subr_bus.c revision 150950
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 150950 2005-10-04 22:25:14Z imp $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53
54#include <machine/stdarg.h>
55
56#include <vm/uma.h>
57
58SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
59SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
60
61/*
62 * Used to attach drivers to devclasses.
63 */
64typedef struct driverlink *driverlink_t;
65struct driverlink {
66	kobj_class_t	driver;
67	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
68};
69
70/*
71 * Forward declarations
72 */
73typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
74typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
75typedef TAILQ_HEAD(device_list, device) device_list_t;
76
77struct devclass {
78	TAILQ_ENTRY(devclass) link;
79	devclass_t	parent;		/* parent in devclass hierarchy */
80	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
81	char		*name;
82	device_t	*devices;	/* array of devices indexed by unit */
83	int		maxunit;	/* size of devices array */
84
85	struct sysctl_ctx_list sysctl_ctx;
86	struct sysctl_oid *sysctl_tree;
87};
88
89/**
90 * @brief Implementation of device.
91 */
92struct device {
93	/*
94	 * A device is a kernel object. The first field must be the
95	 * current ops table for the object.
96	 */
97	KOBJ_FIELDS;
98
99	/*
100	 * Device hierarchy.
101	 */
102	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
103	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
104	device_t	parent;		/**< parent of this device  */
105	device_list_t	children;	/**< list of child devices */
106
107	/*
108	 * Details of this device.
109	 */
110	driver_t	*driver;	/**< current driver */
111	devclass_t	devclass;	/**< current device class */
112	int		unit;		/**< current unit number */
113	char*		nameunit;	/**< name+unit e.g. foodev0 */
114	char*		desc;		/**< driver specific description */
115	int		busy;		/**< count of calls to device_busy() */
116	device_state_t	state;		/**< current device state  */
117	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
118	u_short		flags;		/**< internal device flags  */
119#define	DF_ENABLED	1		/* device should be probed/attached */
120#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
121#define	DF_WILDCARD	4		/* unit was originally wildcard */
122#define	DF_DESCMALLOCED	8		/* description was malloced */
123#define	DF_QUIET	16		/* don't print verbose attach message */
124#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
125#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
126#define	DF_REBID	128		/* Can rebid after attach */
127	u_char	order;			/**< order from device_add_child_ordered() */
128	u_char	pad;
129	void	*ivars;			/**< instance variables  */
130	void	*softc;			/**< current driver's variables  */
131
132	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
133	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
134};
135
136static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
137static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
138
139#ifdef BUS_DEBUG
140
141static int bus_debug = 1;
142TUNABLE_INT("bus.debug", &bus_debug);
143SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
144    "Debug bus code");
145
146#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
147#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
148#define DRIVERNAME(d)	((d)? d->name : "no driver")
149#define DEVCLANAME(d)	((d)? d->name : "no devclass")
150
151/**
152 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
153 * prevent syslog from deleting initial spaces
154 */
155#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
156
157static void print_device_short(device_t dev, int indent);
158static void print_device(device_t dev, int indent);
159void print_device_tree_short(device_t dev, int indent);
160void print_device_tree(device_t dev, int indent);
161static void print_driver_short(driver_t *driver, int indent);
162static void print_driver(driver_t *driver, int indent);
163static void print_driver_list(driver_list_t drivers, int indent);
164static void print_devclass_short(devclass_t dc, int indent);
165static void print_devclass(devclass_t dc, int indent);
166void print_devclass_list_short(void);
167void print_devclass_list(void);
168
169#else
170/* Make the compiler ignore the function calls */
171#define PDEBUG(a)			/* nop */
172#define DEVICENAME(d)			/* nop */
173#define DRIVERNAME(d)			/* nop */
174#define DEVCLANAME(d)			/* nop */
175
176#define print_device_short(d,i)		/* nop */
177#define print_device(d,i)		/* nop */
178#define print_device_tree_short(d,i)	/* nop */
179#define print_device_tree(d,i)		/* nop */
180#define print_driver_short(d,i)		/* nop */
181#define print_driver(d,i)		/* nop */
182#define print_driver_list(d,i)		/* nop */
183#define print_devclass_short(d,i)	/* nop */
184#define print_devclass(d,i)		/* nop */
185#define print_devclass_list_short()	/* nop */
186#define print_devclass_list()		/* nop */
187#endif
188
189/*
190 * dev sysctl tree
191 */
192
193enum {
194	DEVCLASS_SYSCTL_PARENT,
195};
196
197static int
198devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
199{
200	devclass_t dc = (devclass_t)arg1;
201	const char *value;
202
203	switch (arg2) {
204	case DEVCLASS_SYSCTL_PARENT:
205		value = dc->parent ? dc->parent->name : "";
206		break;
207	default:
208		return (EINVAL);
209	}
210	return (SYSCTL_OUT(req, value, strlen(value)));
211}
212
213static void
214devclass_sysctl_init(devclass_t dc)
215{
216
217	if (dc->sysctl_tree != NULL)
218		return;
219	sysctl_ctx_init(&dc->sysctl_ctx);
220	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
221	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
222	    CTLFLAG_RD, 0, "");
223	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
224	    OID_AUTO, "%parent", CTLFLAG_RD,
225	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
226	    "parent class");
227}
228
229enum {
230	DEVICE_SYSCTL_DESC,
231	DEVICE_SYSCTL_DRIVER,
232	DEVICE_SYSCTL_LOCATION,
233	DEVICE_SYSCTL_PNPINFO,
234	DEVICE_SYSCTL_PARENT,
235};
236
237static int
238device_sysctl_handler(SYSCTL_HANDLER_ARGS)
239{
240	device_t dev = (device_t)arg1;
241	const char *value;
242	char *buf;
243	int error;
244
245	buf = NULL;
246	switch (arg2) {
247	case DEVICE_SYSCTL_DESC:
248		value = dev->desc ? dev->desc : "";
249		break;
250	case DEVICE_SYSCTL_DRIVER:
251		value = dev->driver ? dev->driver->name : "";
252		break;
253	case DEVICE_SYSCTL_LOCATION:
254		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
255		bus_child_location_str(dev, buf, 1024);
256		break;
257	case DEVICE_SYSCTL_PNPINFO:
258		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
259		bus_child_pnpinfo_str(dev, buf, 1024);
260		break;
261	case DEVICE_SYSCTL_PARENT:
262		value = dev->parent ? dev->parent->nameunit : "";
263		break;
264	default:
265		return (EINVAL);
266	}
267	error = SYSCTL_OUT(req, value, strlen(value));
268	if (buf != NULL)
269		free(buf, M_BUS);
270	return (error);
271}
272
273static void
274device_sysctl_init(device_t dev)
275{
276	devclass_t dc = dev->devclass;
277
278	if (dev->sysctl_tree != NULL)
279		return;
280	devclass_sysctl_init(dc);
281	sysctl_ctx_init(&dev->sysctl_ctx);
282	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
283	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
284	    dev->nameunit + strlen(dc->name),
285	    CTLFLAG_RD, 0, "");
286	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
287	    OID_AUTO, "%desc", CTLFLAG_RD,
288	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
289	    "device description");
290	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
291	    OID_AUTO, "%driver", CTLFLAG_RD,
292	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
293	    "device driver name");
294	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
295	    OID_AUTO, "%location", CTLFLAG_RD,
296	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
297	    "device location relative to parent");
298	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
299	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
300	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
301	    "device identification");
302	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
303	    OID_AUTO, "%parent", CTLFLAG_RD,
304	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
305	    "parent device");
306}
307
308static void
309device_sysctl_fini(device_t dev)
310{
311	if (dev->sysctl_tree == NULL)
312		return;
313	sysctl_ctx_free(&dev->sysctl_ctx);
314	dev->sysctl_tree = NULL;
315}
316
317/*
318 * /dev/devctl implementation
319 */
320
321/*
322 * This design allows only one reader for /dev/devctl.  This is not desirable
323 * in the long run, but will get a lot of hair out of this implementation.
324 * Maybe we should make this device a clonable device.
325 *
326 * Also note: we specifically do not attach a device to the device_t tree
327 * to avoid potential chicken and egg problems.  One could argue that all
328 * of this belongs to the root node.  One could also further argue that the
329 * sysctl interface that we have not might more properly be an ioctl
330 * interface, but at this stage of the game, I'm not inclined to rock that
331 * boat.
332 *
333 * I'm also not sure that the SIGIO support is done correctly or not, as
334 * I copied it from a driver that had SIGIO support that likely hasn't been
335 * tested since 3.4 or 2.2.8!
336 */
337
338static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
339static int devctl_disable = 0;
340TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
341SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
342    sysctl_devctl_disable, "I", "devctl disable");
343
344static d_open_t		devopen;
345static d_close_t	devclose;
346static d_read_t		devread;
347static d_ioctl_t	devioctl;
348static d_poll_t		devpoll;
349
350static struct cdevsw dev_cdevsw = {
351	.d_version =	D_VERSION,
352	.d_flags =	D_NEEDGIANT,
353	.d_open =	devopen,
354	.d_close =	devclose,
355	.d_read =	devread,
356	.d_ioctl =	devioctl,
357	.d_poll =	devpoll,
358	.d_name =	"devctl",
359};
360
361struct dev_event_info
362{
363	char *dei_data;
364	TAILQ_ENTRY(dev_event_info) dei_link;
365};
366
367TAILQ_HEAD(devq, dev_event_info);
368
369static struct dev_softc
370{
371	int	inuse;
372	int	nonblock;
373	struct mtx mtx;
374	struct cv cv;
375	struct selinfo sel;
376	struct devq devq;
377	struct proc *async_proc;
378} devsoftc;
379
380static struct cdev *devctl_dev;
381
382static void
383devinit(void)
384{
385	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
386	    "devctl");
387	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
388	cv_init(&devsoftc.cv, "dev cv");
389	TAILQ_INIT(&devsoftc.devq);
390}
391
392static int
393devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
394{
395	if (devsoftc.inuse)
396		return (EBUSY);
397	/* move to init */
398	devsoftc.inuse = 1;
399	devsoftc.nonblock = 0;
400	devsoftc.async_proc = NULL;
401	return (0);
402}
403
404static int
405devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
406{
407	devsoftc.inuse = 0;
408	mtx_lock(&devsoftc.mtx);
409	cv_broadcast(&devsoftc.cv);
410	mtx_unlock(&devsoftc.mtx);
411
412	return (0);
413}
414
415/*
416 * The read channel for this device is used to report changes to
417 * userland in realtime.  We are required to free the data as well as
418 * the n1 object because we allocate them separately.  Also note that
419 * we return one record at a time.  If you try to read this device a
420 * character at a time, you will loose the rest of the data.  Listening
421 * programs are expected to cope.
422 */
423static int
424devread(struct cdev *dev, struct uio *uio, int ioflag)
425{
426	struct dev_event_info *n1;
427	int rv;
428
429	mtx_lock(&devsoftc.mtx);
430	while (TAILQ_EMPTY(&devsoftc.devq)) {
431		if (devsoftc.nonblock) {
432			mtx_unlock(&devsoftc.mtx);
433			return (EAGAIN);
434		}
435		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
436		if (rv) {
437			/*
438			 * Need to translate ERESTART to EINTR here? -- jake
439			 */
440			mtx_unlock(&devsoftc.mtx);
441			return (rv);
442		}
443	}
444	n1 = TAILQ_FIRST(&devsoftc.devq);
445	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
446	mtx_unlock(&devsoftc.mtx);
447	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
448	free(n1->dei_data, M_BUS);
449	free(n1, M_BUS);
450	return (rv);
451}
452
453static	int
454devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
455{
456	switch (cmd) {
457
458	case FIONBIO:
459		if (*(int*)data)
460			devsoftc.nonblock = 1;
461		else
462			devsoftc.nonblock = 0;
463		return (0);
464	case FIOASYNC:
465		if (*(int*)data)
466			devsoftc.async_proc = td->td_proc;
467		else
468			devsoftc.async_proc = NULL;
469		return (0);
470
471		/* (un)Support for other fcntl() calls. */
472	case FIOCLEX:
473	case FIONCLEX:
474	case FIONREAD:
475	case FIOSETOWN:
476	case FIOGETOWN:
477	default:
478		break;
479	}
480	return (ENOTTY);
481}
482
483static	int
484devpoll(struct cdev *dev, int events, d_thread_t *td)
485{
486	int	revents = 0;
487
488	mtx_lock(&devsoftc.mtx);
489	if (events & (POLLIN | POLLRDNORM)) {
490		if (!TAILQ_EMPTY(&devsoftc.devq))
491			revents = events & (POLLIN | POLLRDNORM);
492		else
493			selrecord(td, &devsoftc.sel);
494	}
495	mtx_unlock(&devsoftc.mtx);
496
497	return (revents);
498}
499
500/**
501 * @brief Queue data to be read from the devctl device
502 *
503 * Generic interface to queue data to the devctl device.  It is
504 * assumed that @p data is properly formatted.  It is further assumed
505 * that @p data is allocated using the M_BUS malloc type.
506 */
507void
508devctl_queue_data(char *data)
509{
510	struct dev_event_info *n1 = NULL;
511	struct proc *p;
512
513	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
514	if (n1 == NULL)
515		return;
516	n1->dei_data = data;
517	mtx_lock(&devsoftc.mtx);
518	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
519	cv_broadcast(&devsoftc.cv);
520	mtx_unlock(&devsoftc.mtx);
521	selwakeup(&devsoftc.sel);
522	p = devsoftc.async_proc;
523	if (p != NULL) {
524		PROC_LOCK(p);
525		psignal(p, SIGIO);
526		PROC_UNLOCK(p);
527	}
528}
529
530/**
531 * @brief Send a 'notification' to userland, using standard ways
532 */
533void
534devctl_notify(const char *system, const char *subsystem, const char *type,
535    const char *data)
536{
537	int len = 0;
538	char *msg;
539
540	if (system == NULL)
541		return;		/* BOGUS!  Must specify system. */
542	if (subsystem == NULL)
543		return;		/* BOGUS!  Must specify subsystem. */
544	if (type == NULL)
545		return;		/* BOGUS!  Must specify type. */
546	len += strlen(" system=") + strlen(system);
547	len += strlen(" subsystem=") + strlen(subsystem);
548	len += strlen(" type=") + strlen(type);
549	/* add in the data message plus newline. */
550	if (data != NULL)
551		len += strlen(data);
552	len += 3;	/* '!', '\n', and NUL */
553	msg = malloc(len, M_BUS, M_NOWAIT);
554	if (msg == NULL)
555		return;		/* Drop it on the floor */
556	if (data != NULL)
557		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
558		    system, subsystem, type, data);
559	else
560		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
561		    system, subsystem, type);
562	devctl_queue_data(msg);
563}
564
565/*
566 * Common routine that tries to make sending messages as easy as possible.
567 * We allocate memory for the data, copy strings into that, but do not
568 * free it unless there's an error.  The dequeue part of the driver should
569 * free the data.  We don't send data when the device is disabled.  We do
570 * send data, even when we have no listeners, because we wish to avoid
571 * races relating to startup and restart of listening applications.
572 *
573 * devaddq is designed to string together the type of event, with the
574 * object of that event, plus the plug and play info and location info
575 * for that event.  This is likely most useful for devices, but less
576 * useful for other consumers of this interface.  Those should use
577 * the devctl_queue_data() interface instead.
578 */
579static void
580devaddq(const char *type, const char *what, device_t dev)
581{
582	char *data = NULL;
583	char *loc = NULL;
584	char *pnp = NULL;
585	const char *parstr;
586
587	if (devctl_disable)
588		return;
589	data = malloc(1024, M_BUS, M_NOWAIT);
590	if (data == NULL)
591		goto bad;
592
593	/* get the bus specific location of this device */
594	loc = malloc(1024, M_BUS, M_NOWAIT);
595	if (loc == NULL)
596		goto bad;
597	*loc = '\0';
598	bus_child_location_str(dev, loc, 1024);
599
600	/* Get the bus specific pnp info of this device */
601	pnp = malloc(1024, M_BUS, M_NOWAIT);
602	if (pnp == NULL)
603		goto bad;
604	*pnp = '\0';
605	bus_child_pnpinfo_str(dev, pnp, 1024);
606
607	/* Get the parent of this device, or / if high enough in the tree. */
608	if (device_get_parent(dev) == NULL)
609		parstr = ".";	/* Or '/' ? */
610	else
611		parstr = device_get_nameunit(device_get_parent(dev));
612	/* String it all together. */
613	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
614	  parstr);
615	free(loc, M_BUS);
616	free(pnp, M_BUS);
617	devctl_queue_data(data);
618	return;
619bad:
620	free(pnp, M_BUS);
621	free(loc, M_BUS);
622	free(data, M_BUS);
623	return;
624}
625
626/*
627 * A device was added to the tree.  We are called just after it successfully
628 * attaches (that is, probe and attach success for this device).  No call
629 * is made if a device is merely parented into the tree.  See devnomatch
630 * if probe fails.  If attach fails, no notification is sent (but maybe
631 * we should have a different message for this).
632 */
633static void
634devadded(device_t dev)
635{
636	char *pnp = NULL;
637	char *tmp = NULL;
638
639	pnp = malloc(1024, M_BUS, M_NOWAIT);
640	if (pnp == NULL)
641		goto fail;
642	tmp = malloc(1024, M_BUS, M_NOWAIT);
643	if (tmp == NULL)
644		goto fail;
645	*pnp = '\0';
646	bus_child_pnpinfo_str(dev, pnp, 1024);
647	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
648	devaddq("+", tmp, dev);
649fail:
650	if (pnp != NULL)
651		free(pnp, M_BUS);
652	if (tmp != NULL)
653		free(tmp, M_BUS);
654	return;
655}
656
657/*
658 * A device was removed from the tree.  We are called just before this
659 * happens.
660 */
661static void
662devremoved(device_t dev)
663{
664	char *pnp = NULL;
665	char *tmp = NULL;
666
667	pnp = malloc(1024, M_BUS, M_NOWAIT);
668	if (pnp == NULL)
669		goto fail;
670	tmp = malloc(1024, M_BUS, M_NOWAIT);
671	if (tmp == NULL)
672		goto fail;
673	*pnp = '\0';
674	bus_child_pnpinfo_str(dev, pnp, 1024);
675	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
676	devaddq("-", tmp, dev);
677fail:
678	if (pnp != NULL)
679		free(pnp, M_BUS);
680	if (tmp != NULL)
681		free(tmp, M_BUS);
682	return;
683}
684
685/*
686 * Called when there's no match for this device.  This is only called
687 * the first time that no match happens, so we don't keep getitng this
688 * message.  Should that prove to be undesirable, we can change it.
689 * This is called when all drivers that can attach to a given bus
690 * decline to accept this device.  Other errrors may not be detected.
691 */
692static void
693devnomatch(device_t dev)
694{
695	devaddq("?", "", dev);
696}
697
698static int
699sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
700{
701	struct dev_event_info *n1;
702	int dis, error;
703
704	dis = devctl_disable;
705	error = sysctl_handle_int(oidp, &dis, 0, req);
706	if (error || !req->newptr)
707		return (error);
708	mtx_lock(&devsoftc.mtx);
709	devctl_disable = dis;
710	if (dis) {
711		while (!TAILQ_EMPTY(&devsoftc.devq)) {
712			n1 = TAILQ_FIRST(&devsoftc.devq);
713			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
714			free(n1->dei_data, M_BUS);
715			free(n1, M_BUS);
716		}
717	}
718	mtx_unlock(&devsoftc.mtx);
719	return (0);
720}
721
722/* End of /dev/devctl code */
723
724TAILQ_HEAD(,device)	bus_data_devices;
725static int bus_data_generation = 1;
726
727kobj_method_t null_methods[] = {
728	{ 0, 0 }
729};
730
731DEFINE_CLASS(null, null_methods, 0);
732
733/*
734 * Devclass implementation
735 */
736
737static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
738
739
740/**
741 * @internal
742 * @brief Find or create a device class
743 *
744 * If a device class with the name @p classname exists, return it,
745 * otherwise if @p create is non-zero create and return a new device
746 * class.
747 *
748 * If @p parentname is non-NULL, the parent of the devclass is set to
749 * the devclass of that name.
750 *
751 * @param classname	the devclass name to find or create
752 * @param parentname	the parent devclass name or @c NULL
753 * @param create	non-zero to create a devclass
754 */
755static devclass_t
756devclass_find_internal(const char *classname, const char *parentname,
757		       int create)
758{
759	devclass_t dc;
760
761	PDEBUG(("looking for %s", classname));
762	if (!classname)
763		return (NULL);
764
765	TAILQ_FOREACH(dc, &devclasses, link) {
766		if (!strcmp(dc->name, classname))
767			break;
768	}
769
770	if (create && !dc) {
771		PDEBUG(("creating %s", classname));
772		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
773		    M_BUS, M_NOWAIT|M_ZERO);
774		if (!dc)
775			return (NULL);
776		dc->parent = NULL;
777		dc->name = (char*) (dc + 1);
778		strcpy(dc->name, classname);
779		TAILQ_INIT(&dc->drivers);
780		TAILQ_INSERT_TAIL(&devclasses, dc, link);
781
782		bus_data_generation_update();
783	}
784	if (parentname && dc && !dc->parent) {
785		dc->parent = devclass_find_internal(parentname, 0, FALSE);
786	}
787
788	return (dc);
789}
790
791/**
792 * @brief Create a device class
793 *
794 * If a device class with the name @p classname exists, return it,
795 * otherwise create and return a new device class.
796 *
797 * @param classname	the devclass name to find or create
798 */
799devclass_t
800devclass_create(const char *classname)
801{
802	return (devclass_find_internal(classname, 0, TRUE));
803}
804
805/**
806 * @brief Find a device class
807 *
808 * If a device class with the name @p classname exists, return it,
809 * otherwise return @c NULL.
810 *
811 * @param classname	the devclass name to find
812 */
813devclass_t
814devclass_find(const char *classname)
815{
816	return (devclass_find_internal(classname, 0, FALSE));
817}
818
819/**
820 * @brief Add a device driver to a device class
821 *
822 * Add a device driver to a devclass. This is normally called
823 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
824 * all devices in the devclass will be called to allow them to attempt
825 * to re-probe any unmatched children.
826 *
827 * @param dc		the devclass to edit
828 * @param driver	the driver to register
829 */
830int
831devclass_add_driver(devclass_t dc, driver_t *driver)
832{
833	driverlink_t dl;
834	int i;
835
836	PDEBUG(("%s", DRIVERNAME(driver)));
837
838	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
839	if (!dl)
840		return (ENOMEM);
841
842	/*
843	 * Compile the driver's methods. Also increase the reference count
844	 * so that the class doesn't get freed when the last instance
845	 * goes. This means we can safely use static methods and avoids a
846	 * double-free in devclass_delete_driver.
847	 */
848	kobj_class_compile((kobj_class_t) driver);
849
850	/*
851	 * Make sure the devclass which the driver is implementing exists.
852	 */
853	devclass_find_internal(driver->name, 0, TRUE);
854
855	dl->driver = driver;
856	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
857	driver->refs++;		/* XXX: kobj_mtx */
858
859	/*
860	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
861	 */
862	for (i = 0; i < dc->maxunit; i++)
863		if (dc->devices[i])
864			BUS_DRIVER_ADDED(dc->devices[i], driver);
865
866	bus_data_generation_update();
867	return (0);
868}
869
870/**
871 * @brief Delete a device driver from a device class
872 *
873 * Delete a device driver from a devclass. This is normally called
874 * automatically by DRIVER_MODULE().
875 *
876 * If the driver is currently attached to any devices,
877 * devclass_delete_driver() will first attempt to detach from each
878 * device. If one of the detach calls fails, the driver will not be
879 * deleted.
880 *
881 * @param dc		the devclass to edit
882 * @param driver	the driver to unregister
883 */
884int
885devclass_delete_driver(devclass_t busclass, driver_t *driver)
886{
887	devclass_t dc = devclass_find(driver->name);
888	driverlink_t dl;
889	device_t dev;
890	int i;
891	int error;
892
893	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
894
895	if (!dc)
896		return (0);
897
898	/*
899	 * Find the link structure in the bus' list of drivers.
900	 */
901	TAILQ_FOREACH(dl, &busclass->drivers, link) {
902		if (dl->driver == driver)
903			break;
904	}
905
906	if (!dl) {
907		PDEBUG(("%s not found in %s list", driver->name,
908		    busclass->name));
909		return (ENOENT);
910	}
911
912	/*
913	 * Disassociate from any devices.  We iterate through all the
914	 * devices in the devclass of the driver and detach any which are
915	 * using the driver and which have a parent in the devclass which
916	 * we are deleting from.
917	 *
918	 * Note that since a driver can be in multiple devclasses, we
919	 * should not detach devices which are not children of devices in
920	 * the affected devclass.
921	 */
922	for (i = 0; i < dc->maxunit; i++) {
923		if (dc->devices[i]) {
924			dev = dc->devices[i];
925			if (dev->driver == driver && dev->parent &&
926			    dev->parent->devclass == busclass) {
927				if ((error = device_detach(dev)) != 0)
928					return (error);
929				device_set_driver(dev, NULL);
930			}
931		}
932	}
933
934	TAILQ_REMOVE(&busclass->drivers, dl, link);
935	free(dl, M_BUS);
936
937	/* XXX: kobj_mtx */
938	driver->refs--;
939	if (driver->refs == 0)
940		kobj_class_free((kobj_class_t) driver);
941
942	bus_data_generation_update();
943	return (0);
944}
945
946/**
947 * @brief Quiesces a set of device drivers from a device class
948 *
949 * Quiesce a device driver from a devclass. This is normally called
950 * automatically by DRIVER_MODULE().
951 *
952 * If the driver is currently attached to any devices,
953 * devclass_quiesece_driver() will first attempt to quiesce each
954 * device.
955 *
956 * @param dc		the devclass to edit
957 * @param driver	the driver to unregister
958 */
959int
960devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
961{
962	devclass_t dc = devclass_find(driver->name);
963	driverlink_t dl;
964	device_t dev;
965	int i;
966	int error;
967
968	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
969
970	if (!dc)
971		return (0);
972
973	/*
974	 * Find the link structure in the bus' list of drivers.
975	 */
976	TAILQ_FOREACH(dl, &busclass->drivers, link) {
977		if (dl->driver == driver)
978			break;
979	}
980
981	if (!dl) {
982		PDEBUG(("%s not found in %s list", driver->name,
983		    busclass->name));
984		return (ENOENT);
985	}
986
987	/*
988	 * Quiesce all devices.  We iterate through all the devices in
989	 * the devclass of the driver and quiesce any which are using
990	 * the driver and which have a parent in the devclass which we
991	 * are quiescing.
992	 *
993	 * Note that since a driver can be in multiple devclasses, we
994	 * should not quiesce devices which are not children of
995	 * devices in the affected devclass.
996	 */
997	for (i = 0; i < dc->maxunit; i++) {
998		if (dc->devices[i]) {
999			dev = dc->devices[i];
1000			if (dev->driver == driver && dev->parent &&
1001			    dev->parent->devclass == busclass) {
1002				if ((error = device_quiesce(dev)) != 0)
1003					return (error);
1004			}
1005		}
1006	}
1007
1008	return (0);
1009}
1010
1011/**
1012 * @internal
1013 */
1014static driverlink_t
1015devclass_find_driver_internal(devclass_t dc, const char *classname)
1016{
1017	driverlink_t dl;
1018
1019	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1020
1021	TAILQ_FOREACH(dl, &dc->drivers, link) {
1022		if (!strcmp(dl->driver->name, classname))
1023			return (dl);
1024	}
1025
1026	PDEBUG(("not found"));
1027	return (NULL);
1028}
1029
1030/**
1031 * @brief Search a devclass for a driver
1032 *
1033 * This function searches the devclass's list of drivers and returns
1034 * the first driver whose name is @p classname or @c NULL if there is
1035 * no driver of that name.
1036 *
1037 * @param dc		the devclass to search
1038 * @param classname	the driver name to search for
1039 */
1040kobj_class_t
1041devclass_find_driver(devclass_t dc, const char *classname)
1042{
1043	driverlink_t dl;
1044
1045	dl = devclass_find_driver_internal(dc, classname);
1046	if (dl)
1047		return (dl->driver);
1048	return (NULL);
1049}
1050
1051/**
1052 * @brief Return the name of the devclass
1053 */
1054const char *
1055devclass_get_name(devclass_t dc)
1056{
1057	return (dc->name);
1058}
1059
1060/**
1061 * @brief Find a device given a unit number
1062 *
1063 * @param dc		the devclass to search
1064 * @param unit		the unit number to search for
1065 *
1066 * @returns		the device with the given unit number or @c
1067 *			NULL if there is no such device
1068 */
1069device_t
1070devclass_get_device(devclass_t dc, int unit)
1071{
1072	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1073		return (NULL);
1074	return (dc->devices[unit]);
1075}
1076
1077/**
1078 * @brief Find the softc field of a device given a unit number
1079 *
1080 * @param dc		the devclass to search
1081 * @param unit		the unit number to search for
1082 *
1083 * @returns		the softc field of the device with the given
1084 *			unit number or @c NULL if there is no such
1085 *			device
1086 */
1087void *
1088devclass_get_softc(devclass_t dc, int unit)
1089{
1090	device_t dev;
1091
1092	dev = devclass_get_device(dc, unit);
1093	if (!dev)
1094		return (NULL);
1095
1096	return (device_get_softc(dev));
1097}
1098
1099/**
1100 * @brief Get a list of devices in the devclass
1101 *
1102 * An array containing a list of all the devices in the given devclass
1103 * is allocated and returned in @p *devlistp. The number of devices
1104 * in the array is returned in @p *devcountp. The caller should free
1105 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1106 *
1107 * @param dc		the devclass to examine
1108 * @param devlistp	points at location for array pointer return
1109 *			value
1110 * @param devcountp	points at location for array size return value
1111 *
1112 * @retval 0		success
1113 * @retval ENOMEM	the array allocation failed
1114 */
1115int
1116devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1117{
1118	int count, i;
1119	device_t *list;
1120
1121	count = devclass_get_count(dc);
1122	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1123	if (!list)
1124		return (ENOMEM);
1125
1126	count = 0;
1127	for (i = 0; i < dc->maxunit; i++) {
1128		if (dc->devices[i]) {
1129			list[count] = dc->devices[i];
1130			count++;
1131		}
1132	}
1133
1134	*devlistp = list;
1135	*devcountp = count;
1136
1137	return (0);
1138}
1139
1140/**
1141 * @brief Get a list of drivers in the devclass
1142 *
1143 * An array containing a list of pointers to all the drivers in the
1144 * given devclass is allocated and returned in @p *listp.  The number
1145 * of drivers in the array is returned in @p *countp. The caller should
1146 * free the array using @c free(p, M_TEMP).
1147 *
1148 * @param dc		the devclass to examine
1149 * @param listp		gives location for array pointer return value
1150 * @param countp	gives location for number of array elements
1151 *			return value
1152 *
1153 * @retval 0		success
1154 * @retval ENOMEM	the array allocation failed
1155 */
1156int
1157devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1158{
1159	driverlink_t dl;
1160	driver_t **list;
1161	int count;
1162
1163	count = 0;
1164	TAILQ_FOREACH(dl, &dc->drivers, link)
1165		count++;
1166	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1167	if (list == NULL)
1168		return (ENOMEM);
1169
1170	count = 0;
1171	TAILQ_FOREACH(dl, &dc->drivers, link) {
1172		list[count] = dl->driver;
1173		count++;
1174	}
1175	*listp = list;
1176	*countp = count;
1177
1178	return (0);
1179}
1180
1181/**
1182 * @brief Get the number of devices in a devclass
1183 *
1184 * @param dc		the devclass to examine
1185 */
1186int
1187devclass_get_count(devclass_t dc)
1188{
1189	int count, i;
1190
1191	count = 0;
1192	for (i = 0; i < dc->maxunit; i++)
1193		if (dc->devices[i])
1194			count++;
1195	return (count);
1196}
1197
1198/**
1199 * @brief Get the maximum unit number used in a devclass
1200 *
1201 * Note that this is one greater than the highest currently-allocated
1202 * unit.
1203 *
1204 * @param dc		the devclass to examine
1205 */
1206int
1207devclass_get_maxunit(devclass_t dc)
1208{
1209	return (dc->maxunit);
1210}
1211
1212/**
1213 * @brief Find a free unit number in a devclass
1214 *
1215 * This function searches for the first unused unit number greater
1216 * that or equal to @p unit.
1217 *
1218 * @param dc		the devclass to examine
1219 * @param unit		the first unit number to check
1220 */
1221int
1222devclass_find_free_unit(devclass_t dc, int unit)
1223{
1224	if (dc == NULL)
1225		return (unit);
1226	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1227		unit++;
1228	return (unit);
1229}
1230
1231/**
1232 * @brief Set the parent of a devclass
1233 *
1234 * The parent class is normally initialised automatically by
1235 * DRIVER_MODULE().
1236 *
1237 * @param dc		the devclass to edit
1238 * @param pdc		the new parent devclass
1239 */
1240void
1241devclass_set_parent(devclass_t dc, devclass_t pdc)
1242{
1243	dc->parent = pdc;
1244}
1245
1246/**
1247 * @brief Get the parent of a devclass
1248 *
1249 * @param dc		the devclass to examine
1250 */
1251devclass_t
1252devclass_get_parent(devclass_t dc)
1253{
1254	return (dc->parent);
1255}
1256
1257struct sysctl_ctx_list *
1258devclass_get_sysctl_ctx(devclass_t dc)
1259{
1260	return (&dc->sysctl_ctx);
1261}
1262
1263struct sysctl_oid *
1264devclass_get_sysctl_tree(devclass_t dc)
1265{
1266	return (dc->sysctl_tree);
1267}
1268
1269/**
1270 * @internal
1271 * @brief Allocate a unit number
1272 *
1273 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1274 * will do). The allocated unit number is returned in @p *unitp.
1275
1276 * @param dc		the devclass to allocate from
1277 * @param unitp		points at the location for the allocated unit
1278 *			number
1279 *
1280 * @retval 0		success
1281 * @retval EEXIST	the requested unit number is already allocated
1282 * @retval ENOMEM	memory allocation failure
1283 */
1284static int
1285devclass_alloc_unit(devclass_t dc, int *unitp)
1286{
1287	int unit = *unitp;
1288
1289	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1290
1291	/* If we were given a wired unit number, check for existing device */
1292	/* XXX imp XXX */
1293	if (unit != -1) {
1294		if (unit >= 0 && unit < dc->maxunit &&
1295		    dc->devices[unit] != NULL) {
1296			if (bootverbose)
1297				printf("%s: %s%d already exists; skipping it\n",
1298				    dc->name, dc->name, *unitp);
1299			return (EEXIST);
1300		}
1301	} else {
1302		/* Unwired device, find the next available slot for it */
1303		unit = 0;
1304		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1305			unit++;
1306	}
1307
1308	/*
1309	 * We've selected a unit beyond the length of the table, so let's
1310	 * extend the table to make room for all units up to and including
1311	 * this one.
1312	 */
1313	if (unit >= dc->maxunit) {
1314		device_t *newlist;
1315		int newsize;
1316
1317		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1318		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1319		if (!newlist)
1320			return (ENOMEM);
1321		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1322		bzero(newlist + dc->maxunit,
1323		    sizeof(device_t) * (newsize - dc->maxunit));
1324		if (dc->devices)
1325			free(dc->devices, M_BUS);
1326		dc->devices = newlist;
1327		dc->maxunit = newsize;
1328	}
1329	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1330
1331	*unitp = unit;
1332	return (0);
1333}
1334
1335/**
1336 * @internal
1337 * @brief Add a device to a devclass
1338 *
1339 * A unit number is allocated for the device (using the device's
1340 * preferred unit number if any) and the device is registered in the
1341 * devclass. This allows the device to be looked up by its unit
1342 * number, e.g. by decoding a dev_t minor number.
1343 *
1344 * @param dc		the devclass to add to
1345 * @param dev		the device to add
1346 *
1347 * @retval 0		success
1348 * @retval EEXIST	the requested unit number is already allocated
1349 * @retval ENOMEM	memory allocation failure
1350 */
1351static int
1352devclass_add_device(devclass_t dc, device_t dev)
1353{
1354	int buflen, error;
1355
1356	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1357
1358	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1359	if (buflen < 0)
1360		return (ENOMEM);
1361	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1362	if (!dev->nameunit)
1363		return (ENOMEM);
1364
1365	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1366		free(dev->nameunit, M_BUS);
1367		dev->nameunit = NULL;
1368		return (error);
1369	}
1370	dc->devices[dev->unit] = dev;
1371	dev->devclass = dc;
1372	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1373
1374	return (0);
1375}
1376
1377/**
1378 * @internal
1379 * @brief Delete a device from a devclass
1380 *
1381 * The device is removed from the devclass's device list and its unit
1382 * number is freed.
1383
1384 * @param dc		the devclass to delete from
1385 * @param dev		the device to delete
1386 *
1387 * @retval 0		success
1388 */
1389static int
1390devclass_delete_device(devclass_t dc, device_t dev)
1391{
1392	if (!dc || !dev)
1393		return (0);
1394
1395	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1396
1397	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1398		panic("devclass_delete_device: inconsistent device class");
1399	dc->devices[dev->unit] = NULL;
1400	if (dev->flags & DF_WILDCARD)
1401		dev->unit = -1;
1402	dev->devclass = NULL;
1403	free(dev->nameunit, M_BUS);
1404	dev->nameunit = NULL;
1405
1406	return (0);
1407}
1408
1409/**
1410 * @internal
1411 * @brief Make a new device and add it as a child of @p parent
1412 *
1413 * @param parent	the parent of the new device
1414 * @param name		the devclass name of the new device or @c NULL
1415 *			to leave the devclass unspecified
1416 * @parem unit		the unit number of the new device of @c -1 to
1417 *			leave the unit number unspecified
1418 *
1419 * @returns the new device
1420 */
1421static device_t
1422make_device(device_t parent, const char *name, int unit)
1423{
1424	device_t dev;
1425	devclass_t dc;
1426
1427	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1428
1429	if (name) {
1430		dc = devclass_find_internal(name, 0, TRUE);
1431		if (!dc) {
1432			printf("make_device: can't find device class %s\n",
1433			    name);
1434			return (NULL);
1435		}
1436	} else {
1437		dc = NULL;
1438	}
1439
1440	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1441	if (!dev)
1442		return (NULL);
1443
1444	dev->parent = parent;
1445	TAILQ_INIT(&dev->children);
1446	kobj_init((kobj_t) dev, &null_class);
1447	dev->driver = NULL;
1448	dev->devclass = NULL;
1449	dev->unit = unit;
1450	dev->nameunit = NULL;
1451	dev->desc = NULL;
1452	dev->busy = 0;
1453	dev->devflags = 0;
1454	dev->flags = DF_ENABLED;
1455	dev->order = 0;
1456	if (unit == -1)
1457		dev->flags |= DF_WILDCARD;
1458	if (name) {
1459		dev->flags |= DF_FIXEDCLASS;
1460		if (devclass_add_device(dc, dev)) {
1461			kobj_delete((kobj_t) dev, M_BUS);
1462			return (NULL);
1463		}
1464	}
1465	dev->ivars = NULL;
1466	dev->softc = NULL;
1467
1468	dev->state = DS_NOTPRESENT;
1469
1470	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1471	bus_data_generation_update();
1472
1473	return (dev);
1474}
1475
1476/**
1477 * @internal
1478 * @brief Print a description of a device.
1479 */
1480static int
1481device_print_child(device_t dev, device_t child)
1482{
1483	int retval = 0;
1484
1485	if (device_is_alive(child))
1486		retval += BUS_PRINT_CHILD(dev, child);
1487	else
1488		retval += device_printf(child, " not found\n");
1489
1490	return (retval);
1491}
1492
1493/**
1494 * @brief Create a new device
1495 *
1496 * This creates a new device and adds it as a child of an existing
1497 * parent device. The new device will be added after the last existing
1498 * child with order zero.
1499 *
1500 * @param dev		the device which will be the parent of the
1501 *			new child device
1502 * @param name		devclass name for new device or @c NULL if not
1503 *			specified
1504 * @param unit		unit number for new device or @c -1 if not
1505 *			specified
1506 *
1507 * @returns		the new device
1508 */
1509device_t
1510device_add_child(device_t dev, const char *name, int unit)
1511{
1512	return (device_add_child_ordered(dev, 0, name, unit));
1513}
1514
1515/**
1516 * @brief Create a new device
1517 *
1518 * This creates a new device and adds it as a child of an existing
1519 * parent device. The new device will be added after the last existing
1520 * child with the same order.
1521 *
1522 * @param dev		the device which will be the parent of the
1523 *			new child device
1524 * @param order		a value which is used to partially sort the
1525 *			children of @p dev - devices created using
1526 *			lower values of @p order appear first in @p
1527 *			dev's list of children
1528 * @param name		devclass name for new device or @c NULL if not
1529 *			specified
1530 * @param unit		unit number for new device or @c -1 if not
1531 *			specified
1532 *
1533 * @returns		the new device
1534 */
1535device_t
1536device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1537{
1538	device_t child;
1539	device_t place;
1540
1541	PDEBUG(("%s at %s with order %d as unit %d",
1542	    name, DEVICENAME(dev), order, unit));
1543
1544	child = make_device(dev, name, unit);
1545	if (child == NULL)
1546		return (child);
1547	child->order = order;
1548
1549	TAILQ_FOREACH(place, &dev->children, link) {
1550		if (place->order > order)
1551			break;
1552	}
1553
1554	if (place) {
1555		/*
1556		 * The device 'place' is the first device whose order is
1557		 * greater than the new child.
1558		 */
1559		TAILQ_INSERT_BEFORE(place, child, link);
1560	} else {
1561		/*
1562		 * The new child's order is greater or equal to the order of
1563		 * any existing device. Add the child to the tail of the list.
1564		 */
1565		TAILQ_INSERT_TAIL(&dev->children, child, link);
1566	}
1567
1568	bus_data_generation_update();
1569	return (child);
1570}
1571
1572/**
1573 * @brief Delete a device
1574 *
1575 * This function deletes a device along with all of its children. If
1576 * the device currently has a driver attached to it, the device is
1577 * detached first using device_detach().
1578 *
1579 * @param dev		the parent device
1580 * @param child		the device to delete
1581 *
1582 * @retval 0		success
1583 * @retval non-zero	a unit error code describing the error
1584 */
1585int
1586device_delete_child(device_t dev, device_t child)
1587{
1588	int error;
1589	device_t grandchild;
1590
1591	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1592
1593	/* remove children first */
1594	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1595		error = device_delete_child(child, grandchild);
1596		if (error)
1597			return (error);
1598	}
1599
1600	if ((error = device_detach(child)) != 0)
1601		return (error);
1602	if (child->devclass)
1603		devclass_delete_device(child->devclass, child);
1604	TAILQ_REMOVE(&dev->children, child, link);
1605	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1606	kobj_delete((kobj_t) child, M_BUS);
1607
1608	bus_data_generation_update();
1609	return (0);
1610}
1611
1612/**
1613 * @brief Find a device given a unit number
1614 *
1615 * This is similar to devclass_get_devices() but only searches for
1616 * devices which have @p dev as a parent.
1617 *
1618 * @param dev		the parent device to search
1619 * @param unit		the unit number to search for.  If the unit is -1,
1620 *			return the first child of @p dev which has name
1621 *			@p classname (that is, the one with the lowest unit.)
1622 *
1623 * @returns		the device with the given unit number or @c
1624 *			NULL if there is no such device
1625 */
1626device_t
1627device_find_child(device_t dev, const char *classname, int unit)
1628{
1629	devclass_t dc;
1630	device_t child;
1631
1632	dc = devclass_find(classname);
1633	if (!dc)
1634		return (NULL);
1635
1636	if (unit != -1) {
1637		child = devclass_get_device(dc, unit);
1638		if (child && child->parent == dev)
1639			return (child);
1640	} else {
1641		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1642			child = devclass_get_device(dc, unit);
1643			if (child && child->parent == dev)
1644				return (child);
1645		}
1646	}
1647	return (NULL);
1648}
1649
1650/**
1651 * @internal
1652 */
1653static driverlink_t
1654first_matching_driver(devclass_t dc, device_t dev)
1655{
1656	if (dev->devclass)
1657		return (devclass_find_driver_internal(dc, dev->devclass->name));
1658	return (TAILQ_FIRST(&dc->drivers));
1659}
1660
1661/**
1662 * @internal
1663 */
1664static driverlink_t
1665next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1666{
1667	if (dev->devclass) {
1668		driverlink_t dl;
1669		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1670			if (!strcmp(dev->devclass->name, dl->driver->name))
1671				return (dl);
1672		return (NULL);
1673	}
1674	return (TAILQ_NEXT(last, link));
1675}
1676
1677/**
1678 * @internal
1679 */
1680int
1681device_probe_child(device_t dev, device_t child)
1682{
1683	devclass_t dc;
1684	driverlink_t best = 0;
1685	driverlink_t dl;
1686	int result, pri = 0;
1687	int hasclass = (child->devclass != 0);
1688
1689	GIANT_REQUIRED;
1690
1691	dc = dev->devclass;
1692	if (!dc)
1693		panic("device_probe_child: parent device has no devclass");
1694
1695	/*
1696	 * If the state is already probed, then return.  However, don't
1697	 * return if we can rebid this object.
1698	 */
1699	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1700		return (0);
1701
1702	for (; dc; dc = dc->parent) {
1703		for (dl = first_matching_driver(dc, child);
1704		     dl;
1705		     dl = next_matching_driver(dc, child, dl)) {
1706			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1707			device_set_driver(child, dl->driver);
1708			if (!hasclass)
1709				device_set_devclass(child, dl->driver->name);
1710
1711			/* Fetch any flags for the device before probing. */
1712			resource_int_value(dl->driver->name, child->unit,
1713			    "flags", &child->devflags);
1714
1715			result = DEVICE_PROBE(child);
1716
1717			/* Reset flags and devclass before the next probe. */
1718			child->devflags = 0;
1719			if (!hasclass)
1720				device_set_devclass(child, 0);
1721
1722			/*
1723			 * If the driver returns SUCCESS, there can be
1724			 * no higher match for this device.
1725			 */
1726			if (result == 0) {
1727				best = dl;
1728				pri = 0;
1729				break;
1730			}
1731
1732			/*
1733			 * The driver returned an error so it
1734			 * certainly doesn't match.
1735			 */
1736			if (result > 0) {
1737				device_set_driver(child, 0);
1738				continue;
1739			}
1740
1741			/*
1742			 * A priority lower than SUCCESS, remember the
1743			 * best matching driver. Initialise the value
1744			 * of pri for the first match.
1745			 */
1746			if (best == 0 || result > pri) {
1747				best = dl;
1748				pri = result;
1749				continue;
1750			}
1751		}
1752		/*
1753		 * If we have an unambiguous match in this devclass,
1754		 * don't look in the parent.
1755		 */
1756		if (best && pri == 0)
1757			break;
1758	}
1759
1760	/*
1761	 * If we found a driver, change state and initialise the devclass.
1762	 */
1763	/* XXX What happens if we rebid and got no best? */
1764	if (best) {
1765		/*
1766		 * If this device was atached, and we were asked to
1767		 * rescan, and it is a different driver, then we have
1768		 * to detach the old driver and reattach this new one.
1769		 * Note, we don't have to check for DF_REBID here
1770		 * because if the state is > DS_ALIVE, we know it must
1771		 * be.
1772		 *
1773		 * This assumes that all DF_REBID drivers can have
1774		 * their probe routine called at any time and that
1775		 * they are idempotent as well as completely benign in
1776		 * normal operations.
1777		 *
1778		 * We also have to make sure that the detach
1779		 * succeeded, otherwise we fail the operation (or
1780		 * maybe it should just fail silently?  I'm torn).
1781		 */
1782		if (child->state > DS_ALIVE && best->driver != child->driver)
1783			if ((result = device_detach(dev)) != 0)
1784				return (result);
1785
1786		/* Set the winning driver, devclass, and flags. */
1787		if (!child->devclass)
1788			device_set_devclass(child, best->driver->name);
1789		device_set_driver(child, best->driver);
1790		resource_int_value(best->driver->name, child->unit,
1791		    "flags", &child->devflags);
1792
1793		if (pri < 0) {
1794			/*
1795			 * A bit bogus. Call the probe method again to make
1796			 * sure that we have the right description.
1797			 */
1798			DEVICE_PROBE(child);
1799#if 0
1800			child->flags |= DF_REBID;
1801#endif
1802		} else
1803			child->flags &= ~DF_REBID;
1804		child->state = DS_ALIVE;
1805
1806		bus_data_generation_update();
1807		return (0);
1808	}
1809
1810	return (ENXIO);
1811}
1812
1813/**
1814 * @brief Return the parent of a device
1815 */
1816device_t
1817device_get_parent(device_t dev)
1818{
1819	return (dev->parent);
1820}
1821
1822/**
1823 * @brief Get a list of children of a device
1824 *
1825 * An array containing a list of all the children of the given device
1826 * is allocated and returned in @p *devlistp. The number of devices
1827 * in the array is returned in @p *devcountp. The caller should free
1828 * the array using @c free(p, M_TEMP).
1829 *
1830 * @param dev		the device to examine
1831 * @param devlistp	points at location for array pointer return
1832 *			value
1833 * @param devcountp	points at location for array size return value
1834 *
1835 * @retval 0		success
1836 * @retval ENOMEM	the array allocation failed
1837 */
1838int
1839device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1840{
1841	int count;
1842	device_t child;
1843	device_t *list;
1844
1845	count = 0;
1846	TAILQ_FOREACH(child, &dev->children, link) {
1847		count++;
1848	}
1849
1850	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1851	if (!list)
1852		return (ENOMEM);
1853
1854	count = 0;
1855	TAILQ_FOREACH(child, &dev->children, link) {
1856		list[count] = child;
1857		count++;
1858	}
1859
1860	*devlistp = list;
1861	*devcountp = count;
1862
1863	return (0);
1864}
1865
1866/**
1867 * @brief Return the current driver for the device or @c NULL if there
1868 * is no driver currently attached
1869 */
1870driver_t *
1871device_get_driver(device_t dev)
1872{
1873	return (dev->driver);
1874}
1875
1876/**
1877 * @brief Return the current devclass for the device or @c NULL if
1878 * there is none.
1879 */
1880devclass_t
1881device_get_devclass(device_t dev)
1882{
1883	return (dev->devclass);
1884}
1885
1886/**
1887 * @brief Return the name of the device's devclass or @c NULL if there
1888 * is none.
1889 */
1890const char *
1891device_get_name(device_t dev)
1892{
1893	if (dev != NULL && dev->devclass)
1894		return (devclass_get_name(dev->devclass));
1895	return (NULL);
1896}
1897
1898/**
1899 * @brief Return a string containing the device's devclass name
1900 * followed by an ascii representation of the device's unit number
1901 * (e.g. @c "foo2").
1902 */
1903const char *
1904device_get_nameunit(device_t dev)
1905{
1906	return (dev->nameunit);
1907}
1908
1909/**
1910 * @brief Return the device's unit number.
1911 */
1912int
1913device_get_unit(device_t dev)
1914{
1915	return (dev->unit);
1916}
1917
1918/**
1919 * @brief Return the device's description string
1920 */
1921const char *
1922device_get_desc(device_t dev)
1923{
1924	return (dev->desc);
1925}
1926
1927/**
1928 * @brief Return the device's flags
1929 */
1930u_int32_t
1931device_get_flags(device_t dev)
1932{
1933	return (dev->devflags);
1934}
1935
1936struct sysctl_ctx_list *
1937device_get_sysctl_ctx(device_t dev)
1938{
1939	return (&dev->sysctl_ctx);
1940}
1941
1942struct sysctl_oid *
1943device_get_sysctl_tree(device_t dev)
1944{
1945	return (dev->sysctl_tree);
1946}
1947
1948/**
1949 * @brief Print the name of the device followed by a colon and a space
1950 *
1951 * @returns the number of characters printed
1952 */
1953int
1954device_print_prettyname(device_t dev)
1955{
1956	const char *name = device_get_name(dev);
1957
1958	if (name == 0)
1959		return (printf("unknown: "));
1960	return (printf("%s%d: ", name, device_get_unit(dev)));
1961}
1962
1963/**
1964 * @brief Print the name of the device followed by a colon, a space
1965 * and the result of calling vprintf() with the value of @p fmt and
1966 * the following arguments.
1967 *
1968 * @returns the number of characters printed
1969 */
1970int
1971device_printf(device_t dev, const char * fmt, ...)
1972{
1973	va_list ap;
1974	int retval;
1975
1976	retval = device_print_prettyname(dev);
1977	va_start(ap, fmt);
1978	retval += vprintf(fmt, ap);
1979	va_end(ap);
1980	return (retval);
1981}
1982
1983/**
1984 * @internal
1985 */
1986static void
1987device_set_desc_internal(device_t dev, const char* desc, int copy)
1988{
1989	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1990		free(dev->desc, M_BUS);
1991		dev->flags &= ~DF_DESCMALLOCED;
1992		dev->desc = NULL;
1993	}
1994
1995	if (copy && desc) {
1996		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
1997		if (dev->desc) {
1998			strcpy(dev->desc, desc);
1999			dev->flags |= DF_DESCMALLOCED;
2000		}
2001	} else {
2002		/* Avoid a -Wcast-qual warning */
2003		dev->desc = (char *)(uintptr_t) desc;
2004	}
2005
2006	bus_data_generation_update();
2007}
2008
2009/**
2010 * @brief Set the device's description
2011 *
2012 * The value of @c desc should be a string constant that will not
2013 * change (at least until the description is changed in a subsequent
2014 * call to device_set_desc() or device_set_desc_copy()).
2015 */
2016void
2017device_set_desc(device_t dev, const char* desc)
2018{
2019	device_set_desc_internal(dev, desc, FALSE);
2020}
2021
2022/**
2023 * @brief Set the device's description
2024 *
2025 * The string pointed to by @c desc is copied. Use this function if
2026 * the device description is generated, (e.g. with sprintf()).
2027 */
2028void
2029device_set_desc_copy(device_t dev, const char* desc)
2030{
2031	device_set_desc_internal(dev, desc, TRUE);
2032}
2033
2034/**
2035 * @brief Set the device's flags
2036 */
2037void
2038device_set_flags(device_t dev, u_int32_t flags)
2039{
2040	dev->devflags = flags;
2041}
2042
2043/**
2044 * @brief Return the device's softc field
2045 *
2046 * The softc is allocated and zeroed when a driver is attached, based
2047 * on the size field of the driver.
2048 */
2049void *
2050device_get_softc(device_t dev)
2051{
2052	return (dev->softc);
2053}
2054
2055/**
2056 * @brief Set the device's softc field
2057 *
2058 * Most drivers do not need to use this since the softc is allocated
2059 * automatically when the driver is attached.
2060 */
2061void
2062device_set_softc(device_t dev, void *softc)
2063{
2064	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2065		free(dev->softc, M_BUS_SC);
2066	dev->softc = softc;
2067	if (dev->softc)
2068		dev->flags |= DF_EXTERNALSOFTC;
2069	else
2070		dev->flags &= ~DF_EXTERNALSOFTC;
2071}
2072
2073/**
2074 * @brief Get the device's ivars field
2075 *
2076 * The ivars field is used by the parent device to store per-device
2077 * state (e.g. the physical location of the device or a list of
2078 * resources).
2079 */
2080void *
2081device_get_ivars(device_t dev)
2082{
2083
2084	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2085	return (dev->ivars);
2086}
2087
2088/**
2089 * @brief Set the device's ivars field
2090 */
2091void
2092device_set_ivars(device_t dev, void * ivars)
2093{
2094
2095	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2096	dev->ivars = ivars;
2097}
2098
2099/**
2100 * @brief Return the device's state
2101 */
2102device_state_t
2103device_get_state(device_t dev)
2104{
2105	return (dev->state);
2106}
2107
2108/**
2109 * @brief Set the DF_ENABLED flag for the device
2110 */
2111void
2112device_enable(device_t dev)
2113{
2114	dev->flags |= DF_ENABLED;
2115}
2116
2117/**
2118 * @brief Clear the DF_ENABLED flag for the device
2119 */
2120void
2121device_disable(device_t dev)
2122{
2123	dev->flags &= ~DF_ENABLED;
2124}
2125
2126/**
2127 * @brief Increment the busy counter for the device
2128 */
2129void
2130device_busy(device_t dev)
2131{
2132	if (dev->state < DS_ATTACHED)
2133		panic("device_busy: called for unattached device");
2134	if (dev->busy == 0 && dev->parent)
2135		device_busy(dev->parent);
2136	dev->busy++;
2137	dev->state = DS_BUSY;
2138}
2139
2140/**
2141 * @brief Decrement the busy counter for the device
2142 */
2143void
2144device_unbusy(device_t dev)
2145{
2146	if (dev->state != DS_BUSY)
2147		panic("device_unbusy: called for non-busy device %s",
2148		    device_get_nameunit(dev));
2149	dev->busy--;
2150	if (dev->busy == 0) {
2151		if (dev->parent)
2152			device_unbusy(dev->parent);
2153		dev->state = DS_ATTACHED;
2154	}
2155}
2156
2157/**
2158 * @brief Set the DF_QUIET flag for the device
2159 */
2160void
2161device_quiet(device_t dev)
2162{
2163	dev->flags |= DF_QUIET;
2164}
2165
2166/**
2167 * @brief Clear the DF_QUIET flag for the device
2168 */
2169void
2170device_verbose(device_t dev)
2171{
2172	dev->flags &= ~DF_QUIET;
2173}
2174
2175/**
2176 * @brief Return non-zero if the DF_QUIET flag is set on the device
2177 */
2178int
2179device_is_quiet(device_t dev)
2180{
2181	return ((dev->flags & DF_QUIET) != 0);
2182}
2183
2184/**
2185 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2186 */
2187int
2188device_is_enabled(device_t dev)
2189{
2190	return ((dev->flags & DF_ENABLED) != 0);
2191}
2192
2193/**
2194 * @brief Return non-zero if the device was successfully probed
2195 */
2196int
2197device_is_alive(device_t dev)
2198{
2199	return (dev->state >= DS_ALIVE);
2200}
2201
2202/**
2203 * @brief Return non-zero if the device currently has a driver
2204 * attached to it
2205 */
2206int
2207device_is_attached(device_t dev)
2208{
2209	return (dev->state >= DS_ATTACHED);
2210}
2211
2212/**
2213 * @brief Set the devclass of a device
2214 * @see devclass_add_device().
2215 */
2216int
2217device_set_devclass(device_t dev, const char *classname)
2218{
2219	devclass_t dc;
2220	int error;
2221
2222	if (!classname) {
2223		if (dev->devclass)
2224			devclass_delete_device(dev->devclass, dev);
2225		return (0);
2226	}
2227
2228	if (dev->devclass) {
2229		printf("device_set_devclass: device class already set\n");
2230		return (EINVAL);
2231	}
2232
2233	dc = devclass_find_internal(classname, 0, TRUE);
2234	if (!dc)
2235		return (ENOMEM);
2236
2237	error = devclass_add_device(dc, dev);
2238
2239	bus_data_generation_update();
2240	return (error);
2241}
2242
2243/**
2244 * @brief Set the driver of a device
2245 *
2246 * @retval 0		success
2247 * @retval EBUSY	the device already has a driver attached
2248 * @retval ENOMEM	a memory allocation failure occurred
2249 */
2250int
2251device_set_driver(device_t dev, driver_t *driver)
2252{
2253	if (dev->state >= DS_ATTACHED)
2254		return (EBUSY);
2255
2256	if (dev->driver == driver)
2257		return (0);
2258
2259	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2260		free(dev->softc, M_BUS_SC);
2261		dev->softc = NULL;
2262	}
2263	kobj_delete((kobj_t) dev, 0);
2264	dev->driver = driver;
2265	if (driver) {
2266		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2267		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2268			dev->softc = malloc(driver->size, M_BUS_SC,
2269			    M_NOWAIT | M_ZERO);
2270			if (!dev->softc) {
2271				kobj_delete((kobj_t) dev, 0);
2272				kobj_init((kobj_t) dev, &null_class);
2273				dev->driver = NULL;
2274				return (ENOMEM);
2275			}
2276		}
2277	} else {
2278		kobj_init((kobj_t) dev, &null_class);
2279	}
2280
2281	bus_data_generation_update();
2282	return (0);
2283}
2284
2285/**
2286 * @brief Probe a device and attach a driver if possible
2287 *
2288 * This function is the core of the device autoconfiguration
2289 * system. Its purpose is to select a suitable driver for a device and
2290 * then call that driver to initialise the hardware appropriately. The
2291 * driver is selected by calling the DEVICE_PROBE() method of a set of
2292 * candidate drivers and then choosing the driver which returned the
2293 * best value. This driver is then attached to the device using
2294 * device_attach().
2295 *
2296 * The set of suitable drivers is taken from the list of drivers in
2297 * the parent device's devclass. If the device was originally created
2298 * with a specific class name (see device_add_child()), only drivers
2299 * with that name are probed, otherwise all drivers in the devclass
2300 * are probed. If no drivers return successful probe values in the
2301 * parent devclass, the search continues in the parent of that
2302 * devclass (see devclass_get_parent()) if any.
2303 *
2304 * @param dev		the device to initialise
2305 *
2306 * @retval 0		success
2307 * @retval ENXIO	no driver was found
2308 * @retval ENOMEM	memory allocation failure
2309 * @retval non-zero	some other unix error code
2310 */
2311int
2312device_probe_and_attach(device_t dev)
2313{
2314	int error;
2315
2316	GIANT_REQUIRED;
2317
2318	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2319		return (0);
2320
2321	if (!(dev->flags & DF_ENABLED)) {
2322		if (bootverbose && device_get_name(dev) != NULL) {
2323			device_print_prettyname(dev);
2324			printf("not probed (disabled)\n");
2325		}
2326		return (0);
2327	}
2328	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2329		if (!(dev->flags & DF_DONENOMATCH)) {
2330			BUS_PROBE_NOMATCH(dev->parent, dev);
2331			devnomatch(dev);
2332			dev->flags |= DF_DONENOMATCH;
2333		}
2334		return (error);
2335	}
2336	error = device_attach(dev);
2337
2338	return (error);
2339}
2340
2341/**
2342 * @brief Attach a device driver to a device
2343 *
2344 * This function is a wrapper around the DEVICE_ATTACH() driver
2345 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2346 * device's sysctl tree, optionally prints a description of the device
2347 * and queues a notification event for user-based device management
2348 * services.
2349 *
2350 * Normally this function is only called internally from
2351 * device_probe_and_attach().
2352 *
2353 * @param dev		the device to initialise
2354 *
2355 * @retval 0		success
2356 * @retval ENXIO	no driver was found
2357 * @retval ENOMEM	memory allocation failure
2358 * @retval non-zero	some other unix error code
2359 */
2360int
2361device_attach(device_t dev)
2362{
2363	int error;
2364
2365	device_sysctl_init(dev);
2366	if (!device_is_quiet(dev))
2367		device_print_child(dev->parent, dev);
2368	if ((error = DEVICE_ATTACH(dev)) != 0) {
2369		printf("device_attach: %s%d attach returned %d\n",
2370		    dev->driver->name, dev->unit, error);
2371		/* Unset the class; set in device_probe_child */
2372		if (dev->devclass == 0)
2373			device_set_devclass(dev, 0);
2374		device_set_driver(dev, NULL);
2375		device_sysctl_fini(dev);
2376		dev->state = DS_NOTPRESENT;
2377		return (error);
2378	}
2379	dev->state = DS_ATTACHED;
2380	devadded(dev);
2381	return (0);
2382}
2383
2384/**
2385 * @brief Detach a driver from a device
2386 *
2387 * This function is a wrapper around the DEVICE_DETACH() driver
2388 * method. If the call to DEVICE_DETACH() succeeds, it calls
2389 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2390 * notification event for user-based device management services and
2391 * cleans up the device's sysctl tree.
2392 *
2393 * @param dev		the device to un-initialise
2394 *
2395 * @retval 0		success
2396 * @retval ENXIO	no driver was found
2397 * @retval ENOMEM	memory allocation failure
2398 * @retval non-zero	some other unix error code
2399 */
2400int
2401device_detach(device_t dev)
2402{
2403	int error;
2404
2405	GIANT_REQUIRED;
2406
2407	PDEBUG(("%s", DEVICENAME(dev)));
2408	if (dev->state == DS_BUSY)
2409		return (EBUSY);
2410	if (dev->state != DS_ATTACHED)
2411		return (0);
2412
2413	if ((error = DEVICE_DETACH(dev)) != 0)
2414		return (error);
2415	devremoved(dev);
2416	device_printf(dev, "detached\n");
2417	if (dev->parent)
2418		BUS_CHILD_DETACHED(dev->parent, dev);
2419
2420	if (!(dev->flags & DF_FIXEDCLASS))
2421		devclass_delete_device(dev->devclass, dev);
2422
2423	dev->state = DS_NOTPRESENT;
2424	device_set_driver(dev, NULL);
2425	device_set_desc(dev, NULL);
2426	device_sysctl_fini(dev);
2427
2428	return (0);
2429}
2430
2431/**
2432 * @brief Tells a driver to quiesce itself.
2433 *
2434 * This function is a wrapper around the DEVICE_QUIESCE() driver
2435 * method. If the call to DEVICE_QUIESCE() succeeds.
2436 *
2437 * @param dev		the device to quiesce
2438 *
2439 * @retval 0		success
2440 * @retval ENXIO	no driver was found
2441 * @retval ENOMEM	memory allocation failure
2442 * @retval non-zero	some other unix error code
2443 */
2444int
2445device_quiesce(device_t dev)
2446{
2447
2448	PDEBUG(("%s", DEVICENAME(dev)));
2449	if (dev->state == DS_BUSY)
2450		return (EBUSY);
2451	if (dev->state != DS_ATTACHED)
2452		return (0);
2453
2454	return (DEVICE_QUIESCE(dev));
2455}
2456
2457/**
2458 * @brief Notify a device of system shutdown
2459 *
2460 * This function calls the DEVICE_SHUTDOWN() driver method if the
2461 * device currently has an attached driver.
2462 *
2463 * @returns the value returned by DEVICE_SHUTDOWN()
2464 */
2465int
2466device_shutdown(device_t dev)
2467{
2468	if (dev->state < DS_ATTACHED)
2469		return (0);
2470	return (DEVICE_SHUTDOWN(dev));
2471}
2472
2473/**
2474 * @brief Set the unit number of a device
2475 *
2476 * This function can be used to override the unit number used for a
2477 * device (e.g. to wire a device to a pre-configured unit number).
2478 */
2479int
2480device_set_unit(device_t dev, int unit)
2481{
2482	devclass_t dc;
2483	int err;
2484
2485	dc = device_get_devclass(dev);
2486	if (unit < dc->maxunit && dc->devices[unit])
2487		return (EBUSY);
2488	err = devclass_delete_device(dc, dev);
2489	if (err)
2490		return (err);
2491	dev->unit = unit;
2492	err = devclass_add_device(dc, dev);
2493	if (err)
2494		return (err);
2495
2496	bus_data_generation_update();
2497	return (0);
2498}
2499
2500/*======================================*/
2501/*
2502 * Some useful method implementations to make life easier for bus drivers.
2503 */
2504
2505/**
2506 * @brief Initialise a resource list.
2507 *
2508 * @param rl		the resource list to initialise
2509 */
2510void
2511resource_list_init(struct resource_list *rl)
2512{
2513	STAILQ_INIT(rl);
2514}
2515
2516/**
2517 * @brief Reclaim memory used by a resource list.
2518 *
2519 * This function frees the memory for all resource entries on the list
2520 * (if any).
2521 *
2522 * @param rl		the resource list to free
2523 */
2524void
2525resource_list_free(struct resource_list *rl)
2526{
2527	struct resource_list_entry *rle;
2528
2529	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2530		if (rle->res)
2531			panic("resource_list_free: resource entry is busy");
2532		STAILQ_REMOVE_HEAD(rl, link);
2533		free(rle, M_BUS);
2534	}
2535}
2536
2537/**
2538 * @brief Add a resource entry.
2539 *
2540 * This function adds a resource entry using the given @p type, @p
2541 * start, @p end and @p count values. A rid value is chosen by
2542 * searching sequentially for the first unused rid starting at zero.
2543 *
2544 * @param rl		the resource list to edit
2545 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2546 * @param start		the start address of the resource
2547 * @param end		the end address of the resource
2548 * @param count		XXX end-start+1
2549 */
2550int
2551resource_list_add_next(struct resource_list *rl, int type, u_long start,
2552    u_long end, u_long count)
2553{
2554	int rid;
2555
2556	rid = 0;
2557	while (resource_list_find(rl, type, rid) != NULL)
2558		rid++;
2559	resource_list_add(rl, type, rid, start, end, count);
2560	return (rid);
2561}
2562
2563/**
2564 * @brief Add or modify a resource entry.
2565 *
2566 * If an existing entry exists with the same type and rid, it will be
2567 * modified using the given values of @p start, @p end and @p
2568 * count. If no entry exists, a new one will be created using the
2569 * given values.  The resource list entry that matches is then returned.
2570 *
2571 * @param rl		the resource list to edit
2572 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2573 * @param rid		the resource identifier
2574 * @param start		the start address of the resource
2575 * @param end		the end address of the resource
2576 * @param count		XXX end-start+1
2577 */
2578struct resource_list_entry *
2579resource_list_add(struct resource_list *rl, int type, int rid,
2580    u_long start, u_long end, u_long count)
2581{
2582	struct resource_list_entry *rle;
2583
2584	rle = resource_list_find(rl, type, rid);
2585	if (!rle) {
2586		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2587		    M_NOWAIT);
2588		if (!rle)
2589			panic("resource_list_add: can't record entry");
2590		STAILQ_INSERT_TAIL(rl, rle, link);
2591		rle->type = type;
2592		rle->rid = rid;
2593		rle->res = NULL;
2594	}
2595
2596	if (rle->res)
2597		panic("resource_list_add: resource entry is busy");
2598
2599	rle->start = start;
2600	rle->end = end;
2601	rle->count = count;
2602	return (rle);
2603}
2604
2605/**
2606 * @brief Find a resource entry by type and rid.
2607 *
2608 * @param rl		the resource list to search
2609 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2610 * @param rid		the resource identifier
2611 *
2612 * @returns the resource entry pointer or NULL if there is no such
2613 * entry.
2614 */
2615struct resource_list_entry *
2616resource_list_find(struct resource_list *rl, int type, int rid)
2617{
2618	struct resource_list_entry *rle;
2619
2620	STAILQ_FOREACH(rle, rl, link) {
2621		if (rle->type == type && rle->rid == rid)
2622			return (rle);
2623	}
2624	return (NULL);
2625}
2626
2627/**
2628 * @brief Delete a resource entry.
2629 *
2630 * @param rl		the resource list to edit
2631 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2632 * @param rid		the resource identifier
2633 */
2634void
2635resource_list_delete(struct resource_list *rl, int type, int rid)
2636{
2637	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2638
2639	if (rle) {
2640		if (rle->res != NULL)
2641			panic("resource_list_delete: resource has not been released");
2642		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2643		free(rle, M_BUS);
2644	}
2645}
2646
2647/**
2648 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2649 *
2650 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2651 * and passing the allocation up to the parent of @p bus. This assumes
2652 * that the first entry of @c device_get_ivars(child) is a struct
2653 * resource_list. This also handles 'passthrough' allocations where a
2654 * child is a remote descendant of bus by passing the allocation up to
2655 * the parent of bus.
2656 *
2657 * Typically, a bus driver would store a list of child resources
2658 * somewhere in the child device's ivars (see device_get_ivars()) and
2659 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2660 * then call resource_list_alloc() to perform the allocation.
2661 *
2662 * @param rl		the resource list to allocate from
2663 * @param bus		the parent device of @p child
2664 * @param child		the device which is requesting an allocation
2665 * @param type		the type of resource to allocate
2666 * @param rid		a pointer to the resource identifier
2667 * @param start		hint at the start of the resource range - pass
2668 *			@c 0UL for any start address
2669 * @param end		hint at the end of the resource range - pass
2670 *			@c ~0UL for any end address
2671 * @param count		hint at the size of range required - pass @c 1
2672 *			for any size
2673 * @param flags		any extra flags to control the resource
2674 *			allocation - see @c RF_XXX flags in
2675 *			<sys/rman.h> for details
2676 *
2677 * @returns		the resource which was allocated or @c NULL if no
2678 *			resource could be allocated
2679 */
2680struct resource *
2681resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2682    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2683{
2684	struct resource_list_entry *rle = 0;
2685	int passthrough = (device_get_parent(child) != bus);
2686	int isdefault = (start == 0UL && end == ~0UL);
2687
2688	if (passthrough) {
2689		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2690		    type, rid, start, end, count, flags));
2691	}
2692
2693	rle = resource_list_find(rl, type, *rid);
2694
2695	if (!rle)
2696		return (NULL);		/* no resource of that type/rid */
2697
2698	if (rle->res)
2699		panic("resource_list_alloc: resource entry is busy");
2700
2701	if (isdefault) {
2702		start = rle->start;
2703		count = ulmax(count, rle->count);
2704		end = ulmax(rle->end, start + count - 1);
2705	}
2706
2707	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2708	    type, rid, start, end, count, flags);
2709
2710	/*
2711	 * Record the new range.
2712	 */
2713	if (rle->res) {
2714		rle->start = rman_get_start(rle->res);
2715		rle->end = rman_get_end(rle->res);
2716		rle->count = count;
2717	}
2718
2719	return (rle->res);
2720}
2721
2722/**
2723 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2724 *
2725 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2726 * used with resource_list_alloc().
2727 *
2728 * @param rl		the resource list which was allocated from
2729 * @param bus		the parent device of @p child
2730 * @param child		the device which is requesting a release
2731 * @param type		the type of resource to allocate
2732 * @param rid		the resource identifier
2733 * @param res		the resource to release
2734 *
2735 * @retval 0		success
2736 * @retval non-zero	a standard unix error code indicating what
2737 *			error condition prevented the operation
2738 */
2739int
2740resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2741    int type, int rid, struct resource *res)
2742{
2743	struct resource_list_entry *rle = 0;
2744	int passthrough = (device_get_parent(child) != bus);
2745	int error;
2746
2747	if (passthrough) {
2748		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2749		    type, rid, res));
2750	}
2751
2752	rle = resource_list_find(rl, type, rid);
2753
2754	if (!rle)
2755		panic("resource_list_release: can't find resource");
2756	if (!rle->res)
2757		panic("resource_list_release: resource entry is not busy");
2758
2759	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2760	    type, rid, res);
2761	if (error)
2762		return (error);
2763
2764	rle->res = NULL;
2765	return (0);
2766}
2767
2768/**
2769 * @brief Print a description of resources in a resource list
2770 *
2771 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2772 * The name is printed if at least one resource of the given type is available.
2773 * The format is used to print resource start and end.
2774 *
2775 * @param rl		the resource list to print
2776 * @param name		the name of @p type, e.g. @c "memory"
2777 * @param type		type type of resource entry to print
2778 * @param format	printf(9) format string to print resource
2779 *			start and end values
2780 *
2781 * @returns		the number of characters printed
2782 */
2783int
2784resource_list_print_type(struct resource_list *rl, const char *name, int type,
2785    const char *format)
2786{
2787	struct resource_list_entry *rle;
2788	int printed, retval;
2789
2790	printed = 0;
2791	retval = 0;
2792	/* Yes, this is kinda cheating */
2793	STAILQ_FOREACH(rle, rl, link) {
2794		if (rle->type == type) {
2795			if (printed == 0)
2796				retval += printf(" %s ", name);
2797			else
2798				retval += printf(",");
2799			printed++;
2800			retval += printf(format, rle->start);
2801			if (rle->count > 1) {
2802				retval += printf("-");
2803				retval += printf(format, rle->start +
2804						 rle->count - 1);
2805			}
2806		}
2807	}
2808	return (retval);
2809}
2810
2811/**
2812 * @brief Releases all the resources in a list.
2813 *
2814 * @param rl		The resource list to purge.
2815 *
2816 * @returns		nothing
2817 */
2818void
2819resource_list_purge(struct resource_list *rl)
2820{
2821	struct resource_list_entry *rle;
2822
2823	STAILQ_FOREACH(rle, rl, link) {
2824		if (rle->res)
2825			bus_release_resource(rman_get_device(rle->res),
2826			    rle->type, rle->rid, rle->res);
2827		STAILQ_REMOVE_HEAD(rl, link);
2828		free(rle, M_BUS);
2829	}
2830}
2831
2832/**
2833 * @brief Helper function for implementing DEVICE_PROBE()
2834 *
2835 * This function can be used to help implement the DEVICE_PROBE() for
2836 * a bus (i.e. a device which has other devices attached to it). It
2837 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2838 * devclass.
2839 */
2840int
2841bus_generic_probe(device_t dev)
2842{
2843	devclass_t dc = dev->devclass;
2844	driverlink_t dl;
2845
2846	TAILQ_FOREACH(dl, &dc->drivers, link) {
2847		DEVICE_IDENTIFY(dl->driver, dev);
2848	}
2849
2850	return (0);
2851}
2852
2853/**
2854 * @brief Helper function for implementing DEVICE_ATTACH()
2855 *
2856 * This function can be used to help implement the DEVICE_ATTACH() for
2857 * a bus. It calls device_probe_and_attach() for each of the device's
2858 * children.
2859 */
2860int
2861bus_generic_attach(device_t dev)
2862{
2863	device_t child;
2864
2865	TAILQ_FOREACH(child, &dev->children, link) {
2866		device_probe_and_attach(child);
2867	}
2868
2869	return (0);
2870}
2871
2872/**
2873 * @brief Helper function for implementing DEVICE_DETACH()
2874 *
2875 * This function can be used to help implement the DEVICE_DETACH() for
2876 * a bus. It calls device_detach() for each of the device's
2877 * children.
2878 */
2879int
2880bus_generic_detach(device_t dev)
2881{
2882	device_t child;
2883	int error;
2884
2885	if (dev->state != DS_ATTACHED)
2886		return (EBUSY);
2887
2888	TAILQ_FOREACH(child, &dev->children, link) {
2889		if ((error = device_detach(child)) != 0)
2890			return (error);
2891	}
2892
2893	return (0);
2894}
2895
2896/**
2897 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2898 *
2899 * This function can be used to help implement the DEVICE_SHUTDOWN()
2900 * for a bus. It calls device_shutdown() for each of the device's
2901 * children.
2902 */
2903int
2904bus_generic_shutdown(device_t dev)
2905{
2906	device_t child;
2907
2908	TAILQ_FOREACH(child, &dev->children, link) {
2909		device_shutdown(child);
2910	}
2911
2912	return (0);
2913}
2914
2915/**
2916 * @brief Helper function for implementing DEVICE_SUSPEND()
2917 *
2918 * This function can be used to help implement the DEVICE_SUSPEND()
2919 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2920 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2921 * operation is aborted and any devices which were suspended are
2922 * resumed immediately by calling their DEVICE_RESUME() methods.
2923 */
2924int
2925bus_generic_suspend(device_t dev)
2926{
2927	int		error;
2928	device_t	child, child2;
2929
2930	TAILQ_FOREACH(child, &dev->children, link) {
2931		error = DEVICE_SUSPEND(child);
2932		if (error) {
2933			for (child2 = TAILQ_FIRST(&dev->children);
2934			     child2 && child2 != child;
2935			     child2 = TAILQ_NEXT(child2, link))
2936				DEVICE_RESUME(child2);
2937			return (error);
2938		}
2939	}
2940	return (0);
2941}
2942
2943/**
2944 * @brief Helper function for implementing DEVICE_RESUME()
2945 *
2946 * This function can be used to help implement the DEVICE_RESUME() for
2947 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2948 */
2949int
2950bus_generic_resume(device_t dev)
2951{
2952	device_t	child;
2953
2954	TAILQ_FOREACH(child, &dev->children, link) {
2955		DEVICE_RESUME(child);
2956		/* if resume fails, there's nothing we can usefully do... */
2957	}
2958	return (0);
2959}
2960
2961/**
2962 * @brief Helper function for implementing BUS_PRINT_CHILD().
2963 *
2964 * This function prints the first part of the ascii representation of
2965 * @p child, including its name, unit and description (if any - see
2966 * device_set_desc()).
2967 *
2968 * @returns the number of characters printed
2969 */
2970int
2971bus_print_child_header(device_t dev, device_t child)
2972{
2973	int	retval = 0;
2974
2975	if (device_get_desc(child)) {
2976		retval += device_printf(child, "<%s>", device_get_desc(child));
2977	} else {
2978		retval += printf("%s", device_get_nameunit(child));
2979	}
2980
2981	return (retval);
2982}
2983
2984/**
2985 * @brief Helper function for implementing BUS_PRINT_CHILD().
2986 *
2987 * This function prints the last part of the ascii representation of
2988 * @p child, which consists of the string @c " on " followed by the
2989 * name and unit of the @p dev.
2990 *
2991 * @returns the number of characters printed
2992 */
2993int
2994bus_print_child_footer(device_t dev, device_t child)
2995{
2996	return (printf(" on %s\n", device_get_nameunit(dev)));
2997}
2998
2999/**
3000 * @brief Helper function for implementing BUS_PRINT_CHILD().
3001 *
3002 * This function simply calls bus_print_child_header() followed by
3003 * bus_print_child_footer().
3004 *
3005 * @returns the number of characters printed
3006 */
3007int
3008bus_generic_print_child(device_t dev, device_t child)
3009{
3010	int	retval = 0;
3011
3012	retval += bus_print_child_header(dev, child);
3013	retval += bus_print_child_footer(dev, child);
3014
3015	return (retval);
3016}
3017
3018/**
3019 * @brief Stub function for implementing BUS_READ_IVAR().
3020 *
3021 * @returns ENOENT
3022 */
3023int
3024bus_generic_read_ivar(device_t dev, device_t child, int index,
3025    uintptr_t * result)
3026{
3027	return (ENOENT);
3028}
3029
3030/**
3031 * @brief Stub function for implementing BUS_WRITE_IVAR().
3032 *
3033 * @returns ENOENT
3034 */
3035int
3036bus_generic_write_ivar(device_t dev, device_t child, int index,
3037    uintptr_t value)
3038{
3039	return (ENOENT);
3040}
3041
3042/**
3043 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3044 *
3045 * @returns NULL
3046 */
3047struct resource_list *
3048bus_generic_get_resource_list(device_t dev, device_t child)
3049{
3050	return (NULL);
3051}
3052
3053/**
3054 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3055 *
3056 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3057 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3058 * and then calls device_probe_and_attach() for each unattached child.
3059 */
3060void
3061bus_generic_driver_added(device_t dev, driver_t *driver)
3062{
3063	device_t child;
3064
3065	DEVICE_IDENTIFY(driver, dev);
3066	TAILQ_FOREACH(child, &dev->children, link) {
3067		if (child->state == DS_NOTPRESENT ||
3068		    (child->flags & DF_REBID))
3069			device_probe_and_attach(child);
3070	}
3071}
3072
3073/**
3074 * @brief Helper function for implementing BUS_SETUP_INTR().
3075 *
3076 * This simple implementation of BUS_SETUP_INTR() simply calls the
3077 * BUS_SETUP_INTR() method of the parent of @p dev.
3078 */
3079int
3080bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3081    int flags, driver_intr_t *intr, void *arg, void **cookiep)
3082{
3083	/* Propagate up the bus hierarchy until someone handles it. */
3084	if (dev->parent)
3085		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3086		    intr, arg, cookiep));
3087	return (EINVAL);
3088}
3089
3090/**
3091 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3092 *
3093 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3094 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3095 */
3096int
3097bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3098    void *cookie)
3099{
3100	/* Propagate up the bus hierarchy until someone handles it. */
3101	if (dev->parent)
3102		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3103	return (EINVAL);
3104}
3105
3106/**
3107 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3108 *
3109 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3110 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3111 */
3112struct resource *
3113bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3114    u_long start, u_long end, u_long count, u_int flags)
3115{
3116	/* Propagate up the bus hierarchy until someone handles it. */
3117	if (dev->parent)
3118		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3119		    start, end, count, flags));
3120	return (NULL);
3121}
3122
3123/**
3124 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3125 *
3126 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3127 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3128 */
3129int
3130bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3131    struct resource *r)
3132{
3133	/* Propagate up the bus hierarchy until someone handles it. */
3134	if (dev->parent)
3135		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3136		    r));
3137	return (EINVAL);
3138}
3139
3140/**
3141 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3142 *
3143 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3144 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3145 */
3146int
3147bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3148    struct resource *r)
3149{
3150	/* Propagate up the bus hierarchy until someone handles it. */
3151	if (dev->parent)
3152		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3153		    r));
3154	return (EINVAL);
3155}
3156
3157/**
3158 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3159 *
3160 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3161 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3162 */
3163int
3164bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3165    int rid, struct resource *r)
3166{
3167	/* Propagate up the bus hierarchy until someone handles it. */
3168	if (dev->parent)
3169		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3170		    r));
3171	return (EINVAL);
3172}
3173
3174/**
3175 * @brief Helper function for implementing BUS_CONFIG_INTR().
3176 *
3177 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3178 * BUS_CONFIG_INTR() method of the parent of @p dev.
3179 */
3180int
3181bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3182    enum intr_polarity pol)
3183{
3184
3185	/* Propagate up the bus hierarchy until someone handles it. */
3186	if (dev->parent)
3187		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3188	return (EINVAL);
3189}
3190
3191/**
3192 * @brief Helper function for implementing BUS_GET_RESOURCE().
3193 *
3194 * This implementation of BUS_GET_RESOURCE() uses the
3195 * resource_list_find() function to do most of the work. It calls
3196 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3197 * search.
3198 */
3199int
3200bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3201    u_long *startp, u_long *countp)
3202{
3203	struct resource_list *		rl = NULL;
3204	struct resource_list_entry *	rle = NULL;
3205
3206	rl = BUS_GET_RESOURCE_LIST(dev, child);
3207	if (!rl)
3208		return (EINVAL);
3209
3210	rle = resource_list_find(rl, type, rid);
3211	if (!rle)
3212		return (ENOENT);
3213
3214	if (startp)
3215		*startp = rle->start;
3216	if (countp)
3217		*countp = rle->count;
3218
3219	return (0);
3220}
3221
3222/**
3223 * @brief Helper function for implementing BUS_SET_RESOURCE().
3224 *
3225 * This implementation of BUS_SET_RESOURCE() uses the
3226 * resource_list_add() function to do most of the work. It calls
3227 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3228 * edit.
3229 */
3230int
3231bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3232    u_long start, u_long count)
3233{
3234	struct resource_list *		rl = NULL;
3235
3236	rl = BUS_GET_RESOURCE_LIST(dev, child);
3237	if (!rl)
3238		return (EINVAL);
3239
3240	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3241
3242	return (0);
3243}
3244
3245/**
3246 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3247 *
3248 * This implementation of BUS_DELETE_RESOURCE() uses the
3249 * resource_list_delete() function to do most of the work. It calls
3250 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3251 * edit.
3252 */
3253void
3254bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3255{
3256	struct resource_list *		rl = NULL;
3257
3258	rl = BUS_GET_RESOURCE_LIST(dev, child);
3259	if (!rl)
3260		return;
3261
3262	resource_list_delete(rl, type, rid);
3263
3264	return;
3265}
3266
3267/**
3268 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3269 *
3270 * This implementation of BUS_RELEASE_RESOURCE() uses the
3271 * resource_list_release() function to do most of the work. It calls
3272 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3273 */
3274int
3275bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3276    int rid, struct resource *r)
3277{
3278	struct resource_list *		rl = NULL;
3279
3280	rl = BUS_GET_RESOURCE_LIST(dev, child);
3281	if (!rl)
3282		return (EINVAL);
3283
3284	return (resource_list_release(rl, dev, child, type, rid, r));
3285}
3286
3287/**
3288 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3289 *
3290 * This implementation of BUS_ALLOC_RESOURCE() uses the
3291 * resource_list_alloc() function to do most of the work. It calls
3292 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3293 */
3294struct resource *
3295bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3296    int *rid, u_long start, u_long end, u_long count, u_int flags)
3297{
3298	struct resource_list *		rl = NULL;
3299
3300	rl = BUS_GET_RESOURCE_LIST(dev, child);
3301	if (!rl)
3302		return (NULL);
3303
3304	return (resource_list_alloc(rl, dev, child, type, rid,
3305	    start, end, count, flags));
3306}
3307
3308/**
3309 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3310 *
3311 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3312 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3313 */
3314int
3315bus_generic_child_present(device_t dev, device_t child)
3316{
3317	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3318}
3319
3320/*
3321 * Some convenience functions to make it easier for drivers to use the
3322 * resource-management functions.  All these really do is hide the
3323 * indirection through the parent's method table, making for slightly
3324 * less-wordy code.  In the future, it might make sense for this code
3325 * to maintain some sort of a list of resources allocated by each device.
3326 */
3327
3328int
3329bus_alloc_resources(device_t dev, struct resource_spec *rs,
3330    struct resource **res)
3331{
3332	int i;
3333
3334	for (i = 0; rs[i].type != -1; i++)
3335		res[i] = NULL;
3336	for (i = 0; rs[i].type != -1; i++) {
3337		res[i] = bus_alloc_resource_any(dev,
3338		    rs[i].type, &rs[i].rid, rs[i].flags);
3339		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3340			bus_release_resources(dev, rs, res);
3341			return (ENXIO);
3342		}
3343	}
3344	return (0);
3345}
3346
3347void
3348bus_release_resources(device_t dev, struct resource_spec *rs,
3349    struct resource **res)
3350{
3351	int i;
3352
3353	for (i = 0; rs[i].type != -1; i++)
3354		if (res[i] != NULL)
3355			bus_release_resource(
3356			    dev, rs[i].type, rs[i].rid, res[i]);
3357}
3358
3359/**
3360 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3361 *
3362 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3363 * parent of @p dev.
3364 */
3365struct resource *
3366bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3367    u_long count, u_int flags)
3368{
3369	if (dev->parent == 0)
3370		return (0);
3371	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3372	    count, flags));
3373}
3374
3375/**
3376 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3377 *
3378 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3379 * parent of @p dev.
3380 */
3381int
3382bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3383{
3384	if (dev->parent == 0)
3385		return (EINVAL);
3386	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3387}
3388
3389/**
3390 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3391 *
3392 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3393 * parent of @p dev.
3394 */
3395int
3396bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3397{
3398	if (dev->parent == 0)
3399		return (EINVAL);
3400	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3401}
3402
3403/**
3404 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3405 *
3406 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3407 * parent of @p dev.
3408 */
3409int
3410bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3411{
3412	if (dev->parent == 0)
3413		return (EINVAL);
3414	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3415}
3416
3417/**
3418 * @brief Wrapper function for BUS_SETUP_INTR().
3419 *
3420 * This function simply calls the BUS_SETUP_INTR() method of the
3421 * parent of @p dev.
3422 */
3423int
3424bus_setup_intr(device_t dev, struct resource *r, int flags,
3425    driver_intr_t handler, void *arg, void **cookiep)
3426{
3427	int error;
3428
3429	if (dev->parent != 0) {
3430		if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3431		    !debug_mpsafenet)
3432			flags &= ~INTR_MPSAFE;
3433		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3434		    handler, arg, cookiep);
3435		if (error == 0) {
3436			if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3437				device_printf(dev, "[GIANT-LOCKED]\n");
3438			if (bootverbose && (flags & INTR_MPSAFE))
3439				device_printf(dev, "[MPSAFE]\n");
3440			if (flags & INTR_FAST)
3441				device_printf(dev, "[FAST]\n");
3442		}
3443	} else
3444		error = EINVAL;
3445	return (error);
3446}
3447
3448/**
3449 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3450 *
3451 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3452 * parent of @p dev.
3453 */
3454int
3455bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3456{
3457	if (dev->parent == 0)
3458		return (EINVAL);
3459	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3460}
3461
3462/**
3463 * @brief Wrapper function for BUS_SET_RESOURCE().
3464 *
3465 * This function simply calls the BUS_SET_RESOURCE() method of the
3466 * parent of @p dev.
3467 */
3468int
3469bus_set_resource(device_t dev, int type, int rid,
3470    u_long start, u_long count)
3471{
3472	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3473	    start, count));
3474}
3475
3476/**
3477 * @brief Wrapper function for BUS_GET_RESOURCE().
3478 *
3479 * This function simply calls the BUS_GET_RESOURCE() method of the
3480 * parent of @p dev.
3481 */
3482int
3483bus_get_resource(device_t dev, int type, int rid,
3484    u_long *startp, u_long *countp)
3485{
3486	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3487	    startp, countp));
3488}
3489
3490/**
3491 * @brief Wrapper function for BUS_GET_RESOURCE().
3492 *
3493 * This function simply calls the BUS_GET_RESOURCE() method of the
3494 * parent of @p dev and returns the start value.
3495 */
3496u_long
3497bus_get_resource_start(device_t dev, int type, int rid)
3498{
3499	u_long start, count;
3500	int error;
3501
3502	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3503	    &start, &count);
3504	if (error)
3505		return (0);
3506	return (start);
3507}
3508
3509/**
3510 * @brief Wrapper function for BUS_GET_RESOURCE().
3511 *
3512 * This function simply calls the BUS_GET_RESOURCE() method of the
3513 * parent of @p dev and returns the count value.
3514 */
3515u_long
3516bus_get_resource_count(device_t dev, int type, int rid)
3517{
3518	u_long start, count;
3519	int error;
3520
3521	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3522	    &start, &count);
3523	if (error)
3524		return (0);
3525	return (count);
3526}
3527
3528/**
3529 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3530 *
3531 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3532 * parent of @p dev.
3533 */
3534void
3535bus_delete_resource(device_t dev, int type, int rid)
3536{
3537	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3538}
3539
3540/**
3541 * @brief Wrapper function for BUS_CHILD_PRESENT().
3542 *
3543 * This function simply calls the BUS_CHILD_PRESENT() method of the
3544 * parent of @p dev.
3545 */
3546int
3547bus_child_present(device_t child)
3548{
3549	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3550}
3551
3552/**
3553 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3554 *
3555 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3556 * parent of @p dev.
3557 */
3558int
3559bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3560{
3561	device_t parent;
3562
3563	parent = device_get_parent(child);
3564	if (parent == NULL) {
3565		*buf = '\0';
3566		return (0);
3567	}
3568	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3569}
3570
3571/**
3572 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3573 *
3574 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3575 * parent of @p dev.
3576 */
3577int
3578bus_child_location_str(device_t child, char *buf, size_t buflen)
3579{
3580	device_t parent;
3581
3582	parent = device_get_parent(child);
3583	if (parent == NULL) {
3584		*buf = '\0';
3585		return (0);
3586	}
3587	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3588}
3589
3590static int
3591root_print_child(device_t dev, device_t child)
3592{
3593	int	retval = 0;
3594
3595	retval += bus_print_child_header(dev, child);
3596	retval += printf("\n");
3597
3598	return (retval);
3599}
3600
3601static int
3602root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3603    void **cookiep)
3604{
3605	/*
3606	 * If an interrupt mapping gets to here something bad has happened.
3607	 */
3608	panic("root_setup_intr");
3609}
3610
3611/*
3612 * If we get here, assume that the device is permanant and really is
3613 * present in the system.  Removable bus drivers are expected to intercept
3614 * this call long before it gets here.  We return -1 so that drivers that
3615 * really care can check vs -1 or some ERRNO returned higher in the food
3616 * chain.
3617 */
3618static int
3619root_child_present(device_t dev, device_t child)
3620{
3621	return (-1);
3622}
3623
3624static kobj_method_t root_methods[] = {
3625	/* Device interface */
3626	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3627	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3628	KOBJMETHOD(device_resume,	bus_generic_resume),
3629
3630	/* Bus interface */
3631	KOBJMETHOD(bus_print_child,	root_print_child),
3632	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3633	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3634	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3635	KOBJMETHOD(bus_child_present,	root_child_present),
3636
3637	{ 0, 0 }
3638};
3639
3640static driver_t root_driver = {
3641	"root",
3642	root_methods,
3643	1,			/* no softc */
3644};
3645
3646device_t	root_bus;
3647devclass_t	root_devclass;
3648
3649static int
3650root_bus_module_handler(module_t mod, int what, void* arg)
3651{
3652	switch (what) {
3653	case MOD_LOAD:
3654		TAILQ_INIT(&bus_data_devices);
3655		kobj_class_compile((kobj_class_t) &root_driver);
3656		root_bus = make_device(NULL, "root", 0);
3657		root_bus->desc = "System root bus";
3658		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3659		root_bus->driver = &root_driver;
3660		root_bus->state = DS_ATTACHED;
3661		root_devclass = devclass_find_internal("root", 0, FALSE);
3662		devinit();
3663		return (0);
3664
3665	case MOD_SHUTDOWN:
3666		device_shutdown(root_bus);
3667		return (0);
3668	default:
3669		return (EOPNOTSUPP);
3670	}
3671
3672	return (0);
3673}
3674
3675static moduledata_t root_bus_mod = {
3676	"rootbus",
3677	root_bus_module_handler,
3678	0
3679};
3680DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3681
3682/**
3683 * @brief Automatically configure devices
3684 *
3685 * This function begins the autoconfiguration process by calling
3686 * device_probe_and_attach() for each child of the @c root0 device.
3687 */
3688void
3689root_bus_configure(void)
3690{
3691	device_t dev;
3692
3693	PDEBUG(("."));
3694
3695	TAILQ_FOREACH(dev, &root_bus->children, link) {
3696		device_probe_and_attach(dev);
3697	}
3698}
3699
3700/**
3701 * @brief Module handler for registering device drivers
3702 *
3703 * This module handler is used to automatically register device
3704 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3705 * devclass_add_driver() for the driver described by the
3706 * driver_module_data structure pointed to by @p arg
3707 */
3708int
3709driver_module_handler(module_t mod, int what, void *arg)
3710{
3711	int error;
3712	struct driver_module_data *dmd;
3713	devclass_t bus_devclass;
3714	kobj_class_t driver;
3715
3716	dmd = (struct driver_module_data *)arg;
3717	bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3718	error = 0;
3719
3720	switch (what) {
3721	case MOD_LOAD:
3722		if (dmd->dmd_chainevh)
3723			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3724
3725		driver = dmd->dmd_driver;
3726		PDEBUG(("Loading module: driver %s on bus %s",
3727		    DRIVERNAME(driver), dmd->dmd_busname));
3728		error = devclass_add_driver(bus_devclass, driver);
3729		if (error)
3730			break;
3731
3732		/*
3733		 * If the driver has any base classes, make the
3734		 * devclass inherit from the devclass of the driver's
3735		 * first base class. This will allow the system to
3736		 * search for drivers in both devclasses for children
3737		 * of a device using this driver.
3738		 */
3739		if (driver->baseclasses) {
3740			const char *parentname;
3741			parentname = driver->baseclasses[0]->name;
3742			*dmd->dmd_devclass =
3743				devclass_find_internal(driver->name,
3744				    parentname, TRUE);
3745		} else {
3746			*dmd->dmd_devclass =
3747				devclass_find_internal(driver->name, 0, TRUE);
3748		}
3749		break;
3750
3751	case MOD_UNLOAD:
3752		PDEBUG(("Unloading module: driver %s from bus %s",
3753		    DRIVERNAME(dmd->dmd_driver),
3754		    dmd->dmd_busname));
3755		error = devclass_delete_driver(bus_devclass,
3756		    dmd->dmd_driver);
3757
3758		if (!error && dmd->dmd_chainevh)
3759			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3760		break;
3761	case MOD_QUIESCE:
3762		PDEBUG(("Quiesce module: driver %s from bus %s",
3763		    DRIVERNAME(dmd->dmd_driver),
3764		    dmd->dmd_busname));
3765		error = devclass_quiesce_driver(bus_devclass,
3766		    dmd->dmd_driver);
3767
3768		if (!error && dmd->dmd_chainevh)
3769			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3770		break;
3771	default:
3772		error = EOPNOTSUPP;
3773		break;
3774	}
3775
3776	return (error);
3777}
3778
3779#ifdef BUS_DEBUG
3780
3781/* the _short versions avoid iteration by not calling anything that prints
3782 * more than oneliners. I love oneliners.
3783 */
3784
3785static void
3786print_device_short(device_t dev, int indent)
3787{
3788	if (!dev)
3789		return;
3790
3791	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3792	    dev->unit, dev->desc,
3793	    (dev->parent? "":"no "),
3794	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3795	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3796	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3797	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3798	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3799	    (dev->flags&DF_REBID? "rebiddable,":""),
3800	    (dev->ivars? "":"no "),
3801	    (dev->softc? "":"no "),
3802	    dev->busy));
3803}
3804
3805static void
3806print_device(device_t dev, int indent)
3807{
3808	if (!dev)
3809		return;
3810
3811	print_device_short(dev, indent);
3812
3813	indentprintf(("Parent:\n"));
3814	print_device_short(dev->parent, indent+1);
3815	indentprintf(("Driver:\n"));
3816	print_driver_short(dev->driver, indent+1);
3817	indentprintf(("Devclass:\n"));
3818	print_devclass_short(dev->devclass, indent+1);
3819}
3820
3821void
3822print_device_tree_short(device_t dev, int indent)
3823/* print the device and all its children (indented) */
3824{
3825	device_t child;
3826
3827	if (!dev)
3828		return;
3829
3830	print_device_short(dev, indent);
3831
3832	TAILQ_FOREACH(child, &dev->children, link) {
3833		print_device_tree_short(child, indent+1);
3834	}
3835}
3836
3837void
3838print_device_tree(device_t dev, int indent)
3839/* print the device and all its children (indented) */
3840{
3841	device_t child;
3842
3843	if (!dev)
3844		return;
3845
3846	print_device(dev, indent);
3847
3848	TAILQ_FOREACH(child, &dev->children, link) {
3849		print_device_tree(child, indent+1);
3850	}
3851}
3852
3853static void
3854print_driver_short(driver_t *driver, int indent)
3855{
3856	if (!driver)
3857		return;
3858
3859	indentprintf(("driver %s: softc size = %zd\n",
3860	    driver->name, driver->size));
3861}
3862
3863static void
3864print_driver(driver_t *driver, int indent)
3865{
3866	if (!driver)
3867		return;
3868
3869	print_driver_short(driver, indent);
3870}
3871
3872
3873static void
3874print_driver_list(driver_list_t drivers, int indent)
3875{
3876	driverlink_t driver;
3877
3878	TAILQ_FOREACH(driver, &drivers, link) {
3879		print_driver(driver->driver, indent);
3880	}
3881}
3882
3883static void
3884print_devclass_short(devclass_t dc, int indent)
3885{
3886	if ( !dc )
3887		return;
3888
3889	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3890}
3891
3892static void
3893print_devclass(devclass_t dc, int indent)
3894{
3895	int i;
3896
3897	if ( !dc )
3898		return;
3899
3900	print_devclass_short(dc, indent);
3901	indentprintf(("Drivers:\n"));
3902	print_driver_list(dc->drivers, indent+1);
3903
3904	indentprintf(("Devices:\n"));
3905	for (i = 0; i < dc->maxunit; i++)
3906		if (dc->devices[i])
3907			print_device(dc->devices[i], indent+1);
3908}
3909
3910void
3911print_devclass_list_short(void)
3912{
3913	devclass_t dc;
3914
3915	printf("Short listing of devclasses, drivers & devices:\n");
3916	TAILQ_FOREACH(dc, &devclasses, link) {
3917		print_devclass_short(dc, 0);
3918	}
3919}
3920
3921void
3922print_devclass_list(void)
3923{
3924	devclass_t dc;
3925
3926	printf("Full listing of devclasses, drivers & devices:\n");
3927	TAILQ_FOREACH(dc, &devclasses, link) {
3928		print_devclass(dc, 0);
3929	}
3930}
3931
3932#endif
3933
3934/*
3935 * User-space access to the device tree.
3936 *
3937 * We implement a small set of nodes:
3938 *
3939 * hw.bus			Single integer read method to obtain the
3940 *				current generation count.
3941 * hw.bus.devices		Reads the entire device tree in flat space.
3942 * hw.bus.rman			Resource manager interface
3943 *
3944 * We might like to add the ability to scan devclasses and/or drivers to
3945 * determine what else is currently loaded/available.
3946 */
3947
3948static int
3949sysctl_bus(SYSCTL_HANDLER_ARGS)
3950{
3951	struct u_businfo	ubus;
3952
3953	ubus.ub_version = BUS_USER_VERSION;
3954	ubus.ub_generation = bus_data_generation;
3955
3956	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3957}
3958SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3959    "bus-related data");
3960
3961static int
3962sysctl_devices(SYSCTL_HANDLER_ARGS)
3963{
3964	int			*name = (int *)arg1;
3965	u_int			namelen = arg2;
3966	int			index;
3967	struct device		*dev;
3968	struct u_device		udev;	/* XXX this is a bit big */
3969	int			error;
3970
3971	if (namelen != 2)
3972		return (EINVAL);
3973
3974	if (bus_data_generation_check(name[0]))
3975		return (EINVAL);
3976
3977	index = name[1];
3978
3979	/*
3980	 * Scan the list of devices, looking for the requested index.
3981	 */
3982	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3983		if (index-- == 0)
3984			break;
3985	}
3986	if (dev == NULL)
3987		return (ENOENT);
3988
3989	/*
3990	 * Populate the return array.
3991	 */
3992	bzero(&udev, sizeof(udev));
3993	udev.dv_handle = (uintptr_t)dev;
3994	udev.dv_parent = (uintptr_t)dev->parent;
3995	if (dev->nameunit != NULL)
3996		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3997	if (dev->desc != NULL)
3998		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3999	if (dev->driver != NULL && dev->driver->name != NULL)
4000		strlcpy(udev.dv_drivername, dev->driver->name,
4001		    sizeof(udev.dv_drivername));
4002	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4003	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4004	udev.dv_devflags = dev->devflags;
4005	udev.dv_flags = dev->flags;
4006	udev.dv_state = dev->state;
4007	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4008	return (error);
4009}
4010
4011SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4012    "system device tree");
4013
4014int
4015bus_data_generation_check(int generation)
4016{
4017	if (generation != bus_data_generation)
4018		return (1);
4019
4020	/* XXX generate optimised lists here? */
4021	return (0);
4022}
4023
4024void
4025bus_data_generation_update(void)
4026{
4027	bus_data_generation++;
4028}
4029
4030int
4031bus_free_resource(device_t dev, int type, struct resource *r)
4032{
4033	if (r == NULL)
4034		return (0);
4035	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4036}
4037