subr_bus.c revision 216952
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 216952 2011-01-04 10:59:38Z kib $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/proc.h>
44#include <sys/condvar.h>
45#include <sys/queue.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48#include <sys/selinfo.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/uio.h>
53#include <sys/bus.h>
54#include <sys/interrupt.h>
55
56#include <machine/stdarg.h>
57
58#include <vm/uma.h>
59
60SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62
63/*
64 * Used to attach drivers to devclasses.
65 */
66typedef struct driverlink *driverlink_t;
67struct driverlink {
68	kobj_class_t	driver;
69	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70	int		pass;
71	TAILQ_ENTRY(driverlink) passlink;
72};
73
74/*
75 * Forward declarations
76 */
77typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79typedef TAILQ_HEAD(device_list, device) device_list_t;
80
81struct devclass {
82	TAILQ_ENTRY(devclass) link;
83	devclass_t	parent;		/* parent in devclass hierarchy */
84	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85	char		*name;
86	device_t	*devices;	/* array of devices indexed by unit */
87	int		maxunit;	/* size of devices array */
88	int		flags;
89#define DC_HAS_CHILDREN		1
90
91	struct sysctl_ctx_list sysctl_ctx;
92	struct sysctl_oid *sysctl_tree;
93};
94
95/**
96 * @brief Implementation of device.
97 */
98struct device {
99	/*
100	 * A device is a kernel object. The first field must be the
101	 * current ops table for the object.
102	 */
103	KOBJ_FIELDS;
104
105	/*
106	 * Device hierarchy.
107	 */
108	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110	device_t	parent;		/**< parent of this device  */
111	device_list_t	children;	/**< list of child devices */
112
113	/*
114	 * Details of this device.
115	 */
116	driver_t	*driver;	/**< current driver */
117	devclass_t	devclass;	/**< current device class */
118	int		unit;		/**< current unit number */
119	char*		nameunit;	/**< name+unit e.g. foodev0 */
120	char*		desc;		/**< driver specific description */
121	int		busy;		/**< count of calls to device_busy() */
122	device_state_t	state;		/**< current device state  */
123	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124	u_int		flags;		/**< internal device flags  */
125#define	DF_ENABLED	0x01		/* device should be probed/attached */
126#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128#define	DF_DESCMALLOCED	0x08		/* description was malloced */
129#define	DF_QUIET	0x10		/* don't print verbose attach message */
130#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132#define	DF_REBID	0x80		/* Can rebid after attach */
133	u_int	order;			/**< order from device_add_child_ordered() */
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144#ifdef BUS_DEBUG
145
146static int bus_debug = 1;
147TUNABLE_INT("bus.debug", &bus_debug);
148SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149    "Debug bus code");
150
151#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153#define DRIVERNAME(d)	((d)? d->name : "no driver")
154#define DEVCLANAME(d)	((d)? d->name : "no devclass")
155
156/**
157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158 * prevent syslog from deleting initial spaces
159 */
160#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161
162static void print_device_short(device_t dev, int indent);
163static void print_device(device_t dev, int indent);
164void print_device_tree_short(device_t dev, int indent);
165void print_device_tree(device_t dev, int indent);
166static void print_driver_short(driver_t *driver, int indent);
167static void print_driver(driver_t *driver, int indent);
168static void print_driver_list(driver_list_t drivers, int indent);
169static void print_devclass_short(devclass_t dc, int indent);
170static void print_devclass(devclass_t dc, int indent);
171void print_devclass_list_short(void);
172void print_devclass_list(void);
173
174#else
175/* Make the compiler ignore the function calls */
176#define PDEBUG(a)			/* nop */
177#define DEVICENAME(d)			/* nop */
178#define DRIVERNAME(d)			/* nop */
179#define DEVCLANAME(d)			/* nop */
180
181#define print_device_short(d,i)		/* nop */
182#define print_device(d,i)		/* nop */
183#define print_device_tree_short(d,i)	/* nop */
184#define print_device_tree(d,i)		/* nop */
185#define print_driver_short(d,i)		/* nop */
186#define print_driver(d,i)		/* nop */
187#define print_driver_list(d,i)		/* nop */
188#define print_devclass_short(d,i)	/* nop */
189#define print_devclass(d,i)		/* nop */
190#define print_devclass_list_short()	/* nop */
191#define print_devclass_list()		/* nop */
192#endif
193
194/*
195 * dev sysctl tree
196 */
197
198enum {
199	DEVCLASS_SYSCTL_PARENT,
200};
201
202static int
203devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204{
205	devclass_t dc = (devclass_t)arg1;
206	const char *value;
207
208	switch (arg2) {
209	case DEVCLASS_SYSCTL_PARENT:
210		value = dc->parent ? dc->parent->name : "";
211		break;
212	default:
213		return (EINVAL);
214	}
215	return (SYSCTL_OUT(req, value, strlen(value)));
216}
217
218static void
219devclass_sysctl_init(devclass_t dc)
220{
221
222	if (dc->sysctl_tree != NULL)
223		return;
224	sysctl_ctx_init(&dc->sysctl_ctx);
225	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227	    CTLFLAG_RD, NULL, "");
228	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229	    OID_AUTO, "%parent", CTLFLAG_RD,
230	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231	    "parent class");
232}
233
234enum {
235	DEVICE_SYSCTL_DESC,
236	DEVICE_SYSCTL_DRIVER,
237	DEVICE_SYSCTL_LOCATION,
238	DEVICE_SYSCTL_PNPINFO,
239	DEVICE_SYSCTL_PARENT,
240};
241
242static int
243device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244{
245	device_t dev = (device_t)arg1;
246	const char *value;
247	char *buf;
248	int error;
249
250	buf = NULL;
251	switch (arg2) {
252	case DEVICE_SYSCTL_DESC:
253		value = dev->desc ? dev->desc : "";
254		break;
255	case DEVICE_SYSCTL_DRIVER:
256		value = dev->driver ? dev->driver->name : "";
257		break;
258	case DEVICE_SYSCTL_LOCATION:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_location_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PNPINFO:
263		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264		bus_child_pnpinfo_str(dev, buf, 1024);
265		break;
266	case DEVICE_SYSCTL_PARENT:
267		value = dev->parent ? dev->parent->nameunit : "";
268		break;
269	default:
270		return (EINVAL);
271	}
272	error = SYSCTL_OUT(req, value, strlen(value));
273	if (buf != NULL)
274		free(buf, M_BUS);
275	return (error);
276}
277
278static void
279device_sysctl_init(device_t dev)
280{
281	devclass_t dc = dev->devclass;
282
283	if (dev->sysctl_tree != NULL)
284		return;
285	devclass_sysctl_init(dc);
286	sysctl_ctx_init(&dev->sysctl_ctx);
287	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289	    dev->nameunit + strlen(dc->name),
290	    CTLFLAG_RD, NULL, "");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%desc", CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294	    "device description");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%driver", CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298	    "device driver name");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%location", CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302	    "device location relative to parent");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306	    "device identification");
307	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308	    OID_AUTO, "%parent", CTLFLAG_RD,
309	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310	    "parent device");
311}
312
313static void
314device_sysctl_update(device_t dev)
315{
316	devclass_t dc = dev->devclass;
317
318	if (dev->sysctl_tree == NULL)
319		return;
320	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321}
322
323static void
324device_sysctl_fini(device_t dev)
325{
326	if (dev->sysctl_tree == NULL)
327		return;
328	sysctl_ctx_free(&dev->sysctl_ctx);
329	dev->sysctl_tree = NULL;
330}
331
332/*
333 * /dev/devctl implementation
334 */
335
336/*
337 * This design allows only one reader for /dev/devctl.  This is not desirable
338 * in the long run, but will get a lot of hair out of this implementation.
339 * Maybe we should make this device a clonable device.
340 *
341 * Also note: we specifically do not attach a device to the device_t tree
342 * to avoid potential chicken and egg problems.  One could argue that all
343 * of this belongs to the root node.  One could also further argue that the
344 * sysctl interface that we have not might more properly be an ioctl
345 * interface, but at this stage of the game, I'm not inclined to rock that
346 * boat.
347 *
348 * I'm also not sure that the SIGIO support is done correctly or not, as
349 * I copied it from a driver that had SIGIO support that likely hasn't been
350 * tested since 3.4 or 2.2.8!
351 */
352
353/* Deprecated way to adjust queue length */
354static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358
359#define DEVCTL_DEFAULT_QUEUE_LEN 1000
360static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364    0, sysctl_devctl_queue, "I", "devctl queue length");
365
366static d_open_t		devopen;
367static d_close_t	devclose;
368static d_read_t		devread;
369static d_ioctl_t	devioctl;
370static d_poll_t		devpoll;
371
372static struct cdevsw dev_cdevsw = {
373	.d_version =	D_VERSION,
374	.d_flags =	D_NEEDGIANT,
375	.d_open =	devopen,
376	.d_close =	devclose,
377	.d_read =	devread,
378	.d_ioctl =	devioctl,
379	.d_poll =	devpoll,
380	.d_name =	"devctl",
381};
382
383struct dev_event_info
384{
385	char *dei_data;
386	TAILQ_ENTRY(dev_event_info) dei_link;
387};
388
389TAILQ_HEAD(devq, dev_event_info);
390
391static struct dev_softc
392{
393	int	inuse;
394	int	nonblock;
395	int	queued;
396	struct mtx mtx;
397	struct cv cv;
398	struct selinfo sel;
399	struct devq devq;
400	struct proc *async_proc;
401} devsoftc;
402
403static struct cdev *devctl_dev;
404
405static void
406devinit(void)
407{
408	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411	cv_init(&devsoftc.cv, "dev cv");
412	TAILQ_INIT(&devsoftc.devq);
413}
414
415static int
416devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417{
418	if (devsoftc.inuse)
419		return (EBUSY);
420	/* move to init */
421	devsoftc.inuse = 1;
422	devsoftc.nonblock = 0;
423	devsoftc.async_proc = NULL;
424	return (0);
425}
426
427static int
428devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429{
430	devsoftc.inuse = 0;
431	mtx_lock(&devsoftc.mtx);
432	cv_broadcast(&devsoftc.cv);
433	mtx_unlock(&devsoftc.mtx);
434	devsoftc.async_proc = NULL;
435	return (0);
436}
437
438/*
439 * The read channel for this device is used to report changes to
440 * userland in realtime.  We are required to free the data as well as
441 * the n1 object because we allocate them separately.  Also note that
442 * we return one record at a time.  If you try to read this device a
443 * character at a time, you will lose the rest of the data.  Listening
444 * programs are expected to cope.
445 */
446static int
447devread(struct cdev *dev, struct uio *uio, int ioflag)
448{
449	struct dev_event_info *n1;
450	int rv;
451
452	mtx_lock(&devsoftc.mtx);
453	while (TAILQ_EMPTY(&devsoftc.devq)) {
454		if (devsoftc.nonblock) {
455			mtx_unlock(&devsoftc.mtx);
456			return (EAGAIN);
457		}
458		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459		if (rv) {
460			/*
461			 * Need to translate ERESTART to EINTR here? -- jake
462			 */
463			mtx_unlock(&devsoftc.mtx);
464			return (rv);
465		}
466	}
467	n1 = TAILQ_FIRST(&devsoftc.devq);
468	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469	devsoftc.queued--;
470	mtx_unlock(&devsoftc.mtx);
471	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472	free(n1->dei_data, M_BUS);
473	free(n1, M_BUS);
474	return (rv);
475}
476
477static	int
478devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479{
480	switch (cmd) {
481
482	case FIONBIO:
483		if (*(int*)data)
484			devsoftc.nonblock = 1;
485		else
486			devsoftc.nonblock = 0;
487		return (0);
488	case FIOASYNC:
489		if (*(int*)data)
490			devsoftc.async_proc = td->td_proc;
491		else
492			devsoftc.async_proc = NULL;
493		return (0);
494
495		/* (un)Support for other fcntl() calls. */
496	case FIOCLEX:
497	case FIONCLEX:
498	case FIONREAD:
499	case FIOSETOWN:
500	case FIOGETOWN:
501	default:
502		break;
503	}
504	return (ENOTTY);
505}
506
507static	int
508devpoll(struct cdev *dev, int events, struct thread *td)
509{
510	int	revents = 0;
511
512	mtx_lock(&devsoftc.mtx);
513	if (events & (POLLIN | POLLRDNORM)) {
514		if (!TAILQ_EMPTY(&devsoftc.devq))
515			revents = events & (POLLIN | POLLRDNORM);
516		else
517			selrecord(td, &devsoftc.sel);
518	}
519	mtx_unlock(&devsoftc.mtx);
520
521	return (revents);
522}
523
524/**
525 * @brief Return whether the userland process is running
526 */
527boolean_t
528devctl_process_running(void)
529{
530	return (devsoftc.inuse == 1);
531}
532
533/**
534 * @brief Queue data to be read from the devctl device
535 *
536 * Generic interface to queue data to the devctl device.  It is
537 * assumed that @p data is properly formatted.  It is further assumed
538 * that @p data is allocated using the M_BUS malloc type.
539 */
540void
541devctl_queue_data_f(char *data, int flags)
542{
543	struct dev_event_info *n1 = NULL, *n2 = NULL;
544	struct proc *p;
545
546	if (strlen(data) == 0)
547		goto out;
548	if (devctl_queue_length == 0)
549		goto out;
550	n1 = malloc(sizeof(*n1), M_BUS, flags);
551	if (n1 == NULL)
552		goto out;
553	n1->dei_data = data;
554	mtx_lock(&devsoftc.mtx);
555	if (devctl_queue_length == 0) {
556		mtx_unlock(&devsoftc.mtx);
557		free(n1->dei_data, M_BUS);
558		free(n1, M_BUS);
559		return;
560	}
561	/* Leave at least one spot in the queue... */
562	while (devsoftc.queued > devctl_queue_length - 1) {
563		n2 = TAILQ_FIRST(&devsoftc.devq);
564		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565		free(n2->dei_data, M_BUS);
566		free(n2, M_BUS);
567		devsoftc.queued--;
568	}
569	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570	devsoftc.queued++;
571	cv_broadcast(&devsoftc.cv);
572	mtx_unlock(&devsoftc.mtx);
573	selwakeup(&devsoftc.sel);
574	p = devsoftc.async_proc;
575	if (p != NULL) {
576		PROC_LOCK(p);
577		psignal(p, SIGIO);
578		PROC_UNLOCK(p);
579	}
580	return;
581out:
582	/*
583	 * We have to free data on all error paths since the caller
584	 * assumes it will be free'd when this item is dequeued.
585	 */
586	free(data, M_BUS);
587	return;
588}
589
590void
591devctl_queue_data(char *data)
592{
593
594	devctl_queue_data_f(data, M_NOWAIT);
595}
596
597/**
598 * @brief Send a 'notification' to userland, using standard ways
599 */
600void
601devctl_notify_f(const char *system, const char *subsystem, const char *type,
602    const char *data, int flags)
603{
604	int len = 0;
605	char *msg;
606
607	if (system == NULL)
608		return;		/* BOGUS!  Must specify system. */
609	if (subsystem == NULL)
610		return;		/* BOGUS!  Must specify subsystem. */
611	if (type == NULL)
612		return;		/* BOGUS!  Must specify type. */
613	len += strlen(" system=") + strlen(system);
614	len += strlen(" subsystem=") + strlen(subsystem);
615	len += strlen(" type=") + strlen(type);
616	/* add in the data message plus newline. */
617	if (data != NULL)
618		len += strlen(data);
619	len += 3;	/* '!', '\n', and NUL */
620	msg = malloc(len, M_BUS, flags);
621	if (msg == NULL)
622		return;		/* Drop it on the floor */
623	if (data != NULL)
624		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625		    system, subsystem, type, data);
626	else
627		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628		    system, subsystem, type);
629	devctl_queue_data_f(msg, flags);
630}
631
632void
633devctl_notify(const char *system, const char *subsystem, const char *type,
634    const char *data)
635{
636
637	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638}
639
640/*
641 * Common routine that tries to make sending messages as easy as possible.
642 * We allocate memory for the data, copy strings into that, but do not
643 * free it unless there's an error.  The dequeue part of the driver should
644 * free the data.  We don't send data when the device is disabled.  We do
645 * send data, even when we have no listeners, because we wish to avoid
646 * races relating to startup and restart of listening applications.
647 *
648 * devaddq is designed to string together the type of event, with the
649 * object of that event, plus the plug and play info and location info
650 * for that event.  This is likely most useful for devices, but less
651 * useful for other consumers of this interface.  Those should use
652 * the devctl_queue_data() interface instead.
653 */
654static void
655devaddq(const char *type, const char *what, device_t dev)
656{
657	char *data = NULL;
658	char *loc = NULL;
659	char *pnp = NULL;
660	const char *parstr;
661
662	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663		return;
664	data = malloc(1024, M_BUS, M_NOWAIT);
665	if (data == NULL)
666		goto bad;
667
668	/* get the bus specific location of this device */
669	loc = malloc(1024, M_BUS, M_NOWAIT);
670	if (loc == NULL)
671		goto bad;
672	*loc = '\0';
673	bus_child_location_str(dev, loc, 1024);
674
675	/* Get the bus specific pnp info of this device */
676	pnp = malloc(1024, M_BUS, M_NOWAIT);
677	if (pnp == NULL)
678		goto bad;
679	*pnp = '\0';
680	bus_child_pnpinfo_str(dev, pnp, 1024);
681
682	/* Get the parent of this device, or / if high enough in the tree. */
683	if (device_get_parent(dev) == NULL)
684		parstr = ".";	/* Or '/' ? */
685	else
686		parstr = device_get_nameunit(device_get_parent(dev));
687	/* String it all together. */
688	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689	  parstr);
690	free(loc, M_BUS);
691	free(pnp, M_BUS);
692	devctl_queue_data(data);
693	return;
694bad:
695	free(pnp, M_BUS);
696	free(loc, M_BUS);
697	free(data, M_BUS);
698	return;
699}
700
701/*
702 * A device was added to the tree.  We are called just after it successfully
703 * attaches (that is, probe and attach success for this device).  No call
704 * is made if a device is merely parented into the tree.  See devnomatch
705 * if probe fails.  If attach fails, no notification is sent (but maybe
706 * we should have a different message for this).
707 */
708static void
709devadded(device_t dev)
710{
711	devaddq("+", device_get_nameunit(dev), dev);
712}
713
714/*
715 * A device was removed from the tree.  We are called just before this
716 * happens.
717 */
718static void
719devremoved(device_t dev)
720{
721	devaddq("-", device_get_nameunit(dev), dev);
722}
723
724/*
725 * Called when there's no match for this device.  This is only called
726 * the first time that no match happens, so we don't keep getting this
727 * message.  Should that prove to be undesirable, we can change it.
728 * This is called when all drivers that can attach to a given bus
729 * decline to accept this device.  Other errors may not be detected.
730 */
731static void
732devnomatch(device_t dev)
733{
734	devaddq("?", "", dev);
735}
736
737static int
738sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739{
740	struct dev_event_info *n1;
741	int dis, error;
742
743	dis = devctl_queue_length == 0;
744	error = sysctl_handle_int(oidp, &dis, 0, req);
745	if (error || !req->newptr)
746		return (error);
747	mtx_lock(&devsoftc.mtx);
748	if (dis) {
749		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750			n1 = TAILQ_FIRST(&devsoftc.devq);
751			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752			free(n1->dei_data, M_BUS);
753			free(n1, M_BUS);
754		}
755		devsoftc.queued = 0;
756		devctl_queue_length = 0;
757	} else {
758		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759	}
760	mtx_unlock(&devsoftc.mtx);
761	return (0);
762}
763
764static int
765sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766{
767	struct dev_event_info *n1;
768	int q, error;
769
770	q = devctl_queue_length;
771	error = sysctl_handle_int(oidp, &q, 0, req);
772	if (error || !req->newptr)
773		return (error);
774	if (q < 0)
775		return (EINVAL);
776	mtx_lock(&devsoftc.mtx);
777	devctl_queue_length = q;
778	while (devsoftc.queued > devctl_queue_length) {
779		n1 = TAILQ_FIRST(&devsoftc.devq);
780		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781		free(n1->dei_data, M_BUS);
782		free(n1, M_BUS);
783		devsoftc.queued--;
784	}
785	mtx_unlock(&devsoftc.mtx);
786	return (0);
787}
788
789/* End of /dev/devctl code */
790
791static TAILQ_HEAD(,device)	bus_data_devices;
792static int bus_data_generation = 1;
793
794static kobj_method_t null_methods[] = {
795	KOBJMETHOD_END
796};
797
798DEFINE_CLASS(null, null_methods, 0);
799
800/*
801 * Bus pass implementation
802 */
803
804static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805int bus_current_pass = BUS_PASS_ROOT;
806
807/**
808 * @internal
809 * @brief Register the pass level of a new driver attachment
810 *
811 * Register a new driver attachment's pass level.  If no driver
812 * attachment with the same pass level has been added, then @p new
813 * will be added to the global passes list.
814 *
815 * @param new		the new driver attachment
816 */
817static void
818driver_register_pass(struct driverlink *new)
819{
820	struct driverlink *dl;
821
822	/* We only consider pass numbers during boot. */
823	if (bus_current_pass == BUS_PASS_DEFAULT)
824		return;
825
826	/*
827	 * Walk the passes list.  If we already know about this pass
828	 * then there is nothing to do.  If we don't, then insert this
829	 * driver link into the list.
830	 */
831	TAILQ_FOREACH(dl, &passes, passlink) {
832		if (dl->pass < new->pass)
833			continue;
834		if (dl->pass == new->pass)
835			return;
836		TAILQ_INSERT_BEFORE(dl, new, passlink);
837		return;
838	}
839	TAILQ_INSERT_TAIL(&passes, new, passlink);
840}
841
842/**
843 * @brief Raise the current bus pass
844 *
845 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846 * method on the root bus to kick off a new device tree scan for each
847 * new pass level that has at least one driver.
848 */
849void
850bus_set_pass(int pass)
851{
852	struct driverlink *dl;
853
854	if (bus_current_pass > pass)
855		panic("Attempt to lower bus pass level");
856
857	TAILQ_FOREACH(dl, &passes, passlink) {
858		/* Skip pass values below the current pass level. */
859		if (dl->pass <= bus_current_pass)
860			continue;
861
862		/*
863		 * Bail once we hit a driver with a pass level that is
864		 * too high.
865		 */
866		if (dl->pass > pass)
867			break;
868
869		/*
870		 * Raise the pass level to the next level and rescan
871		 * the tree.
872		 */
873		bus_current_pass = dl->pass;
874		BUS_NEW_PASS(root_bus);
875	}
876
877	/*
878	 * If there isn't a driver registered for the requested pass,
879	 * then bus_current_pass might still be less than 'pass'.  Set
880	 * it to 'pass' in that case.
881	 */
882	if (bus_current_pass < pass)
883		bus_current_pass = pass;
884	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885}
886
887/*
888 * Devclass implementation
889 */
890
891static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892
893/**
894 * @internal
895 * @brief Find or create a device class
896 *
897 * If a device class with the name @p classname exists, return it,
898 * otherwise if @p create is non-zero create and return a new device
899 * class.
900 *
901 * If @p parentname is non-NULL, the parent of the devclass is set to
902 * the devclass of that name.
903 *
904 * @param classname	the devclass name to find or create
905 * @param parentname	the parent devclass name or @c NULL
906 * @param create	non-zero to create a devclass
907 */
908static devclass_t
909devclass_find_internal(const char *classname, const char *parentname,
910		       int create)
911{
912	devclass_t dc;
913
914	PDEBUG(("looking for %s", classname));
915	if (!classname)
916		return (NULL);
917
918	TAILQ_FOREACH(dc, &devclasses, link) {
919		if (!strcmp(dc->name, classname))
920			break;
921	}
922
923	if (create && !dc) {
924		PDEBUG(("creating %s", classname));
925		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926		    M_BUS, M_NOWAIT | M_ZERO);
927		if (!dc)
928			return (NULL);
929		dc->parent = NULL;
930		dc->name = (char*) (dc + 1);
931		strcpy(dc->name, classname);
932		TAILQ_INIT(&dc->drivers);
933		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934
935		bus_data_generation_update();
936	}
937
938	/*
939	 * If a parent class is specified, then set that as our parent so
940	 * that this devclass will support drivers for the parent class as
941	 * well.  If the parent class has the same name don't do this though
942	 * as it creates a cycle that can trigger an infinite loop in
943	 * device_probe_child() if a device exists for which there is no
944	 * suitable driver.
945	 */
946	if (parentname && dc && !dc->parent &&
947	    strcmp(classname, parentname) != 0) {
948		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949		dc->parent->flags |= DC_HAS_CHILDREN;
950	}
951
952	return (dc);
953}
954
955/**
956 * @brief Create a device class
957 *
958 * If a device class with the name @p classname exists, return it,
959 * otherwise create and return a new device class.
960 *
961 * @param classname	the devclass name to find or create
962 */
963devclass_t
964devclass_create(const char *classname)
965{
966	return (devclass_find_internal(classname, NULL, TRUE));
967}
968
969/**
970 * @brief Find a device class
971 *
972 * If a device class with the name @p classname exists, return it,
973 * otherwise return @c NULL.
974 *
975 * @param classname	the devclass name to find
976 */
977devclass_t
978devclass_find(const char *classname)
979{
980	return (devclass_find_internal(classname, NULL, FALSE));
981}
982
983/**
984 * @brief Register that a device driver has been added to a devclass
985 *
986 * Register that a device driver has been added to a devclass.  This
987 * is called by devclass_add_driver to accomplish the recursive
988 * notification of all the children classes of dc, as well as dc.
989 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990 * the devclass.  We do a full search here of the devclass list at
991 * each iteration level to save storing children-lists in the devclass
992 * structure.  If we ever move beyond a few dozen devices doing this,
993 * we may need to reevaluate...
994 *
995 * @param dc		the devclass to edit
996 * @param driver	the driver that was just added
997 */
998static void
999devclass_driver_added(devclass_t dc, driver_t *driver)
1000{
1001	devclass_t parent;
1002	int i;
1003
1004	/*
1005	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1006	 */
1007	for (i = 0; i < dc->maxunit; i++)
1008		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1009			BUS_DRIVER_ADDED(dc->devices[i], driver);
1010
1011	/*
1012	 * Walk through the children classes.  Since we only keep a
1013	 * single parent pointer around, we walk the entire list of
1014	 * devclasses looking for children.  We set the
1015	 * DC_HAS_CHILDREN flag when a child devclass is created on
1016	 * the parent, so we only walk the list for those devclasses
1017	 * that have children.
1018	 */
1019	if (!(dc->flags & DC_HAS_CHILDREN))
1020		return;
1021	parent = dc;
1022	TAILQ_FOREACH(dc, &devclasses, link) {
1023		if (dc->parent == parent)
1024			devclass_driver_added(dc, driver);
1025	}
1026}
1027
1028/**
1029 * @brief Add a device driver to a device class
1030 *
1031 * Add a device driver to a devclass. This is normally called
1032 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1033 * all devices in the devclass will be called to allow them to attempt
1034 * to re-probe any unmatched children.
1035 *
1036 * @param dc		the devclass to edit
1037 * @param driver	the driver to register
1038 */
1039static int
1040devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1041{
1042	driverlink_t dl;
1043	const char *parentname;
1044
1045	PDEBUG(("%s", DRIVERNAME(driver)));
1046
1047	/* Don't allow invalid pass values. */
1048	if (pass <= BUS_PASS_ROOT)
1049		return (EINVAL);
1050
1051	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1052	if (!dl)
1053		return (ENOMEM);
1054
1055	/*
1056	 * Compile the driver's methods. Also increase the reference count
1057	 * so that the class doesn't get freed when the last instance
1058	 * goes. This means we can safely use static methods and avoids a
1059	 * double-free in devclass_delete_driver.
1060	 */
1061	kobj_class_compile((kobj_class_t) driver);
1062
1063	/*
1064	 * If the driver has any base classes, make the
1065	 * devclass inherit from the devclass of the driver's
1066	 * first base class. This will allow the system to
1067	 * search for drivers in both devclasses for children
1068	 * of a device using this driver.
1069	 */
1070	if (driver->baseclasses)
1071		parentname = driver->baseclasses[0]->name;
1072	else
1073		parentname = NULL;
1074	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1075
1076	dl->driver = driver;
1077	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1078	driver->refs++;		/* XXX: kobj_mtx */
1079	dl->pass = pass;
1080	driver_register_pass(dl);
1081
1082	devclass_driver_added(dc, driver);
1083	bus_data_generation_update();
1084	return (0);
1085}
1086
1087/**
1088 * @brief Delete a device driver from a device class
1089 *
1090 * Delete a device driver from a devclass. This is normally called
1091 * automatically by DRIVER_MODULE().
1092 *
1093 * If the driver is currently attached to any devices,
1094 * devclass_delete_driver() will first attempt to detach from each
1095 * device. If one of the detach calls fails, the driver will not be
1096 * deleted.
1097 *
1098 * @param dc		the devclass to edit
1099 * @param driver	the driver to unregister
1100 */
1101static int
1102devclass_delete_driver(devclass_t busclass, driver_t *driver)
1103{
1104	devclass_t dc = devclass_find(driver->name);
1105	driverlink_t dl;
1106	device_t dev;
1107	int i;
1108	int error;
1109
1110	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1111
1112	if (!dc)
1113		return (0);
1114
1115	/*
1116	 * Find the link structure in the bus' list of drivers.
1117	 */
1118	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1119		if (dl->driver == driver)
1120			break;
1121	}
1122
1123	if (!dl) {
1124		PDEBUG(("%s not found in %s list", driver->name,
1125		    busclass->name));
1126		return (ENOENT);
1127	}
1128
1129	/*
1130	 * Disassociate from any devices.  We iterate through all the
1131	 * devices in the devclass of the driver and detach any which are
1132	 * using the driver and which have a parent in the devclass which
1133	 * we are deleting from.
1134	 *
1135	 * Note that since a driver can be in multiple devclasses, we
1136	 * should not detach devices which are not children of devices in
1137	 * the affected devclass.
1138	 */
1139	for (i = 0; i < dc->maxunit; i++) {
1140		if (dc->devices[i]) {
1141			dev = dc->devices[i];
1142			if (dev->driver == driver && dev->parent &&
1143			    dev->parent->devclass == busclass) {
1144				if ((error = device_detach(dev)) != 0)
1145					return (error);
1146				device_set_driver(dev, NULL);
1147				BUS_PROBE_NOMATCH(dev->parent, dev);
1148				devnomatch(dev);
1149				dev->flags |= DF_DONENOMATCH;
1150			}
1151		}
1152	}
1153
1154	TAILQ_REMOVE(&busclass->drivers, dl, link);
1155	free(dl, M_BUS);
1156
1157	/* XXX: kobj_mtx */
1158	driver->refs--;
1159	if (driver->refs == 0)
1160		kobj_class_free((kobj_class_t) driver);
1161
1162	bus_data_generation_update();
1163	return (0);
1164}
1165
1166/**
1167 * @brief Quiesces a set of device drivers from a device class
1168 *
1169 * Quiesce a device driver from a devclass. This is normally called
1170 * automatically by DRIVER_MODULE().
1171 *
1172 * If the driver is currently attached to any devices,
1173 * devclass_quiesece_driver() will first attempt to quiesce each
1174 * device.
1175 *
1176 * @param dc		the devclass to edit
1177 * @param driver	the driver to unregister
1178 */
1179static int
1180devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1181{
1182	devclass_t dc = devclass_find(driver->name);
1183	driverlink_t dl;
1184	device_t dev;
1185	int i;
1186	int error;
1187
1188	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1189
1190	if (!dc)
1191		return (0);
1192
1193	/*
1194	 * Find the link structure in the bus' list of drivers.
1195	 */
1196	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1197		if (dl->driver == driver)
1198			break;
1199	}
1200
1201	if (!dl) {
1202		PDEBUG(("%s not found in %s list", driver->name,
1203		    busclass->name));
1204		return (ENOENT);
1205	}
1206
1207	/*
1208	 * Quiesce all devices.  We iterate through all the devices in
1209	 * the devclass of the driver and quiesce any which are using
1210	 * the driver and which have a parent in the devclass which we
1211	 * are quiescing.
1212	 *
1213	 * Note that since a driver can be in multiple devclasses, we
1214	 * should not quiesce devices which are not children of
1215	 * devices in the affected devclass.
1216	 */
1217	for (i = 0; i < dc->maxunit; i++) {
1218		if (dc->devices[i]) {
1219			dev = dc->devices[i];
1220			if (dev->driver == driver && dev->parent &&
1221			    dev->parent->devclass == busclass) {
1222				if ((error = device_quiesce(dev)) != 0)
1223					return (error);
1224			}
1225		}
1226	}
1227
1228	return (0);
1229}
1230
1231/**
1232 * @internal
1233 */
1234static driverlink_t
1235devclass_find_driver_internal(devclass_t dc, const char *classname)
1236{
1237	driverlink_t dl;
1238
1239	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1240
1241	TAILQ_FOREACH(dl, &dc->drivers, link) {
1242		if (!strcmp(dl->driver->name, classname))
1243			return (dl);
1244	}
1245
1246	PDEBUG(("not found"));
1247	return (NULL);
1248}
1249
1250/**
1251 * @brief Return the name of the devclass
1252 */
1253const char *
1254devclass_get_name(devclass_t dc)
1255{
1256	return (dc->name);
1257}
1258
1259/**
1260 * @brief Find a device given a unit number
1261 *
1262 * @param dc		the devclass to search
1263 * @param unit		the unit number to search for
1264 *
1265 * @returns		the device with the given unit number or @c
1266 *			NULL if there is no such device
1267 */
1268device_t
1269devclass_get_device(devclass_t dc, int unit)
1270{
1271	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1272		return (NULL);
1273	return (dc->devices[unit]);
1274}
1275
1276/**
1277 * @brief Find the softc field of a device given a unit number
1278 *
1279 * @param dc		the devclass to search
1280 * @param unit		the unit number to search for
1281 *
1282 * @returns		the softc field of the device with the given
1283 *			unit number or @c NULL if there is no such
1284 *			device
1285 */
1286void *
1287devclass_get_softc(devclass_t dc, int unit)
1288{
1289	device_t dev;
1290
1291	dev = devclass_get_device(dc, unit);
1292	if (!dev)
1293		return (NULL);
1294
1295	return (device_get_softc(dev));
1296}
1297
1298/**
1299 * @brief Get a list of devices in the devclass
1300 *
1301 * An array containing a list of all the devices in the given devclass
1302 * is allocated and returned in @p *devlistp. The number of devices
1303 * in the array is returned in @p *devcountp. The caller should free
1304 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1305 *
1306 * @param dc		the devclass to examine
1307 * @param devlistp	points at location for array pointer return
1308 *			value
1309 * @param devcountp	points at location for array size return value
1310 *
1311 * @retval 0		success
1312 * @retval ENOMEM	the array allocation failed
1313 */
1314int
1315devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1316{
1317	int count, i;
1318	device_t *list;
1319
1320	count = devclass_get_count(dc);
1321	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1322	if (!list)
1323		return (ENOMEM);
1324
1325	count = 0;
1326	for (i = 0; i < dc->maxunit; i++) {
1327		if (dc->devices[i]) {
1328			list[count] = dc->devices[i];
1329			count++;
1330		}
1331	}
1332
1333	*devlistp = list;
1334	*devcountp = count;
1335
1336	return (0);
1337}
1338
1339/**
1340 * @brief Get a list of drivers in the devclass
1341 *
1342 * An array containing a list of pointers to all the drivers in the
1343 * given devclass is allocated and returned in @p *listp.  The number
1344 * of drivers in the array is returned in @p *countp. The caller should
1345 * free the array using @c free(p, M_TEMP).
1346 *
1347 * @param dc		the devclass to examine
1348 * @param listp		gives location for array pointer return value
1349 * @param countp	gives location for number of array elements
1350 *			return value
1351 *
1352 * @retval 0		success
1353 * @retval ENOMEM	the array allocation failed
1354 */
1355int
1356devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1357{
1358	driverlink_t dl;
1359	driver_t **list;
1360	int count;
1361
1362	count = 0;
1363	TAILQ_FOREACH(dl, &dc->drivers, link)
1364		count++;
1365	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1366	if (list == NULL)
1367		return (ENOMEM);
1368
1369	count = 0;
1370	TAILQ_FOREACH(dl, &dc->drivers, link) {
1371		list[count] = dl->driver;
1372		count++;
1373	}
1374	*listp = list;
1375	*countp = count;
1376
1377	return (0);
1378}
1379
1380/**
1381 * @brief Get the number of devices in a devclass
1382 *
1383 * @param dc		the devclass to examine
1384 */
1385int
1386devclass_get_count(devclass_t dc)
1387{
1388	int count, i;
1389
1390	count = 0;
1391	for (i = 0; i < dc->maxunit; i++)
1392		if (dc->devices[i])
1393			count++;
1394	return (count);
1395}
1396
1397/**
1398 * @brief Get the maximum unit number used in a devclass
1399 *
1400 * Note that this is one greater than the highest currently-allocated
1401 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1402 * that not even the devclass has been allocated yet.
1403 *
1404 * @param dc		the devclass to examine
1405 */
1406int
1407devclass_get_maxunit(devclass_t dc)
1408{
1409	if (dc == NULL)
1410		return (-1);
1411	return (dc->maxunit);
1412}
1413
1414/**
1415 * @brief Find a free unit number in a devclass
1416 *
1417 * This function searches for the first unused unit number greater
1418 * that or equal to @p unit.
1419 *
1420 * @param dc		the devclass to examine
1421 * @param unit		the first unit number to check
1422 */
1423int
1424devclass_find_free_unit(devclass_t dc, int unit)
1425{
1426	if (dc == NULL)
1427		return (unit);
1428	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1429		unit++;
1430	return (unit);
1431}
1432
1433/**
1434 * @brief Set the parent of a devclass
1435 *
1436 * The parent class is normally initialised automatically by
1437 * DRIVER_MODULE().
1438 *
1439 * @param dc		the devclass to edit
1440 * @param pdc		the new parent devclass
1441 */
1442void
1443devclass_set_parent(devclass_t dc, devclass_t pdc)
1444{
1445	dc->parent = pdc;
1446}
1447
1448/**
1449 * @brief Get the parent of a devclass
1450 *
1451 * @param dc		the devclass to examine
1452 */
1453devclass_t
1454devclass_get_parent(devclass_t dc)
1455{
1456	return (dc->parent);
1457}
1458
1459struct sysctl_ctx_list *
1460devclass_get_sysctl_ctx(devclass_t dc)
1461{
1462	return (&dc->sysctl_ctx);
1463}
1464
1465struct sysctl_oid *
1466devclass_get_sysctl_tree(devclass_t dc)
1467{
1468	return (dc->sysctl_tree);
1469}
1470
1471/**
1472 * @internal
1473 * @brief Allocate a unit number
1474 *
1475 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1476 * will do). The allocated unit number is returned in @p *unitp.
1477
1478 * @param dc		the devclass to allocate from
1479 * @param unitp		points at the location for the allocated unit
1480 *			number
1481 *
1482 * @retval 0		success
1483 * @retval EEXIST	the requested unit number is already allocated
1484 * @retval ENOMEM	memory allocation failure
1485 */
1486static int
1487devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1488{
1489	const char *s;
1490	int unit = *unitp;
1491
1492	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1493
1494	/* Ask the parent bus if it wants to wire this device. */
1495	if (unit == -1)
1496		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1497		    &unit);
1498
1499	/* If we were given a wired unit number, check for existing device */
1500	/* XXX imp XXX */
1501	if (unit != -1) {
1502		if (unit >= 0 && unit < dc->maxunit &&
1503		    dc->devices[unit] != NULL) {
1504			if (bootverbose)
1505				printf("%s: %s%d already exists; skipping it\n",
1506				    dc->name, dc->name, *unitp);
1507			return (EEXIST);
1508		}
1509	} else {
1510		/* Unwired device, find the next available slot for it */
1511		unit = 0;
1512		for (unit = 0;; unit++) {
1513			/* If there is an "at" hint for a unit then skip it. */
1514			if (resource_string_value(dc->name, unit, "at", &s) ==
1515			    0)
1516				continue;
1517
1518			/* If this device slot is already in use, skip it. */
1519			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1520				continue;
1521
1522			break;
1523		}
1524	}
1525
1526	/*
1527	 * We've selected a unit beyond the length of the table, so let's
1528	 * extend the table to make room for all units up to and including
1529	 * this one.
1530	 */
1531	if (unit >= dc->maxunit) {
1532		device_t *newlist, *oldlist;
1533		int newsize;
1534
1535		oldlist = dc->devices;
1536		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1537		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1538		if (!newlist)
1539			return (ENOMEM);
1540		if (oldlist != NULL)
1541			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1542		bzero(newlist + dc->maxunit,
1543		    sizeof(device_t) * (newsize - dc->maxunit));
1544		dc->devices = newlist;
1545		dc->maxunit = newsize;
1546		if (oldlist != NULL)
1547			free(oldlist, M_BUS);
1548	}
1549	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1550
1551	*unitp = unit;
1552	return (0);
1553}
1554
1555/**
1556 * @internal
1557 * @brief Add a device to a devclass
1558 *
1559 * A unit number is allocated for the device (using the device's
1560 * preferred unit number if any) and the device is registered in the
1561 * devclass. This allows the device to be looked up by its unit
1562 * number, e.g. by decoding a dev_t minor number.
1563 *
1564 * @param dc		the devclass to add to
1565 * @param dev		the device to add
1566 *
1567 * @retval 0		success
1568 * @retval EEXIST	the requested unit number is already allocated
1569 * @retval ENOMEM	memory allocation failure
1570 */
1571static int
1572devclass_add_device(devclass_t dc, device_t dev)
1573{
1574	int buflen, error;
1575
1576	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1577
1578	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1579	if (buflen < 0)
1580		return (ENOMEM);
1581	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1582	if (!dev->nameunit)
1583		return (ENOMEM);
1584
1585	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1586		free(dev->nameunit, M_BUS);
1587		dev->nameunit = NULL;
1588		return (error);
1589	}
1590	dc->devices[dev->unit] = dev;
1591	dev->devclass = dc;
1592	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1593
1594	return (0);
1595}
1596
1597/**
1598 * @internal
1599 * @brief Delete a device from a devclass
1600 *
1601 * The device is removed from the devclass's device list and its unit
1602 * number is freed.
1603
1604 * @param dc		the devclass to delete from
1605 * @param dev		the device to delete
1606 *
1607 * @retval 0		success
1608 */
1609static int
1610devclass_delete_device(devclass_t dc, device_t dev)
1611{
1612	if (!dc || !dev)
1613		return (0);
1614
1615	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1616
1617	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1618		panic("devclass_delete_device: inconsistent device class");
1619	dc->devices[dev->unit] = NULL;
1620	if (dev->flags & DF_WILDCARD)
1621		dev->unit = -1;
1622	dev->devclass = NULL;
1623	free(dev->nameunit, M_BUS);
1624	dev->nameunit = NULL;
1625
1626	return (0);
1627}
1628
1629/**
1630 * @internal
1631 * @brief Make a new device and add it as a child of @p parent
1632 *
1633 * @param parent	the parent of the new device
1634 * @param name		the devclass name of the new device or @c NULL
1635 *			to leave the devclass unspecified
1636 * @parem unit		the unit number of the new device of @c -1 to
1637 *			leave the unit number unspecified
1638 *
1639 * @returns the new device
1640 */
1641static device_t
1642make_device(device_t parent, const char *name, int unit)
1643{
1644	device_t dev;
1645	devclass_t dc;
1646
1647	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1648
1649	if (name) {
1650		dc = devclass_find_internal(name, NULL, TRUE);
1651		if (!dc) {
1652			printf("make_device: can't find device class %s\n",
1653			    name);
1654			return (NULL);
1655		}
1656	} else {
1657		dc = NULL;
1658	}
1659
1660	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1661	if (!dev)
1662		return (NULL);
1663
1664	dev->parent = parent;
1665	TAILQ_INIT(&dev->children);
1666	kobj_init((kobj_t) dev, &null_class);
1667	dev->driver = NULL;
1668	dev->devclass = NULL;
1669	dev->unit = unit;
1670	dev->nameunit = NULL;
1671	dev->desc = NULL;
1672	dev->busy = 0;
1673	dev->devflags = 0;
1674	dev->flags = DF_ENABLED;
1675	dev->order = 0;
1676	if (unit == -1)
1677		dev->flags |= DF_WILDCARD;
1678	if (name) {
1679		dev->flags |= DF_FIXEDCLASS;
1680		if (devclass_add_device(dc, dev)) {
1681			kobj_delete((kobj_t) dev, M_BUS);
1682			return (NULL);
1683		}
1684	}
1685	dev->ivars = NULL;
1686	dev->softc = NULL;
1687
1688	dev->state = DS_NOTPRESENT;
1689
1690	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1691	bus_data_generation_update();
1692
1693	return (dev);
1694}
1695
1696/**
1697 * @internal
1698 * @brief Print a description of a device.
1699 */
1700static int
1701device_print_child(device_t dev, device_t child)
1702{
1703	int retval = 0;
1704
1705	if (device_is_alive(child))
1706		retval += BUS_PRINT_CHILD(dev, child);
1707	else
1708		retval += device_printf(child, " not found\n");
1709
1710	return (retval);
1711}
1712
1713/**
1714 * @brief Create a new device
1715 *
1716 * This creates a new device and adds it as a child of an existing
1717 * parent device. The new device will be added after the last existing
1718 * child with order zero.
1719 *
1720 * @param dev		the device which will be the parent of the
1721 *			new child device
1722 * @param name		devclass name for new device or @c NULL if not
1723 *			specified
1724 * @param unit		unit number for new device or @c -1 if not
1725 *			specified
1726 *
1727 * @returns		the new device
1728 */
1729device_t
1730device_add_child(device_t dev, const char *name, int unit)
1731{
1732	return (device_add_child_ordered(dev, 0, name, unit));
1733}
1734
1735/**
1736 * @brief Create a new device
1737 *
1738 * This creates a new device and adds it as a child of an existing
1739 * parent device. The new device will be added after the last existing
1740 * child with the same order.
1741 *
1742 * @param dev		the device which will be the parent of the
1743 *			new child device
1744 * @param order		a value which is used to partially sort the
1745 *			children of @p dev - devices created using
1746 *			lower values of @p order appear first in @p
1747 *			dev's list of children
1748 * @param name		devclass name for new device or @c NULL if not
1749 *			specified
1750 * @param unit		unit number for new device or @c -1 if not
1751 *			specified
1752 *
1753 * @returns		the new device
1754 */
1755device_t
1756device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1757{
1758	device_t child;
1759	device_t place;
1760
1761	PDEBUG(("%s at %s with order %u as unit %d",
1762	    name, DEVICENAME(dev), order, unit));
1763
1764	child = make_device(dev, name, unit);
1765	if (child == NULL)
1766		return (child);
1767	child->order = order;
1768
1769	TAILQ_FOREACH(place, &dev->children, link) {
1770		if (place->order > order)
1771			break;
1772	}
1773
1774	if (place) {
1775		/*
1776		 * The device 'place' is the first device whose order is
1777		 * greater than the new child.
1778		 */
1779		TAILQ_INSERT_BEFORE(place, child, link);
1780	} else {
1781		/*
1782		 * The new child's order is greater or equal to the order of
1783		 * any existing device. Add the child to the tail of the list.
1784		 */
1785		TAILQ_INSERT_TAIL(&dev->children, child, link);
1786	}
1787
1788	bus_data_generation_update();
1789	return (child);
1790}
1791
1792/**
1793 * @brief Delete a device
1794 *
1795 * This function deletes a device along with all of its children. If
1796 * the device currently has a driver attached to it, the device is
1797 * detached first using device_detach().
1798 *
1799 * @param dev		the parent device
1800 * @param child		the device to delete
1801 *
1802 * @retval 0		success
1803 * @retval non-zero	a unit error code describing the error
1804 */
1805int
1806device_delete_child(device_t dev, device_t child)
1807{
1808	int error;
1809	device_t grandchild;
1810
1811	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1812
1813	/* remove children first */
1814	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1815		error = device_delete_child(child, grandchild);
1816		if (error)
1817			return (error);
1818	}
1819
1820	if ((error = device_detach(child)) != 0)
1821		return (error);
1822	if (child->devclass)
1823		devclass_delete_device(child->devclass, child);
1824	TAILQ_REMOVE(&dev->children, child, link);
1825	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1826	kobj_delete((kobj_t) child, M_BUS);
1827
1828	bus_data_generation_update();
1829	return (0);
1830}
1831
1832/**
1833 * @brief Find a device given a unit number
1834 *
1835 * This is similar to devclass_get_devices() but only searches for
1836 * devices which have @p dev as a parent.
1837 *
1838 * @param dev		the parent device to search
1839 * @param unit		the unit number to search for.  If the unit is -1,
1840 *			return the first child of @p dev which has name
1841 *			@p classname (that is, the one with the lowest unit.)
1842 *
1843 * @returns		the device with the given unit number or @c
1844 *			NULL if there is no such device
1845 */
1846device_t
1847device_find_child(device_t dev, const char *classname, int unit)
1848{
1849	devclass_t dc;
1850	device_t child;
1851
1852	dc = devclass_find(classname);
1853	if (!dc)
1854		return (NULL);
1855
1856	if (unit != -1) {
1857		child = devclass_get_device(dc, unit);
1858		if (child && child->parent == dev)
1859			return (child);
1860	} else {
1861		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1862			child = devclass_get_device(dc, unit);
1863			if (child && child->parent == dev)
1864				return (child);
1865		}
1866	}
1867	return (NULL);
1868}
1869
1870/**
1871 * @internal
1872 */
1873static driverlink_t
1874first_matching_driver(devclass_t dc, device_t dev)
1875{
1876	if (dev->devclass)
1877		return (devclass_find_driver_internal(dc, dev->devclass->name));
1878	return (TAILQ_FIRST(&dc->drivers));
1879}
1880
1881/**
1882 * @internal
1883 */
1884static driverlink_t
1885next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1886{
1887	if (dev->devclass) {
1888		driverlink_t dl;
1889		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1890			if (!strcmp(dev->devclass->name, dl->driver->name))
1891				return (dl);
1892		return (NULL);
1893	}
1894	return (TAILQ_NEXT(last, link));
1895}
1896
1897/**
1898 * @internal
1899 */
1900int
1901device_probe_child(device_t dev, device_t child)
1902{
1903	devclass_t dc;
1904	driverlink_t best = NULL;
1905	driverlink_t dl;
1906	int result, pri = 0;
1907	int hasclass = (child->devclass != NULL);
1908
1909	GIANT_REQUIRED;
1910
1911	dc = dev->devclass;
1912	if (!dc)
1913		panic("device_probe_child: parent device has no devclass");
1914
1915	/*
1916	 * If the state is already probed, then return.  However, don't
1917	 * return if we can rebid this object.
1918	 */
1919	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1920		return (0);
1921
1922	for (; dc; dc = dc->parent) {
1923		for (dl = first_matching_driver(dc, child);
1924		     dl;
1925		     dl = next_matching_driver(dc, child, dl)) {
1926
1927			/* If this driver's pass is too high, then ignore it. */
1928			if (dl->pass > bus_current_pass)
1929				continue;
1930
1931			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1932			device_set_driver(child, dl->driver);
1933			if (!hasclass) {
1934				if (device_set_devclass(child, dl->driver->name)) {
1935					printf("driver bug: Unable to set devclass (devname: %s)\n",
1936					    (child ? device_get_name(child) :
1937						"no device"));
1938					device_set_driver(child, NULL);
1939					continue;
1940				}
1941			}
1942
1943			/* Fetch any flags for the device before probing. */
1944			resource_int_value(dl->driver->name, child->unit,
1945			    "flags", &child->devflags);
1946
1947			result = DEVICE_PROBE(child);
1948
1949			/* Reset flags and devclass before the next probe. */
1950			child->devflags = 0;
1951			if (!hasclass)
1952				device_set_devclass(child, NULL);
1953
1954			/*
1955			 * If the driver returns SUCCESS, there can be
1956			 * no higher match for this device.
1957			 */
1958			if (result == 0) {
1959				best = dl;
1960				pri = 0;
1961				break;
1962			}
1963
1964			/*
1965			 * The driver returned an error so it
1966			 * certainly doesn't match.
1967			 */
1968			if (result > 0) {
1969				device_set_driver(child, NULL);
1970				continue;
1971			}
1972
1973			/*
1974			 * A priority lower than SUCCESS, remember the
1975			 * best matching driver. Initialise the value
1976			 * of pri for the first match.
1977			 */
1978			if (best == NULL || result > pri) {
1979				/*
1980				 * Probes that return BUS_PROBE_NOWILDCARD
1981				 * or lower only match when they are set
1982				 * in stone by the parent bus.
1983				 */
1984				if (result <= BUS_PROBE_NOWILDCARD &&
1985				    child->flags & DF_WILDCARD)
1986					continue;
1987				best = dl;
1988				pri = result;
1989				continue;
1990			}
1991		}
1992		/*
1993		 * If we have an unambiguous match in this devclass,
1994		 * don't look in the parent.
1995		 */
1996		if (best && pri == 0)
1997			break;
1998	}
1999
2000	/*
2001	 * If we found a driver, change state and initialise the devclass.
2002	 */
2003	/* XXX What happens if we rebid and got no best? */
2004	if (best) {
2005		/*
2006		 * If this device was atached, and we were asked to
2007		 * rescan, and it is a different driver, then we have
2008		 * to detach the old driver and reattach this new one.
2009		 * Note, we don't have to check for DF_REBID here
2010		 * because if the state is > DS_ALIVE, we know it must
2011		 * be.
2012		 *
2013		 * This assumes that all DF_REBID drivers can have
2014		 * their probe routine called at any time and that
2015		 * they are idempotent as well as completely benign in
2016		 * normal operations.
2017		 *
2018		 * We also have to make sure that the detach
2019		 * succeeded, otherwise we fail the operation (or
2020		 * maybe it should just fail silently?  I'm torn).
2021		 */
2022		if (child->state > DS_ALIVE && best->driver != child->driver)
2023			if ((result = device_detach(dev)) != 0)
2024				return (result);
2025
2026		/* Set the winning driver, devclass, and flags. */
2027		if (!child->devclass) {
2028			result = device_set_devclass(child, best->driver->name);
2029			if (result != 0)
2030				return (result);
2031		}
2032		device_set_driver(child, best->driver);
2033		resource_int_value(best->driver->name, child->unit,
2034		    "flags", &child->devflags);
2035
2036		if (pri < 0) {
2037			/*
2038			 * A bit bogus. Call the probe method again to make
2039			 * sure that we have the right description.
2040			 */
2041			DEVICE_PROBE(child);
2042#if 0
2043			child->flags |= DF_REBID;
2044#endif
2045		} else
2046			child->flags &= ~DF_REBID;
2047		child->state = DS_ALIVE;
2048
2049		bus_data_generation_update();
2050		return (0);
2051	}
2052
2053	return (ENXIO);
2054}
2055
2056/**
2057 * @brief Return the parent of a device
2058 */
2059device_t
2060device_get_parent(device_t dev)
2061{
2062	return (dev->parent);
2063}
2064
2065/**
2066 * @brief Get a list of children of a device
2067 *
2068 * An array containing a list of all the children of the given device
2069 * is allocated and returned in @p *devlistp. The number of devices
2070 * in the array is returned in @p *devcountp. The caller should free
2071 * the array using @c free(p, M_TEMP).
2072 *
2073 * @param dev		the device to examine
2074 * @param devlistp	points at location for array pointer return
2075 *			value
2076 * @param devcountp	points at location for array size return value
2077 *
2078 * @retval 0		success
2079 * @retval ENOMEM	the array allocation failed
2080 */
2081int
2082device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2083{
2084	int count;
2085	device_t child;
2086	device_t *list;
2087
2088	count = 0;
2089	TAILQ_FOREACH(child, &dev->children, link) {
2090		count++;
2091	}
2092
2093	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2094	if (!list)
2095		return (ENOMEM);
2096
2097	count = 0;
2098	TAILQ_FOREACH(child, &dev->children, link) {
2099		list[count] = child;
2100		count++;
2101	}
2102
2103	*devlistp = list;
2104	*devcountp = count;
2105
2106	return (0);
2107}
2108
2109/**
2110 * @brief Return the current driver for the device or @c NULL if there
2111 * is no driver currently attached
2112 */
2113driver_t *
2114device_get_driver(device_t dev)
2115{
2116	return (dev->driver);
2117}
2118
2119/**
2120 * @brief Return the current devclass for the device or @c NULL if
2121 * there is none.
2122 */
2123devclass_t
2124device_get_devclass(device_t dev)
2125{
2126	return (dev->devclass);
2127}
2128
2129/**
2130 * @brief Return the name of the device's devclass or @c NULL if there
2131 * is none.
2132 */
2133const char *
2134device_get_name(device_t dev)
2135{
2136	if (dev != NULL && dev->devclass)
2137		return (devclass_get_name(dev->devclass));
2138	return (NULL);
2139}
2140
2141/**
2142 * @brief Return a string containing the device's devclass name
2143 * followed by an ascii representation of the device's unit number
2144 * (e.g. @c "foo2").
2145 */
2146const char *
2147device_get_nameunit(device_t dev)
2148{
2149	return (dev->nameunit);
2150}
2151
2152/**
2153 * @brief Return the device's unit number.
2154 */
2155int
2156device_get_unit(device_t dev)
2157{
2158	return (dev->unit);
2159}
2160
2161/**
2162 * @brief Return the device's description string
2163 */
2164const char *
2165device_get_desc(device_t dev)
2166{
2167	return (dev->desc);
2168}
2169
2170/**
2171 * @brief Return the device's flags
2172 */
2173uint32_t
2174device_get_flags(device_t dev)
2175{
2176	return (dev->devflags);
2177}
2178
2179struct sysctl_ctx_list *
2180device_get_sysctl_ctx(device_t dev)
2181{
2182	return (&dev->sysctl_ctx);
2183}
2184
2185struct sysctl_oid *
2186device_get_sysctl_tree(device_t dev)
2187{
2188	return (dev->sysctl_tree);
2189}
2190
2191/**
2192 * @brief Print the name of the device followed by a colon and a space
2193 *
2194 * @returns the number of characters printed
2195 */
2196int
2197device_print_prettyname(device_t dev)
2198{
2199	const char *name = device_get_name(dev);
2200
2201	if (name == NULL)
2202		return (printf("unknown: "));
2203	return (printf("%s%d: ", name, device_get_unit(dev)));
2204}
2205
2206/**
2207 * @brief Print the name of the device followed by a colon, a space
2208 * and the result of calling vprintf() with the value of @p fmt and
2209 * the following arguments.
2210 *
2211 * @returns the number of characters printed
2212 */
2213int
2214device_printf(device_t dev, const char * fmt, ...)
2215{
2216	va_list ap;
2217	int retval;
2218
2219	retval = device_print_prettyname(dev);
2220	va_start(ap, fmt);
2221	retval += vprintf(fmt, ap);
2222	va_end(ap);
2223	return (retval);
2224}
2225
2226/**
2227 * @internal
2228 */
2229static void
2230device_set_desc_internal(device_t dev, const char* desc, int copy)
2231{
2232	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2233		free(dev->desc, M_BUS);
2234		dev->flags &= ~DF_DESCMALLOCED;
2235		dev->desc = NULL;
2236	}
2237
2238	if (copy && desc) {
2239		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2240		if (dev->desc) {
2241			strcpy(dev->desc, desc);
2242			dev->flags |= DF_DESCMALLOCED;
2243		}
2244	} else {
2245		/* Avoid a -Wcast-qual warning */
2246		dev->desc = (char *)(uintptr_t) desc;
2247	}
2248
2249	bus_data_generation_update();
2250}
2251
2252/**
2253 * @brief Set the device's description
2254 *
2255 * The value of @c desc should be a string constant that will not
2256 * change (at least until the description is changed in a subsequent
2257 * call to device_set_desc() or device_set_desc_copy()).
2258 */
2259void
2260device_set_desc(device_t dev, const char* desc)
2261{
2262	device_set_desc_internal(dev, desc, FALSE);
2263}
2264
2265/**
2266 * @brief Set the device's description
2267 *
2268 * The string pointed to by @c desc is copied. Use this function if
2269 * the device description is generated, (e.g. with sprintf()).
2270 */
2271void
2272device_set_desc_copy(device_t dev, const char* desc)
2273{
2274	device_set_desc_internal(dev, desc, TRUE);
2275}
2276
2277/**
2278 * @brief Set the device's flags
2279 */
2280void
2281device_set_flags(device_t dev, uint32_t flags)
2282{
2283	dev->devflags = flags;
2284}
2285
2286/**
2287 * @brief Return the device's softc field
2288 *
2289 * The softc is allocated and zeroed when a driver is attached, based
2290 * on the size field of the driver.
2291 */
2292void *
2293device_get_softc(device_t dev)
2294{
2295	return (dev->softc);
2296}
2297
2298/**
2299 * @brief Set the device's softc field
2300 *
2301 * Most drivers do not need to use this since the softc is allocated
2302 * automatically when the driver is attached.
2303 */
2304void
2305device_set_softc(device_t dev, void *softc)
2306{
2307	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2308		free(dev->softc, M_BUS_SC);
2309	dev->softc = softc;
2310	if (dev->softc)
2311		dev->flags |= DF_EXTERNALSOFTC;
2312	else
2313		dev->flags &= ~DF_EXTERNALSOFTC;
2314}
2315
2316/**
2317 * @brief Get the device's ivars field
2318 *
2319 * The ivars field is used by the parent device to store per-device
2320 * state (e.g. the physical location of the device or a list of
2321 * resources).
2322 */
2323void *
2324device_get_ivars(device_t dev)
2325{
2326
2327	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2328	return (dev->ivars);
2329}
2330
2331/**
2332 * @brief Set the device's ivars field
2333 */
2334void
2335device_set_ivars(device_t dev, void * ivars)
2336{
2337
2338	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2339	dev->ivars = ivars;
2340}
2341
2342/**
2343 * @brief Return the device's state
2344 */
2345device_state_t
2346device_get_state(device_t dev)
2347{
2348	return (dev->state);
2349}
2350
2351/**
2352 * @brief Set the DF_ENABLED flag for the device
2353 */
2354void
2355device_enable(device_t dev)
2356{
2357	dev->flags |= DF_ENABLED;
2358}
2359
2360/**
2361 * @brief Clear the DF_ENABLED flag for the device
2362 */
2363void
2364device_disable(device_t dev)
2365{
2366	dev->flags &= ~DF_ENABLED;
2367}
2368
2369/**
2370 * @brief Increment the busy counter for the device
2371 */
2372void
2373device_busy(device_t dev)
2374{
2375	if (dev->state < DS_ATTACHED)
2376		panic("device_busy: called for unattached device");
2377	if (dev->busy == 0 && dev->parent)
2378		device_busy(dev->parent);
2379	dev->busy++;
2380	dev->state = DS_BUSY;
2381}
2382
2383/**
2384 * @brief Decrement the busy counter for the device
2385 */
2386void
2387device_unbusy(device_t dev)
2388{
2389	if (dev->state != DS_BUSY)
2390		panic("device_unbusy: called for non-busy device %s",
2391		    device_get_nameunit(dev));
2392	dev->busy--;
2393	if (dev->busy == 0) {
2394		if (dev->parent)
2395			device_unbusy(dev->parent);
2396		dev->state = DS_ATTACHED;
2397	}
2398}
2399
2400/**
2401 * @brief Set the DF_QUIET flag for the device
2402 */
2403void
2404device_quiet(device_t dev)
2405{
2406	dev->flags |= DF_QUIET;
2407}
2408
2409/**
2410 * @brief Clear the DF_QUIET flag for the device
2411 */
2412void
2413device_verbose(device_t dev)
2414{
2415	dev->flags &= ~DF_QUIET;
2416}
2417
2418/**
2419 * @brief Return non-zero if the DF_QUIET flag is set on the device
2420 */
2421int
2422device_is_quiet(device_t dev)
2423{
2424	return ((dev->flags & DF_QUIET) != 0);
2425}
2426
2427/**
2428 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2429 */
2430int
2431device_is_enabled(device_t dev)
2432{
2433	return ((dev->flags & DF_ENABLED) != 0);
2434}
2435
2436/**
2437 * @brief Return non-zero if the device was successfully probed
2438 */
2439int
2440device_is_alive(device_t dev)
2441{
2442	return (dev->state >= DS_ALIVE);
2443}
2444
2445/**
2446 * @brief Return non-zero if the device currently has a driver
2447 * attached to it
2448 */
2449int
2450device_is_attached(device_t dev)
2451{
2452	return (dev->state >= DS_ATTACHED);
2453}
2454
2455/**
2456 * @brief Set the devclass of a device
2457 * @see devclass_add_device().
2458 */
2459int
2460device_set_devclass(device_t dev, const char *classname)
2461{
2462	devclass_t dc;
2463	int error;
2464
2465	if (!classname) {
2466		if (dev->devclass)
2467			devclass_delete_device(dev->devclass, dev);
2468		return (0);
2469	}
2470
2471	if (dev->devclass) {
2472		printf("device_set_devclass: device class already set\n");
2473		return (EINVAL);
2474	}
2475
2476	dc = devclass_find_internal(classname, NULL, TRUE);
2477	if (!dc)
2478		return (ENOMEM);
2479
2480	error = devclass_add_device(dc, dev);
2481
2482	bus_data_generation_update();
2483	return (error);
2484}
2485
2486/**
2487 * @brief Set the driver of a device
2488 *
2489 * @retval 0		success
2490 * @retval EBUSY	the device already has a driver attached
2491 * @retval ENOMEM	a memory allocation failure occurred
2492 */
2493int
2494device_set_driver(device_t dev, driver_t *driver)
2495{
2496	if (dev->state >= DS_ATTACHED)
2497		return (EBUSY);
2498
2499	if (dev->driver == driver)
2500		return (0);
2501
2502	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2503		free(dev->softc, M_BUS_SC);
2504		dev->softc = NULL;
2505	}
2506	kobj_delete((kobj_t) dev, NULL);
2507	dev->driver = driver;
2508	if (driver) {
2509		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2510		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2511			dev->softc = malloc(driver->size, M_BUS_SC,
2512			    M_NOWAIT | M_ZERO);
2513			if (!dev->softc) {
2514				kobj_delete((kobj_t) dev, NULL);
2515				kobj_init((kobj_t) dev, &null_class);
2516				dev->driver = NULL;
2517				return (ENOMEM);
2518			}
2519		}
2520	} else {
2521		kobj_init((kobj_t) dev, &null_class);
2522	}
2523
2524	bus_data_generation_update();
2525	return (0);
2526}
2527
2528/**
2529 * @brief Probe a device, and return this status.
2530 *
2531 * This function is the core of the device autoconfiguration
2532 * system. Its purpose is to select a suitable driver for a device and
2533 * then call that driver to initialise the hardware appropriately. The
2534 * driver is selected by calling the DEVICE_PROBE() method of a set of
2535 * candidate drivers and then choosing the driver which returned the
2536 * best value. This driver is then attached to the device using
2537 * device_attach().
2538 *
2539 * The set of suitable drivers is taken from the list of drivers in
2540 * the parent device's devclass. If the device was originally created
2541 * with a specific class name (see device_add_child()), only drivers
2542 * with that name are probed, otherwise all drivers in the devclass
2543 * are probed. If no drivers return successful probe values in the
2544 * parent devclass, the search continues in the parent of that
2545 * devclass (see devclass_get_parent()) if any.
2546 *
2547 * @param dev		the device to initialise
2548 *
2549 * @retval 0		success
2550 * @retval ENXIO	no driver was found
2551 * @retval ENOMEM	memory allocation failure
2552 * @retval non-zero	some other unix error code
2553 * @retval -1		Device already attached
2554 */
2555int
2556device_probe(device_t dev)
2557{
2558	int error;
2559
2560	GIANT_REQUIRED;
2561
2562	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2563		return (-1);
2564
2565	if (!(dev->flags & DF_ENABLED)) {
2566		if (bootverbose && device_get_name(dev) != NULL) {
2567			device_print_prettyname(dev);
2568			printf("not probed (disabled)\n");
2569		}
2570		return (-1);
2571	}
2572	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2573		if (bus_current_pass == BUS_PASS_DEFAULT &&
2574		    !(dev->flags & DF_DONENOMATCH)) {
2575			BUS_PROBE_NOMATCH(dev->parent, dev);
2576			devnomatch(dev);
2577			dev->flags |= DF_DONENOMATCH;
2578		}
2579		return (error);
2580	}
2581	return (0);
2582}
2583
2584/**
2585 * @brief Probe a device and attach a driver if possible
2586 *
2587 * calls device_probe() and attaches if that was successful.
2588 */
2589int
2590device_probe_and_attach(device_t dev)
2591{
2592	int error;
2593
2594	GIANT_REQUIRED;
2595
2596	error = device_probe(dev);
2597	if (error == -1)
2598		return (0);
2599	else if (error != 0)
2600		return (error);
2601	return (device_attach(dev));
2602}
2603
2604/**
2605 * @brief Attach a device driver to a device
2606 *
2607 * This function is a wrapper around the DEVICE_ATTACH() driver
2608 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2609 * device's sysctl tree, optionally prints a description of the device
2610 * and queues a notification event for user-based device management
2611 * services.
2612 *
2613 * Normally this function is only called internally from
2614 * device_probe_and_attach().
2615 *
2616 * @param dev		the device to initialise
2617 *
2618 * @retval 0		success
2619 * @retval ENXIO	no driver was found
2620 * @retval ENOMEM	memory allocation failure
2621 * @retval non-zero	some other unix error code
2622 */
2623int
2624device_attach(device_t dev)
2625{
2626	int error;
2627
2628	device_sysctl_init(dev);
2629	if (!device_is_quiet(dev))
2630		device_print_child(dev->parent, dev);
2631	if ((error = DEVICE_ATTACH(dev)) != 0) {
2632		printf("device_attach: %s%d attach returned %d\n",
2633		    dev->driver->name, dev->unit, error);
2634		/* Unset the class; set in device_probe_child */
2635		if (dev->devclass == NULL)
2636			device_set_devclass(dev, NULL);
2637		device_set_driver(dev, NULL);
2638		device_sysctl_fini(dev);
2639		dev->state = DS_NOTPRESENT;
2640		return (error);
2641	}
2642	device_sysctl_update(dev);
2643	dev->state = DS_ATTACHED;
2644	dev->flags &= ~DF_DONENOMATCH;
2645	devadded(dev);
2646	return (0);
2647}
2648
2649/**
2650 * @brief Detach a driver from a device
2651 *
2652 * This function is a wrapper around the DEVICE_DETACH() driver
2653 * method. If the call to DEVICE_DETACH() succeeds, it calls
2654 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2655 * notification event for user-based device management services and
2656 * cleans up the device's sysctl tree.
2657 *
2658 * @param dev		the device to un-initialise
2659 *
2660 * @retval 0		success
2661 * @retval ENXIO	no driver was found
2662 * @retval ENOMEM	memory allocation failure
2663 * @retval non-zero	some other unix error code
2664 */
2665int
2666device_detach(device_t dev)
2667{
2668	int error;
2669
2670	GIANT_REQUIRED;
2671
2672	PDEBUG(("%s", DEVICENAME(dev)));
2673	if (dev->state == DS_BUSY)
2674		return (EBUSY);
2675	if (dev->state != DS_ATTACHED)
2676		return (0);
2677
2678	if ((error = DEVICE_DETACH(dev)) != 0)
2679		return (error);
2680	devremoved(dev);
2681	if (!device_is_quiet(dev))
2682		device_printf(dev, "detached\n");
2683	if (dev->parent)
2684		BUS_CHILD_DETACHED(dev->parent, dev);
2685
2686	if (!(dev->flags & DF_FIXEDCLASS))
2687		devclass_delete_device(dev->devclass, dev);
2688
2689	dev->state = DS_NOTPRESENT;
2690	device_set_driver(dev, NULL);
2691	device_set_desc(dev, NULL);
2692	device_sysctl_fini(dev);
2693
2694	return (0);
2695}
2696
2697/**
2698 * @brief Tells a driver to quiesce itself.
2699 *
2700 * This function is a wrapper around the DEVICE_QUIESCE() driver
2701 * method. If the call to DEVICE_QUIESCE() succeeds.
2702 *
2703 * @param dev		the device to quiesce
2704 *
2705 * @retval 0		success
2706 * @retval ENXIO	no driver was found
2707 * @retval ENOMEM	memory allocation failure
2708 * @retval non-zero	some other unix error code
2709 */
2710int
2711device_quiesce(device_t dev)
2712{
2713
2714	PDEBUG(("%s", DEVICENAME(dev)));
2715	if (dev->state == DS_BUSY)
2716		return (EBUSY);
2717	if (dev->state != DS_ATTACHED)
2718		return (0);
2719
2720	return (DEVICE_QUIESCE(dev));
2721}
2722
2723/**
2724 * @brief Notify a device of system shutdown
2725 *
2726 * This function calls the DEVICE_SHUTDOWN() driver method if the
2727 * device currently has an attached driver.
2728 *
2729 * @returns the value returned by DEVICE_SHUTDOWN()
2730 */
2731int
2732device_shutdown(device_t dev)
2733{
2734	if (dev->state < DS_ATTACHED)
2735		return (0);
2736	return (DEVICE_SHUTDOWN(dev));
2737}
2738
2739/**
2740 * @brief Set the unit number of a device
2741 *
2742 * This function can be used to override the unit number used for a
2743 * device (e.g. to wire a device to a pre-configured unit number).
2744 */
2745int
2746device_set_unit(device_t dev, int unit)
2747{
2748	devclass_t dc;
2749	int err;
2750
2751	dc = device_get_devclass(dev);
2752	if (unit < dc->maxunit && dc->devices[unit])
2753		return (EBUSY);
2754	err = devclass_delete_device(dc, dev);
2755	if (err)
2756		return (err);
2757	dev->unit = unit;
2758	err = devclass_add_device(dc, dev);
2759	if (err)
2760		return (err);
2761
2762	bus_data_generation_update();
2763	return (0);
2764}
2765
2766/*======================================*/
2767/*
2768 * Some useful method implementations to make life easier for bus drivers.
2769 */
2770
2771/**
2772 * @brief Initialise a resource list.
2773 *
2774 * @param rl		the resource list to initialise
2775 */
2776void
2777resource_list_init(struct resource_list *rl)
2778{
2779	STAILQ_INIT(rl);
2780}
2781
2782/**
2783 * @brief Reclaim memory used by a resource list.
2784 *
2785 * This function frees the memory for all resource entries on the list
2786 * (if any).
2787 *
2788 * @param rl		the resource list to free
2789 */
2790void
2791resource_list_free(struct resource_list *rl)
2792{
2793	struct resource_list_entry *rle;
2794
2795	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2796		if (rle->res)
2797			panic("resource_list_free: resource entry is busy");
2798		STAILQ_REMOVE_HEAD(rl, link);
2799		free(rle, M_BUS);
2800	}
2801}
2802
2803/**
2804 * @brief Add a resource entry.
2805 *
2806 * This function adds a resource entry using the given @p type, @p
2807 * start, @p end and @p count values. A rid value is chosen by
2808 * searching sequentially for the first unused rid starting at zero.
2809 *
2810 * @param rl		the resource list to edit
2811 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2812 * @param start		the start address of the resource
2813 * @param end		the end address of the resource
2814 * @param count		XXX end-start+1
2815 */
2816int
2817resource_list_add_next(struct resource_list *rl, int type, u_long start,
2818    u_long end, u_long count)
2819{
2820	int rid;
2821
2822	rid = 0;
2823	while (resource_list_find(rl, type, rid) != NULL)
2824		rid++;
2825	resource_list_add(rl, type, rid, start, end, count);
2826	return (rid);
2827}
2828
2829/**
2830 * @brief Add or modify a resource entry.
2831 *
2832 * If an existing entry exists with the same type and rid, it will be
2833 * modified using the given values of @p start, @p end and @p
2834 * count. If no entry exists, a new one will be created using the
2835 * given values.  The resource list entry that matches is then returned.
2836 *
2837 * @param rl		the resource list to edit
2838 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2839 * @param rid		the resource identifier
2840 * @param start		the start address of the resource
2841 * @param end		the end address of the resource
2842 * @param count		XXX end-start+1
2843 */
2844struct resource_list_entry *
2845resource_list_add(struct resource_list *rl, int type, int rid,
2846    u_long start, u_long end, u_long count)
2847{
2848	struct resource_list_entry *rle;
2849
2850	rle = resource_list_find(rl, type, rid);
2851	if (!rle) {
2852		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2853		    M_NOWAIT);
2854		if (!rle)
2855			panic("resource_list_add: can't record entry");
2856		STAILQ_INSERT_TAIL(rl, rle, link);
2857		rle->type = type;
2858		rle->rid = rid;
2859		rle->res = NULL;
2860		rle->flags = 0;
2861	}
2862
2863	if (rle->res)
2864		panic("resource_list_add: resource entry is busy");
2865
2866	rle->start = start;
2867	rle->end = end;
2868	rle->count = count;
2869	return (rle);
2870}
2871
2872/**
2873 * @brief Determine if a resource entry is busy.
2874 *
2875 * Returns true if a resource entry is busy meaning that it has an
2876 * associated resource that is not an unallocated "reserved" resource.
2877 *
2878 * @param rl		the resource list to search
2879 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2880 * @param rid		the resource identifier
2881 *
2882 * @returns Non-zero if the entry is busy, zero otherwise.
2883 */
2884int
2885resource_list_busy(struct resource_list *rl, int type, int rid)
2886{
2887	struct resource_list_entry *rle;
2888
2889	rle = resource_list_find(rl, type, rid);
2890	if (rle == NULL || rle->res == NULL)
2891		return (0);
2892	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2893		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2894		    ("reserved resource is active"));
2895		return (0);
2896	}
2897	return (1);
2898}
2899
2900/**
2901 * @brief Determine if a resource entry is reserved.
2902 *
2903 * Returns true if a resource entry is reserved meaning that it has an
2904 * associated "reserved" resource.  The resource can either be
2905 * allocated or unallocated.
2906 *
2907 * @param rl		the resource list to search
2908 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2909 * @param rid		the resource identifier
2910 *
2911 * @returns Non-zero if the entry is reserved, zero otherwise.
2912 */
2913int
2914resource_list_reserved(struct resource_list *rl, int type, int rid)
2915{
2916	struct resource_list_entry *rle;
2917
2918	rle = resource_list_find(rl, type, rid);
2919	if (rle != NULL && rle->flags & RLE_RESERVED)
2920		return (1);
2921	return (0);
2922}
2923
2924/**
2925 * @brief Find a resource entry by type and rid.
2926 *
2927 * @param rl		the resource list to search
2928 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2929 * @param rid		the resource identifier
2930 *
2931 * @returns the resource entry pointer or NULL if there is no such
2932 * entry.
2933 */
2934struct resource_list_entry *
2935resource_list_find(struct resource_list *rl, int type, int rid)
2936{
2937	struct resource_list_entry *rle;
2938
2939	STAILQ_FOREACH(rle, rl, link) {
2940		if (rle->type == type && rle->rid == rid)
2941			return (rle);
2942	}
2943	return (NULL);
2944}
2945
2946/**
2947 * @brief Delete a resource entry.
2948 *
2949 * @param rl		the resource list to edit
2950 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2951 * @param rid		the resource identifier
2952 */
2953void
2954resource_list_delete(struct resource_list *rl, int type, int rid)
2955{
2956	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2957
2958	if (rle) {
2959		if (rle->res != NULL)
2960			panic("resource_list_delete: resource has not been released");
2961		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2962		free(rle, M_BUS);
2963	}
2964}
2965
2966/**
2967 * @brief Allocate a reserved resource
2968 *
2969 * This can be used by busses to force the allocation of resources
2970 * that are always active in the system even if they are not allocated
2971 * by a driver (e.g. PCI BARs).  This function is usually called when
2972 * adding a new child to the bus.  The resource is allocated from the
2973 * parent bus when it is reserved.  The resource list entry is marked
2974 * with RLE_RESERVED to note that it is a reserved resource.
2975 *
2976 * Subsequent attempts to allocate the resource with
2977 * resource_list_alloc() will succeed the first time and will set
2978 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2979 * resource that has been allocated is released with
2980 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2981 * the actual resource remains allocated.  The resource can be released to
2982 * the parent bus by calling resource_list_unreserve().
2983 *
2984 * @param rl		the resource list to allocate from
2985 * @param bus		the parent device of @p child
2986 * @param child		the device for which the resource is being reserved
2987 * @param type		the type of resource to allocate
2988 * @param rid		a pointer to the resource identifier
2989 * @param start		hint at the start of the resource range - pass
2990 *			@c 0UL for any start address
2991 * @param end		hint at the end of the resource range - pass
2992 *			@c ~0UL for any end address
2993 * @param count		hint at the size of range required - pass @c 1
2994 *			for any size
2995 * @param flags		any extra flags to control the resource
2996 *			allocation - see @c RF_XXX flags in
2997 *			<sys/rman.h> for details
2998 *
2999 * @returns		the resource which was allocated or @c NULL if no
3000 *			resource could be allocated
3001 */
3002struct resource *
3003resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3004    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3005{
3006	struct resource_list_entry *rle = NULL;
3007	int passthrough = (device_get_parent(child) != bus);
3008	struct resource *r;
3009
3010	if (passthrough)
3011		panic(
3012    "resource_list_reserve() should only be called for direct children");
3013	if (flags & RF_ACTIVE)
3014		panic(
3015    "resource_list_reserve() should only reserve inactive resources");
3016
3017	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3018	    flags);
3019	if (r != NULL) {
3020		rle = resource_list_find(rl, type, *rid);
3021		rle->flags |= RLE_RESERVED;
3022	}
3023	return (r);
3024}
3025
3026/**
3027 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3028 *
3029 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3030 * and passing the allocation up to the parent of @p bus. This assumes
3031 * that the first entry of @c device_get_ivars(child) is a struct
3032 * resource_list. This also handles 'passthrough' allocations where a
3033 * child is a remote descendant of bus by passing the allocation up to
3034 * the parent of bus.
3035 *
3036 * Typically, a bus driver would store a list of child resources
3037 * somewhere in the child device's ivars (see device_get_ivars()) and
3038 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3039 * then call resource_list_alloc() to perform the allocation.
3040 *
3041 * @param rl		the resource list to allocate from
3042 * @param bus		the parent device of @p child
3043 * @param child		the device which is requesting an allocation
3044 * @param type		the type of resource to allocate
3045 * @param rid		a pointer to the resource identifier
3046 * @param start		hint at the start of the resource range - pass
3047 *			@c 0UL for any start address
3048 * @param end		hint at the end of the resource range - pass
3049 *			@c ~0UL for any end address
3050 * @param count		hint at the size of range required - pass @c 1
3051 *			for any size
3052 * @param flags		any extra flags to control the resource
3053 *			allocation - see @c RF_XXX flags in
3054 *			<sys/rman.h> for details
3055 *
3056 * @returns		the resource which was allocated or @c NULL if no
3057 *			resource could be allocated
3058 */
3059struct resource *
3060resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3061    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3062{
3063	struct resource_list_entry *rle = NULL;
3064	int passthrough = (device_get_parent(child) != bus);
3065	int isdefault = (start == 0UL && end == ~0UL);
3066
3067	if (passthrough) {
3068		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3069		    type, rid, start, end, count, flags));
3070	}
3071
3072	rle = resource_list_find(rl, type, *rid);
3073
3074	if (!rle)
3075		return (NULL);		/* no resource of that type/rid */
3076
3077	if (rle->res) {
3078		if (rle->flags & RLE_RESERVED) {
3079			if (rle->flags & RLE_ALLOCATED)
3080				return (NULL);
3081			if ((flags & RF_ACTIVE) &&
3082			    bus_activate_resource(child, type, *rid,
3083			    rle->res) != 0)
3084				return (NULL);
3085			rle->flags |= RLE_ALLOCATED;
3086			return (rle->res);
3087		}
3088		panic("resource_list_alloc: resource entry is busy");
3089	}
3090
3091	if (isdefault) {
3092		start = rle->start;
3093		count = ulmax(count, rle->count);
3094		end = ulmax(rle->end, start + count - 1);
3095	}
3096
3097	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3098	    type, rid, start, end, count, flags);
3099
3100	/*
3101	 * Record the new range.
3102	 */
3103	if (rle->res) {
3104		rle->start = rman_get_start(rle->res);
3105		rle->end = rman_get_end(rle->res);
3106		rle->count = count;
3107	}
3108
3109	return (rle->res);
3110}
3111
3112/**
3113 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3114 *
3115 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3116 * used with resource_list_alloc().
3117 *
3118 * @param rl		the resource list which was allocated from
3119 * @param bus		the parent device of @p child
3120 * @param child		the device which is requesting a release
3121 * @param type		the type of resource to release
3122 * @param rid		the resource identifier
3123 * @param res		the resource to release
3124 *
3125 * @retval 0		success
3126 * @retval non-zero	a standard unix error code indicating what
3127 *			error condition prevented the operation
3128 */
3129int
3130resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3131    int type, int rid, struct resource *res)
3132{
3133	struct resource_list_entry *rle = NULL;
3134	int passthrough = (device_get_parent(child) != bus);
3135	int error;
3136
3137	if (passthrough) {
3138		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3139		    type, rid, res));
3140	}
3141
3142	rle = resource_list_find(rl, type, rid);
3143
3144	if (!rle)
3145		panic("resource_list_release: can't find resource");
3146	if (!rle->res)
3147		panic("resource_list_release: resource entry is not busy");
3148	if (rle->flags & RLE_RESERVED) {
3149		if (rle->flags & RLE_ALLOCATED) {
3150			if (rman_get_flags(res) & RF_ACTIVE) {
3151				error = bus_deactivate_resource(child, type,
3152				    rid, res);
3153				if (error)
3154					return (error);
3155			}
3156			rle->flags &= ~RLE_ALLOCATED;
3157			return (0);
3158		}
3159		return (EINVAL);
3160	}
3161
3162	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3163	    type, rid, res);
3164	if (error)
3165		return (error);
3166
3167	rle->res = NULL;
3168	return (0);
3169}
3170
3171/**
3172 * @brief Fully release a reserved resource
3173 *
3174 * Fully releases a resouce reserved via resource_list_reserve().
3175 *
3176 * @param rl		the resource list which was allocated from
3177 * @param bus		the parent device of @p child
3178 * @param child		the device whose reserved resource is being released
3179 * @param type		the type of resource to release
3180 * @param rid		the resource identifier
3181 * @param res		the resource to release
3182 *
3183 * @retval 0		success
3184 * @retval non-zero	a standard unix error code indicating what
3185 *			error condition prevented the operation
3186 */
3187int
3188resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3189    int type, int rid)
3190{
3191	struct resource_list_entry *rle = NULL;
3192	int passthrough = (device_get_parent(child) != bus);
3193
3194	if (passthrough)
3195		panic(
3196    "resource_list_unreserve() should only be called for direct children");
3197
3198	rle = resource_list_find(rl, type, rid);
3199
3200	if (!rle)
3201		panic("resource_list_unreserve: can't find resource");
3202	if (!(rle->flags & RLE_RESERVED))
3203		return (EINVAL);
3204	if (rle->flags & RLE_ALLOCATED)
3205		return (EBUSY);
3206	rle->flags &= ~RLE_RESERVED;
3207	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3208}
3209
3210/**
3211 * @brief Print a description of resources in a resource list
3212 *
3213 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3214 * The name is printed if at least one resource of the given type is available.
3215 * The format is used to print resource start and end.
3216 *
3217 * @param rl		the resource list to print
3218 * @param name		the name of @p type, e.g. @c "memory"
3219 * @param type		type type of resource entry to print
3220 * @param format	printf(9) format string to print resource
3221 *			start and end values
3222 *
3223 * @returns		the number of characters printed
3224 */
3225int
3226resource_list_print_type(struct resource_list *rl, const char *name, int type,
3227    const char *format)
3228{
3229	struct resource_list_entry *rle;
3230	int printed, retval;
3231
3232	printed = 0;
3233	retval = 0;
3234	/* Yes, this is kinda cheating */
3235	STAILQ_FOREACH(rle, rl, link) {
3236		if (rle->type == type) {
3237			if (printed == 0)
3238				retval += printf(" %s ", name);
3239			else
3240				retval += printf(",");
3241			printed++;
3242			retval += printf(format, rle->start);
3243			if (rle->count > 1) {
3244				retval += printf("-");
3245				retval += printf(format, rle->start +
3246						 rle->count - 1);
3247			}
3248		}
3249	}
3250	return (retval);
3251}
3252
3253/**
3254 * @brief Releases all the resources in a list.
3255 *
3256 * @param rl		The resource list to purge.
3257 *
3258 * @returns		nothing
3259 */
3260void
3261resource_list_purge(struct resource_list *rl)
3262{
3263	struct resource_list_entry *rle;
3264
3265	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3266		if (rle->res)
3267			bus_release_resource(rman_get_device(rle->res),
3268			    rle->type, rle->rid, rle->res);
3269		STAILQ_REMOVE_HEAD(rl, link);
3270		free(rle, M_BUS);
3271	}
3272}
3273
3274device_t
3275bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3276{
3277
3278	return (device_add_child_ordered(dev, order, name, unit));
3279}
3280
3281/**
3282 * @brief Helper function for implementing DEVICE_PROBE()
3283 *
3284 * This function can be used to help implement the DEVICE_PROBE() for
3285 * a bus (i.e. a device which has other devices attached to it). It
3286 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3287 * devclass.
3288 */
3289int
3290bus_generic_probe(device_t dev)
3291{
3292	devclass_t dc = dev->devclass;
3293	driverlink_t dl;
3294
3295	TAILQ_FOREACH(dl, &dc->drivers, link) {
3296		/*
3297		 * If this driver's pass is too high, then ignore it.
3298		 * For most drivers in the default pass, this will
3299		 * never be true.  For early-pass drivers they will
3300		 * only call the identify routines of eligible drivers
3301		 * when this routine is called.  Drivers for later
3302		 * passes should have their identify routines called
3303		 * on early-pass busses during BUS_NEW_PASS().
3304		 */
3305		if (dl->pass > bus_current_pass)
3306			continue;
3307		DEVICE_IDENTIFY(dl->driver, dev);
3308	}
3309
3310	return (0);
3311}
3312
3313/**
3314 * @brief Helper function for implementing DEVICE_ATTACH()
3315 *
3316 * This function can be used to help implement the DEVICE_ATTACH() for
3317 * a bus. It calls device_probe_and_attach() for each of the device's
3318 * children.
3319 */
3320int
3321bus_generic_attach(device_t dev)
3322{
3323	device_t child;
3324
3325	TAILQ_FOREACH(child, &dev->children, link) {
3326		device_probe_and_attach(child);
3327	}
3328
3329	return (0);
3330}
3331
3332/**
3333 * @brief Helper function for implementing DEVICE_DETACH()
3334 *
3335 * This function can be used to help implement the DEVICE_DETACH() for
3336 * a bus. It calls device_detach() for each of the device's
3337 * children.
3338 */
3339int
3340bus_generic_detach(device_t dev)
3341{
3342	device_t child;
3343	int error;
3344
3345	if (dev->state != DS_ATTACHED)
3346		return (EBUSY);
3347
3348	TAILQ_FOREACH(child, &dev->children, link) {
3349		if ((error = device_detach(child)) != 0)
3350			return (error);
3351	}
3352
3353	return (0);
3354}
3355
3356/**
3357 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3358 *
3359 * This function can be used to help implement the DEVICE_SHUTDOWN()
3360 * for a bus. It calls device_shutdown() for each of the device's
3361 * children.
3362 */
3363int
3364bus_generic_shutdown(device_t dev)
3365{
3366	device_t child;
3367
3368	TAILQ_FOREACH(child, &dev->children, link) {
3369		device_shutdown(child);
3370	}
3371
3372	return (0);
3373}
3374
3375/**
3376 * @brief Helper function for implementing DEVICE_SUSPEND()
3377 *
3378 * This function can be used to help implement the DEVICE_SUSPEND()
3379 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3380 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3381 * operation is aborted and any devices which were suspended are
3382 * resumed immediately by calling their DEVICE_RESUME() methods.
3383 */
3384int
3385bus_generic_suspend(device_t dev)
3386{
3387	int		error;
3388	device_t	child, child2;
3389
3390	TAILQ_FOREACH(child, &dev->children, link) {
3391		error = DEVICE_SUSPEND(child);
3392		if (error) {
3393			for (child2 = TAILQ_FIRST(&dev->children);
3394			     child2 && child2 != child;
3395			     child2 = TAILQ_NEXT(child2, link))
3396				DEVICE_RESUME(child2);
3397			return (error);
3398		}
3399	}
3400	return (0);
3401}
3402
3403/**
3404 * @brief Helper function for implementing DEVICE_RESUME()
3405 *
3406 * This function can be used to help implement the DEVICE_RESUME() for
3407 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3408 */
3409int
3410bus_generic_resume(device_t dev)
3411{
3412	device_t	child;
3413
3414	TAILQ_FOREACH(child, &dev->children, link) {
3415		DEVICE_RESUME(child);
3416		/* if resume fails, there's nothing we can usefully do... */
3417	}
3418	return (0);
3419}
3420
3421/**
3422 * @brief Helper function for implementing BUS_PRINT_CHILD().
3423 *
3424 * This function prints the first part of the ascii representation of
3425 * @p child, including its name, unit and description (if any - see
3426 * device_set_desc()).
3427 *
3428 * @returns the number of characters printed
3429 */
3430int
3431bus_print_child_header(device_t dev, device_t child)
3432{
3433	int	retval = 0;
3434
3435	if (device_get_desc(child)) {
3436		retval += device_printf(child, "<%s>", device_get_desc(child));
3437	} else {
3438		retval += printf("%s", device_get_nameunit(child));
3439	}
3440
3441	return (retval);
3442}
3443
3444/**
3445 * @brief Helper function for implementing BUS_PRINT_CHILD().
3446 *
3447 * This function prints the last part of the ascii representation of
3448 * @p child, which consists of the string @c " on " followed by the
3449 * name and unit of the @p dev.
3450 *
3451 * @returns the number of characters printed
3452 */
3453int
3454bus_print_child_footer(device_t dev, device_t child)
3455{
3456	return (printf(" on %s\n", device_get_nameunit(dev)));
3457}
3458
3459/**
3460 * @brief Helper function for implementing BUS_PRINT_CHILD().
3461 *
3462 * This function simply calls bus_print_child_header() followed by
3463 * bus_print_child_footer().
3464 *
3465 * @returns the number of characters printed
3466 */
3467int
3468bus_generic_print_child(device_t dev, device_t child)
3469{
3470	int	retval = 0;
3471
3472	retval += bus_print_child_header(dev, child);
3473	retval += bus_print_child_footer(dev, child);
3474
3475	return (retval);
3476}
3477
3478/**
3479 * @brief Stub function for implementing BUS_READ_IVAR().
3480 *
3481 * @returns ENOENT
3482 */
3483int
3484bus_generic_read_ivar(device_t dev, device_t child, int index,
3485    uintptr_t * result)
3486{
3487	return (ENOENT);
3488}
3489
3490/**
3491 * @brief Stub function for implementing BUS_WRITE_IVAR().
3492 *
3493 * @returns ENOENT
3494 */
3495int
3496bus_generic_write_ivar(device_t dev, device_t child, int index,
3497    uintptr_t value)
3498{
3499	return (ENOENT);
3500}
3501
3502/**
3503 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3504 *
3505 * @returns NULL
3506 */
3507struct resource_list *
3508bus_generic_get_resource_list(device_t dev, device_t child)
3509{
3510	return (NULL);
3511}
3512
3513/**
3514 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3515 *
3516 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3517 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3518 * and then calls device_probe_and_attach() for each unattached child.
3519 */
3520void
3521bus_generic_driver_added(device_t dev, driver_t *driver)
3522{
3523	device_t child;
3524
3525	DEVICE_IDENTIFY(driver, dev);
3526	TAILQ_FOREACH(child, &dev->children, link) {
3527		if (child->state == DS_NOTPRESENT ||
3528		    (child->flags & DF_REBID))
3529			device_probe_and_attach(child);
3530	}
3531}
3532
3533/**
3534 * @brief Helper function for implementing BUS_NEW_PASS().
3535 *
3536 * This implementing of BUS_NEW_PASS() first calls the identify
3537 * routines for any drivers that probe at the current pass.  Then it
3538 * walks the list of devices for this bus.  If a device is already
3539 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3540 * device is not already attached, it attempts to attach a driver to
3541 * it.
3542 */
3543void
3544bus_generic_new_pass(device_t dev)
3545{
3546	driverlink_t dl;
3547	devclass_t dc;
3548	device_t child;
3549
3550	dc = dev->devclass;
3551	TAILQ_FOREACH(dl, &dc->drivers, link) {
3552		if (dl->pass == bus_current_pass)
3553			DEVICE_IDENTIFY(dl->driver, dev);
3554	}
3555	TAILQ_FOREACH(child, &dev->children, link) {
3556		if (child->state >= DS_ATTACHED)
3557			BUS_NEW_PASS(child);
3558		else if (child->state == DS_NOTPRESENT)
3559			device_probe_and_attach(child);
3560	}
3561}
3562
3563/**
3564 * @brief Helper function for implementing BUS_SETUP_INTR().
3565 *
3566 * This simple implementation of BUS_SETUP_INTR() simply calls the
3567 * BUS_SETUP_INTR() method of the parent of @p dev.
3568 */
3569int
3570bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3571    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3572    void **cookiep)
3573{
3574	/* Propagate up the bus hierarchy until someone handles it. */
3575	if (dev->parent)
3576		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3577		    filter, intr, arg, cookiep));
3578	return (EINVAL);
3579}
3580
3581/**
3582 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3583 *
3584 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3585 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3586 */
3587int
3588bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3589    void *cookie)
3590{
3591	/* Propagate up the bus hierarchy until someone handles it. */
3592	if (dev->parent)
3593		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3594	return (EINVAL);
3595}
3596
3597/**
3598 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3599 *
3600 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3601 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3602 */
3603struct resource *
3604bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3605    u_long start, u_long end, u_long count, u_int flags)
3606{
3607	/* Propagate up the bus hierarchy until someone handles it. */
3608	if (dev->parent)
3609		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3610		    start, end, count, flags));
3611	return (NULL);
3612}
3613
3614/**
3615 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3616 *
3617 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3618 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3619 */
3620int
3621bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3622    struct resource *r)
3623{
3624	/* Propagate up the bus hierarchy until someone handles it. */
3625	if (dev->parent)
3626		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3627		    r));
3628	return (EINVAL);
3629}
3630
3631/**
3632 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3633 *
3634 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3635 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3636 */
3637int
3638bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3639    struct resource *r)
3640{
3641	/* Propagate up the bus hierarchy until someone handles it. */
3642	if (dev->parent)
3643		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3644		    r));
3645	return (EINVAL);
3646}
3647
3648/**
3649 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3650 *
3651 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3652 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3653 */
3654int
3655bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3656    int rid, struct resource *r)
3657{
3658	/* Propagate up the bus hierarchy until someone handles it. */
3659	if (dev->parent)
3660		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3661		    r));
3662	return (EINVAL);
3663}
3664
3665/**
3666 * @brief Helper function for implementing BUS_BIND_INTR().
3667 *
3668 * This simple implementation of BUS_BIND_INTR() simply calls the
3669 * BUS_BIND_INTR() method of the parent of @p dev.
3670 */
3671int
3672bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3673    int cpu)
3674{
3675
3676	/* Propagate up the bus hierarchy until someone handles it. */
3677	if (dev->parent)
3678		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3679	return (EINVAL);
3680}
3681
3682/**
3683 * @brief Helper function for implementing BUS_CONFIG_INTR().
3684 *
3685 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3686 * BUS_CONFIG_INTR() method of the parent of @p dev.
3687 */
3688int
3689bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3690    enum intr_polarity pol)
3691{
3692
3693	/* Propagate up the bus hierarchy until someone handles it. */
3694	if (dev->parent)
3695		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3696	return (EINVAL);
3697}
3698
3699/**
3700 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3701 *
3702 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3703 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3704 */
3705int
3706bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3707    void *cookie, const char *descr)
3708{
3709
3710	/* Propagate up the bus hierarchy until someone handles it. */
3711	if (dev->parent)
3712		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3713		    descr));
3714	return (EINVAL);
3715}
3716
3717/**
3718 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3719 *
3720 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3721 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3722 */
3723bus_dma_tag_t
3724bus_generic_get_dma_tag(device_t dev, device_t child)
3725{
3726
3727	/* Propagate up the bus hierarchy until someone handles it. */
3728	if (dev->parent != NULL)
3729		return (BUS_GET_DMA_TAG(dev->parent, child));
3730	return (NULL);
3731}
3732
3733/**
3734 * @brief Helper function for implementing BUS_GET_RESOURCE().
3735 *
3736 * This implementation of BUS_GET_RESOURCE() uses the
3737 * resource_list_find() function to do most of the work. It calls
3738 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3739 * search.
3740 */
3741int
3742bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3743    u_long *startp, u_long *countp)
3744{
3745	struct resource_list *		rl = NULL;
3746	struct resource_list_entry *	rle = NULL;
3747
3748	rl = BUS_GET_RESOURCE_LIST(dev, child);
3749	if (!rl)
3750		return (EINVAL);
3751
3752	rle = resource_list_find(rl, type, rid);
3753	if (!rle)
3754		return (ENOENT);
3755
3756	if (startp)
3757		*startp = rle->start;
3758	if (countp)
3759		*countp = rle->count;
3760
3761	return (0);
3762}
3763
3764/**
3765 * @brief Helper function for implementing BUS_SET_RESOURCE().
3766 *
3767 * This implementation of BUS_SET_RESOURCE() uses the
3768 * resource_list_add() function to do most of the work. It calls
3769 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3770 * edit.
3771 */
3772int
3773bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3774    u_long start, u_long count)
3775{
3776	struct resource_list *		rl = NULL;
3777
3778	rl = BUS_GET_RESOURCE_LIST(dev, child);
3779	if (!rl)
3780		return (EINVAL);
3781
3782	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3783
3784	return (0);
3785}
3786
3787/**
3788 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3789 *
3790 * This implementation of BUS_DELETE_RESOURCE() uses the
3791 * resource_list_delete() function to do most of the work. It calls
3792 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3793 * edit.
3794 */
3795void
3796bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3797{
3798	struct resource_list *		rl = NULL;
3799
3800	rl = BUS_GET_RESOURCE_LIST(dev, child);
3801	if (!rl)
3802		return;
3803
3804	resource_list_delete(rl, type, rid);
3805
3806	return;
3807}
3808
3809/**
3810 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3811 *
3812 * This implementation of BUS_RELEASE_RESOURCE() uses the
3813 * resource_list_release() function to do most of the work. It calls
3814 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3815 */
3816int
3817bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3818    int rid, struct resource *r)
3819{
3820	struct resource_list *		rl = NULL;
3821
3822	if (device_get_parent(child) != dev)
3823		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3824		    type, rid, r));
3825
3826	rl = BUS_GET_RESOURCE_LIST(dev, child);
3827	if (!rl)
3828		return (EINVAL);
3829
3830	return (resource_list_release(rl, dev, child, type, rid, r));
3831}
3832
3833/**
3834 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3835 *
3836 * This implementation of BUS_ALLOC_RESOURCE() uses the
3837 * resource_list_alloc() function to do most of the work. It calls
3838 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3839 */
3840struct resource *
3841bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3842    int *rid, u_long start, u_long end, u_long count, u_int flags)
3843{
3844	struct resource_list *		rl = NULL;
3845
3846	if (device_get_parent(child) != dev)
3847		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3848		    type, rid, start, end, count, flags));
3849
3850	rl = BUS_GET_RESOURCE_LIST(dev, child);
3851	if (!rl)
3852		return (NULL);
3853
3854	return (resource_list_alloc(rl, dev, child, type, rid,
3855	    start, end, count, flags));
3856}
3857
3858/**
3859 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3860 *
3861 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3862 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3863 */
3864int
3865bus_generic_child_present(device_t dev, device_t child)
3866{
3867	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3868}
3869
3870/*
3871 * Some convenience functions to make it easier for drivers to use the
3872 * resource-management functions.  All these really do is hide the
3873 * indirection through the parent's method table, making for slightly
3874 * less-wordy code.  In the future, it might make sense for this code
3875 * to maintain some sort of a list of resources allocated by each device.
3876 */
3877
3878int
3879bus_alloc_resources(device_t dev, struct resource_spec *rs,
3880    struct resource **res)
3881{
3882	int i;
3883
3884	for (i = 0; rs[i].type != -1; i++)
3885		res[i] = NULL;
3886	for (i = 0; rs[i].type != -1; i++) {
3887		res[i] = bus_alloc_resource_any(dev,
3888		    rs[i].type, &rs[i].rid, rs[i].flags);
3889		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3890			bus_release_resources(dev, rs, res);
3891			return (ENXIO);
3892		}
3893	}
3894	return (0);
3895}
3896
3897void
3898bus_release_resources(device_t dev, const struct resource_spec *rs,
3899    struct resource **res)
3900{
3901	int i;
3902
3903	for (i = 0; rs[i].type != -1; i++)
3904		if (res[i] != NULL) {
3905			bus_release_resource(
3906			    dev, rs[i].type, rs[i].rid, res[i]);
3907			res[i] = NULL;
3908		}
3909}
3910
3911/**
3912 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3913 *
3914 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3915 * parent of @p dev.
3916 */
3917struct resource *
3918bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3919    u_long count, u_int flags)
3920{
3921	if (dev->parent == NULL)
3922		return (NULL);
3923	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3924	    count, flags));
3925}
3926
3927/**
3928 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3929 *
3930 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3931 * parent of @p dev.
3932 */
3933int
3934bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3935{
3936	if (dev->parent == NULL)
3937		return (EINVAL);
3938	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3939}
3940
3941/**
3942 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3943 *
3944 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3945 * parent of @p dev.
3946 */
3947int
3948bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3949{
3950	if (dev->parent == NULL)
3951		return (EINVAL);
3952	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3953}
3954
3955/**
3956 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3957 *
3958 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3959 * parent of @p dev.
3960 */
3961int
3962bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3963{
3964	if (dev->parent == NULL)
3965		return (EINVAL);
3966	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3967}
3968
3969/**
3970 * @brief Wrapper function for BUS_SETUP_INTR().
3971 *
3972 * This function simply calls the BUS_SETUP_INTR() method of the
3973 * parent of @p dev.
3974 */
3975int
3976bus_setup_intr(device_t dev, struct resource *r, int flags,
3977    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3978{
3979	int error;
3980
3981	if (dev->parent == NULL)
3982		return (EINVAL);
3983	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3984	    arg, cookiep);
3985	if (error != 0)
3986		return (error);
3987	if (handler != NULL && !(flags & INTR_MPSAFE))
3988		device_printf(dev, "[GIANT-LOCKED]\n");
3989	return (0);
3990}
3991
3992/**
3993 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3994 *
3995 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3996 * parent of @p dev.
3997 */
3998int
3999bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4000{
4001	if (dev->parent == NULL)
4002		return (EINVAL);
4003	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4004}
4005
4006/**
4007 * @brief Wrapper function for BUS_BIND_INTR().
4008 *
4009 * This function simply calls the BUS_BIND_INTR() method of the
4010 * parent of @p dev.
4011 */
4012int
4013bus_bind_intr(device_t dev, struct resource *r, int cpu)
4014{
4015	if (dev->parent == NULL)
4016		return (EINVAL);
4017	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4018}
4019
4020/**
4021 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4022 *
4023 * This function first formats the requested description into a
4024 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4025 * the parent of @p dev.
4026 */
4027int
4028bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4029    const char *fmt, ...)
4030{
4031	va_list ap;
4032	char descr[MAXCOMLEN + 1];
4033
4034	if (dev->parent == NULL)
4035		return (EINVAL);
4036	va_start(ap, fmt);
4037	vsnprintf(descr, sizeof(descr), fmt, ap);
4038	va_end(ap);
4039	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4040}
4041
4042/**
4043 * @brief Wrapper function for BUS_SET_RESOURCE().
4044 *
4045 * This function simply calls the BUS_SET_RESOURCE() method of the
4046 * parent of @p dev.
4047 */
4048int
4049bus_set_resource(device_t dev, int type, int rid,
4050    u_long start, u_long count)
4051{
4052	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4053	    start, count));
4054}
4055
4056/**
4057 * @brief Wrapper function for BUS_GET_RESOURCE().
4058 *
4059 * This function simply calls the BUS_GET_RESOURCE() method of the
4060 * parent of @p dev.
4061 */
4062int
4063bus_get_resource(device_t dev, int type, int rid,
4064    u_long *startp, u_long *countp)
4065{
4066	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4067	    startp, countp));
4068}
4069
4070/**
4071 * @brief Wrapper function for BUS_GET_RESOURCE().
4072 *
4073 * This function simply calls the BUS_GET_RESOURCE() method of the
4074 * parent of @p dev and returns the start value.
4075 */
4076u_long
4077bus_get_resource_start(device_t dev, int type, int rid)
4078{
4079	u_long start, count;
4080	int error;
4081
4082	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4083	    &start, &count);
4084	if (error)
4085		return (0);
4086	return (start);
4087}
4088
4089/**
4090 * @brief Wrapper function for BUS_GET_RESOURCE().
4091 *
4092 * This function simply calls the BUS_GET_RESOURCE() method of the
4093 * parent of @p dev and returns the count value.
4094 */
4095u_long
4096bus_get_resource_count(device_t dev, int type, int rid)
4097{
4098	u_long start, count;
4099	int error;
4100
4101	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4102	    &start, &count);
4103	if (error)
4104		return (0);
4105	return (count);
4106}
4107
4108/**
4109 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4110 *
4111 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4112 * parent of @p dev.
4113 */
4114void
4115bus_delete_resource(device_t dev, int type, int rid)
4116{
4117	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4118}
4119
4120/**
4121 * @brief Wrapper function for BUS_CHILD_PRESENT().
4122 *
4123 * This function simply calls the BUS_CHILD_PRESENT() method of the
4124 * parent of @p dev.
4125 */
4126int
4127bus_child_present(device_t child)
4128{
4129	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4130}
4131
4132/**
4133 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4134 *
4135 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4136 * parent of @p dev.
4137 */
4138int
4139bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4140{
4141	device_t parent;
4142
4143	parent = device_get_parent(child);
4144	if (parent == NULL) {
4145		*buf = '\0';
4146		return (0);
4147	}
4148	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4149}
4150
4151/**
4152 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4153 *
4154 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4155 * parent of @p dev.
4156 */
4157int
4158bus_child_location_str(device_t child, char *buf, size_t buflen)
4159{
4160	device_t parent;
4161
4162	parent = device_get_parent(child);
4163	if (parent == NULL) {
4164		*buf = '\0';
4165		return (0);
4166	}
4167	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4168}
4169
4170/**
4171 * @brief Wrapper function for BUS_GET_DMA_TAG().
4172 *
4173 * This function simply calls the BUS_GET_DMA_TAG() method of the
4174 * parent of @p dev.
4175 */
4176bus_dma_tag_t
4177bus_get_dma_tag(device_t dev)
4178{
4179	device_t parent;
4180
4181	parent = device_get_parent(dev);
4182	if (parent == NULL)
4183		return (NULL);
4184	return (BUS_GET_DMA_TAG(parent, dev));
4185}
4186
4187/* Resume all devices and then notify userland that we're up again. */
4188static int
4189root_resume(device_t dev)
4190{
4191	int error;
4192
4193	error = bus_generic_resume(dev);
4194	if (error == 0)
4195		devctl_notify("kern", "power", "resume", NULL);
4196	return (error);
4197}
4198
4199static int
4200root_print_child(device_t dev, device_t child)
4201{
4202	int	retval = 0;
4203
4204	retval += bus_print_child_header(dev, child);
4205	retval += printf("\n");
4206
4207	return (retval);
4208}
4209
4210static int
4211root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4212    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4213{
4214	/*
4215	 * If an interrupt mapping gets to here something bad has happened.
4216	 */
4217	panic("root_setup_intr");
4218}
4219
4220/*
4221 * If we get here, assume that the device is permanant and really is
4222 * present in the system.  Removable bus drivers are expected to intercept
4223 * this call long before it gets here.  We return -1 so that drivers that
4224 * really care can check vs -1 or some ERRNO returned higher in the food
4225 * chain.
4226 */
4227static int
4228root_child_present(device_t dev, device_t child)
4229{
4230	return (-1);
4231}
4232
4233static kobj_method_t root_methods[] = {
4234	/* Device interface */
4235	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4236	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4237	KOBJMETHOD(device_resume,	root_resume),
4238
4239	/* Bus interface */
4240	KOBJMETHOD(bus_print_child,	root_print_child),
4241	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4242	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4243	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4244	KOBJMETHOD(bus_child_present,	root_child_present),
4245
4246	KOBJMETHOD_END
4247};
4248
4249static driver_t root_driver = {
4250	"root",
4251	root_methods,
4252	1,			/* no softc */
4253};
4254
4255device_t	root_bus;
4256devclass_t	root_devclass;
4257
4258static int
4259root_bus_module_handler(module_t mod, int what, void* arg)
4260{
4261	switch (what) {
4262	case MOD_LOAD:
4263		TAILQ_INIT(&bus_data_devices);
4264		kobj_class_compile((kobj_class_t) &root_driver);
4265		root_bus = make_device(NULL, "root", 0);
4266		root_bus->desc = "System root bus";
4267		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4268		root_bus->driver = &root_driver;
4269		root_bus->state = DS_ATTACHED;
4270		root_devclass = devclass_find_internal("root", NULL, FALSE);
4271		devinit();
4272		return (0);
4273
4274	case MOD_SHUTDOWN:
4275		device_shutdown(root_bus);
4276		return (0);
4277	default:
4278		return (EOPNOTSUPP);
4279	}
4280
4281	return (0);
4282}
4283
4284static moduledata_t root_bus_mod = {
4285	"rootbus",
4286	root_bus_module_handler,
4287	NULL
4288};
4289DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4290
4291/**
4292 * @brief Automatically configure devices
4293 *
4294 * This function begins the autoconfiguration process by calling
4295 * device_probe_and_attach() for each child of the @c root0 device.
4296 */
4297void
4298root_bus_configure(void)
4299{
4300
4301	PDEBUG(("."));
4302
4303	/* Eventually this will be split up, but this is sufficient for now. */
4304	bus_set_pass(BUS_PASS_DEFAULT);
4305}
4306
4307/**
4308 * @brief Module handler for registering device drivers
4309 *
4310 * This module handler is used to automatically register device
4311 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4312 * devclass_add_driver() for the driver described by the
4313 * driver_module_data structure pointed to by @p arg
4314 */
4315int
4316driver_module_handler(module_t mod, int what, void *arg)
4317{
4318	struct driver_module_data *dmd;
4319	devclass_t bus_devclass;
4320	kobj_class_t driver;
4321	int error, pass;
4322
4323	dmd = (struct driver_module_data *)arg;
4324	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4325	error = 0;
4326
4327	switch (what) {
4328	case MOD_LOAD:
4329		if (dmd->dmd_chainevh)
4330			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4331
4332		pass = dmd->dmd_pass;
4333		driver = dmd->dmd_driver;
4334		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4335		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4336		error = devclass_add_driver(bus_devclass, driver, pass,
4337		    dmd->dmd_devclass);
4338		break;
4339
4340	case MOD_UNLOAD:
4341		PDEBUG(("Unloading module: driver %s from bus %s",
4342		    DRIVERNAME(dmd->dmd_driver),
4343		    dmd->dmd_busname));
4344		error = devclass_delete_driver(bus_devclass,
4345		    dmd->dmd_driver);
4346
4347		if (!error && dmd->dmd_chainevh)
4348			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4349		break;
4350	case MOD_QUIESCE:
4351		PDEBUG(("Quiesce module: driver %s from bus %s",
4352		    DRIVERNAME(dmd->dmd_driver),
4353		    dmd->dmd_busname));
4354		error = devclass_quiesce_driver(bus_devclass,
4355		    dmd->dmd_driver);
4356
4357		if (!error && dmd->dmd_chainevh)
4358			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4359		break;
4360	default:
4361		error = EOPNOTSUPP;
4362		break;
4363	}
4364
4365	return (error);
4366}
4367
4368/**
4369 * @brief Enumerate all hinted devices for this bus.
4370 *
4371 * Walks through the hints for this bus and calls the bus_hinted_child
4372 * routine for each one it fines.  It searches first for the specific
4373 * bus that's being probed for hinted children (eg isa0), and then for
4374 * generic children (eg isa).
4375 *
4376 * @param	dev	bus device to enumerate
4377 */
4378void
4379bus_enumerate_hinted_children(device_t bus)
4380{
4381	int i;
4382	const char *dname, *busname;
4383	int dunit;
4384
4385	/*
4386	 * enumerate all devices on the specific bus
4387	 */
4388	busname = device_get_nameunit(bus);
4389	i = 0;
4390	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4391		BUS_HINTED_CHILD(bus, dname, dunit);
4392
4393	/*
4394	 * and all the generic ones.
4395	 */
4396	busname = device_get_name(bus);
4397	i = 0;
4398	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4399		BUS_HINTED_CHILD(bus, dname, dunit);
4400}
4401
4402#ifdef BUS_DEBUG
4403
4404/* the _short versions avoid iteration by not calling anything that prints
4405 * more than oneliners. I love oneliners.
4406 */
4407
4408static void
4409print_device_short(device_t dev, int indent)
4410{
4411	if (!dev)
4412		return;
4413
4414	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4415	    dev->unit, dev->desc,
4416	    (dev->parent? "":"no "),
4417	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4418	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4419	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4420	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4421	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4422	    (dev->flags&DF_REBID? "rebiddable,":""),
4423	    (dev->ivars? "":"no "),
4424	    (dev->softc? "":"no "),
4425	    dev->busy));
4426}
4427
4428static void
4429print_device(device_t dev, int indent)
4430{
4431	if (!dev)
4432		return;
4433
4434	print_device_short(dev, indent);
4435
4436	indentprintf(("Parent:\n"));
4437	print_device_short(dev->parent, indent+1);
4438	indentprintf(("Driver:\n"));
4439	print_driver_short(dev->driver, indent+1);
4440	indentprintf(("Devclass:\n"));
4441	print_devclass_short(dev->devclass, indent+1);
4442}
4443
4444void
4445print_device_tree_short(device_t dev, int indent)
4446/* print the device and all its children (indented) */
4447{
4448	device_t child;
4449
4450	if (!dev)
4451		return;
4452
4453	print_device_short(dev, indent);
4454
4455	TAILQ_FOREACH(child, &dev->children, link) {
4456		print_device_tree_short(child, indent+1);
4457	}
4458}
4459
4460void
4461print_device_tree(device_t dev, int indent)
4462/* print the device and all its children (indented) */
4463{
4464	device_t child;
4465
4466	if (!dev)
4467		return;
4468
4469	print_device(dev, indent);
4470
4471	TAILQ_FOREACH(child, &dev->children, link) {
4472		print_device_tree(child, indent+1);
4473	}
4474}
4475
4476static void
4477print_driver_short(driver_t *driver, int indent)
4478{
4479	if (!driver)
4480		return;
4481
4482	indentprintf(("driver %s: softc size = %zd\n",
4483	    driver->name, driver->size));
4484}
4485
4486static void
4487print_driver(driver_t *driver, int indent)
4488{
4489	if (!driver)
4490		return;
4491
4492	print_driver_short(driver, indent);
4493}
4494
4495
4496static void
4497print_driver_list(driver_list_t drivers, int indent)
4498{
4499	driverlink_t driver;
4500
4501	TAILQ_FOREACH(driver, &drivers, link) {
4502		print_driver(driver->driver, indent);
4503	}
4504}
4505
4506static void
4507print_devclass_short(devclass_t dc, int indent)
4508{
4509	if ( !dc )
4510		return;
4511
4512	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4513}
4514
4515static void
4516print_devclass(devclass_t dc, int indent)
4517{
4518	int i;
4519
4520	if ( !dc )
4521		return;
4522
4523	print_devclass_short(dc, indent);
4524	indentprintf(("Drivers:\n"));
4525	print_driver_list(dc->drivers, indent+1);
4526
4527	indentprintf(("Devices:\n"));
4528	for (i = 0; i < dc->maxunit; i++)
4529		if (dc->devices[i])
4530			print_device(dc->devices[i], indent+1);
4531}
4532
4533void
4534print_devclass_list_short(void)
4535{
4536	devclass_t dc;
4537
4538	printf("Short listing of devclasses, drivers & devices:\n");
4539	TAILQ_FOREACH(dc, &devclasses, link) {
4540		print_devclass_short(dc, 0);
4541	}
4542}
4543
4544void
4545print_devclass_list(void)
4546{
4547	devclass_t dc;
4548
4549	printf("Full listing of devclasses, drivers & devices:\n");
4550	TAILQ_FOREACH(dc, &devclasses, link) {
4551		print_devclass(dc, 0);
4552	}
4553}
4554
4555#endif
4556
4557/*
4558 * User-space access to the device tree.
4559 *
4560 * We implement a small set of nodes:
4561 *
4562 * hw.bus			Single integer read method to obtain the
4563 *				current generation count.
4564 * hw.bus.devices		Reads the entire device tree in flat space.
4565 * hw.bus.rman			Resource manager interface
4566 *
4567 * We might like to add the ability to scan devclasses and/or drivers to
4568 * determine what else is currently loaded/available.
4569 */
4570
4571static int
4572sysctl_bus(SYSCTL_HANDLER_ARGS)
4573{
4574	struct u_businfo	ubus;
4575
4576	ubus.ub_version = BUS_USER_VERSION;
4577	ubus.ub_generation = bus_data_generation;
4578
4579	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4580}
4581SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4582    "bus-related data");
4583
4584static int
4585sysctl_devices(SYSCTL_HANDLER_ARGS)
4586{
4587	int			*name = (int *)arg1;
4588	u_int			namelen = arg2;
4589	int			index;
4590	struct device		*dev;
4591	struct u_device		udev;	/* XXX this is a bit big */
4592	int			error;
4593
4594	if (namelen != 2)
4595		return (EINVAL);
4596
4597	if (bus_data_generation_check(name[0]))
4598		return (EINVAL);
4599
4600	index = name[1];
4601
4602	/*
4603	 * Scan the list of devices, looking for the requested index.
4604	 */
4605	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4606		if (index-- == 0)
4607			break;
4608	}
4609	if (dev == NULL)
4610		return (ENOENT);
4611
4612	/*
4613	 * Populate the return array.
4614	 */
4615	bzero(&udev, sizeof(udev));
4616	udev.dv_handle = (uintptr_t)dev;
4617	udev.dv_parent = (uintptr_t)dev->parent;
4618	if (dev->nameunit != NULL)
4619		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4620	if (dev->desc != NULL)
4621		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4622	if (dev->driver != NULL && dev->driver->name != NULL)
4623		strlcpy(udev.dv_drivername, dev->driver->name,
4624		    sizeof(udev.dv_drivername));
4625	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4626	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4627	udev.dv_devflags = dev->devflags;
4628	udev.dv_flags = dev->flags;
4629	udev.dv_state = dev->state;
4630	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4631	return (error);
4632}
4633
4634SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4635    "system device tree");
4636
4637int
4638bus_data_generation_check(int generation)
4639{
4640	if (generation != bus_data_generation)
4641		return (1);
4642
4643	/* XXX generate optimised lists here? */
4644	return (0);
4645}
4646
4647void
4648bus_data_generation_update(void)
4649{
4650	bus_data_generation++;
4651}
4652
4653int
4654bus_free_resource(device_t dev, int type, struct resource *r)
4655{
4656	if (r == NULL)
4657		return (0);
4658	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4659}
4660