subr_bus.c revision 196403
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 196403 2009-08-20 19:17:53Z jhb $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53#include <sys/interrupt.h>
54
55#include <machine/stdarg.h>
56
57#include <vm/uma.h>
58
59SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61
62/*
63 * Used to attach drivers to devclasses.
64 */
65typedef struct driverlink *driverlink_t;
66struct driverlink {
67	kobj_class_t	driver;
68	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69	int		pass;
70	TAILQ_ENTRY(driverlink) passlink;
71};
72
73/*
74 * Forward declarations
75 */
76typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
77typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
78typedef TAILQ_HEAD(device_list, device) device_list_t;
79
80struct devclass {
81	TAILQ_ENTRY(devclass) link;
82	devclass_t	parent;		/* parent in devclass hierarchy */
83	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
84	char		*name;
85	device_t	*devices;	/* array of devices indexed by unit */
86	int		maxunit;	/* size of devices array */
87	int		flags;
88#define DC_HAS_CHILDREN		1
89
90	struct sysctl_ctx_list sysctl_ctx;
91	struct sysctl_oid *sysctl_tree;
92};
93
94/**
95 * @brief Implementation of device.
96 */
97struct device {
98	/*
99	 * A device is a kernel object. The first field must be the
100	 * current ops table for the object.
101	 */
102	KOBJ_FIELDS;
103
104	/*
105	 * Device hierarchy.
106	 */
107	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
108	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
109	device_t	parent;		/**< parent of this device  */
110	device_list_t	children;	/**< list of child devices */
111
112	/*
113	 * Details of this device.
114	 */
115	driver_t	*driver;	/**< current driver */
116	devclass_t	devclass;	/**< current device class */
117	int		unit;		/**< current unit number */
118	char*		nameunit;	/**< name+unit e.g. foodev0 */
119	char*		desc;		/**< driver specific description */
120	int		busy;		/**< count of calls to device_busy() */
121	device_state_t	state;		/**< current device state  */
122	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
123	u_short		flags;		/**< internal device flags  */
124#define	DF_ENABLED	1		/* device should be probed/attached */
125#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
126#define	DF_WILDCARD	4		/* unit was originally wildcard */
127#define	DF_DESCMALLOCED	8		/* description was malloced */
128#define	DF_QUIET	16		/* don't print verbose attach message */
129#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
130#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
131#define	DF_REBID	128		/* Can rebid after attach */
132	u_char	order;			/**< order from device_add_child_ordered() */
133	u_char	pad;
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144#ifdef BUS_DEBUG
145
146static int bus_debug = 1;
147TUNABLE_INT("bus.debug", &bus_debug);
148SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149    "Debug bus code");
150
151#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153#define DRIVERNAME(d)	((d)? d->name : "no driver")
154#define DEVCLANAME(d)	((d)? d->name : "no devclass")
155
156/**
157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158 * prevent syslog from deleting initial spaces
159 */
160#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161
162static void print_device_short(device_t dev, int indent);
163static void print_device(device_t dev, int indent);
164void print_device_tree_short(device_t dev, int indent);
165void print_device_tree(device_t dev, int indent);
166static void print_driver_short(driver_t *driver, int indent);
167static void print_driver(driver_t *driver, int indent);
168static void print_driver_list(driver_list_t drivers, int indent);
169static void print_devclass_short(devclass_t dc, int indent);
170static void print_devclass(devclass_t dc, int indent);
171void print_devclass_list_short(void);
172void print_devclass_list(void);
173
174#else
175/* Make the compiler ignore the function calls */
176#define PDEBUG(a)			/* nop */
177#define DEVICENAME(d)			/* nop */
178#define DRIVERNAME(d)			/* nop */
179#define DEVCLANAME(d)			/* nop */
180
181#define print_device_short(d,i)		/* nop */
182#define print_device(d,i)		/* nop */
183#define print_device_tree_short(d,i)	/* nop */
184#define print_device_tree(d,i)		/* nop */
185#define print_driver_short(d,i)		/* nop */
186#define print_driver(d,i)		/* nop */
187#define print_driver_list(d,i)		/* nop */
188#define print_devclass_short(d,i)	/* nop */
189#define print_devclass(d,i)		/* nop */
190#define print_devclass_list_short()	/* nop */
191#define print_devclass_list()		/* nop */
192#endif
193
194/*
195 * dev sysctl tree
196 */
197
198enum {
199	DEVCLASS_SYSCTL_PARENT,
200};
201
202static int
203devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204{
205	devclass_t dc = (devclass_t)arg1;
206	const char *value;
207
208	switch (arg2) {
209	case DEVCLASS_SYSCTL_PARENT:
210		value = dc->parent ? dc->parent->name : "";
211		break;
212	default:
213		return (EINVAL);
214	}
215	return (SYSCTL_OUT(req, value, strlen(value)));
216}
217
218static void
219devclass_sysctl_init(devclass_t dc)
220{
221
222	if (dc->sysctl_tree != NULL)
223		return;
224	sysctl_ctx_init(&dc->sysctl_ctx);
225	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227	    CTLFLAG_RD, NULL, "");
228	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229	    OID_AUTO, "%parent", CTLFLAG_RD,
230	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231	    "parent class");
232}
233
234enum {
235	DEVICE_SYSCTL_DESC,
236	DEVICE_SYSCTL_DRIVER,
237	DEVICE_SYSCTL_LOCATION,
238	DEVICE_SYSCTL_PNPINFO,
239	DEVICE_SYSCTL_PARENT,
240};
241
242static int
243device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244{
245	device_t dev = (device_t)arg1;
246	const char *value;
247	char *buf;
248	int error;
249
250	buf = NULL;
251	switch (arg2) {
252	case DEVICE_SYSCTL_DESC:
253		value = dev->desc ? dev->desc : "";
254		break;
255	case DEVICE_SYSCTL_DRIVER:
256		value = dev->driver ? dev->driver->name : "";
257		break;
258	case DEVICE_SYSCTL_LOCATION:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_location_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PNPINFO:
263		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264		bus_child_pnpinfo_str(dev, buf, 1024);
265		break;
266	case DEVICE_SYSCTL_PARENT:
267		value = dev->parent ? dev->parent->nameunit : "";
268		break;
269	default:
270		return (EINVAL);
271	}
272	error = SYSCTL_OUT(req, value, strlen(value));
273	if (buf != NULL)
274		free(buf, M_BUS);
275	return (error);
276}
277
278static void
279device_sysctl_init(device_t dev)
280{
281	devclass_t dc = dev->devclass;
282
283	if (dev->sysctl_tree != NULL)
284		return;
285	devclass_sysctl_init(dc);
286	sysctl_ctx_init(&dev->sysctl_ctx);
287	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289	    dev->nameunit + strlen(dc->name),
290	    CTLFLAG_RD, NULL, "");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%desc", CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294	    "device description");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%driver", CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298	    "device driver name");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%location", CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302	    "device location relative to parent");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306	    "device identification");
307	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308	    OID_AUTO, "%parent", CTLFLAG_RD,
309	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310	    "parent device");
311}
312
313static void
314device_sysctl_update(device_t dev)
315{
316	devclass_t dc = dev->devclass;
317
318	if (dev->sysctl_tree == NULL)
319		return;
320	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321}
322
323static void
324device_sysctl_fini(device_t dev)
325{
326	if (dev->sysctl_tree == NULL)
327		return;
328	sysctl_ctx_free(&dev->sysctl_ctx);
329	dev->sysctl_tree = NULL;
330}
331
332/*
333 * /dev/devctl implementation
334 */
335
336/*
337 * This design allows only one reader for /dev/devctl.  This is not desirable
338 * in the long run, but will get a lot of hair out of this implementation.
339 * Maybe we should make this device a clonable device.
340 *
341 * Also note: we specifically do not attach a device to the device_t tree
342 * to avoid potential chicken and egg problems.  One could argue that all
343 * of this belongs to the root node.  One could also further argue that the
344 * sysctl interface that we have not might more properly be an ioctl
345 * interface, but at this stage of the game, I'm not inclined to rock that
346 * boat.
347 *
348 * I'm also not sure that the SIGIO support is done correctly or not, as
349 * I copied it from a driver that had SIGIO support that likely hasn't been
350 * tested since 3.4 or 2.2.8!
351 */
352
353static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
354static int devctl_disable = 0;
355TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
356SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357    0, sysctl_devctl_disable, "I", "devctl disable");
358
359static d_open_t		devopen;
360static d_close_t	devclose;
361static d_read_t		devread;
362static d_ioctl_t	devioctl;
363static d_poll_t		devpoll;
364
365static struct cdevsw dev_cdevsw = {
366	.d_version =	D_VERSION,
367	.d_flags =	D_NEEDGIANT,
368	.d_open =	devopen,
369	.d_close =	devclose,
370	.d_read =	devread,
371	.d_ioctl =	devioctl,
372	.d_poll =	devpoll,
373	.d_name =	"devctl",
374};
375
376struct dev_event_info
377{
378	char *dei_data;
379	TAILQ_ENTRY(dev_event_info) dei_link;
380};
381
382TAILQ_HEAD(devq, dev_event_info);
383
384static struct dev_softc
385{
386	int	inuse;
387	int	nonblock;
388	struct mtx mtx;
389	struct cv cv;
390	struct selinfo sel;
391	struct devq devq;
392	struct proc *async_proc;
393} devsoftc;
394
395static struct cdev *devctl_dev;
396
397static void
398devinit(void)
399{
400	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
401	    "devctl");
402	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
403	cv_init(&devsoftc.cv, "dev cv");
404	TAILQ_INIT(&devsoftc.devq);
405}
406
407static int
408devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
409{
410	if (devsoftc.inuse)
411		return (EBUSY);
412	/* move to init */
413	devsoftc.inuse = 1;
414	devsoftc.nonblock = 0;
415	devsoftc.async_proc = NULL;
416	return (0);
417}
418
419static int
420devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
421{
422	devsoftc.inuse = 0;
423	mtx_lock(&devsoftc.mtx);
424	cv_broadcast(&devsoftc.cv);
425	mtx_unlock(&devsoftc.mtx);
426
427	return (0);
428}
429
430/*
431 * The read channel for this device is used to report changes to
432 * userland in realtime.  We are required to free the data as well as
433 * the n1 object because we allocate them separately.  Also note that
434 * we return one record at a time.  If you try to read this device a
435 * character at a time, you will lose the rest of the data.  Listening
436 * programs are expected to cope.
437 */
438static int
439devread(struct cdev *dev, struct uio *uio, int ioflag)
440{
441	struct dev_event_info *n1;
442	int rv;
443
444	mtx_lock(&devsoftc.mtx);
445	while (TAILQ_EMPTY(&devsoftc.devq)) {
446		if (devsoftc.nonblock) {
447			mtx_unlock(&devsoftc.mtx);
448			return (EAGAIN);
449		}
450		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
451		if (rv) {
452			/*
453			 * Need to translate ERESTART to EINTR here? -- jake
454			 */
455			mtx_unlock(&devsoftc.mtx);
456			return (rv);
457		}
458	}
459	n1 = TAILQ_FIRST(&devsoftc.devq);
460	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
461	mtx_unlock(&devsoftc.mtx);
462	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
463	free(n1->dei_data, M_BUS);
464	free(n1, M_BUS);
465	return (rv);
466}
467
468static	int
469devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
470{
471	switch (cmd) {
472
473	case FIONBIO:
474		if (*(int*)data)
475			devsoftc.nonblock = 1;
476		else
477			devsoftc.nonblock = 0;
478		return (0);
479	case FIOASYNC:
480		if (*(int*)data)
481			devsoftc.async_proc = td->td_proc;
482		else
483			devsoftc.async_proc = NULL;
484		return (0);
485
486		/* (un)Support for other fcntl() calls. */
487	case FIOCLEX:
488	case FIONCLEX:
489	case FIONREAD:
490	case FIOSETOWN:
491	case FIOGETOWN:
492	default:
493		break;
494	}
495	return (ENOTTY);
496}
497
498static	int
499devpoll(struct cdev *dev, int events, struct thread *td)
500{
501	int	revents = 0;
502
503	mtx_lock(&devsoftc.mtx);
504	if (events & (POLLIN | POLLRDNORM)) {
505		if (!TAILQ_EMPTY(&devsoftc.devq))
506			revents = events & (POLLIN | POLLRDNORM);
507		else
508			selrecord(td, &devsoftc.sel);
509	}
510	mtx_unlock(&devsoftc.mtx);
511
512	return (revents);
513}
514
515/**
516 * @brief Return whether the userland process is running
517 */
518boolean_t
519devctl_process_running(void)
520{
521	return (devsoftc.inuse == 1);
522}
523
524/**
525 * @brief Queue data to be read from the devctl device
526 *
527 * Generic interface to queue data to the devctl device.  It is
528 * assumed that @p data is properly formatted.  It is further assumed
529 * that @p data is allocated using the M_BUS malloc type.
530 */
531void
532devctl_queue_data(char *data)
533{
534	struct dev_event_info *n1 = NULL;
535	struct proc *p;
536
537	/*
538	 * Do not allow empty strings to be queued, as they
539	 * cause devd to exit prematurely.
540	 */
541	if (strlen(data) == 0)
542		return;
543	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
544	if (n1 == NULL)
545		return;
546	n1->dei_data = data;
547	mtx_lock(&devsoftc.mtx);
548	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
549	cv_broadcast(&devsoftc.cv);
550	mtx_unlock(&devsoftc.mtx);
551	selwakeup(&devsoftc.sel);
552	p = devsoftc.async_proc;
553	if (p != NULL) {
554		PROC_LOCK(p);
555		psignal(p, SIGIO);
556		PROC_UNLOCK(p);
557	}
558}
559
560/**
561 * @brief Send a 'notification' to userland, using standard ways
562 */
563void
564devctl_notify(const char *system, const char *subsystem, const char *type,
565    const char *data)
566{
567	int len = 0;
568	char *msg;
569
570	if (system == NULL)
571		return;		/* BOGUS!  Must specify system. */
572	if (subsystem == NULL)
573		return;		/* BOGUS!  Must specify subsystem. */
574	if (type == NULL)
575		return;		/* BOGUS!  Must specify type. */
576	len += strlen(" system=") + strlen(system);
577	len += strlen(" subsystem=") + strlen(subsystem);
578	len += strlen(" type=") + strlen(type);
579	/* add in the data message plus newline. */
580	if (data != NULL)
581		len += strlen(data);
582	len += 3;	/* '!', '\n', and NUL */
583	msg = malloc(len, M_BUS, M_NOWAIT);
584	if (msg == NULL)
585		return;		/* Drop it on the floor */
586	if (data != NULL)
587		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
588		    system, subsystem, type, data);
589	else
590		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
591		    system, subsystem, type);
592	devctl_queue_data(msg);
593}
594
595/*
596 * Common routine that tries to make sending messages as easy as possible.
597 * We allocate memory for the data, copy strings into that, but do not
598 * free it unless there's an error.  The dequeue part of the driver should
599 * free the data.  We don't send data when the device is disabled.  We do
600 * send data, even when we have no listeners, because we wish to avoid
601 * races relating to startup and restart of listening applications.
602 *
603 * devaddq is designed to string together the type of event, with the
604 * object of that event, plus the plug and play info and location info
605 * for that event.  This is likely most useful for devices, but less
606 * useful for other consumers of this interface.  Those should use
607 * the devctl_queue_data() interface instead.
608 */
609static void
610devaddq(const char *type, const char *what, device_t dev)
611{
612	char *data = NULL;
613	char *loc = NULL;
614	char *pnp = NULL;
615	const char *parstr;
616
617	if (devctl_disable)
618		return;
619	data = malloc(1024, M_BUS, M_NOWAIT);
620	if (data == NULL)
621		goto bad;
622
623	/* get the bus specific location of this device */
624	loc = malloc(1024, M_BUS, M_NOWAIT);
625	if (loc == NULL)
626		goto bad;
627	*loc = '\0';
628	bus_child_location_str(dev, loc, 1024);
629
630	/* Get the bus specific pnp info of this device */
631	pnp = malloc(1024, M_BUS, M_NOWAIT);
632	if (pnp == NULL)
633		goto bad;
634	*pnp = '\0';
635	bus_child_pnpinfo_str(dev, pnp, 1024);
636
637	/* Get the parent of this device, or / if high enough in the tree. */
638	if (device_get_parent(dev) == NULL)
639		parstr = ".";	/* Or '/' ? */
640	else
641		parstr = device_get_nameunit(device_get_parent(dev));
642	/* String it all together. */
643	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
644	  parstr);
645	free(loc, M_BUS);
646	free(pnp, M_BUS);
647	devctl_queue_data(data);
648	return;
649bad:
650	free(pnp, M_BUS);
651	free(loc, M_BUS);
652	free(data, M_BUS);
653	return;
654}
655
656/*
657 * A device was added to the tree.  We are called just after it successfully
658 * attaches (that is, probe and attach success for this device).  No call
659 * is made if a device is merely parented into the tree.  See devnomatch
660 * if probe fails.  If attach fails, no notification is sent (but maybe
661 * we should have a different message for this).
662 */
663static void
664devadded(device_t dev)
665{
666	char *pnp = NULL;
667	char *tmp = NULL;
668
669	pnp = malloc(1024, M_BUS, M_NOWAIT);
670	if (pnp == NULL)
671		goto fail;
672	tmp = malloc(1024, M_BUS, M_NOWAIT);
673	if (tmp == NULL)
674		goto fail;
675	*pnp = '\0';
676	bus_child_pnpinfo_str(dev, pnp, 1024);
677	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
678	devaddq("+", tmp, dev);
679fail:
680	if (pnp != NULL)
681		free(pnp, M_BUS);
682	if (tmp != NULL)
683		free(tmp, M_BUS);
684	return;
685}
686
687/*
688 * A device was removed from the tree.  We are called just before this
689 * happens.
690 */
691static void
692devremoved(device_t dev)
693{
694	char *pnp = NULL;
695	char *tmp = NULL;
696
697	pnp = malloc(1024, M_BUS, M_NOWAIT);
698	if (pnp == NULL)
699		goto fail;
700	tmp = malloc(1024, M_BUS, M_NOWAIT);
701	if (tmp == NULL)
702		goto fail;
703	*pnp = '\0';
704	bus_child_pnpinfo_str(dev, pnp, 1024);
705	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
706	devaddq("-", tmp, dev);
707fail:
708	if (pnp != NULL)
709		free(pnp, M_BUS);
710	if (tmp != NULL)
711		free(tmp, M_BUS);
712	return;
713}
714
715/*
716 * Called when there's no match for this device.  This is only called
717 * the first time that no match happens, so we don't keep getting this
718 * message.  Should that prove to be undesirable, we can change it.
719 * This is called when all drivers that can attach to a given bus
720 * decline to accept this device.  Other errrors may not be detected.
721 */
722static void
723devnomatch(device_t dev)
724{
725	devaddq("?", "", dev);
726}
727
728static int
729sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
730{
731	struct dev_event_info *n1;
732	int dis, error;
733
734	dis = devctl_disable;
735	error = sysctl_handle_int(oidp, &dis, 0, req);
736	if (error || !req->newptr)
737		return (error);
738	mtx_lock(&devsoftc.mtx);
739	devctl_disable = dis;
740	if (dis) {
741		while (!TAILQ_EMPTY(&devsoftc.devq)) {
742			n1 = TAILQ_FIRST(&devsoftc.devq);
743			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
744			free(n1->dei_data, M_BUS);
745			free(n1, M_BUS);
746		}
747	}
748	mtx_unlock(&devsoftc.mtx);
749	return (0);
750}
751
752/* End of /dev/devctl code */
753
754static TAILQ_HEAD(,device)	bus_data_devices;
755static int bus_data_generation = 1;
756
757static kobj_method_t null_methods[] = {
758	KOBJMETHOD_END
759};
760
761DEFINE_CLASS(null, null_methods, 0);
762
763/*
764 * Bus pass implementation
765 */
766
767static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
768int bus_current_pass = BUS_PASS_ROOT;
769
770/**
771 * @internal
772 * @brief Register the pass level of a new driver attachment
773 *
774 * Register a new driver attachment's pass level.  If no driver
775 * attachment with the same pass level has been added, then @p new
776 * will be added to the global passes list.
777 *
778 * @param new		the new driver attachment
779 */
780static void
781driver_register_pass(struct driverlink *new)
782{
783	struct driverlink *dl;
784
785	/* We only consider pass numbers during boot. */
786	if (bus_current_pass == BUS_PASS_DEFAULT)
787		return;
788
789	/*
790	 * Walk the passes list.  If we already know about this pass
791	 * then there is nothing to do.  If we don't, then insert this
792	 * driver link into the list.
793	 */
794	TAILQ_FOREACH(dl, &passes, passlink) {
795		if (dl->pass < new->pass)
796			continue;
797		if (dl->pass == new->pass)
798			return;
799		TAILQ_INSERT_BEFORE(dl, new, passlink);
800		return;
801	}
802	TAILQ_INSERT_TAIL(&passes, new, passlink);
803}
804
805/**
806 * @brief Raise the current bus pass
807 *
808 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
809 * method on the root bus to kick off a new device tree scan for each
810 * new pass level that has at least one driver.
811 */
812void
813bus_set_pass(int pass)
814{
815	struct driverlink *dl;
816
817	if (bus_current_pass > pass)
818		panic("Attempt to lower bus pass level");
819
820	TAILQ_FOREACH(dl, &passes, passlink) {
821		/* Skip pass values below the current pass level. */
822		if (dl->pass <= bus_current_pass)
823			continue;
824
825		/*
826		 * Bail once we hit a driver with a pass level that is
827		 * too high.
828		 */
829		if (dl->pass > pass)
830			break;
831
832		/*
833		 * Raise the pass level to the next level and rescan
834		 * the tree.
835		 */
836		bus_current_pass = dl->pass;
837		BUS_NEW_PASS(root_bus);
838	}
839
840	/*
841	 * If there isn't a driver registered for the requested pass,
842	 * then bus_current_pass might still be less than 'pass'.  Set
843	 * it to 'pass' in that case.
844	 */
845	if (bus_current_pass < pass)
846		bus_current_pass = pass;
847	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
848}
849
850/*
851 * Devclass implementation
852 */
853
854static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
855
856/**
857 * @internal
858 * @brief Find or create a device class
859 *
860 * If a device class with the name @p classname exists, return it,
861 * otherwise if @p create is non-zero create and return a new device
862 * class.
863 *
864 * If @p parentname is non-NULL, the parent of the devclass is set to
865 * the devclass of that name.
866 *
867 * @param classname	the devclass name to find or create
868 * @param parentname	the parent devclass name or @c NULL
869 * @param create	non-zero to create a devclass
870 */
871static devclass_t
872devclass_find_internal(const char *classname, const char *parentname,
873		       int create)
874{
875	devclass_t dc;
876
877	PDEBUG(("looking for %s", classname));
878	if (!classname)
879		return (NULL);
880
881	TAILQ_FOREACH(dc, &devclasses, link) {
882		if (!strcmp(dc->name, classname))
883			break;
884	}
885
886	if (create && !dc) {
887		PDEBUG(("creating %s", classname));
888		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
889		    M_BUS, M_NOWAIT|M_ZERO);
890		if (!dc)
891			return (NULL);
892		dc->parent = NULL;
893		dc->name = (char*) (dc + 1);
894		strcpy(dc->name, classname);
895		TAILQ_INIT(&dc->drivers);
896		TAILQ_INSERT_TAIL(&devclasses, dc, link);
897
898		bus_data_generation_update();
899	}
900
901	/*
902	 * If a parent class is specified, then set that as our parent so
903	 * that this devclass will support drivers for the parent class as
904	 * well.  If the parent class has the same name don't do this though
905	 * as it creates a cycle that can trigger an infinite loop in
906	 * device_probe_child() if a device exists for which there is no
907	 * suitable driver.
908	 */
909	if (parentname && dc && !dc->parent &&
910	    strcmp(classname, parentname) != 0) {
911		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
912		dc->parent->flags |= DC_HAS_CHILDREN;
913	}
914
915	return (dc);
916}
917
918/**
919 * @brief Create a device class
920 *
921 * If a device class with the name @p classname exists, return it,
922 * otherwise create and return a new device class.
923 *
924 * @param classname	the devclass name to find or create
925 */
926devclass_t
927devclass_create(const char *classname)
928{
929	return (devclass_find_internal(classname, NULL, TRUE));
930}
931
932/**
933 * @brief Find a device class
934 *
935 * If a device class with the name @p classname exists, return it,
936 * otherwise return @c NULL.
937 *
938 * @param classname	the devclass name to find
939 */
940devclass_t
941devclass_find(const char *classname)
942{
943	return (devclass_find_internal(classname, NULL, FALSE));
944}
945
946/**
947 * @brief Register that a device driver has been added to a devclass
948 *
949 * Register that a device driver has been added to a devclass.  This
950 * is called by devclass_add_driver to accomplish the recursive
951 * notification of all the children classes of dc, as well as dc.
952 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
953 * the devclass.  We do a full search here of the devclass list at
954 * each iteration level to save storing children-lists in the devclass
955 * structure.  If we ever move beyond a few dozen devices doing this,
956 * we may need to reevaluate...
957 *
958 * @param dc		the devclass to edit
959 * @param driver	the driver that was just added
960 */
961static void
962devclass_driver_added(devclass_t dc, driver_t *driver)
963{
964	devclass_t parent;
965	int i;
966
967	/*
968	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
969	 */
970	for (i = 0; i < dc->maxunit; i++)
971		if (dc->devices[i])
972			BUS_DRIVER_ADDED(dc->devices[i], driver);
973
974	/*
975	 * Walk through the children classes.  Since we only keep a
976	 * single parent pointer around, we walk the entire list of
977	 * devclasses looking for children.  We set the
978	 * DC_HAS_CHILDREN flag when a child devclass is created on
979	 * the parent, so we only walk the list for those devclasses
980	 * that have children.
981	 */
982	if (!(dc->flags & DC_HAS_CHILDREN))
983		return;
984	parent = dc;
985	TAILQ_FOREACH(dc, &devclasses, link) {
986		if (dc->parent == parent)
987			devclass_driver_added(dc, driver);
988	}
989}
990
991/**
992 * @brief Add a device driver to a device class
993 *
994 * Add a device driver to a devclass. This is normally called
995 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
996 * all devices in the devclass will be called to allow them to attempt
997 * to re-probe any unmatched children.
998 *
999 * @param dc		the devclass to edit
1000 * @param driver	the driver to register
1001 */
1002static int
1003devclass_add_driver(devclass_t dc, driver_t *driver, int pass)
1004{
1005	driverlink_t dl;
1006
1007	PDEBUG(("%s", DRIVERNAME(driver)));
1008
1009	/* Don't allow invalid pass values. */
1010	if (pass <= BUS_PASS_ROOT)
1011		return (EINVAL);
1012
1013	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1014	if (!dl)
1015		return (ENOMEM);
1016
1017	/*
1018	 * Compile the driver's methods. Also increase the reference count
1019	 * so that the class doesn't get freed when the last instance
1020	 * goes. This means we can safely use static methods and avoids a
1021	 * double-free in devclass_delete_driver.
1022	 */
1023	kobj_class_compile((kobj_class_t) driver);
1024
1025	/*
1026	 * Make sure the devclass which the driver is implementing exists.
1027	 */
1028	devclass_find_internal(driver->name, NULL, TRUE);
1029
1030	dl->driver = driver;
1031	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1032	driver->refs++;		/* XXX: kobj_mtx */
1033	dl->pass = pass;
1034	driver_register_pass(dl);
1035
1036	devclass_driver_added(dc, driver);
1037	bus_data_generation_update();
1038	return (0);
1039}
1040
1041/**
1042 * @brief Delete a device driver from a device class
1043 *
1044 * Delete a device driver from a devclass. This is normally called
1045 * automatically by DRIVER_MODULE().
1046 *
1047 * If the driver is currently attached to any devices,
1048 * devclass_delete_driver() will first attempt to detach from each
1049 * device. If one of the detach calls fails, the driver will not be
1050 * deleted.
1051 *
1052 * @param dc		the devclass to edit
1053 * @param driver	the driver to unregister
1054 */
1055static int
1056devclass_delete_driver(devclass_t busclass, driver_t *driver)
1057{
1058	devclass_t dc = devclass_find(driver->name);
1059	driverlink_t dl;
1060	device_t dev;
1061	int i;
1062	int error;
1063
1064	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1065
1066	if (!dc)
1067		return (0);
1068
1069	/*
1070	 * Find the link structure in the bus' list of drivers.
1071	 */
1072	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1073		if (dl->driver == driver)
1074			break;
1075	}
1076
1077	if (!dl) {
1078		PDEBUG(("%s not found in %s list", driver->name,
1079		    busclass->name));
1080		return (ENOENT);
1081	}
1082
1083	/*
1084	 * Disassociate from any devices.  We iterate through all the
1085	 * devices in the devclass of the driver and detach any which are
1086	 * using the driver and which have a parent in the devclass which
1087	 * we are deleting from.
1088	 *
1089	 * Note that since a driver can be in multiple devclasses, we
1090	 * should not detach devices which are not children of devices in
1091	 * the affected devclass.
1092	 */
1093	for (i = 0; i < dc->maxunit; i++) {
1094		if (dc->devices[i]) {
1095			dev = dc->devices[i];
1096			if (dev->driver == driver && dev->parent &&
1097			    dev->parent->devclass == busclass) {
1098				if ((error = device_detach(dev)) != 0)
1099					return (error);
1100				device_set_driver(dev, NULL);
1101			}
1102		}
1103	}
1104
1105	TAILQ_REMOVE(&busclass->drivers, dl, link);
1106	free(dl, M_BUS);
1107
1108	/* XXX: kobj_mtx */
1109	driver->refs--;
1110	if (driver->refs == 0)
1111		kobj_class_free((kobj_class_t) driver);
1112
1113	bus_data_generation_update();
1114	return (0);
1115}
1116
1117/**
1118 * @brief Quiesces a set of device drivers from a device class
1119 *
1120 * Quiesce a device driver from a devclass. This is normally called
1121 * automatically by DRIVER_MODULE().
1122 *
1123 * If the driver is currently attached to any devices,
1124 * devclass_quiesece_driver() will first attempt to quiesce each
1125 * device.
1126 *
1127 * @param dc		the devclass to edit
1128 * @param driver	the driver to unregister
1129 */
1130static int
1131devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1132{
1133	devclass_t dc = devclass_find(driver->name);
1134	driverlink_t dl;
1135	device_t dev;
1136	int i;
1137	int error;
1138
1139	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1140
1141	if (!dc)
1142		return (0);
1143
1144	/*
1145	 * Find the link structure in the bus' list of drivers.
1146	 */
1147	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1148		if (dl->driver == driver)
1149			break;
1150	}
1151
1152	if (!dl) {
1153		PDEBUG(("%s not found in %s list", driver->name,
1154		    busclass->name));
1155		return (ENOENT);
1156	}
1157
1158	/*
1159	 * Quiesce all devices.  We iterate through all the devices in
1160	 * the devclass of the driver and quiesce any which are using
1161	 * the driver and which have a parent in the devclass which we
1162	 * are quiescing.
1163	 *
1164	 * Note that since a driver can be in multiple devclasses, we
1165	 * should not quiesce devices which are not children of
1166	 * devices in the affected devclass.
1167	 */
1168	for (i = 0; i < dc->maxunit; i++) {
1169		if (dc->devices[i]) {
1170			dev = dc->devices[i];
1171			if (dev->driver == driver && dev->parent &&
1172			    dev->parent->devclass == busclass) {
1173				if ((error = device_quiesce(dev)) != 0)
1174					return (error);
1175			}
1176		}
1177	}
1178
1179	return (0);
1180}
1181
1182/**
1183 * @internal
1184 */
1185static driverlink_t
1186devclass_find_driver_internal(devclass_t dc, const char *classname)
1187{
1188	driverlink_t dl;
1189
1190	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1191
1192	TAILQ_FOREACH(dl, &dc->drivers, link) {
1193		if (!strcmp(dl->driver->name, classname))
1194			return (dl);
1195	}
1196
1197	PDEBUG(("not found"));
1198	return (NULL);
1199}
1200
1201/**
1202 * @brief Return the name of the devclass
1203 */
1204const char *
1205devclass_get_name(devclass_t dc)
1206{
1207	return (dc->name);
1208}
1209
1210/**
1211 * @brief Find a device given a unit number
1212 *
1213 * @param dc		the devclass to search
1214 * @param unit		the unit number to search for
1215 *
1216 * @returns		the device with the given unit number or @c
1217 *			NULL if there is no such device
1218 */
1219device_t
1220devclass_get_device(devclass_t dc, int unit)
1221{
1222	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1223		return (NULL);
1224	return (dc->devices[unit]);
1225}
1226
1227/**
1228 * @brief Find the softc field of a device given a unit number
1229 *
1230 * @param dc		the devclass to search
1231 * @param unit		the unit number to search for
1232 *
1233 * @returns		the softc field of the device with the given
1234 *			unit number or @c NULL if there is no such
1235 *			device
1236 */
1237void *
1238devclass_get_softc(devclass_t dc, int unit)
1239{
1240	device_t dev;
1241
1242	dev = devclass_get_device(dc, unit);
1243	if (!dev)
1244		return (NULL);
1245
1246	return (device_get_softc(dev));
1247}
1248
1249/**
1250 * @brief Get a list of devices in the devclass
1251 *
1252 * An array containing a list of all the devices in the given devclass
1253 * is allocated and returned in @p *devlistp. The number of devices
1254 * in the array is returned in @p *devcountp. The caller should free
1255 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1256 *
1257 * @param dc		the devclass to examine
1258 * @param devlistp	points at location for array pointer return
1259 *			value
1260 * @param devcountp	points at location for array size return value
1261 *
1262 * @retval 0		success
1263 * @retval ENOMEM	the array allocation failed
1264 */
1265int
1266devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1267{
1268	int count, i;
1269	device_t *list;
1270
1271	count = devclass_get_count(dc);
1272	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1273	if (!list)
1274		return (ENOMEM);
1275
1276	count = 0;
1277	for (i = 0; i < dc->maxunit; i++) {
1278		if (dc->devices[i]) {
1279			list[count] = dc->devices[i];
1280			count++;
1281		}
1282	}
1283
1284	*devlistp = list;
1285	*devcountp = count;
1286
1287	return (0);
1288}
1289
1290/**
1291 * @brief Get a list of drivers in the devclass
1292 *
1293 * An array containing a list of pointers to all the drivers in the
1294 * given devclass is allocated and returned in @p *listp.  The number
1295 * of drivers in the array is returned in @p *countp. The caller should
1296 * free the array using @c free(p, M_TEMP).
1297 *
1298 * @param dc		the devclass to examine
1299 * @param listp		gives location for array pointer return value
1300 * @param countp	gives location for number of array elements
1301 *			return value
1302 *
1303 * @retval 0		success
1304 * @retval ENOMEM	the array allocation failed
1305 */
1306int
1307devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1308{
1309	driverlink_t dl;
1310	driver_t **list;
1311	int count;
1312
1313	count = 0;
1314	TAILQ_FOREACH(dl, &dc->drivers, link)
1315		count++;
1316	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1317	if (list == NULL)
1318		return (ENOMEM);
1319
1320	count = 0;
1321	TAILQ_FOREACH(dl, &dc->drivers, link) {
1322		list[count] = dl->driver;
1323		count++;
1324	}
1325	*listp = list;
1326	*countp = count;
1327
1328	return (0);
1329}
1330
1331/**
1332 * @brief Get the number of devices in a devclass
1333 *
1334 * @param dc		the devclass to examine
1335 */
1336int
1337devclass_get_count(devclass_t dc)
1338{
1339	int count, i;
1340
1341	count = 0;
1342	for (i = 0; i < dc->maxunit; i++)
1343		if (dc->devices[i])
1344			count++;
1345	return (count);
1346}
1347
1348/**
1349 * @brief Get the maximum unit number used in a devclass
1350 *
1351 * Note that this is one greater than the highest currently-allocated
1352 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1353 * that not even the devclass has been allocated yet.
1354 *
1355 * @param dc		the devclass to examine
1356 */
1357int
1358devclass_get_maxunit(devclass_t dc)
1359{
1360	if (dc == NULL)
1361		return (-1);
1362	return (dc->maxunit);
1363}
1364
1365/**
1366 * @brief Find a free unit number in a devclass
1367 *
1368 * This function searches for the first unused unit number greater
1369 * that or equal to @p unit.
1370 *
1371 * @param dc		the devclass to examine
1372 * @param unit		the first unit number to check
1373 */
1374int
1375devclass_find_free_unit(devclass_t dc, int unit)
1376{
1377	if (dc == NULL)
1378		return (unit);
1379	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1380		unit++;
1381	return (unit);
1382}
1383
1384/**
1385 * @brief Set the parent of a devclass
1386 *
1387 * The parent class is normally initialised automatically by
1388 * DRIVER_MODULE().
1389 *
1390 * @param dc		the devclass to edit
1391 * @param pdc		the new parent devclass
1392 */
1393void
1394devclass_set_parent(devclass_t dc, devclass_t pdc)
1395{
1396	dc->parent = pdc;
1397}
1398
1399/**
1400 * @brief Get the parent of a devclass
1401 *
1402 * @param dc		the devclass to examine
1403 */
1404devclass_t
1405devclass_get_parent(devclass_t dc)
1406{
1407	return (dc->parent);
1408}
1409
1410struct sysctl_ctx_list *
1411devclass_get_sysctl_ctx(devclass_t dc)
1412{
1413	return (&dc->sysctl_ctx);
1414}
1415
1416struct sysctl_oid *
1417devclass_get_sysctl_tree(devclass_t dc)
1418{
1419	return (dc->sysctl_tree);
1420}
1421
1422/**
1423 * @internal
1424 * @brief Allocate a unit number
1425 *
1426 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1427 * will do). The allocated unit number is returned in @p *unitp.
1428
1429 * @param dc		the devclass to allocate from
1430 * @param unitp		points at the location for the allocated unit
1431 *			number
1432 *
1433 * @retval 0		success
1434 * @retval EEXIST	the requested unit number is already allocated
1435 * @retval ENOMEM	memory allocation failure
1436 */
1437static int
1438devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1439{
1440	const char *s;
1441	int unit = *unitp;
1442
1443	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1444
1445	/* Ask the parent bus if it wants to wire this device. */
1446	if (unit == -1)
1447		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1448		    &unit);
1449
1450	/* If we were given a wired unit number, check for existing device */
1451	/* XXX imp XXX */
1452	if (unit != -1) {
1453		if (unit >= 0 && unit < dc->maxunit &&
1454		    dc->devices[unit] != NULL) {
1455			if (bootverbose)
1456				printf("%s: %s%d already exists; skipping it\n",
1457				    dc->name, dc->name, *unitp);
1458			return (EEXIST);
1459		}
1460	} else {
1461		/* Unwired device, find the next available slot for it */
1462		unit = 0;
1463		for (unit = 0;; unit++) {
1464			/* If there is an "at" hint for a unit then skip it. */
1465			if (resource_string_value(dc->name, unit, "at", &s) ==
1466			    0)
1467				continue;
1468
1469			/* If this device slot is already in use, skip it. */
1470			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1471				continue;
1472
1473			break;
1474		}
1475	}
1476
1477	/*
1478	 * We've selected a unit beyond the length of the table, so let's
1479	 * extend the table to make room for all units up to and including
1480	 * this one.
1481	 */
1482	if (unit >= dc->maxunit) {
1483		device_t *newlist, *oldlist;
1484		int newsize;
1485
1486		oldlist = dc->devices;
1487		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1488		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1489		if (!newlist)
1490			return (ENOMEM);
1491		if (oldlist != NULL)
1492			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1493		bzero(newlist + dc->maxunit,
1494		    sizeof(device_t) * (newsize - dc->maxunit));
1495		dc->devices = newlist;
1496		dc->maxunit = newsize;
1497		if (oldlist != NULL)
1498			free(oldlist, M_BUS);
1499	}
1500	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1501
1502	*unitp = unit;
1503	return (0);
1504}
1505
1506/**
1507 * @internal
1508 * @brief Add a device to a devclass
1509 *
1510 * A unit number is allocated for the device (using the device's
1511 * preferred unit number if any) and the device is registered in the
1512 * devclass. This allows the device to be looked up by its unit
1513 * number, e.g. by decoding a dev_t minor number.
1514 *
1515 * @param dc		the devclass to add to
1516 * @param dev		the device to add
1517 *
1518 * @retval 0		success
1519 * @retval EEXIST	the requested unit number is already allocated
1520 * @retval ENOMEM	memory allocation failure
1521 */
1522static int
1523devclass_add_device(devclass_t dc, device_t dev)
1524{
1525	int buflen, error;
1526
1527	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1528
1529	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1530	if (buflen < 0)
1531		return (ENOMEM);
1532	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1533	if (!dev->nameunit)
1534		return (ENOMEM);
1535
1536	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1537		free(dev->nameunit, M_BUS);
1538		dev->nameunit = NULL;
1539		return (error);
1540	}
1541	dc->devices[dev->unit] = dev;
1542	dev->devclass = dc;
1543	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1544
1545	return (0);
1546}
1547
1548/**
1549 * @internal
1550 * @brief Delete a device from a devclass
1551 *
1552 * The device is removed from the devclass's device list and its unit
1553 * number is freed.
1554
1555 * @param dc		the devclass to delete from
1556 * @param dev		the device to delete
1557 *
1558 * @retval 0		success
1559 */
1560static int
1561devclass_delete_device(devclass_t dc, device_t dev)
1562{
1563	if (!dc || !dev)
1564		return (0);
1565
1566	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1567
1568	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1569		panic("devclass_delete_device: inconsistent device class");
1570	dc->devices[dev->unit] = NULL;
1571	if (dev->flags & DF_WILDCARD)
1572		dev->unit = -1;
1573	dev->devclass = NULL;
1574	free(dev->nameunit, M_BUS);
1575	dev->nameunit = NULL;
1576
1577	return (0);
1578}
1579
1580/**
1581 * @internal
1582 * @brief Make a new device and add it as a child of @p parent
1583 *
1584 * @param parent	the parent of the new device
1585 * @param name		the devclass name of the new device or @c NULL
1586 *			to leave the devclass unspecified
1587 * @parem unit		the unit number of the new device of @c -1 to
1588 *			leave the unit number unspecified
1589 *
1590 * @returns the new device
1591 */
1592static device_t
1593make_device(device_t parent, const char *name, int unit)
1594{
1595	device_t dev;
1596	devclass_t dc;
1597
1598	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1599
1600	if (name) {
1601		dc = devclass_find_internal(name, NULL, TRUE);
1602		if (!dc) {
1603			printf("make_device: can't find device class %s\n",
1604			    name);
1605			return (NULL);
1606		}
1607	} else {
1608		dc = NULL;
1609	}
1610
1611	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1612	if (!dev)
1613		return (NULL);
1614
1615	dev->parent = parent;
1616	TAILQ_INIT(&dev->children);
1617	kobj_init((kobj_t) dev, &null_class);
1618	dev->driver = NULL;
1619	dev->devclass = NULL;
1620	dev->unit = unit;
1621	dev->nameunit = NULL;
1622	dev->desc = NULL;
1623	dev->busy = 0;
1624	dev->devflags = 0;
1625	dev->flags = DF_ENABLED;
1626	dev->order = 0;
1627	if (unit == -1)
1628		dev->flags |= DF_WILDCARD;
1629	if (name) {
1630		dev->flags |= DF_FIXEDCLASS;
1631		if (devclass_add_device(dc, dev)) {
1632			kobj_delete((kobj_t) dev, M_BUS);
1633			return (NULL);
1634		}
1635	}
1636	dev->ivars = NULL;
1637	dev->softc = NULL;
1638
1639	dev->state = DS_NOTPRESENT;
1640
1641	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1642	bus_data_generation_update();
1643
1644	return (dev);
1645}
1646
1647/**
1648 * @internal
1649 * @brief Print a description of a device.
1650 */
1651static int
1652device_print_child(device_t dev, device_t child)
1653{
1654	int retval = 0;
1655
1656	if (device_is_alive(child))
1657		retval += BUS_PRINT_CHILD(dev, child);
1658	else
1659		retval += device_printf(child, " not found\n");
1660
1661	return (retval);
1662}
1663
1664/**
1665 * @brief Create a new device
1666 *
1667 * This creates a new device and adds it as a child of an existing
1668 * parent device. The new device will be added after the last existing
1669 * child with order zero.
1670 *
1671 * @param dev		the device which will be the parent of the
1672 *			new child device
1673 * @param name		devclass name for new device or @c NULL if not
1674 *			specified
1675 * @param unit		unit number for new device or @c -1 if not
1676 *			specified
1677 *
1678 * @returns		the new device
1679 */
1680device_t
1681device_add_child(device_t dev, const char *name, int unit)
1682{
1683	return (device_add_child_ordered(dev, 0, name, unit));
1684}
1685
1686/**
1687 * @brief Create a new device
1688 *
1689 * This creates a new device and adds it as a child of an existing
1690 * parent device. The new device will be added after the last existing
1691 * child with the same order.
1692 *
1693 * @param dev		the device which will be the parent of the
1694 *			new child device
1695 * @param order		a value which is used to partially sort the
1696 *			children of @p dev - devices created using
1697 *			lower values of @p order appear first in @p
1698 *			dev's list of children
1699 * @param name		devclass name for new device or @c NULL if not
1700 *			specified
1701 * @param unit		unit number for new device or @c -1 if not
1702 *			specified
1703 *
1704 * @returns		the new device
1705 */
1706device_t
1707device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1708{
1709	device_t child;
1710	device_t place;
1711
1712	PDEBUG(("%s at %s with order %d as unit %d",
1713	    name, DEVICENAME(dev), order, unit));
1714
1715	child = make_device(dev, name, unit);
1716	if (child == NULL)
1717		return (child);
1718	child->order = order;
1719
1720	TAILQ_FOREACH(place, &dev->children, link) {
1721		if (place->order > order)
1722			break;
1723	}
1724
1725	if (place) {
1726		/*
1727		 * The device 'place' is the first device whose order is
1728		 * greater than the new child.
1729		 */
1730		TAILQ_INSERT_BEFORE(place, child, link);
1731	} else {
1732		/*
1733		 * The new child's order is greater or equal to the order of
1734		 * any existing device. Add the child to the tail of the list.
1735		 */
1736		TAILQ_INSERT_TAIL(&dev->children, child, link);
1737	}
1738
1739	bus_data_generation_update();
1740	return (child);
1741}
1742
1743/**
1744 * @brief Delete a device
1745 *
1746 * This function deletes a device along with all of its children. If
1747 * the device currently has a driver attached to it, the device is
1748 * detached first using device_detach().
1749 *
1750 * @param dev		the parent device
1751 * @param child		the device to delete
1752 *
1753 * @retval 0		success
1754 * @retval non-zero	a unit error code describing the error
1755 */
1756int
1757device_delete_child(device_t dev, device_t child)
1758{
1759	int error;
1760	device_t grandchild;
1761
1762	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1763
1764	/* remove children first */
1765	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1766		error = device_delete_child(child, grandchild);
1767		if (error)
1768			return (error);
1769	}
1770
1771	if ((error = device_detach(child)) != 0)
1772		return (error);
1773	if (child->devclass)
1774		devclass_delete_device(child->devclass, child);
1775	TAILQ_REMOVE(&dev->children, child, link);
1776	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1777	kobj_delete((kobj_t) child, M_BUS);
1778
1779	bus_data_generation_update();
1780	return (0);
1781}
1782
1783/**
1784 * @brief Find a device given a unit number
1785 *
1786 * This is similar to devclass_get_devices() but only searches for
1787 * devices which have @p dev as a parent.
1788 *
1789 * @param dev		the parent device to search
1790 * @param unit		the unit number to search for.  If the unit is -1,
1791 *			return the first child of @p dev which has name
1792 *			@p classname (that is, the one with the lowest unit.)
1793 *
1794 * @returns		the device with the given unit number or @c
1795 *			NULL if there is no such device
1796 */
1797device_t
1798device_find_child(device_t dev, const char *classname, int unit)
1799{
1800	devclass_t dc;
1801	device_t child;
1802
1803	dc = devclass_find(classname);
1804	if (!dc)
1805		return (NULL);
1806
1807	if (unit != -1) {
1808		child = devclass_get_device(dc, unit);
1809		if (child && child->parent == dev)
1810			return (child);
1811	} else {
1812		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1813			child = devclass_get_device(dc, unit);
1814			if (child && child->parent == dev)
1815				return (child);
1816		}
1817	}
1818	return (NULL);
1819}
1820
1821/**
1822 * @internal
1823 */
1824static driverlink_t
1825first_matching_driver(devclass_t dc, device_t dev)
1826{
1827	if (dev->devclass)
1828		return (devclass_find_driver_internal(dc, dev->devclass->name));
1829	return (TAILQ_FIRST(&dc->drivers));
1830}
1831
1832/**
1833 * @internal
1834 */
1835static driverlink_t
1836next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1837{
1838	if (dev->devclass) {
1839		driverlink_t dl;
1840		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1841			if (!strcmp(dev->devclass->name, dl->driver->name))
1842				return (dl);
1843		return (NULL);
1844	}
1845	return (TAILQ_NEXT(last, link));
1846}
1847
1848/**
1849 * @internal
1850 */
1851int
1852device_probe_child(device_t dev, device_t child)
1853{
1854	devclass_t dc;
1855	driverlink_t best = NULL;
1856	driverlink_t dl;
1857	int result, pri = 0;
1858	int hasclass = (child->devclass != NULL);
1859
1860	GIANT_REQUIRED;
1861
1862	dc = dev->devclass;
1863	if (!dc)
1864		panic("device_probe_child: parent device has no devclass");
1865
1866	/*
1867	 * If the state is already probed, then return.  However, don't
1868	 * return if we can rebid this object.
1869	 */
1870	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1871		return (0);
1872
1873	for (; dc; dc = dc->parent) {
1874		for (dl = first_matching_driver(dc, child);
1875		     dl;
1876		     dl = next_matching_driver(dc, child, dl)) {
1877
1878			/* If this driver's pass is too high, then ignore it. */
1879			if (dl->pass > bus_current_pass)
1880				continue;
1881
1882			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1883			device_set_driver(child, dl->driver);
1884			if (!hasclass) {
1885				if (device_set_devclass(child, dl->driver->name)) {
1886					printf("driver bug: Unable to set devclass (devname: %s)\n",
1887					    (child ? device_get_name(child) :
1888						"no device"));
1889					device_set_driver(child, NULL);
1890					continue;
1891				}
1892			}
1893
1894			/* Fetch any flags for the device before probing. */
1895			resource_int_value(dl->driver->name, child->unit,
1896			    "flags", &child->devflags);
1897
1898			result = DEVICE_PROBE(child);
1899
1900			/* Reset flags and devclass before the next probe. */
1901			child->devflags = 0;
1902			if (!hasclass)
1903				device_set_devclass(child, NULL);
1904
1905			/*
1906			 * If the driver returns SUCCESS, there can be
1907			 * no higher match for this device.
1908			 */
1909			if (result == 0) {
1910				best = dl;
1911				pri = 0;
1912				break;
1913			}
1914
1915			/*
1916			 * The driver returned an error so it
1917			 * certainly doesn't match.
1918			 */
1919			if (result > 0) {
1920				device_set_driver(child, NULL);
1921				continue;
1922			}
1923
1924			/*
1925			 * A priority lower than SUCCESS, remember the
1926			 * best matching driver. Initialise the value
1927			 * of pri for the first match.
1928			 */
1929			if (best == NULL || result > pri) {
1930				/*
1931				 * Probes that return BUS_PROBE_NOWILDCARD
1932				 * or lower only match when they are set
1933				 * in stone by the parent bus.
1934				 */
1935				if (result <= BUS_PROBE_NOWILDCARD &&
1936				    child->flags & DF_WILDCARD)
1937					continue;
1938				best = dl;
1939				pri = result;
1940				continue;
1941			}
1942		}
1943		/*
1944		 * If we have an unambiguous match in this devclass,
1945		 * don't look in the parent.
1946		 */
1947		if (best && pri == 0)
1948			break;
1949	}
1950
1951	/*
1952	 * If we found a driver, change state and initialise the devclass.
1953	 */
1954	/* XXX What happens if we rebid and got no best? */
1955	if (best) {
1956		/*
1957		 * If this device was atached, and we were asked to
1958		 * rescan, and it is a different driver, then we have
1959		 * to detach the old driver and reattach this new one.
1960		 * Note, we don't have to check for DF_REBID here
1961		 * because if the state is > DS_ALIVE, we know it must
1962		 * be.
1963		 *
1964		 * This assumes that all DF_REBID drivers can have
1965		 * their probe routine called at any time and that
1966		 * they are idempotent as well as completely benign in
1967		 * normal operations.
1968		 *
1969		 * We also have to make sure that the detach
1970		 * succeeded, otherwise we fail the operation (or
1971		 * maybe it should just fail silently?  I'm torn).
1972		 */
1973		if (child->state > DS_ALIVE && best->driver != child->driver)
1974			if ((result = device_detach(dev)) != 0)
1975				return (result);
1976
1977		/* Set the winning driver, devclass, and flags. */
1978		if (!child->devclass) {
1979			result = device_set_devclass(child, best->driver->name);
1980			if (result != 0)
1981				return (result);
1982		}
1983		device_set_driver(child, best->driver);
1984		resource_int_value(best->driver->name, child->unit,
1985		    "flags", &child->devflags);
1986
1987		if (pri < 0) {
1988			/*
1989			 * A bit bogus. Call the probe method again to make
1990			 * sure that we have the right description.
1991			 */
1992			DEVICE_PROBE(child);
1993#if 0
1994			child->flags |= DF_REBID;
1995#endif
1996		} else
1997			child->flags &= ~DF_REBID;
1998		child->state = DS_ALIVE;
1999
2000		bus_data_generation_update();
2001		return (0);
2002	}
2003
2004	return (ENXIO);
2005}
2006
2007/**
2008 * @brief Return the parent of a device
2009 */
2010device_t
2011device_get_parent(device_t dev)
2012{
2013	return (dev->parent);
2014}
2015
2016/**
2017 * @brief Get a list of children of a device
2018 *
2019 * An array containing a list of all the children of the given device
2020 * is allocated and returned in @p *devlistp. The number of devices
2021 * in the array is returned in @p *devcountp. The caller should free
2022 * the array using @c free(p, M_TEMP).
2023 *
2024 * @param dev		the device to examine
2025 * @param devlistp	points at location for array pointer return
2026 *			value
2027 * @param devcountp	points at location for array size return value
2028 *
2029 * @retval 0		success
2030 * @retval ENOMEM	the array allocation failed
2031 */
2032int
2033device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2034{
2035	int count;
2036	device_t child;
2037	device_t *list;
2038
2039	count = 0;
2040	TAILQ_FOREACH(child, &dev->children, link) {
2041		count++;
2042	}
2043
2044	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2045	if (!list)
2046		return (ENOMEM);
2047
2048	count = 0;
2049	TAILQ_FOREACH(child, &dev->children, link) {
2050		list[count] = child;
2051		count++;
2052	}
2053
2054	*devlistp = list;
2055	*devcountp = count;
2056
2057	return (0);
2058}
2059
2060/**
2061 * @brief Return the current driver for the device or @c NULL if there
2062 * is no driver currently attached
2063 */
2064driver_t *
2065device_get_driver(device_t dev)
2066{
2067	return (dev->driver);
2068}
2069
2070/**
2071 * @brief Return the current devclass for the device or @c NULL if
2072 * there is none.
2073 */
2074devclass_t
2075device_get_devclass(device_t dev)
2076{
2077	return (dev->devclass);
2078}
2079
2080/**
2081 * @brief Return the name of the device's devclass or @c NULL if there
2082 * is none.
2083 */
2084const char *
2085device_get_name(device_t dev)
2086{
2087	if (dev != NULL && dev->devclass)
2088		return (devclass_get_name(dev->devclass));
2089	return (NULL);
2090}
2091
2092/**
2093 * @brief Return a string containing the device's devclass name
2094 * followed by an ascii representation of the device's unit number
2095 * (e.g. @c "foo2").
2096 */
2097const char *
2098device_get_nameunit(device_t dev)
2099{
2100	return (dev->nameunit);
2101}
2102
2103/**
2104 * @brief Return the device's unit number.
2105 */
2106int
2107device_get_unit(device_t dev)
2108{
2109	return (dev->unit);
2110}
2111
2112/**
2113 * @brief Return the device's description string
2114 */
2115const char *
2116device_get_desc(device_t dev)
2117{
2118	return (dev->desc);
2119}
2120
2121/**
2122 * @brief Return the device's flags
2123 */
2124u_int32_t
2125device_get_flags(device_t dev)
2126{
2127	return (dev->devflags);
2128}
2129
2130struct sysctl_ctx_list *
2131device_get_sysctl_ctx(device_t dev)
2132{
2133	return (&dev->sysctl_ctx);
2134}
2135
2136struct sysctl_oid *
2137device_get_sysctl_tree(device_t dev)
2138{
2139	return (dev->sysctl_tree);
2140}
2141
2142/**
2143 * @brief Print the name of the device followed by a colon and a space
2144 *
2145 * @returns the number of characters printed
2146 */
2147int
2148device_print_prettyname(device_t dev)
2149{
2150	const char *name = device_get_name(dev);
2151
2152	if (name == NULL)
2153		return (printf("unknown: "));
2154	return (printf("%s%d: ", name, device_get_unit(dev)));
2155}
2156
2157/**
2158 * @brief Print the name of the device followed by a colon, a space
2159 * and the result of calling vprintf() with the value of @p fmt and
2160 * the following arguments.
2161 *
2162 * @returns the number of characters printed
2163 */
2164int
2165device_printf(device_t dev, const char * fmt, ...)
2166{
2167	va_list ap;
2168	int retval;
2169
2170	retval = device_print_prettyname(dev);
2171	va_start(ap, fmt);
2172	retval += vprintf(fmt, ap);
2173	va_end(ap);
2174	return (retval);
2175}
2176
2177/**
2178 * @internal
2179 */
2180static void
2181device_set_desc_internal(device_t dev, const char* desc, int copy)
2182{
2183	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2184		free(dev->desc, M_BUS);
2185		dev->flags &= ~DF_DESCMALLOCED;
2186		dev->desc = NULL;
2187	}
2188
2189	if (copy && desc) {
2190		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2191		if (dev->desc) {
2192			strcpy(dev->desc, desc);
2193			dev->flags |= DF_DESCMALLOCED;
2194		}
2195	} else {
2196		/* Avoid a -Wcast-qual warning */
2197		dev->desc = (char *)(uintptr_t) desc;
2198	}
2199
2200	bus_data_generation_update();
2201}
2202
2203/**
2204 * @brief Set the device's description
2205 *
2206 * The value of @c desc should be a string constant that will not
2207 * change (at least until the description is changed in a subsequent
2208 * call to device_set_desc() or device_set_desc_copy()).
2209 */
2210void
2211device_set_desc(device_t dev, const char* desc)
2212{
2213	device_set_desc_internal(dev, desc, FALSE);
2214}
2215
2216/**
2217 * @brief Set the device's description
2218 *
2219 * The string pointed to by @c desc is copied. Use this function if
2220 * the device description is generated, (e.g. with sprintf()).
2221 */
2222void
2223device_set_desc_copy(device_t dev, const char* desc)
2224{
2225	device_set_desc_internal(dev, desc, TRUE);
2226}
2227
2228/**
2229 * @brief Set the device's flags
2230 */
2231void
2232device_set_flags(device_t dev, u_int32_t flags)
2233{
2234	dev->devflags = flags;
2235}
2236
2237/**
2238 * @brief Return the device's softc field
2239 *
2240 * The softc is allocated and zeroed when a driver is attached, based
2241 * on the size field of the driver.
2242 */
2243void *
2244device_get_softc(device_t dev)
2245{
2246	return (dev->softc);
2247}
2248
2249/**
2250 * @brief Set the device's softc field
2251 *
2252 * Most drivers do not need to use this since the softc is allocated
2253 * automatically when the driver is attached.
2254 */
2255void
2256device_set_softc(device_t dev, void *softc)
2257{
2258	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2259		free(dev->softc, M_BUS_SC);
2260	dev->softc = softc;
2261	if (dev->softc)
2262		dev->flags |= DF_EXTERNALSOFTC;
2263	else
2264		dev->flags &= ~DF_EXTERNALSOFTC;
2265}
2266
2267/**
2268 * @brief Get the device's ivars field
2269 *
2270 * The ivars field is used by the parent device to store per-device
2271 * state (e.g. the physical location of the device or a list of
2272 * resources).
2273 */
2274void *
2275device_get_ivars(device_t dev)
2276{
2277
2278	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2279	return (dev->ivars);
2280}
2281
2282/**
2283 * @brief Set the device's ivars field
2284 */
2285void
2286device_set_ivars(device_t dev, void * ivars)
2287{
2288
2289	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2290	dev->ivars = ivars;
2291}
2292
2293/**
2294 * @brief Return the device's state
2295 */
2296device_state_t
2297device_get_state(device_t dev)
2298{
2299	return (dev->state);
2300}
2301
2302/**
2303 * @brief Set the DF_ENABLED flag for the device
2304 */
2305void
2306device_enable(device_t dev)
2307{
2308	dev->flags |= DF_ENABLED;
2309}
2310
2311/**
2312 * @brief Clear the DF_ENABLED flag for the device
2313 */
2314void
2315device_disable(device_t dev)
2316{
2317	dev->flags &= ~DF_ENABLED;
2318}
2319
2320/**
2321 * @brief Increment the busy counter for the device
2322 */
2323void
2324device_busy(device_t dev)
2325{
2326	if (dev->state < DS_ATTACHED)
2327		panic("device_busy: called for unattached device");
2328	if (dev->busy == 0 && dev->parent)
2329		device_busy(dev->parent);
2330	dev->busy++;
2331	dev->state = DS_BUSY;
2332}
2333
2334/**
2335 * @brief Decrement the busy counter for the device
2336 */
2337void
2338device_unbusy(device_t dev)
2339{
2340	if (dev->state != DS_BUSY)
2341		panic("device_unbusy: called for non-busy device %s",
2342		    device_get_nameunit(dev));
2343	dev->busy--;
2344	if (dev->busy == 0) {
2345		if (dev->parent)
2346			device_unbusy(dev->parent);
2347		dev->state = DS_ATTACHED;
2348	}
2349}
2350
2351/**
2352 * @brief Set the DF_QUIET flag for the device
2353 */
2354void
2355device_quiet(device_t dev)
2356{
2357	dev->flags |= DF_QUIET;
2358}
2359
2360/**
2361 * @brief Clear the DF_QUIET flag for the device
2362 */
2363void
2364device_verbose(device_t dev)
2365{
2366	dev->flags &= ~DF_QUIET;
2367}
2368
2369/**
2370 * @brief Return non-zero if the DF_QUIET flag is set on the device
2371 */
2372int
2373device_is_quiet(device_t dev)
2374{
2375	return ((dev->flags & DF_QUIET) != 0);
2376}
2377
2378/**
2379 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2380 */
2381int
2382device_is_enabled(device_t dev)
2383{
2384	return ((dev->flags & DF_ENABLED) != 0);
2385}
2386
2387/**
2388 * @brief Return non-zero if the device was successfully probed
2389 */
2390int
2391device_is_alive(device_t dev)
2392{
2393	return (dev->state >= DS_ALIVE);
2394}
2395
2396/**
2397 * @brief Return non-zero if the device currently has a driver
2398 * attached to it
2399 */
2400int
2401device_is_attached(device_t dev)
2402{
2403	return (dev->state >= DS_ATTACHED);
2404}
2405
2406/**
2407 * @brief Set the devclass of a device
2408 * @see devclass_add_device().
2409 */
2410int
2411device_set_devclass(device_t dev, const char *classname)
2412{
2413	devclass_t dc;
2414	int error;
2415
2416	if (!classname) {
2417		if (dev->devclass)
2418			devclass_delete_device(dev->devclass, dev);
2419		return (0);
2420	}
2421
2422	if (dev->devclass) {
2423		printf("device_set_devclass: device class already set\n");
2424		return (EINVAL);
2425	}
2426
2427	dc = devclass_find_internal(classname, NULL, TRUE);
2428	if (!dc)
2429		return (ENOMEM);
2430
2431	error = devclass_add_device(dc, dev);
2432
2433	bus_data_generation_update();
2434	return (error);
2435}
2436
2437/**
2438 * @brief Set the driver of a device
2439 *
2440 * @retval 0		success
2441 * @retval EBUSY	the device already has a driver attached
2442 * @retval ENOMEM	a memory allocation failure occurred
2443 */
2444int
2445device_set_driver(device_t dev, driver_t *driver)
2446{
2447	if (dev->state >= DS_ATTACHED)
2448		return (EBUSY);
2449
2450	if (dev->driver == driver)
2451		return (0);
2452
2453	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2454		free(dev->softc, M_BUS_SC);
2455		dev->softc = NULL;
2456	}
2457	kobj_delete((kobj_t) dev, NULL);
2458	dev->driver = driver;
2459	if (driver) {
2460		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2461		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2462			dev->softc = malloc(driver->size, M_BUS_SC,
2463			    M_NOWAIT | M_ZERO);
2464			if (!dev->softc) {
2465				kobj_delete((kobj_t) dev, NULL);
2466				kobj_init((kobj_t) dev, &null_class);
2467				dev->driver = NULL;
2468				return (ENOMEM);
2469			}
2470		}
2471	} else {
2472		kobj_init((kobj_t) dev, &null_class);
2473	}
2474
2475	bus_data_generation_update();
2476	return (0);
2477}
2478
2479/**
2480 * @brief Probe a device, and return this status.
2481 *
2482 * This function is the core of the device autoconfiguration
2483 * system. Its purpose is to select a suitable driver for a device and
2484 * then call that driver to initialise the hardware appropriately. The
2485 * driver is selected by calling the DEVICE_PROBE() method of a set of
2486 * candidate drivers and then choosing the driver which returned the
2487 * best value. This driver is then attached to the device using
2488 * device_attach().
2489 *
2490 * The set of suitable drivers is taken from the list of drivers in
2491 * the parent device's devclass. If the device was originally created
2492 * with a specific class name (see device_add_child()), only drivers
2493 * with that name are probed, otherwise all drivers in the devclass
2494 * are probed. If no drivers return successful probe values in the
2495 * parent devclass, the search continues in the parent of that
2496 * devclass (see devclass_get_parent()) if any.
2497 *
2498 * @param dev		the device to initialise
2499 *
2500 * @retval 0		success
2501 * @retval ENXIO	no driver was found
2502 * @retval ENOMEM	memory allocation failure
2503 * @retval non-zero	some other unix error code
2504 * @retval -1		Device already attached
2505 */
2506int
2507device_probe(device_t dev)
2508{
2509	int error;
2510
2511	GIANT_REQUIRED;
2512
2513	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2514		return (-1);
2515
2516	if (!(dev->flags & DF_ENABLED)) {
2517		if (bootverbose && device_get_name(dev) != NULL) {
2518			device_print_prettyname(dev);
2519			printf("not probed (disabled)\n");
2520		}
2521		return (-1);
2522	}
2523	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2524		if (bus_current_pass == BUS_PASS_DEFAULT &&
2525		    !(dev->flags & DF_DONENOMATCH)) {
2526			BUS_PROBE_NOMATCH(dev->parent, dev);
2527			devnomatch(dev);
2528			dev->flags |= DF_DONENOMATCH;
2529		}
2530		return (error);
2531	}
2532	return (0);
2533}
2534
2535/**
2536 * @brief Probe a device and attach a driver if possible
2537 *
2538 * calls device_probe() and attaches if that was successful.
2539 */
2540int
2541device_probe_and_attach(device_t dev)
2542{
2543	int error;
2544
2545	GIANT_REQUIRED;
2546
2547	error = device_probe(dev);
2548	if (error == -1)
2549		return (0);
2550	else if (error != 0)
2551		return (error);
2552	return (device_attach(dev));
2553}
2554
2555/**
2556 * @brief Attach a device driver to a device
2557 *
2558 * This function is a wrapper around the DEVICE_ATTACH() driver
2559 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2560 * device's sysctl tree, optionally prints a description of the device
2561 * and queues a notification event for user-based device management
2562 * services.
2563 *
2564 * Normally this function is only called internally from
2565 * device_probe_and_attach().
2566 *
2567 * @param dev		the device to initialise
2568 *
2569 * @retval 0		success
2570 * @retval ENXIO	no driver was found
2571 * @retval ENOMEM	memory allocation failure
2572 * @retval non-zero	some other unix error code
2573 */
2574int
2575device_attach(device_t dev)
2576{
2577	int error;
2578
2579	device_sysctl_init(dev);
2580	if (!device_is_quiet(dev))
2581		device_print_child(dev->parent, dev);
2582	if ((error = DEVICE_ATTACH(dev)) != 0) {
2583		printf("device_attach: %s%d attach returned %d\n",
2584		    dev->driver->name, dev->unit, error);
2585		/* Unset the class; set in device_probe_child */
2586		if (dev->devclass == NULL)
2587			device_set_devclass(dev, NULL);
2588		device_set_driver(dev, NULL);
2589		device_sysctl_fini(dev);
2590		dev->state = DS_NOTPRESENT;
2591		return (error);
2592	}
2593	device_sysctl_update(dev);
2594	dev->state = DS_ATTACHED;
2595	devadded(dev);
2596	return (0);
2597}
2598
2599/**
2600 * @brief Detach a driver from a device
2601 *
2602 * This function is a wrapper around the DEVICE_DETACH() driver
2603 * method. If the call to DEVICE_DETACH() succeeds, it calls
2604 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2605 * notification event for user-based device management services and
2606 * cleans up the device's sysctl tree.
2607 *
2608 * @param dev		the device to un-initialise
2609 *
2610 * @retval 0		success
2611 * @retval ENXIO	no driver was found
2612 * @retval ENOMEM	memory allocation failure
2613 * @retval non-zero	some other unix error code
2614 */
2615int
2616device_detach(device_t dev)
2617{
2618	int error;
2619
2620	GIANT_REQUIRED;
2621
2622	PDEBUG(("%s", DEVICENAME(dev)));
2623	if (dev->state == DS_BUSY)
2624		return (EBUSY);
2625	if (dev->state != DS_ATTACHED)
2626		return (0);
2627
2628	if ((error = DEVICE_DETACH(dev)) != 0)
2629		return (error);
2630	devremoved(dev);
2631	if (!device_is_quiet(dev))
2632		device_printf(dev, "detached\n");
2633	if (dev->parent)
2634		BUS_CHILD_DETACHED(dev->parent, dev);
2635
2636	if (!(dev->flags & DF_FIXEDCLASS))
2637		devclass_delete_device(dev->devclass, dev);
2638
2639	dev->state = DS_NOTPRESENT;
2640	device_set_driver(dev, NULL);
2641	device_set_desc(dev, NULL);
2642	device_sysctl_fini(dev);
2643
2644	return (0);
2645}
2646
2647/**
2648 * @brief Tells a driver to quiesce itself.
2649 *
2650 * This function is a wrapper around the DEVICE_QUIESCE() driver
2651 * method. If the call to DEVICE_QUIESCE() succeeds.
2652 *
2653 * @param dev		the device to quiesce
2654 *
2655 * @retval 0		success
2656 * @retval ENXIO	no driver was found
2657 * @retval ENOMEM	memory allocation failure
2658 * @retval non-zero	some other unix error code
2659 */
2660int
2661device_quiesce(device_t dev)
2662{
2663
2664	PDEBUG(("%s", DEVICENAME(dev)));
2665	if (dev->state == DS_BUSY)
2666		return (EBUSY);
2667	if (dev->state != DS_ATTACHED)
2668		return (0);
2669
2670	return (DEVICE_QUIESCE(dev));
2671}
2672
2673/**
2674 * @brief Notify a device of system shutdown
2675 *
2676 * This function calls the DEVICE_SHUTDOWN() driver method if the
2677 * device currently has an attached driver.
2678 *
2679 * @returns the value returned by DEVICE_SHUTDOWN()
2680 */
2681int
2682device_shutdown(device_t dev)
2683{
2684	if (dev->state < DS_ATTACHED)
2685		return (0);
2686	return (DEVICE_SHUTDOWN(dev));
2687}
2688
2689/**
2690 * @brief Set the unit number of a device
2691 *
2692 * This function can be used to override the unit number used for a
2693 * device (e.g. to wire a device to a pre-configured unit number).
2694 */
2695int
2696device_set_unit(device_t dev, int unit)
2697{
2698	devclass_t dc;
2699	int err;
2700
2701	dc = device_get_devclass(dev);
2702	if (unit < dc->maxunit && dc->devices[unit])
2703		return (EBUSY);
2704	err = devclass_delete_device(dc, dev);
2705	if (err)
2706		return (err);
2707	dev->unit = unit;
2708	err = devclass_add_device(dc, dev);
2709	if (err)
2710		return (err);
2711
2712	bus_data_generation_update();
2713	return (0);
2714}
2715
2716/*======================================*/
2717/*
2718 * Some useful method implementations to make life easier for bus drivers.
2719 */
2720
2721/**
2722 * @brief Initialise a resource list.
2723 *
2724 * @param rl		the resource list to initialise
2725 */
2726void
2727resource_list_init(struct resource_list *rl)
2728{
2729	STAILQ_INIT(rl);
2730}
2731
2732/**
2733 * @brief Reclaim memory used by a resource list.
2734 *
2735 * This function frees the memory for all resource entries on the list
2736 * (if any).
2737 *
2738 * @param rl		the resource list to free
2739 */
2740void
2741resource_list_free(struct resource_list *rl)
2742{
2743	struct resource_list_entry *rle;
2744
2745	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2746		if (rle->res)
2747			panic("resource_list_free: resource entry is busy");
2748		STAILQ_REMOVE_HEAD(rl, link);
2749		free(rle, M_BUS);
2750	}
2751}
2752
2753/**
2754 * @brief Add a resource entry.
2755 *
2756 * This function adds a resource entry using the given @p type, @p
2757 * start, @p end and @p count values. A rid value is chosen by
2758 * searching sequentially for the first unused rid starting at zero.
2759 *
2760 * @param rl		the resource list to edit
2761 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2762 * @param start		the start address of the resource
2763 * @param end		the end address of the resource
2764 * @param count		XXX end-start+1
2765 */
2766int
2767resource_list_add_next(struct resource_list *rl, int type, u_long start,
2768    u_long end, u_long count)
2769{
2770	int rid;
2771
2772	rid = 0;
2773	while (resource_list_find(rl, type, rid) != NULL)
2774		rid++;
2775	resource_list_add(rl, type, rid, start, end, count);
2776	return (rid);
2777}
2778
2779/**
2780 * @brief Add or modify a resource entry.
2781 *
2782 * If an existing entry exists with the same type and rid, it will be
2783 * modified using the given values of @p start, @p end and @p
2784 * count. If no entry exists, a new one will be created using the
2785 * given values.  The resource list entry that matches is then returned.
2786 *
2787 * @param rl		the resource list to edit
2788 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2789 * @param rid		the resource identifier
2790 * @param start		the start address of the resource
2791 * @param end		the end address of the resource
2792 * @param count		XXX end-start+1
2793 */
2794struct resource_list_entry *
2795resource_list_add(struct resource_list *rl, int type, int rid,
2796    u_long start, u_long end, u_long count)
2797{
2798	struct resource_list_entry *rle;
2799
2800	rle = resource_list_find(rl, type, rid);
2801	if (!rle) {
2802		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2803		    M_NOWAIT);
2804		if (!rle)
2805			panic("resource_list_add: can't record entry");
2806		STAILQ_INSERT_TAIL(rl, rle, link);
2807		rle->type = type;
2808		rle->rid = rid;
2809		rle->res = NULL;
2810	}
2811
2812	if (rle->res)
2813		panic("resource_list_add: resource entry is busy");
2814
2815	rle->start = start;
2816	rle->end = end;
2817	rle->count = count;
2818	return (rle);
2819}
2820
2821/**
2822 * @brief Find a resource entry by type and rid.
2823 *
2824 * @param rl		the resource list to search
2825 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2826 * @param rid		the resource identifier
2827 *
2828 * @returns the resource entry pointer or NULL if there is no such
2829 * entry.
2830 */
2831struct resource_list_entry *
2832resource_list_find(struct resource_list *rl, int type, int rid)
2833{
2834	struct resource_list_entry *rle;
2835
2836	STAILQ_FOREACH(rle, rl, link) {
2837		if (rle->type == type && rle->rid == rid)
2838			return (rle);
2839	}
2840	return (NULL);
2841}
2842
2843/**
2844 * @brief Delete a resource entry.
2845 *
2846 * @param rl		the resource list to edit
2847 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2848 * @param rid		the resource identifier
2849 */
2850void
2851resource_list_delete(struct resource_list *rl, int type, int rid)
2852{
2853	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2854
2855	if (rle) {
2856		if (rle->res != NULL)
2857			panic("resource_list_delete: resource has not been released");
2858		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2859		free(rle, M_BUS);
2860	}
2861}
2862
2863/**
2864 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2865 *
2866 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2867 * and passing the allocation up to the parent of @p bus. This assumes
2868 * that the first entry of @c device_get_ivars(child) is a struct
2869 * resource_list. This also handles 'passthrough' allocations where a
2870 * child is a remote descendant of bus by passing the allocation up to
2871 * the parent of bus.
2872 *
2873 * Typically, a bus driver would store a list of child resources
2874 * somewhere in the child device's ivars (see device_get_ivars()) and
2875 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2876 * then call resource_list_alloc() to perform the allocation.
2877 *
2878 * @param rl		the resource list to allocate from
2879 * @param bus		the parent device of @p child
2880 * @param child		the device which is requesting an allocation
2881 * @param type		the type of resource to allocate
2882 * @param rid		a pointer to the resource identifier
2883 * @param start		hint at the start of the resource range - pass
2884 *			@c 0UL for any start address
2885 * @param end		hint at the end of the resource range - pass
2886 *			@c ~0UL for any end address
2887 * @param count		hint at the size of range required - pass @c 1
2888 *			for any size
2889 * @param flags		any extra flags to control the resource
2890 *			allocation - see @c RF_XXX flags in
2891 *			<sys/rman.h> for details
2892 *
2893 * @returns		the resource which was allocated or @c NULL if no
2894 *			resource could be allocated
2895 */
2896struct resource *
2897resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2898    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2899{
2900	struct resource_list_entry *rle = NULL;
2901	int passthrough = (device_get_parent(child) != bus);
2902	int isdefault = (start == 0UL && end == ~0UL);
2903
2904	if (passthrough) {
2905		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2906		    type, rid, start, end, count, flags));
2907	}
2908
2909	rle = resource_list_find(rl, type, *rid);
2910
2911	if (!rle)
2912		return (NULL);		/* no resource of that type/rid */
2913
2914	if (rle->res)
2915		panic("resource_list_alloc: resource entry is busy");
2916
2917	if (isdefault) {
2918		start = rle->start;
2919		count = ulmax(count, rle->count);
2920		end = ulmax(rle->end, start + count - 1);
2921	}
2922
2923	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2924	    type, rid, start, end, count, flags);
2925
2926	/*
2927	 * Record the new range.
2928	 */
2929	if (rle->res) {
2930		rle->start = rman_get_start(rle->res);
2931		rle->end = rman_get_end(rle->res);
2932		rle->count = count;
2933	}
2934
2935	return (rle->res);
2936}
2937
2938/**
2939 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2940 *
2941 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2942 * used with resource_list_alloc().
2943 *
2944 * @param rl		the resource list which was allocated from
2945 * @param bus		the parent device of @p child
2946 * @param child		the device which is requesting a release
2947 * @param type		the type of resource to allocate
2948 * @param rid		the resource identifier
2949 * @param res		the resource to release
2950 *
2951 * @retval 0		success
2952 * @retval non-zero	a standard unix error code indicating what
2953 *			error condition prevented the operation
2954 */
2955int
2956resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2957    int type, int rid, struct resource *res)
2958{
2959	struct resource_list_entry *rle = NULL;
2960	int passthrough = (device_get_parent(child) != bus);
2961	int error;
2962
2963	if (passthrough) {
2964		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2965		    type, rid, res));
2966	}
2967
2968	rle = resource_list_find(rl, type, rid);
2969
2970	if (!rle)
2971		panic("resource_list_release: can't find resource");
2972	if (!rle->res)
2973		panic("resource_list_release: resource entry is not busy");
2974
2975	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2976	    type, rid, res);
2977	if (error)
2978		return (error);
2979
2980	rle->res = NULL;
2981	return (0);
2982}
2983
2984/**
2985 * @brief Print a description of resources in a resource list
2986 *
2987 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2988 * The name is printed if at least one resource of the given type is available.
2989 * The format is used to print resource start and end.
2990 *
2991 * @param rl		the resource list to print
2992 * @param name		the name of @p type, e.g. @c "memory"
2993 * @param type		type type of resource entry to print
2994 * @param format	printf(9) format string to print resource
2995 *			start and end values
2996 *
2997 * @returns		the number of characters printed
2998 */
2999int
3000resource_list_print_type(struct resource_list *rl, const char *name, int type,
3001    const char *format)
3002{
3003	struct resource_list_entry *rle;
3004	int printed, retval;
3005
3006	printed = 0;
3007	retval = 0;
3008	/* Yes, this is kinda cheating */
3009	STAILQ_FOREACH(rle, rl, link) {
3010		if (rle->type == type) {
3011			if (printed == 0)
3012				retval += printf(" %s ", name);
3013			else
3014				retval += printf(",");
3015			printed++;
3016			retval += printf(format, rle->start);
3017			if (rle->count > 1) {
3018				retval += printf("-");
3019				retval += printf(format, rle->start +
3020						 rle->count - 1);
3021			}
3022		}
3023	}
3024	return (retval);
3025}
3026
3027/**
3028 * @brief Releases all the resources in a list.
3029 *
3030 * @param rl		The resource list to purge.
3031 *
3032 * @returns		nothing
3033 */
3034void
3035resource_list_purge(struct resource_list *rl)
3036{
3037	struct resource_list_entry *rle;
3038
3039	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3040		if (rle->res)
3041			bus_release_resource(rman_get_device(rle->res),
3042			    rle->type, rle->rid, rle->res);
3043		STAILQ_REMOVE_HEAD(rl, link);
3044		free(rle, M_BUS);
3045	}
3046}
3047
3048device_t
3049bus_generic_add_child(device_t dev, int order, const char *name, int unit)
3050{
3051
3052	return (device_add_child_ordered(dev, order, name, unit));
3053}
3054
3055/**
3056 * @brief Helper function for implementing DEVICE_PROBE()
3057 *
3058 * This function can be used to help implement the DEVICE_PROBE() for
3059 * a bus (i.e. a device which has other devices attached to it). It
3060 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3061 * devclass.
3062 */
3063int
3064bus_generic_probe(device_t dev)
3065{
3066	devclass_t dc = dev->devclass;
3067	driverlink_t dl;
3068
3069	TAILQ_FOREACH(dl, &dc->drivers, link) {
3070		/*
3071		 * If this driver's pass is too high, then ignore it.
3072		 * For most drivers in the default pass, this will
3073		 * never be true.  For early-pass drivers they will
3074		 * only call the identify routines of eligible drivers
3075		 * when this routine is called.  Drivers for later
3076		 * passes should have their identify routines called
3077		 * on early-pass busses during BUS_NEW_PASS().
3078		 */
3079		if (dl->pass > bus_current_pass)
3080				continue;
3081		DEVICE_IDENTIFY(dl->driver, dev);
3082	}
3083
3084	return (0);
3085}
3086
3087/**
3088 * @brief Helper function for implementing DEVICE_ATTACH()
3089 *
3090 * This function can be used to help implement the DEVICE_ATTACH() for
3091 * a bus. It calls device_probe_and_attach() for each of the device's
3092 * children.
3093 */
3094int
3095bus_generic_attach(device_t dev)
3096{
3097	device_t child;
3098
3099	TAILQ_FOREACH(child, &dev->children, link) {
3100		device_probe_and_attach(child);
3101	}
3102
3103	return (0);
3104}
3105
3106/**
3107 * @brief Helper function for implementing DEVICE_DETACH()
3108 *
3109 * This function can be used to help implement the DEVICE_DETACH() for
3110 * a bus. It calls device_detach() for each of the device's
3111 * children.
3112 */
3113int
3114bus_generic_detach(device_t dev)
3115{
3116	device_t child;
3117	int error;
3118
3119	if (dev->state != DS_ATTACHED)
3120		return (EBUSY);
3121
3122	TAILQ_FOREACH(child, &dev->children, link) {
3123		if ((error = device_detach(child)) != 0)
3124			return (error);
3125	}
3126
3127	return (0);
3128}
3129
3130/**
3131 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3132 *
3133 * This function can be used to help implement the DEVICE_SHUTDOWN()
3134 * for a bus. It calls device_shutdown() for each of the device's
3135 * children.
3136 */
3137int
3138bus_generic_shutdown(device_t dev)
3139{
3140	device_t child;
3141
3142	TAILQ_FOREACH(child, &dev->children, link) {
3143		device_shutdown(child);
3144	}
3145
3146	return (0);
3147}
3148
3149/**
3150 * @brief Helper function for implementing DEVICE_SUSPEND()
3151 *
3152 * This function can be used to help implement the DEVICE_SUSPEND()
3153 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3154 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3155 * operation is aborted and any devices which were suspended are
3156 * resumed immediately by calling their DEVICE_RESUME() methods.
3157 */
3158int
3159bus_generic_suspend(device_t dev)
3160{
3161	int		error;
3162	device_t	child, child2;
3163
3164	TAILQ_FOREACH(child, &dev->children, link) {
3165		error = DEVICE_SUSPEND(child);
3166		if (error) {
3167			for (child2 = TAILQ_FIRST(&dev->children);
3168			     child2 && child2 != child;
3169			     child2 = TAILQ_NEXT(child2, link))
3170				DEVICE_RESUME(child2);
3171			return (error);
3172		}
3173	}
3174	return (0);
3175}
3176
3177/**
3178 * @brief Helper function for implementing DEVICE_RESUME()
3179 *
3180 * This function can be used to help implement the DEVICE_RESUME() for
3181 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3182 */
3183int
3184bus_generic_resume(device_t dev)
3185{
3186	device_t	child;
3187
3188	TAILQ_FOREACH(child, &dev->children, link) {
3189		DEVICE_RESUME(child);
3190		/* if resume fails, there's nothing we can usefully do... */
3191	}
3192	return (0);
3193}
3194
3195/**
3196 * @brief Helper function for implementing BUS_PRINT_CHILD().
3197 *
3198 * This function prints the first part of the ascii representation of
3199 * @p child, including its name, unit and description (if any - see
3200 * device_set_desc()).
3201 *
3202 * @returns the number of characters printed
3203 */
3204int
3205bus_print_child_header(device_t dev, device_t child)
3206{
3207	int	retval = 0;
3208
3209	if (device_get_desc(child)) {
3210		retval += device_printf(child, "<%s>", device_get_desc(child));
3211	} else {
3212		retval += printf("%s", device_get_nameunit(child));
3213	}
3214
3215	return (retval);
3216}
3217
3218/**
3219 * @brief Helper function for implementing BUS_PRINT_CHILD().
3220 *
3221 * This function prints the last part of the ascii representation of
3222 * @p child, which consists of the string @c " on " followed by the
3223 * name and unit of the @p dev.
3224 *
3225 * @returns the number of characters printed
3226 */
3227int
3228bus_print_child_footer(device_t dev, device_t child)
3229{
3230	return (printf(" on %s\n", device_get_nameunit(dev)));
3231}
3232
3233/**
3234 * @brief Helper function for implementing BUS_PRINT_CHILD().
3235 *
3236 * This function simply calls bus_print_child_header() followed by
3237 * bus_print_child_footer().
3238 *
3239 * @returns the number of characters printed
3240 */
3241int
3242bus_generic_print_child(device_t dev, device_t child)
3243{
3244	int	retval = 0;
3245
3246	retval += bus_print_child_header(dev, child);
3247	retval += bus_print_child_footer(dev, child);
3248
3249	return (retval);
3250}
3251
3252/**
3253 * @brief Stub function for implementing BUS_READ_IVAR().
3254 *
3255 * @returns ENOENT
3256 */
3257int
3258bus_generic_read_ivar(device_t dev, device_t child, int index,
3259    uintptr_t * result)
3260{
3261	return (ENOENT);
3262}
3263
3264/**
3265 * @brief Stub function for implementing BUS_WRITE_IVAR().
3266 *
3267 * @returns ENOENT
3268 */
3269int
3270bus_generic_write_ivar(device_t dev, device_t child, int index,
3271    uintptr_t value)
3272{
3273	return (ENOENT);
3274}
3275
3276/**
3277 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3278 *
3279 * @returns NULL
3280 */
3281struct resource_list *
3282bus_generic_get_resource_list(device_t dev, device_t child)
3283{
3284	return (NULL);
3285}
3286
3287/**
3288 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3289 *
3290 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3291 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3292 * and then calls device_probe_and_attach() for each unattached child.
3293 */
3294void
3295bus_generic_driver_added(device_t dev, driver_t *driver)
3296{
3297	device_t child;
3298
3299	DEVICE_IDENTIFY(driver, dev);
3300	TAILQ_FOREACH(child, &dev->children, link) {
3301		if (child->state == DS_NOTPRESENT ||
3302		    (child->flags & DF_REBID))
3303			device_probe_and_attach(child);
3304	}
3305}
3306
3307/**
3308 * @brief Helper function for implementing BUS_NEW_PASS().
3309 *
3310 * This implementing of BUS_NEW_PASS() first calls the identify
3311 * routines for any drivers that probe at the current pass.  Then it
3312 * walks the list of devices for this bus.  If a device is already
3313 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3314 * device is not already attached, it attempts to attach a driver to
3315 * it.
3316 */
3317void
3318bus_generic_new_pass(device_t dev)
3319{
3320	driverlink_t dl;
3321	devclass_t dc;
3322	device_t child;
3323
3324	dc = dev->devclass;
3325	TAILQ_FOREACH(dl, &dc->drivers, link) {
3326		if (dl->pass == bus_current_pass)
3327			DEVICE_IDENTIFY(dl->driver, dev);
3328	}
3329	TAILQ_FOREACH(child, &dev->children, link) {
3330		if (child->state >= DS_ATTACHED)
3331			BUS_NEW_PASS(child);
3332		else if (child->state == DS_NOTPRESENT)
3333			device_probe_and_attach(child);
3334	}
3335}
3336
3337/**
3338 * @brief Helper function for implementing BUS_SETUP_INTR().
3339 *
3340 * This simple implementation of BUS_SETUP_INTR() simply calls the
3341 * BUS_SETUP_INTR() method of the parent of @p dev.
3342 */
3343int
3344bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3345    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3346    void **cookiep)
3347{
3348	/* Propagate up the bus hierarchy until someone handles it. */
3349	if (dev->parent)
3350		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3351		    filter, intr, arg, cookiep));
3352	return (EINVAL);
3353}
3354
3355/**
3356 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3357 *
3358 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3359 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3360 */
3361int
3362bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3363    void *cookie)
3364{
3365	/* Propagate up the bus hierarchy until someone handles it. */
3366	if (dev->parent)
3367		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3368	return (EINVAL);
3369}
3370
3371/**
3372 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3373 *
3374 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3375 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3376 */
3377struct resource *
3378bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3379    u_long start, u_long end, u_long count, u_int flags)
3380{
3381	/* Propagate up the bus hierarchy until someone handles it. */
3382	if (dev->parent)
3383		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3384		    start, end, count, flags));
3385	return (NULL);
3386}
3387
3388/**
3389 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3390 *
3391 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3392 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3393 */
3394int
3395bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3396    struct resource *r)
3397{
3398	/* Propagate up the bus hierarchy until someone handles it. */
3399	if (dev->parent)
3400		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3401		    r));
3402	return (EINVAL);
3403}
3404
3405/**
3406 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3407 *
3408 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3409 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3410 */
3411int
3412bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3413    struct resource *r)
3414{
3415	/* Propagate up the bus hierarchy until someone handles it. */
3416	if (dev->parent)
3417		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3418		    r));
3419	return (EINVAL);
3420}
3421
3422/**
3423 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3424 *
3425 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3426 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3427 */
3428int
3429bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3430    int rid, struct resource *r)
3431{
3432	/* Propagate up the bus hierarchy until someone handles it. */
3433	if (dev->parent)
3434		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3435		    r));
3436	return (EINVAL);
3437}
3438
3439/**
3440 * @brief Helper function for implementing BUS_BIND_INTR().
3441 *
3442 * This simple implementation of BUS_BIND_INTR() simply calls the
3443 * BUS_BIND_INTR() method of the parent of @p dev.
3444 */
3445int
3446bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3447    int cpu)
3448{
3449
3450	/* Propagate up the bus hierarchy until someone handles it. */
3451	if (dev->parent)
3452		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3453	return (EINVAL);
3454}
3455
3456/**
3457 * @brief Helper function for implementing BUS_CONFIG_INTR().
3458 *
3459 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3460 * BUS_CONFIG_INTR() method of the parent of @p dev.
3461 */
3462int
3463bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3464    enum intr_polarity pol)
3465{
3466
3467	/* Propagate up the bus hierarchy until someone handles it. */
3468	if (dev->parent)
3469		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3470	return (EINVAL);
3471}
3472
3473/**
3474 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3475 *
3476 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3477 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3478 */
3479bus_dma_tag_t
3480bus_generic_get_dma_tag(device_t dev, device_t child)
3481{
3482
3483	/* Propagate up the bus hierarchy until someone handles it. */
3484	if (dev->parent != NULL)
3485		return (BUS_GET_DMA_TAG(dev->parent, child));
3486	return (NULL);
3487}
3488
3489/**
3490 * @brief Helper function for implementing BUS_GET_RESOURCE().
3491 *
3492 * This implementation of BUS_GET_RESOURCE() uses the
3493 * resource_list_find() function to do most of the work. It calls
3494 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3495 * search.
3496 */
3497int
3498bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3499    u_long *startp, u_long *countp)
3500{
3501	struct resource_list *		rl = NULL;
3502	struct resource_list_entry *	rle = NULL;
3503
3504	rl = BUS_GET_RESOURCE_LIST(dev, child);
3505	if (!rl)
3506		return (EINVAL);
3507
3508	rle = resource_list_find(rl, type, rid);
3509	if (!rle)
3510		return (ENOENT);
3511
3512	if (startp)
3513		*startp = rle->start;
3514	if (countp)
3515		*countp = rle->count;
3516
3517	return (0);
3518}
3519
3520/**
3521 * @brief Helper function for implementing BUS_SET_RESOURCE().
3522 *
3523 * This implementation of BUS_SET_RESOURCE() uses the
3524 * resource_list_add() function to do most of the work. It calls
3525 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3526 * edit.
3527 */
3528int
3529bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3530    u_long start, u_long count)
3531{
3532	struct resource_list *		rl = NULL;
3533
3534	rl = BUS_GET_RESOURCE_LIST(dev, child);
3535	if (!rl)
3536		return (EINVAL);
3537
3538	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3539
3540	return (0);
3541}
3542
3543/**
3544 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3545 *
3546 * This implementation of BUS_DELETE_RESOURCE() uses the
3547 * resource_list_delete() function to do most of the work. It calls
3548 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3549 * edit.
3550 */
3551void
3552bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3553{
3554	struct resource_list *		rl = NULL;
3555
3556	rl = BUS_GET_RESOURCE_LIST(dev, child);
3557	if (!rl)
3558		return;
3559
3560	resource_list_delete(rl, type, rid);
3561
3562	return;
3563}
3564
3565/**
3566 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3567 *
3568 * This implementation of BUS_RELEASE_RESOURCE() uses the
3569 * resource_list_release() function to do most of the work. It calls
3570 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3571 */
3572int
3573bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3574    int rid, struct resource *r)
3575{
3576	struct resource_list *		rl = NULL;
3577
3578	rl = BUS_GET_RESOURCE_LIST(dev, child);
3579	if (!rl)
3580		return (EINVAL);
3581
3582	return (resource_list_release(rl, dev, child, type, rid, r));
3583}
3584
3585/**
3586 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3587 *
3588 * This implementation of BUS_ALLOC_RESOURCE() uses the
3589 * resource_list_alloc() function to do most of the work. It calls
3590 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3591 */
3592struct resource *
3593bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3594    int *rid, u_long start, u_long end, u_long count, u_int flags)
3595{
3596	struct resource_list *		rl = NULL;
3597
3598	rl = BUS_GET_RESOURCE_LIST(dev, child);
3599	if (!rl)
3600		return (NULL);
3601
3602	return (resource_list_alloc(rl, dev, child, type, rid,
3603	    start, end, count, flags));
3604}
3605
3606/**
3607 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3608 *
3609 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3610 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3611 */
3612int
3613bus_generic_child_present(device_t dev, device_t child)
3614{
3615	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3616}
3617
3618/*
3619 * Some convenience functions to make it easier for drivers to use the
3620 * resource-management functions.  All these really do is hide the
3621 * indirection through the parent's method table, making for slightly
3622 * less-wordy code.  In the future, it might make sense for this code
3623 * to maintain some sort of a list of resources allocated by each device.
3624 */
3625
3626int
3627bus_alloc_resources(device_t dev, struct resource_spec *rs,
3628    struct resource **res)
3629{
3630	int i;
3631
3632	for (i = 0; rs[i].type != -1; i++)
3633		res[i] = NULL;
3634	for (i = 0; rs[i].type != -1; i++) {
3635		res[i] = bus_alloc_resource_any(dev,
3636		    rs[i].type, &rs[i].rid, rs[i].flags);
3637		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3638			bus_release_resources(dev, rs, res);
3639			return (ENXIO);
3640		}
3641	}
3642	return (0);
3643}
3644
3645void
3646bus_release_resources(device_t dev, const struct resource_spec *rs,
3647    struct resource **res)
3648{
3649	int i;
3650
3651	for (i = 0; rs[i].type != -1; i++)
3652		if (res[i] != NULL) {
3653			bus_release_resource(
3654			    dev, rs[i].type, rs[i].rid, res[i]);
3655			res[i] = NULL;
3656		}
3657}
3658
3659/**
3660 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3661 *
3662 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3663 * parent of @p dev.
3664 */
3665struct resource *
3666bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3667    u_long count, u_int flags)
3668{
3669	if (dev->parent == NULL)
3670		return (NULL);
3671	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3672	    count, flags));
3673}
3674
3675/**
3676 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3677 *
3678 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3679 * parent of @p dev.
3680 */
3681int
3682bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3683{
3684	if (dev->parent == NULL)
3685		return (EINVAL);
3686	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3687}
3688
3689/**
3690 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3691 *
3692 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3693 * parent of @p dev.
3694 */
3695int
3696bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3697{
3698	if (dev->parent == NULL)
3699		return (EINVAL);
3700	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3701}
3702
3703/**
3704 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3705 *
3706 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3707 * parent of @p dev.
3708 */
3709int
3710bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3711{
3712	if (dev->parent == NULL)
3713		return (EINVAL);
3714	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3715}
3716
3717/**
3718 * @brief Wrapper function for BUS_SETUP_INTR().
3719 *
3720 * This function simply calls the BUS_SETUP_INTR() method of the
3721 * parent of @p dev.
3722 */
3723int
3724bus_setup_intr(device_t dev, struct resource *r, int flags,
3725    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3726{
3727	int error;
3728
3729	if (dev->parent == NULL)
3730		return (EINVAL);
3731	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3732	    arg, cookiep);
3733	if (error != 0)
3734		return (error);
3735	if (handler != NULL && !(flags & INTR_MPSAFE))
3736		device_printf(dev, "[GIANT-LOCKED]\n");
3737	if (bootverbose && (flags & INTR_MPSAFE))
3738		device_printf(dev, "[MPSAFE]\n");
3739	if (filter != NULL) {
3740		if (handler == NULL)
3741			device_printf(dev, "[FILTER]\n");
3742		else
3743			device_printf(dev, "[FILTER+ITHREAD]\n");
3744	} else
3745		device_printf(dev, "[ITHREAD]\n");
3746	return (0);
3747}
3748
3749/**
3750 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3751 *
3752 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3753 * parent of @p dev.
3754 */
3755int
3756bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3757{
3758	if (dev->parent == NULL)
3759		return (EINVAL);
3760	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3761}
3762
3763/**
3764 * @brief Wrapper function for BUS_BIND_INTR().
3765 *
3766 * This function simply calls the BUS_BIND_INTR() method of the
3767 * parent of @p dev.
3768 */
3769int
3770bus_bind_intr(device_t dev, struct resource *r, int cpu)
3771{
3772	if (dev->parent == NULL)
3773		return (EINVAL);
3774	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
3775}
3776
3777/**
3778 * @brief Wrapper function for BUS_SET_RESOURCE().
3779 *
3780 * This function simply calls the BUS_SET_RESOURCE() method of the
3781 * parent of @p dev.
3782 */
3783int
3784bus_set_resource(device_t dev, int type, int rid,
3785    u_long start, u_long count)
3786{
3787	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3788	    start, count));
3789}
3790
3791/**
3792 * @brief Wrapper function for BUS_GET_RESOURCE().
3793 *
3794 * This function simply calls the BUS_GET_RESOURCE() method of the
3795 * parent of @p dev.
3796 */
3797int
3798bus_get_resource(device_t dev, int type, int rid,
3799    u_long *startp, u_long *countp)
3800{
3801	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3802	    startp, countp));
3803}
3804
3805/**
3806 * @brief Wrapper function for BUS_GET_RESOURCE().
3807 *
3808 * This function simply calls the BUS_GET_RESOURCE() method of the
3809 * parent of @p dev and returns the start value.
3810 */
3811u_long
3812bus_get_resource_start(device_t dev, int type, int rid)
3813{
3814	u_long start, count;
3815	int error;
3816
3817	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3818	    &start, &count);
3819	if (error)
3820		return (0);
3821	return (start);
3822}
3823
3824/**
3825 * @brief Wrapper function for BUS_GET_RESOURCE().
3826 *
3827 * This function simply calls the BUS_GET_RESOURCE() method of the
3828 * parent of @p dev and returns the count value.
3829 */
3830u_long
3831bus_get_resource_count(device_t dev, int type, int rid)
3832{
3833	u_long start, count;
3834	int error;
3835
3836	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3837	    &start, &count);
3838	if (error)
3839		return (0);
3840	return (count);
3841}
3842
3843/**
3844 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3845 *
3846 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3847 * parent of @p dev.
3848 */
3849void
3850bus_delete_resource(device_t dev, int type, int rid)
3851{
3852	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3853}
3854
3855/**
3856 * @brief Wrapper function for BUS_CHILD_PRESENT().
3857 *
3858 * This function simply calls the BUS_CHILD_PRESENT() method of the
3859 * parent of @p dev.
3860 */
3861int
3862bus_child_present(device_t child)
3863{
3864	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3865}
3866
3867/**
3868 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3869 *
3870 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3871 * parent of @p dev.
3872 */
3873int
3874bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3875{
3876	device_t parent;
3877
3878	parent = device_get_parent(child);
3879	if (parent == NULL) {
3880		*buf = '\0';
3881		return (0);
3882	}
3883	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3884}
3885
3886/**
3887 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3888 *
3889 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3890 * parent of @p dev.
3891 */
3892int
3893bus_child_location_str(device_t child, char *buf, size_t buflen)
3894{
3895	device_t parent;
3896
3897	parent = device_get_parent(child);
3898	if (parent == NULL) {
3899		*buf = '\0';
3900		return (0);
3901	}
3902	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3903}
3904
3905/**
3906 * @brief Wrapper function for BUS_GET_DMA_TAG().
3907 *
3908 * This function simply calls the BUS_GET_DMA_TAG() method of the
3909 * parent of @p dev.
3910 */
3911bus_dma_tag_t
3912bus_get_dma_tag(device_t dev)
3913{
3914	device_t parent;
3915
3916	parent = device_get_parent(dev);
3917	if (parent == NULL)
3918		return (NULL);
3919	return (BUS_GET_DMA_TAG(parent, dev));
3920}
3921
3922/* Resume all devices and then notify userland that we're up again. */
3923static int
3924root_resume(device_t dev)
3925{
3926	int error;
3927
3928	error = bus_generic_resume(dev);
3929	if (error == 0)
3930		devctl_notify("kern", "power", "resume", NULL);
3931	return (error);
3932}
3933
3934static int
3935root_print_child(device_t dev, device_t child)
3936{
3937	int	retval = 0;
3938
3939	retval += bus_print_child_header(dev, child);
3940	retval += printf("\n");
3941
3942	return (retval);
3943}
3944
3945static int
3946root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
3947    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
3948{
3949	/*
3950	 * If an interrupt mapping gets to here something bad has happened.
3951	 */
3952	panic("root_setup_intr");
3953}
3954
3955/*
3956 * If we get here, assume that the device is permanant and really is
3957 * present in the system.  Removable bus drivers are expected to intercept
3958 * this call long before it gets here.  We return -1 so that drivers that
3959 * really care can check vs -1 or some ERRNO returned higher in the food
3960 * chain.
3961 */
3962static int
3963root_child_present(device_t dev, device_t child)
3964{
3965	return (-1);
3966}
3967
3968static kobj_method_t root_methods[] = {
3969	/* Device interface */
3970	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3971	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3972	KOBJMETHOD(device_resume,	root_resume),
3973
3974	/* Bus interface */
3975	KOBJMETHOD(bus_print_child,	root_print_child),
3976	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3977	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3978	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3979	KOBJMETHOD(bus_child_present,	root_child_present),
3980
3981	KOBJMETHOD_END
3982};
3983
3984static driver_t root_driver = {
3985	"root",
3986	root_methods,
3987	1,			/* no softc */
3988};
3989
3990device_t	root_bus;
3991devclass_t	root_devclass;
3992
3993static int
3994root_bus_module_handler(module_t mod, int what, void* arg)
3995{
3996	switch (what) {
3997	case MOD_LOAD:
3998		TAILQ_INIT(&bus_data_devices);
3999		kobj_class_compile((kobj_class_t) &root_driver);
4000		root_bus = make_device(NULL, "root", 0);
4001		root_bus->desc = "System root bus";
4002		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4003		root_bus->driver = &root_driver;
4004		root_bus->state = DS_ATTACHED;
4005		root_devclass = devclass_find_internal("root", NULL, FALSE);
4006		devinit();
4007		return (0);
4008
4009	case MOD_SHUTDOWN:
4010		device_shutdown(root_bus);
4011		return (0);
4012	default:
4013		return (EOPNOTSUPP);
4014	}
4015
4016	return (0);
4017}
4018
4019static moduledata_t root_bus_mod = {
4020	"rootbus",
4021	root_bus_module_handler,
4022	NULL
4023};
4024DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4025
4026/**
4027 * @brief Automatically configure devices
4028 *
4029 * This function begins the autoconfiguration process by calling
4030 * device_probe_and_attach() for each child of the @c root0 device.
4031 */
4032void
4033root_bus_configure(void)
4034{
4035
4036	PDEBUG(("."));
4037
4038	/* Eventually this will be split up, but this is sufficient for now. */
4039	bus_set_pass(BUS_PASS_DEFAULT);
4040}
4041
4042/**
4043 * @brief Module handler for registering device drivers
4044 *
4045 * This module handler is used to automatically register device
4046 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4047 * devclass_add_driver() for the driver described by the
4048 * driver_module_data structure pointed to by @p arg
4049 */
4050int
4051driver_module_handler(module_t mod, int what, void *arg)
4052{
4053	struct driver_module_data *dmd;
4054	devclass_t bus_devclass;
4055	kobj_class_t driver;
4056	int error, pass;
4057
4058	dmd = (struct driver_module_data *)arg;
4059	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4060	error = 0;
4061
4062	switch (what) {
4063	case MOD_LOAD:
4064		if (dmd->dmd_chainevh)
4065			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4066
4067		pass = dmd->dmd_pass;
4068		driver = dmd->dmd_driver;
4069		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4070		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4071		error = devclass_add_driver(bus_devclass, driver, pass);
4072		if (error)
4073			break;
4074
4075		/*
4076		 * If the driver has any base classes, make the
4077		 * devclass inherit from the devclass of the driver's
4078		 * first base class. This will allow the system to
4079		 * search for drivers in both devclasses for children
4080		 * of a device using this driver.
4081		 */
4082		if (driver->baseclasses) {
4083			const char *parentname;
4084			parentname = driver->baseclasses[0]->name;
4085			*dmd->dmd_devclass =
4086				devclass_find_internal(driver->name,
4087				    parentname, TRUE);
4088		} else {
4089			*dmd->dmd_devclass =
4090				devclass_find_internal(driver->name, NULL, TRUE);
4091		}
4092		break;
4093
4094	case MOD_UNLOAD:
4095		PDEBUG(("Unloading module: driver %s from bus %s",
4096		    DRIVERNAME(dmd->dmd_driver),
4097		    dmd->dmd_busname));
4098		error = devclass_delete_driver(bus_devclass,
4099		    dmd->dmd_driver);
4100
4101		if (!error && dmd->dmd_chainevh)
4102			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4103		break;
4104	case MOD_QUIESCE:
4105		PDEBUG(("Quiesce module: driver %s from bus %s",
4106		    DRIVERNAME(dmd->dmd_driver),
4107		    dmd->dmd_busname));
4108		error = devclass_quiesce_driver(bus_devclass,
4109		    dmd->dmd_driver);
4110
4111		if (!error && dmd->dmd_chainevh)
4112			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4113		break;
4114	default:
4115		error = EOPNOTSUPP;
4116		break;
4117	}
4118
4119	return (error);
4120}
4121
4122/**
4123 * @brief Enumerate all hinted devices for this bus.
4124 *
4125 * Walks through the hints for this bus and calls the bus_hinted_child
4126 * routine for each one it fines.  It searches first for the specific
4127 * bus that's being probed for hinted children (eg isa0), and then for
4128 * generic children (eg isa).
4129 *
4130 * @param	dev	bus device to enumerate
4131 */
4132void
4133bus_enumerate_hinted_children(device_t bus)
4134{
4135	int i;
4136	const char *dname, *busname;
4137	int dunit;
4138
4139	/*
4140	 * enumerate all devices on the specific bus
4141	 */
4142	busname = device_get_nameunit(bus);
4143	i = 0;
4144	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4145		BUS_HINTED_CHILD(bus, dname, dunit);
4146
4147	/*
4148	 * and all the generic ones.
4149	 */
4150	busname = device_get_name(bus);
4151	i = 0;
4152	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4153		BUS_HINTED_CHILD(bus, dname, dunit);
4154}
4155
4156#ifdef BUS_DEBUG
4157
4158/* the _short versions avoid iteration by not calling anything that prints
4159 * more than oneliners. I love oneliners.
4160 */
4161
4162static void
4163print_device_short(device_t dev, int indent)
4164{
4165	if (!dev)
4166		return;
4167
4168	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4169	    dev->unit, dev->desc,
4170	    (dev->parent? "":"no "),
4171	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4172	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4173	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4174	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4175	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4176	    (dev->flags&DF_REBID? "rebiddable,":""),
4177	    (dev->ivars? "":"no "),
4178	    (dev->softc? "":"no "),
4179	    dev->busy));
4180}
4181
4182static void
4183print_device(device_t dev, int indent)
4184{
4185	if (!dev)
4186		return;
4187
4188	print_device_short(dev, indent);
4189
4190	indentprintf(("Parent:\n"));
4191	print_device_short(dev->parent, indent+1);
4192	indentprintf(("Driver:\n"));
4193	print_driver_short(dev->driver, indent+1);
4194	indentprintf(("Devclass:\n"));
4195	print_devclass_short(dev->devclass, indent+1);
4196}
4197
4198void
4199print_device_tree_short(device_t dev, int indent)
4200/* print the device and all its children (indented) */
4201{
4202	device_t child;
4203
4204	if (!dev)
4205		return;
4206
4207	print_device_short(dev, indent);
4208
4209	TAILQ_FOREACH(child, &dev->children, link) {
4210		print_device_tree_short(child, indent+1);
4211	}
4212}
4213
4214void
4215print_device_tree(device_t dev, int indent)
4216/* print the device and all its children (indented) */
4217{
4218	device_t child;
4219
4220	if (!dev)
4221		return;
4222
4223	print_device(dev, indent);
4224
4225	TAILQ_FOREACH(child, &dev->children, link) {
4226		print_device_tree(child, indent+1);
4227	}
4228}
4229
4230static void
4231print_driver_short(driver_t *driver, int indent)
4232{
4233	if (!driver)
4234		return;
4235
4236	indentprintf(("driver %s: softc size = %zd\n",
4237	    driver->name, driver->size));
4238}
4239
4240static void
4241print_driver(driver_t *driver, int indent)
4242{
4243	if (!driver)
4244		return;
4245
4246	print_driver_short(driver, indent);
4247}
4248
4249
4250static void
4251print_driver_list(driver_list_t drivers, int indent)
4252{
4253	driverlink_t driver;
4254
4255	TAILQ_FOREACH(driver, &drivers, link) {
4256		print_driver(driver->driver, indent);
4257	}
4258}
4259
4260static void
4261print_devclass_short(devclass_t dc, int indent)
4262{
4263	if ( !dc )
4264		return;
4265
4266	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4267}
4268
4269static void
4270print_devclass(devclass_t dc, int indent)
4271{
4272	int i;
4273
4274	if ( !dc )
4275		return;
4276
4277	print_devclass_short(dc, indent);
4278	indentprintf(("Drivers:\n"));
4279	print_driver_list(dc->drivers, indent+1);
4280
4281	indentprintf(("Devices:\n"));
4282	for (i = 0; i < dc->maxunit; i++)
4283		if (dc->devices[i])
4284			print_device(dc->devices[i], indent+1);
4285}
4286
4287void
4288print_devclass_list_short(void)
4289{
4290	devclass_t dc;
4291
4292	printf("Short listing of devclasses, drivers & devices:\n");
4293	TAILQ_FOREACH(dc, &devclasses, link) {
4294		print_devclass_short(dc, 0);
4295	}
4296}
4297
4298void
4299print_devclass_list(void)
4300{
4301	devclass_t dc;
4302
4303	printf("Full listing of devclasses, drivers & devices:\n");
4304	TAILQ_FOREACH(dc, &devclasses, link) {
4305		print_devclass(dc, 0);
4306	}
4307}
4308
4309#endif
4310
4311/*
4312 * User-space access to the device tree.
4313 *
4314 * We implement a small set of nodes:
4315 *
4316 * hw.bus			Single integer read method to obtain the
4317 *				current generation count.
4318 * hw.bus.devices		Reads the entire device tree in flat space.
4319 * hw.bus.rman			Resource manager interface
4320 *
4321 * We might like to add the ability to scan devclasses and/or drivers to
4322 * determine what else is currently loaded/available.
4323 */
4324
4325static int
4326sysctl_bus(SYSCTL_HANDLER_ARGS)
4327{
4328	struct u_businfo	ubus;
4329
4330	ubus.ub_version = BUS_USER_VERSION;
4331	ubus.ub_generation = bus_data_generation;
4332
4333	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4334}
4335SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4336    "bus-related data");
4337
4338static int
4339sysctl_devices(SYSCTL_HANDLER_ARGS)
4340{
4341	int			*name = (int *)arg1;
4342	u_int			namelen = arg2;
4343	int			index;
4344	struct device		*dev;
4345	struct u_device		udev;	/* XXX this is a bit big */
4346	int			error;
4347
4348	if (namelen != 2)
4349		return (EINVAL);
4350
4351	if (bus_data_generation_check(name[0]))
4352		return (EINVAL);
4353
4354	index = name[1];
4355
4356	/*
4357	 * Scan the list of devices, looking for the requested index.
4358	 */
4359	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4360		if (index-- == 0)
4361			break;
4362	}
4363	if (dev == NULL)
4364		return (ENOENT);
4365
4366	/*
4367	 * Populate the return array.
4368	 */
4369	bzero(&udev, sizeof(udev));
4370	udev.dv_handle = (uintptr_t)dev;
4371	udev.dv_parent = (uintptr_t)dev->parent;
4372	if (dev->nameunit != NULL)
4373		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4374	if (dev->desc != NULL)
4375		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4376	if (dev->driver != NULL && dev->driver->name != NULL)
4377		strlcpy(udev.dv_drivername, dev->driver->name,
4378		    sizeof(udev.dv_drivername));
4379	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4380	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4381	udev.dv_devflags = dev->devflags;
4382	udev.dv_flags = dev->flags;
4383	udev.dv_state = dev->state;
4384	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4385	return (error);
4386}
4387
4388SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4389    "system device tree");
4390
4391int
4392bus_data_generation_check(int generation)
4393{
4394	if (generation != bus_data_generation)
4395		return (1);
4396
4397	/* XXX generate optimised lists here? */
4398	return (0);
4399}
4400
4401void
4402bus_data_generation_update(void)
4403{
4404	bus_data_generation++;
4405}
4406
4407int
4408bus_free_resource(device_t dev, int type, struct resource *r)
4409{
4410	if (r == NULL)
4411		return (0);
4412	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4413}
4414