td_slpq)
250			if (td1->td_priority > td->td_priority)
251				break;
252		if (td1 != NULL)
253			TAILQ_INSERT_BEFORE(td1, td, td_slpq);
254		else
255			TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
256		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
257	}
258	td->td_sleepqueue = NULL;
259	mtx_lock_spin(&sched_lock);
260	td->td_wchan = wchan;
261	td->td_wmesg = wmesg;
262	mtx_unlock_spin(&sched_lock);
263}
264
265/*
266 * Sets a timeout that will remove the current thread from the specified
267 * sleep queue after timo ticks if the thread has not already been awakened.
268 */
269void
270sleepq_set_timeout(void *wchan, int timo)
271{
272	struct sleepqueue_chain *sc;
273	struct thread *td;
274
275	td = curthread;
276	sc = SC_LOOKUP(wchan);
277	mtx_assert(&sc->sc_lock, MA_OWNED);
278	MPASS(TD_ON_SLEEPQ(td));
279	MPASS(td->td_sleepqueue == NULL);
280	MPASS(wchan != NULL);
281	callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
282}
283
284/*
285 * Marks the pending sleep of the current thread as interruptible and
286 * makes an initial check for pending signals before putting a thread
287 * to sleep.
288 */
289int
290sleepq_catch_signals(void *wchan)
291{
292	struct sleepqueue_chain *sc;
293	struct sleepqueue *sq;
294	struct thread *td;
295	struct proc *p;
296	int do_upcall;
297	int sig;
298
299	do_upcall = 0;
300	td = curthread;
301	p = td->td_proc;
302	sc = SC_LOOKUP(wchan);
303	mtx_assert(&sc->sc_lock, MA_OWNED);
304	MPASS(td->td_sleepqueue == NULL);
305	MPASS(wchan != NULL);
306	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %d, %s)", td,
307	    p->p_pid, p->p_comm);
308
309	/* Mark thread as being in an interruptible sleep. */
310	mtx_lock_spin(&sched_lock);
311	MPASS(TD_ON_SLEEPQ(td));
312	td->td_flags |= TDF_SINTR;
313	mtx_unlock_spin(&sched_lock);
314	sleepq_release(wchan);
315
316	/* See if there are any pending signals for this thread. */
317	PROC_LOCK(p);
318	mtx_lock(&p->p_sigacts->ps_mtx);
319	sig = cursig(td);
320	mtx_unlock(&p->p_sigacts->ps_mtx);
321	if (sig == 0 && thread_suspend_check(1))
322		sig = SIGSTOP;
323	else
324		do_upcall = thread_upcall_check(td);
325	PROC_UNLOCK(p);
326
327	/*
328	 * If there were pending signals and this thread is still on
329	 * the sleep queue, remove it from the sleep queue.
330	 */
331	sq = sleepq_lookup(wchan);
332	mtx_lock_spin(&sched_lock);
333	if (TD_ON_SLEEPQ(td) && (sig != 0 || do_upcall != 0)) {
334		mtx_unlock_spin(&sched_lock);
335		sleepq_remove_thread(sq, td);
336	} else
337		mtx_unlock_spin(&sched_lock);
338	return (sig);
339}
340
341/*
342 * Switches to another thread if we are still asleep on a sleep queue and
343 * drop the lock on the sleepqueue chain.  Returns with sched_lock held.
344 */
345static void
346sleepq_switch(void *wchan)
347{
348	struct sleepqueue_chain *sc;
349	struct thread *td;
350
351	td = curthread;
352	sc = SC_LOOKUP(wchan);
353	mtx_assert(&sc->sc_lock, MA_OWNED);
354
355	/*
356	 * If we have a sleep queue, then we've already been woken up, so
357	 * just return.
358	 */
359	if (td->td_sleepqueue != NULL) {
360		MPASS(!TD_ON_SLEEPQ(td));
361		mtx_unlock_spin(&sc->sc_lock);
362		mtx_lock_spin(&sched_lock);
363		return;
364	}
365
366	/*
367	 * Otherwise, actually go to sleep.
368	 */
369	mtx_lock_spin(&sched_lock);
370	mtx_unlock_spin(&sc->sc_lock);
371
372	sched_sleep(td);
373	TD_SET_SLEEPING(td);
374	mi_switch(SW_VOL);
375	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
376	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %d, %s)", td,
377	    td->td_proc->p_pid, td->td_proc->p_comm);
378}
379
380/*
381 * Check to see if we timed out.
382 */
383static int
384sleepq_check_timeout(void)
385{
386	struct thread *td;
387
388	mtx_assert(&sched_lock, MA_OWNED);
389	td = curthread;
390
391	/*
392	 * If TDF_TIMEOUT is set, we timed out.
393	 */
394	if (td->td_flags & TDF_TIMEOUT) {
395		td->td_flags &= ~TDF_TIMEOUT;
396		return (EWOULDBLOCK);
397	}
398
399	/*
400	 * If TDF_TIMOFAIL is set, the timeout ran after we had
401	 * already been woken up.
402	 */
403	if (td->td_flags & TDF_TIMOFAIL)
404		td->td_flags &= ~TDF_TIMOFAIL;
405
406	/*
407	 * If callout_stop() fails, then the timeout is running on
408	 * another CPU, so synchronize with it to avoid having it
409	 * accidentally wake up a subsequent sleep.
410	 */
411	else if (callout_stop(&td->td_slpcallout) == 0) {
412		td->td_flags |= TDF_TIMEOUT;
413		TD_SET_SLEEPING(td);
414		mi_switch(SW_INVOL);
415	}
416	return (0);
417}
418
419/*
420 * Check to see if we were awoken by a signal.
421 */
422static int
423sleepq_check_signals(void)
424{
425	struct thread *td;
426
427	mtx_assert(&sched_lock, MA_OWNED);
428	td = curthread;
429
430	/* We are no longer in an interruptible sleep. */
431	td->td_flags &= ~TDF_SINTR;
432
433	/* If we were interrupted, return td_intrval. */
434	if (td->td_flags & TDF_INTERRUPT)
435		return (td->td_intrval);
436	return (0);
437}
438
439/*
440 * If we were in an interruptible sleep and we weren't interrupted and
441 * didn't timeout, check to see if there are any pending signals and
442 * which return value we should use if so.  The return value from an
443 * earlier call to sleepq_catch_signals() should be passed in as the
444 * argument.
445 */
446int
447sleepq_calc_signal_retval(int sig)
448{
449	struct thread *td;
450	struct proc *p;
451	int rval;
452
453	td = curthread;
454	p = td->td_proc;
455	PROC_LOCK(p);
456	mtx_lock(&p->p_sigacts->ps_mtx);
457	/* XXX: Should we always be calling cursig()? */
458	if (sig == 0)
459		sig = cursig(td);
460	if (sig != 0) {
461		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
462			rval = EINTR;
463		else
464			rval = ERESTART;
465	} else
466		rval = 0;
467	mtx_unlock(&p->p_sigacts->ps_mtx);
468	PROC_UNLOCK(p);
469	return (rval);
470}
471
472/*
473 * Block the current thread until it is awakened from its sleep queue.
474 */
475void
476sleepq_wait(void *wchan)
477{
478
479	sleepq_switch(wchan);
480	mtx_unlock_spin(&sched_lock);
481}
482
483/*
484 * Block the current thread until it is awakened from its sleep queue
485 * or it is interrupted by a signal.
486 */
487int
488sleepq_wait_sig(void *wchan)
489{
490	int rval;
491
492	sleepq_switch(wchan);
493	rval = sleepq_check_signals();
494	mtx_unlock_spin(&sched_lock);
495	return (rval);
496}
497
498/*
499 * Block the current thread until it is awakened from its sleep queue
500 * or it times out while waiting.
501 */
502int
503sleepq_timedwait(void *wchan, int signal_caught)
504{
505	int rval;
506
507	sleepq_switch(wchan);
508	rval = sleepq_check_timeout();
509	mtx_unlock_spin(&sched_lock);
510	if (signal_caught)
511		return (0);
512	else
513		return (rval);
514}
515
516/*
517 * Block the current thread until it is awakened from its sleep queue,
518 * it is interrupted by a signal, or it times out waiting to be awakened.
519 */
520int
521sleepq_timedwait_sig(void *wchan, int signal_caught)
522{
523	int rvalt, rvals;
524
525	sleepq_switch(wchan);
526	rvalt = sleepq_check_timeout();
527	rvals = sleepq_check_signals();
528	mtx_unlock_spin(&sched_lock);
529	if (signal_caught || rvalt == 0)
530		return (rvals);
531	else
532		return (rvalt);
533}
534
535/*
536 * Removes a thread from a sleep queue.
537 */
538static void
539sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
540{
541	struct sleepqueue_chain *sc;
542
543	MPASS(td != NULL);
544	MPASS(sq->sq_wchan != NULL);
545	MPASS(td->td_wchan == sq->sq_wchan);
546	sc = SC_LOOKUP(sq->sq_wchan);
547	mtx_assert(&sc->sc_lock, MA_OWNED);
548
549	/* Remove the thread from the queue. */
550	TAILQ_REMOVE(&sq->sq_blocked, td, td_slpq);
551
552	/*
553	 * Get a sleep queue for this thread.  If this is the last waiter,
554	 * use the queue itself and take it out of the chain, otherwise,
555	 * remove a queue from the free list.
556	 */
557	if (LIST_EMPTY(&sq->sq_free)) {
558		td->td_sleepqueue = sq;
559#ifdef INVARIANTS
560		sq->sq_wchan = NULL;
561#endif
562	} else
563		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
564	LIST_REMOVE(td->td_sleepqueue, sq_hash);
565
566	mtx_lock_spin(&sched_lock);
567	td->td_wmesg = NULL;
568	td->td_wchan = NULL;
569	mtx_unlock_spin(&sched_lock);
570}
571
572/*
573 * Resumes a thread that was asleep on a queue.
574 */
575static void
576sleepq_resume_thread(struct thread *td, int pri)
577{
578
579	/*
580	 * Note that thread td might not be sleeping if it is running
581	 * sleepq_catch_signals() on another CPU or is blocked on
582	 * its proc lock to check signals.  It doesn't hurt to clear
583	 * the sleeping flag if it isn't set though, so we just always
584	 * do it.  However, we can't assert that it is set.
585	 */
586	mtx_lock_spin(&sched_lock);
587	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %d, %s)", td,
588	    td->td_proc->p_pid, td->td_proc->p_comm);
589	TD_CLR_SLEEPING(td);
590
591	/* Adjust priority if requested. */
592	MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
593	if (pri != -1 && td->td_priority > pri)
594		td->td_priority = pri;
595	setrunnable(td);
596	mtx_unlock_spin(&sched_lock);
597}
598
599/*
600 * Find the highest priority thread sleeping on a wait channel and resume it.
601 */
602void
603sleepq_signal(void *wchan, int flags, int pri)
604{
605	struct sleepqueue *sq;
606	struct thread *td;
607
608	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
609	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
610	sq = sleepq_lookup(wchan);
611	if (sq == NULL) {
612		sleepq_release(wchan);
613		return;
614	}
615	KASSERT(sq->sq_flags == flags,
616	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
617	/* XXX: Do for all sleep queues eventually. */
618	if (flags & SLEEPQ_CONDVAR)
619		mtx_assert(sq->sq_lock, MA_OWNED);
620
621	/* Remove first thread from queue and awaken it. */
622	td = TAILQ_FIRST(&sq->sq_blocked);
623	sleepq_remove_thread(sq, td);
624	sleepq_release(wchan);
625	sleepq_resume_thread(td, pri);
626}
627
628/*
629 * Resume all threads sleeping on a specified wait channel.
630 */
631void
632sleepq_broadcast(void *wchan, int flags, int pri)
633{
634	TAILQ_HEAD(, thread) list;
635	struct sleepqueue *sq;
636	struct thread *td;
637
638	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
639	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
640	sq = sleepq_lookup(wchan);
641	if (sq == NULL) {
642		sleepq_release(wchan);
643		return;
644	}
645	KASSERT(sq->sq_flags == flags,
646	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
647	/* XXX: Do for all sleep queues eventually. */
648	if (flags & SLEEPQ_CONDVAR)
649		mtx_assert(sq->sq_lock, MA_OWNED);
650
651	/* Move blocked threads from the sleep queue to a temporary list. */
652	TAILQ_INIT(&list);
653	while (!TAILQ_EMPTY(&sq->sq_blocked)) {
654		td = TAILQ_FIRST(&sq->sq_blocked);
655		sleepq_remove_thread(sq, td);
656		TAILQ_INSERT_TAIL(&list, td, td_slpq);
657	}
658	sleepq_release(wchan);
659
660	/* Resume all the threads on the temporary list. */
661	while (!TAILQ_EMPTY(&list)) {
662		td = TAILQ_FIRST(&list);
663		TAILQ_REMOVE(&list, td, td_slpq);
664		sleepq_resume_thread(td, pri);
665	}
666}
667
668/*
669 * Time sleeping threads out.  When the timeout expires, the thread is
670 * removed from the sleep queue and made runnable if it is still asleep.
671 */
672static void
673sleepq_timeout(void *arg)
674{
675	struct sleepqueue *sq;
676	struct thread *td;
677	void *wchan;
678
679	td = (struct thread *)arg;
680	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %d, %s)",
681	    td, td->td_proc->p_pid, td->td_proc->p_comm);
682
683	/*
684	 * First, see if the thread is asleep and get the wait channel if
685	 * it is.
686	 */
687	mtx_lock_spin(&sched_lock);
688	if (TD_ON_SLEEPQ(td)) {
689		wchan = td->td_wchan;
690		mtx_unlock_spin(&sched_lock);
691		sq = sleepq_lookup(wchan);
692		mtx_lock_spin(&sched_lock);
693	} else {
694		wchan = NULL;
695		sq = NULL;
696	}
697
698	/*
699	 * At this point, if the thread is still on the sleep queue,
700	 * we have that sleep queue locked as it cannot migrate sleep
701	 * queues while we dropped sched_lock.  If it had resumed and
702	 * was on another CPU while the lock was dropped, it would have
703	 * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the
704	 * call to callout_stop() to stop this routine would have failed
705	 * meaning that it would have already set TDF_TIMEOUT to
706	 * synchronize with this function.
707	 */
708	if (TD_ON_SLEEPQ(td)) {
709		MPASS(td->td_wchan == wchan);
710		MPASS(sq != NULL);
711		td->td_flags |= TDF_TIMEOUT;
712		mtx_unlock_spin(&sched_lock);
713		sleepq_remove_thread(sq, td);
714		sleepq_release(wchan);
715		sleepq_resume_thread(td, -1);
716		return;
717	} else if (wchan != NULL)
718		sleepq_release(wchan);
719
720	/*
721	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
722	 * then the other thread has already yielded to us, so clear
723	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
724	 * we know that the other thread is not on a sleep queue, but it
725	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
726	 * to let it know that the timeout has already run and doesn't
727	 * need to be canceled.
728	 */
729	if (td->td_flags & TDF_TIMEOUT) {
730		MPASS(TD_IS_SLEEPING(td));
731		td->td_flags &= ~TDF_TIMEOUT;
732		TD_CLR_SLEEPING(td);
733		setrunnable(td);
734	} else
735		td->td_flags |= TDF_TIMOFAIL;
736	mtx_unlock_spin(&sched_lock);
737}
738
739/*
740 * Resumes a specific thread from the sleep queue associated with a specific
741 * wait channel if it is on that queue.
742 */
743void
744sleepq_remove(struct thread *td, void *wchan)
745{
746	struct sleepqueue *sq;
747
748	/*
749	 * Look up the sleep queue for this wait channel, then re-check
750	 * that the thread is asleep on that channel, if it is not, then
751	 * bail.
752	 */
753	MPASS(wchan != NULL);
754	sq = sleepq_lookup(wchan);
755	mtx_lock_spin(&sched_lock);
756	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
757		mtx_unlock_spin(&sched_lock);
758		sleepq_release(wchan);
759		return;
760	}
761	mtx_unlock_spin(&sched_lock);
762	MPASS(sq != NULL);
763
764	/* Thread is asleep on sleep queue sq, so wake it up. */
765	sleepq_remove_thread(sq, td);
766	sleepq_release(wchan);
767	sleepq_resume_thread(td, -1);
768}
769
770/*
771 * Abort a thread as if an interrupt had occured.  Only abort
772 * interruptable waits (unfortunately it isn't safe to abort others).
773 *
774 * XXX: What in the world does the comment below mean?
775 * Also, whatever the signal code does...
776 */
777void
778sleepq_abort(struct thread *td)
779{
780	void *wchan;
781
782	mtx_assert(&sched_lock, MA_OWNED);
783	MPASS(TD_ON_SLEEPQ(td));
784	MPASS(td->td_flags & TDF_SINTR);
785
786	/*
787	 * If the TDF_TIMEOUT flag is set, just leave. A
788	 * timeout is scheduled anyhow.
789	 */
790	if (td->td_flags & TDF_TIMEOUT)
791		return;
792
793	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %d, %s)", td,
794	    td->td_proc->p_pid, td->td_proc->p_comm);
795	wchan = td->td_wchan;
796	mtx_unlock_spin(&sched_lock);
797	sleepq_remove(td, wchan);
798	mtx_lock_spin(&sched_lock);
799}
800