subr_bus.c revision 144609
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 144609 2005-04-03 22:23:18Z njl $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53
54#include <machine/stdarg.h>
55
56#include <vm/uma.h>
57
58SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
59SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
60
61/*
62 * Used to attach drivers to devclasses.
63 */
64typedef struct driverlink *driverlink_t;
65struct driverlink {
66	kobj_class_t	driver;
67	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
68};
69
70/*
71 * Forward declarations
72 */
73typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
74typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
75typedef TAILQ_HEAD(device_list, device) device_list_t;
76
77struct devclass {
78	TAILQ_ENTRY(devclass) link;
79	devclass_t	parent;		/* parent in devclass hierarchy */
80	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
81	char		*name;
82	device_t	*devices;	/* array of devices indexed by unit */
83	int		maxunit;	/* size of devices array */
84
85	struct sysctl_ctx_list sysctl_ctx;
86	struct sysctl_oid *sysctl_tree;
87};
88
89/**
90 * @brief Implementation of device.
91 */
92struct device {
93	/*
94	 * A device is a kernel object. The first field must be the
95	 * current ops table for the object.
96	 */
97	KOBJ_FIELDS;
98
99	/*
100	 * Device hierarchy.
101	 */
102	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
103	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
104	device_t	parent;		/**< parent of this device  */
105	device_list_t	children;	/**< list of child devices */
106
107	/*
108	 * Details of this device.
109	 */
110	driver_t	*driver;	/**< current driver */
111	devclass_t	devclass;	/**< current device class */
112	int		unit;		/**< current unit number */
113	char*		nameunit;	/**< name+unit e.g. foodev0 */
114	char*		desc;		/**< driver specific description */
115	int		busy;		/**< count of calls to device_busy() */
116	device_state_t	state;		/**< current device state  */
117	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
118	u_short		flags;		/**< internal device flags  */
119#define	DF_ENABLED	1		/* device should be probed/attached */
120#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
121#define	DF_WILDCARD	4		/* unit was originally wildcard */
122#define	DF_DESCMALLOCED	8		/* description was malloced */
123#define	DF_QUIET	16		/* don't print verbose attach message */
124#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
125#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
126#define	DF_REBID	128		/* Can rebid after attach */
127	u_char	order;			/**< order from device_add_child_ordered() */
128	u_char	pad;
129	void	*ivars;			/**< instance variables  */
130	void	*softc;			/**< current driver's variables  */
131
132	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
133	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
134};
135
136static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
137static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
138
139#ifdef BUS_DEBUG
140
141static int bus_debug = 1;
142TUNABLE_INT("bus.debug", &bus_debug);
143SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
144    "Debug bus code");
145
146#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
147#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
148#define DRIVERNAME(d)	((d)? d->name : "no driver")
149#define DEVCLANAME(d)	((d)? d->name : "no devclass")
150
151/**
152 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
153 * prevent syslog from deleting initial spaces
154 */
155#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
156
157static void print_device_short(device_t dev, int indent);
158static void print_device(device_t dev, int indent);
159void print_device_tree_short(device_t dev, int indent);
160void print_device_tree(device_t dev, int indent);
161static void print_driver_short(driver_t *driver, int indent);
162static void print_driver(driver_t *driver, int indent);
163static void print_driver_list(driver_list_t drivers, int indent);
164static void print_devclass_short(devclass_t dc, int indent);
165static void print_devclass(devclass_t dc, int indent);
166void print_devclass_list_short(void);
167void print_devclass_list(void);
168
169#else
170/* Make the compiler ignore the function calls */
171#define PDEBUG(a)			/* nop */
172#define DEVICENAME(d)			/* nop */
173#define DRIVERNAME(d)			/* nop */
174#define DEVCLANAME(d)			/* nop */
175
176#define print_device_short(d,i)		/* nop */
177#define print_device(d,i)		/* nop */
178#define print_device_tree_short(d,i)	/* nop */
179#define print_device_tree(d,i)		/* nop */
180#define print_driver_short(d,i)		/* nop */
181#define print_driver(d,i)		/* nop */
182#define print_driver_list(d,i)		/* nop */
183#define print_devclass_short(d,i)	/* nop */
184#define print_devclass(d,i)		/* nop */
185#define print_devclass_list_short()	/* nop */
186#define print_devclass_list()		/* nop */
187#endif
188
189/*
190 * dev sysctl tree
191 */
192
193enum {
194	DEVCLASS_SYSCTL_PARENT,
195};
196
197static int
198devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
199{
200	devclass_t dc = (devclass_t)arg1;
201	const char *value;
202
203	switch (arg2) {
204	case DEVCLASS_SYSCTL_PARENT:
205		value = dc->parent ? dc->parent->name : "";
206		break;
207	default:
208		return (EINVAL);
209	}
210	return (SYSCTL_OUT(req, value, strlen(value)));
211}
212
213static void
214devclass_sysctl_init(devclass_t dc)
215{
216
217	if (dc->sysctl_tree != NULL)
218		return;
219	sysctl_ctx_init(&dc->sysctl_ctx);
220	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
221	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
222	    CTLFLAG_RD, 0, "");
223	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
224	    OID_AUTO, "%parent", CTLFLAG_RD,
225	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
226	    "parent class");
227}
228
229enum {
230	DEVICE_SYSCTL_DESC,
231	DEVICE_SYSCTL_DRIVER,
232	DEVICE_SYSCTL_LOCATION,
233	DEVICE_SYSCTL_PNPINFO,
234	DEVICE_SYSCTL_PARENT,
235};
236
237static int
238device_sysctl_handler(SYSCTL_HANDLER_ARGS)
239{
240	device_t dev = (device_t)arg1;
241	const char *value;
242	char *buf;
243	int error;
244
245	buf = NULL;
246	switch (arg2) {
247	case DEVICE_SYSCTL_DESC:
248		value = dev->desc ? dev->desc : "";
249		break;
250	case DEVICE_SYSCTL_DRIVER:
251		value = dev->driver ? dev->driver->name : "";
252		break;
253	case DEVICE_SYSCTL_LOCATION:
254		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
255		bus_child_location_str(dev, buf, 1024);
256		break;
257	case DEVICE_SYSCTL_PNPINFO:
258		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
259		bus_child_pnpinfo_str(dev, buf, 1024);
260		break;
261	case DEVICE_SYSCTL_PARENT:
262		value = dev->parent ? dev->parent->nameunit : "";
263		break;
264	default:
265		return (EINVAL);
266	}
267	error = SYSCTL_OUT(req, value, strlen(value));
268	if (buf != NULL)
269		free(buf, M_BUS);
270	return (error);
271}
272
273static void
274device_sysctl_init(device_t dev)
275{
276	devclass_t dc = dev->devclass;
277
278	if (dev->sysctl_tree != NULL)
279		return;
280	devclass_sysctl_init(dc);
281	sysctl_ctx_init(&dev->sysctl_ctx);
282	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
283	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
284	    dev->nameunit + strlen(dc->name),
285	    CTLFLAG_RD, 0, "");
286	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
287	    OID_AUTO, "%desc", CTLFLAG_RD,
288	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
289	    "device description");
290	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
291	    OID_AUTO, "%driver", CTLFLAG_RD,
292	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
293	    "device driver name");
294	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
295	    OID_AUTO, "%location", CTLFLAG_RD,
296	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
297	    "device location relative to parent");
298	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
299	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
300	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
301	    "device identification");
302	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
303	    OID_AUTO, "%parent", CTLFLAG_RD,
304	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
305	    "parent device");
306}
307
308static void
309device_sysctl_fini(device_t dev)
310{
311	if (dev->sysctl_tree == NULL)
312		return;
313	sysctl_ctx_free(&dev->sysctl_ctx);
314	dev->sysctl_tree = NULL;
315}
316
317/*
318 * /dev/devctl implementation
319 */
320
321/*
322 * This design allows only one reader for /dev/devctl.  This is not desirable
323 * in the long run, but will get a lot of hair out of this implementation.
324 * Maybe we should make this device a clonable device.
325 *
326 * Also note: we specifically do not attach a device to the device_t tree
327 * to avoid potential chicken and egg problems.  One could argue that all
328 * of this belongs to the root node.  One could also further argue that the
329 * sysctl interface that we have not might more properly be an ioctl
330 * interface, but at this stage of the game, I'm not inclined to rock that
331 * boat.
332 *
333 * I'm also not sure that the SIGIO support is done correctly or not, as
334 * I copied it from a driver that had SIGIO support that likely hasn't been
335 * tested since 3.4 or 2.2.8!
336 */
337
338static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
339static int devctl_disable = 0;
340TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
341SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
342    sysctl_devctl_disable, "I", "devctl disable");
343
344static d_open_t		devopen;
345static d_close_t	devclose;
346static d_read_t		devread;
347static d_ioctl_t	devioctl;
348static d_poll_t		devpoll;
349
350static struct cdevsw dev_cdevsw = {
351	.d_version =	D_VERSION,
352	.d_flags =	D_NEEDGIANT,
353	.d_open =	devopen,
354	.d_close =	devclose,
355	.d_read =	devread,
356	.d_ioctl =	devioctl,
357	.d_poll =	devpoll,
358	.d_name =	"devctl",
359};
360
361struct dev_event_info
362{
363	char *dei_data;
364	TAILQ_ENTRY(dev_event_info) dei_link;
365};
366
367TAILQ_HEAD(devq, dev_event_info);
368
369static struct dev_softc
370{
371	int	inuse;
372	int	nonblock;
373	struct mtx mtx;
374	struct cv cv;
375	struct selinfo sel;
376	struct devq devq;
377	struct proc *async_proc;
378} devsoftc;
379
380static struct cdev *devctl_dev;
381
382static void
383devinit(void)
384{
385	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
386	    "devctl");
387	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
388	cv_init(&devsoftc.cv, "dev cv");
389	TAILQ_INIT(&devsoftc.devq);
390}
391
392static int
393devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
394{
395	if (devsoftc.inuse)
396		return (EBUSY);
397	/* move to init */
398	devsoftc.inuse = 1;
399	devsoftc.nonblock = 0;
400	devsoftc.async_proc = NULL;
401	return (0);
402}
403
404static int
405devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
406{
407	devsoftc.inuse = 0;
408	mtx_lock(&devsoftc.mtx);
409	cv_broadcast(&devsoftc.cv);
410	mtx_unlock(&devsoftc.mtx);
411
412	return (0);
413}
414
415/*
416 * The read channel for this device is used to report changes to
417 * userland in realtime.  We are required to free the data as well as
418 * the n1 object because we allocate them separately.  Also note that
419 * we return one record at a time.  If you try to read this device a
420 * character at a time, you will loose the rest of the data.  Listening
421 * programs are expected to cope.
422 */
423static int
424devread(struct cdev *dev, struct uio *uio, int ioflag)
425{
426	struct dev_event_info *n1;
427	int rv;
428
429	mtx_lock(&devsoftc.mtx);
430	while (TAILQ_EMPTY(&devsoftc.devq)) {
431		if (devsoftc.nonblock) {
432			mtx_unlock(&devsoftc.mtx);
433			return (EAGAIN);
434		}
435		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
436		if (rv) {
437			/*
438			 * Need to translate ERESTART to EINTR here? -- jake
439			 */
440			mtx_unlock(&devsoftc.mtx);
441			return (rv);
442		}
443	}
444	n1 = TAILQ_FIRST(&devsoftc.devq);
445	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
446	mtx_unlock(&devsoftc.mtx);
447	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
448	free(n1->dei_data, M_BUS);
449	free(n1, M_BUS);
450	return (rv);
451}
452
453static	int
454devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
455{
456	switch (cmd) {
457
458	case FIONBIO:
459		if (*(int*)data)
460			devsoftc.nonblock = 1;
461		else
462			devsoftc.nonblock = 0;
463		return (0);
464	case FIOASYNC:
465		if (*(int*)data)
466			devsoftc.async_proc = td->td_proc;
467		else
468			devsoftc.async_proc = NULL;
469		return (0);
470
471		/* (un)Support for other fcntl() calls. */
472	case FIOCLEX:
473	case FIONCLEX:
474	case FIONREAD:
475	case FIOSETOWN:
476	case FIOGETOWN:
477	default:
478		break;
479	}
480	return (ENOTTY);
481}
482
483static	int
484devpoll(struct cdev *dev, int events, d_thread_t *td)
485{
486	int	revents = 0;
487
488	mtx_lock(&devsoftc.mtx);
489	if (events & (POLLIN | POLLRDNORM)) {
490		if (!TAILQ_EMPTY(&devsoftc.devq))
491			revents = events & (POLLIN | POLLRDNORM);
492		else
493			selrecord(td, &devsoftc.sel);
494	}
495	mtx_unlock(&devsoftc.mtx);
496
497	return (revents);
498}
499
500/**
501 * @brief Queue data to be read from the devctl device
502 *
503 * Generic interface to queue data to the devctl device.  It is
504 * assumed that @p data is properly formatted.  It is further assumed
505 * that @p data is allocated using the M_BUS malloc type.
506 */
507void
508devctl_queue_data(char *data)
509{
510	struct dev_event_info *n1 = NULL;
511	struct proc *p;
512
513	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
514	if (n1 == NULL)
515		return;
516	n1->dei_data = data;
517	mtx_lock(&devsoftc.mtx);
518	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
519	cv_broadcast(&devsoftc.cv);
520	mtx_unlock(&devsoftc.mtx);
521	selwakeup(&devsoftc.sel);
522	p = devsoftc.async_proc;
523	if (p != NULL) {
524		PROC_LOCK(p);
525		psignal(p, SIGIO);
526		PROC_UNLOCK(p);
527	}
528}
529
530/**
531 * @brief Send a 'notification' to userland, using standard ways
532 */
533void
534devctl_notify(const char *system, const char *subsystem, const char *type,
535    const char *data)
536{
537	int len = 0;
538	char *msg;
539
540	if (system == NULL)
541		return;		/* BOGUS!  Must specify system. */
542	if (subsystem == NULL)
543		return;		/* BOGUS!  Must specify subsystem. */
544	if (type == NULL)
545		return;		/* BOGUS!  Must specify type. */
546	len += strlen(" system=") + strlen(system);
547	len += strlen(" subsystem=") + strlen(subsystem);
548	len += strlen(" type=") + strlen(type);
549	/* add in the data message plus newline. */
550	if (data != NULL)
551		len += strlen(data);
552	len += 3;	/* '!', '\n', and NUL */
553	msg = malloc(len, M_BUS, M_NOWAIT);
554	if (msg == NULL)
555		return;		/* Drop it on the floor */
556	snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system,
557	    subsystem, type, data);
558	devctl_queue_data(msg);
559}
560
561/*
562 * Common routine that tries to make sending messages as easy as possible.
563 * We allocate memory for the data, copy strings into that, but do not
564 * free it unless there's an error.  The dequeue part of the driver should
565 * free the data.  We don't send data when the device is disabled.  We do
566 * send data, even when we have no listeners, because we wish to avoid
567 * races relating to startup and restart of listening applications.
568 *
569 * devaddq is designed to string together the type of event, with the
570 * object of that event, plus the plug and play info and location info
571 * for that event.  This is likely most useful for devices, but less
572 * useful for other consumers of this interface.  Those should use
573 * the devctl_queue_data() interface instead.
574 */
575static void
576devaddq(const char *type, const char *what, device_t dev)
577{
578	char *data = NULL;
579	char *loc = NULL;
580	char *pnp = NULL;
581	const char *parstr;
582
583	if (devctl_disable)
584		return;
585	data = malloc(1024, M_BUS, M_NOWAIT);
586	if (data == NULL)
587		goto bad;
588
589	/* get the bus specific location of this device */
590	loc = malloc(1024, M_BUS, M_NOWAIT);
591	if (loc == NULL)
592		goto bad;
593	*loc = '\0';
594	bus_child_location_str(dev, loc, 1024);
595
596	/* Get the bus specific pnp info of this device */
597	pnp = malloc(1024, M_BUS, M_NOWAIT);
598	if (pnp == NULL)
599		goto bad;
600	*pnp = '\0';
601	bus_child_pnpinfo_str(dev, pnp, 1024);
602
603	/* Get the parent of this device, or / if high enough in the tree. */
604	if (device_get_parent(dev) == NULL)
605		parstr = ".";	/* Or '/' ? */
606	else
607		parstr = device_get_nameunit(device_get_parent(dev));
608	/* String it all together. */
609	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
610	  parstr);
611	free(loc, M_BUS);
612	free(pnp, M_BUS);
613	devctl_queue_data(data);
614	return;
615bad:
616	free(pnp, M_BUS);
617	free(loc, M_BUS);
618	free(data, M_BUS);
619	return;
620}
621
622/*
623 * A device was added to the tree.  We are called just after it successfully
624 * attaches (that is, probe and attach success for this device).  No call
625 * is made if a device is merely parented into the tree.  See devnomatch
626 * if probe fails.  If attach fails, no notification is sent (but maybe
627 * we should have a different message for this).
628 */
629static void
630devadded(device_t dev)
631{
632	char *pnp = NULL;
633	char *tmp = NULL;
634
635	pnp = malloc(1024, M_BUS, M_NOWAIT);
636	if (pnp == NULL)
637		goto fail;
638	tmp = malloc(1024, M_BUS, M_NOWAIT);
639	if (tmp == NULL)
640		goto fail;
641	*pnp = '\0';
642	bus_child_pnpinfo_str(dev, pnp, 1024);
643	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
644	devaddq("+", tmp, dev);
645fail:
646	if (pnp != NULL)
647		free(pnp, M_BUS);
648	if (tmp != NULL)
649		free(tmp, M_BUS);
650	return;
651}
652
653/*
654 * A device was removed from the tree.  We are called just before this
655 * happens.
656 */
657static void
658devremoved(device_t dev)
659{
660	char *pnp = NULL;
661	char *tmp = NULL;
662
663	pnp = malloc(1024, M_BUS, M_NOWAIT);
664	if (pnp == NULL)
665		goto fail;
666	tmp = malloc(1024, M_BUS, M_NOWAIT);
667	if (tmp == NULL)
668		goto fail;
669	*pnp = '\0';
670	bus_child_pnpinfo_str(dev, pnp, 1024);
671	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
672	devaddq("-", tmp, dev);
673fail:
674	if (pnp != NULL)
675		free(pnp, M_BUS);
676	if (tmp != NULL)
677		free(tmp, M_BUS);
678	return;
679}
680
681/*
682 * Called when there's no match for this device.  This is only called
683 * the first time that no match happens, so we don't keep getitng this
684 * message.  Should that prove to be undesirable, we can change it.
685 * This is called when all drivers that can attach to a given bus
686 * decline to accept this device.  Other errrors may not be detected.
687 */
688static void
689devnomatch(device_t dev)
690{
691	devaddq("?", "", dev);
692}
693
694static int
695sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
696{
697	struct dev_event_info *n1;
698	int dis, error;
699
700	dis = devctl_disable;
701	error = sysctl_handle_int(oidp, &dis, 0, req);
702	if (error || !req->newptr)
703		return (error);
704	mtx_lock(&devsoftc.mtx);
705	devctl_disable = dis;
706	if (dis) {
707		while (!TAILQ_EMPTY(&devsoftc.devq)) {
708			n1 = TAILQ_FIRST(&devsoftc.devq);
709			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
710			free(n1->dei_data, M_BUS);
711			free(n1, M_BUS);
712		}
713	}
714	mtx_unlock(&devsoftc.mtx);
715	return (0);
716}
717
718/* End of /dev/devctl code */
719
720TAILQ_HEAD(,device)	bus_data_devices;
721static int bus_data_generation = 1;
722
723kobj_method_t null_methods[] = {
724	{ 0, 0 }
725};
726
727DEFINE_CLASS(null, null_methods, 0);
728
729/*
730 * Devclass implementation
731 */
732
733static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
734
735
736/**
737 * @internal
738 * @brief Find or create a device class
739 *
740 * If a device class with the name @p classname exists, return it,
741 * otherwise if @p create is non-zero create and return a new device
742 * class.
743 *
744 * If @p parentname is non-NULL, the parent of the devclass is set to
745 * the devclass of that name.
746 *
747 * @param classname	the devclass name to find or create
748 * @param parentname	the parent devclass name or @c NULL
749 * @param create	non-zero to create a devclass
750 */
751static devclass_t
752devclass_find_internal(const char *classname, const char *parentname,
753		       int create)
754{
755	devclass_t dc;
756
757	PDEBUG(("looking for %s", classname));
758	if (!classname)
759		return (NULL);
760
761	TAILQ_FOREACH(dc, &devclasses, link) {
762		if (!strcmp(dc->name, classname))
763			break;
764	}
765
766	if (create && !dc) {
767		PDEBUG(("creating %s", classname));
768		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
769		    M_BUS, M_NOWAIT|M_ZERO);
770		if (!dc)
771			return (NULL);
772		dc->parent = NULL;
773		dc->name = (char*) (dc + 1);
774		strcpy(dc->name, classname);
775		TAILQ_INIT(&dc->drivers);
776		TAILQ_INSERT_TAIL(&devclasses, dc, link);
777
778		bus_data_generation_update();
779	}
780	if (parentname && dc && !dc->parent) {
781		dc->parent = devclass_find_internal(parentname, 0, FALSE);
782	}
783
784	return (dc);
785}
786
787/**
788 * @brief Create a device class
789 *
790 * If a device class with the name @p classname exists, return it,
791 * otherwise create and return a new device class.
792 *
793 * @param classname	the devclass name to find or create
794 */
795devclass_t
796devclass_create(const char *classname)
797{
798	return (devclass_find_internal(classname, 0, TRUE));
799}
800
801/**
802 * @brief Find a device class
803 *
804 * If a device class with the name @p classname exists, return it,
805 * otherwise return @c NULL.
806 *
807 * @param classname	the devclass name to find
808 */
809devclass_t
810devclass_find(const char *classname)
811{
812	return (devclass_find_internal(classname, 0, FALSE));
813}
814
815/**
816 * @brief Add a device driver to a device class
817 *
818 * Add a device driver to a devclass. This is normally called
819 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
820 * all devices in the devclass will be called to allow them to attempt
821 * to re-probe any unmatched children.
822 *
823 * @param dc		the devclass to edit
824 * @param driver	the driver to register
825 */
826int
827devclass_add_driver(devclass_t dc, driver_t *driver)
828{
829	driverlink_t dl;
830	int i;
831
832	PDEBUG(("%s", DRIVERNAME(driver)));
833
834	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
835	if (!dl)
836		return (ENOMEM);
837
838	/*
839	 * Compile the driver's methods. Also increase the reference count
840	 * so that the class doesn't get freed when the last instance
841	 * goes. This means we can safely use static methods and avoids a
842	 * double-free in devclass_delete_driver.
843	 */
844	kobj_class_compile((kobj_class_t) driver);
845
846	/*
847	 * Make sure the devclass which the driver is implementing exists.
848	 */
849	devclass_find_internal(driver->name, 0, TRUE);
850
851	dl->driver = driver;
852	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
853	driver->refs++;		/* XXX: kobj_mtx */
854
855	/*
856	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
857	 */
858	for (i = 0; i < dc->maxunit; i++)
859		if (dc->devices[i])
860			BUS_DRIVER_ADDED(dc->devices[i], driver);
861
862	bus_data_generation_update();
863	return (0);
864}
865
866/**
867 * @brief Delete a device driver from a device class
868 *
869 * Delete a device driver from a devclass. This is normally called
870 * automatically by DRIVER_MODULE().
871 *
872 * If the driver is currently attached to any devices,
873 * devclass_delete_driver() will first attempt to detach from each
874 * device. If one of the detach calls fails, the driver will not be
875 * deleted.
876 *
877 * @param dc		the devclass to edit
878 * @param driver	the driver to unregister
879 */
880int
881devclass_delete_driver(devclass_t busclass, driver_t *driver)
882{
883	devclass_t dc = devclass_find(driver->name);
884	driverlink_t dl;
885	device_t dev;
886	int i;
887	int error;
888
889	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
890
891	if (!dc)
892		return (0);
893
894	/*
895	 * Find the link structure in the bus' list of drivers.
896	 */
897	TAILQ_FOREACH(dl, &busclass->drivers, link) {
898		if (dl->driver == driver)
899			break;
900	}
901
902	if (!dl) {
903		PDEBUG(("%s not found in %s list", driver->name,
904		    busclass->name));
905		return (ENOENT);
906	}
907
908	/*
909	 * Disassociate from any devices.  We iterate through all the
910	 * devices in the devclass of the driver and detach any which are
911	 * using the driver and which have a parent in the devclass which
912	 * we are deleting from.
913	 *
914	 * Note that since a driver can be in multiple devclasses, we
915	 * should not detach devices which are not children of devices in
916	 * the affected devclass.
917	 */
918	for (i = 0; i < dc->maxunit; i++) {
919		if (dc->devices[i]) {
920			dev = dc->devices[i];
921			if (dev->driver == driver && dev->parent &&
922			    dev->parent->devclass == busclass) {
923				if ((error = device_detach(dev)) != 0)
924					return (error);
925				device_set_driver(dev, NULL);
926			}
927		}
928	}
929
930	TAILQ_REMOVE(&busclass->drivers, dl, link);
931	free(dl, M_BUS);
932
933	/* XXX: kobj_mtx */
934	driver->refs--;
935	if (driver->refs == 0)
936		kobj_class_free((kobj_class_t) driver);
937
938	bus_data_generation_update();
939	return (0);
940}
941
942/**
943 * @brief Quiesces a set of device drivers from a device class
944 *
945 * Quiesce a device driver from a devclass. This is normally called
946 * automatically by DRIVER_MODULE().
947 *
948 * If the driver is currently attached to any devices,
949 * devclass_quiesece_driver() will first attempt to quiesce each
950 * device.
951 *
952 * @param dc		the devclass to edit
953 * @param driver	the driver to unregister
954 */
955int
956devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
957{
958	devclass_t dc = devclass_find(driver->name);
959	driverlink_t dl;
960	device_t dev;
961	int i;
962	int error;
963
964	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
965
966	if (!dc)
967		return (0);
968
969	/*
970	 * Find the link structure in the bus' list of drivers.
971	 */
972	TAILQ_FOREACH(dl, &busclass->drivers, link) {
973		if (dl->driver == driver)
974			break;
975	}
976
977	if (!dl) {
978		PDEBUG(("%s not found in %s list", driver->name,
979		    busclass->name));
980		return (ENOENT);
981	}
982
983	/*
984	 * Quiesce all devices.  We iterate through all the devices in
985	 * the devclass of the driver and quiesce any which are using
986	 * the driver and which have a parent in the devclass which we
987	 * are quiescing.
988	 *
989	 * Note that since a driver can be in multiple devclasses, we
990	 * should not quiesce devices which are not children of
991	 * devices in the affected devclass.
992	 */
993	for (i = 0; i < dc->maxunit; i++) {
994		if (dc->devices[i]) {
995			dev = dc->devices[i];
996			if (dev->driver == driver && dev->parent &&
997			    dev->parent->devclass == busclass) {
998				if ((error = device_quiesce(dev)) != 0)
999					return (error);
1000			}
1001		}
1002	}
1003
1004	return (0);
1005}
1006
1007/**
1008 * @internal
1009 */
1010static driverlink_t
1011devclass_find_driver_internal(devclass_t dc, const char *classname)
1012{
1013	driverlink_t dl;
1014
1015	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1016
1017	TAILQ_FOREACH(dl, &dc->drivers, link) {
1018		if (!strcmp(dl->driver->name, classname))
1019			return (dl);
1020	}
1021
1022	PDEBUG(("not found"));
1023	return (NULL);
1024}
1025
1026/**
1027 * @brief Search a devclass for a driver
1028 *
1029 * This function searches the devclass's list of drivers and returns
1030 * the first driver whose name is @p classname or @c NULL if there is
1031 * no driver of that name.
1032 *
1033 * @param dc		the devclass to search
1034 * @param classname	the driver name to search for
1035 */
1036kobj_class_t
1037devclass_find_driver(devclass_t dc, const char *classname)
1038{
1039	driverlink_t dl;
1040
1041	dl = devclass_find_driver_internal(dc, classname);
1042	if (dl)
1043		return (dl->driver);
1044	return (NULL);
1045}
1046
1047/**
1048 * @brief Return the name of the devclass
1049 */
1050const char *
1051devclass_get_name(devclass_t dc)
1052{
1053	return (dc->name);
1054}
1055
1056/**
1057 * @brief Find a device given a unit number
1058 *
1059 * @param dc		the devclass to search
1060 * @param unit		the unit number to search for
1061 *
1062 * @returns		the device with the given unit number or @c
1063 *			NULL if there is no such device
1064 */
1065device_t
1066devclass_get_device(devclass_t dc, int unit)
1067{
1068	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1069		return (NULL);
1070	return (dc->devices[unit]);
1071}
1072
1073/**
1074 * @brief Find the softc field of a device given a unit number
1075 *
1076 * @param dc		the devclass to search
1077 * @param unit		the unit number to search for
1078 *
1079 * @returns		the softc field of the device with the given
1080 *			unit number or @c NULL if there is no such
1081 *			device
1082 */
1083void *
1084devclass_get_softc(devclass_t dc, int unit)
1085{
1086	device_t dev;
1087
1088	dev = devclass_get_device(dc, unit);
1089	if (!dev)
1090		return (NULL);
1091
1092	return (device_get_softc(dev));
1093}
1094
1095/**
1096 * @brief Get a list of devices in the devclass
1097 *
1098 * An array containing a list of all the devices in the given devclass
1099 * is allocated and returned in @p *devlistp. The number of devices
1100 * in the array is returned in @p *devcountp. The caller should free
1101 * the array using @c free(p, M_TEMP).
1102 *
1103 * @param dc		the devclass to examine
1104 * @param devlistp	points at location for array pointer return
1105 *			value
1106 * @param devcountp	points at location for array size return value
1107 *
1108 * @retval 0		success
1109 * @retval ENOMEM	the array allocation failed
1110 */
1111int
1112devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1113{
1114	int count, i;
1115	device_t *list;
1116
1117	count = devclass_get_count(dc);
1118	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1119	if (!list)
1120		return (ENOMEM);
1121
1122	count = 0;
1123	for (i = 0; i < dc->maxunit; i++) {
1124		if (dc->devices[i]) {
1125			list[count] = dc->devices[i];
1126			count++;
1127		}
1128	}
1129
1130	*devlistp = list;
1131	*devcountp = count;
1132
1133	return (0);
1134}
1135
1136/**
1137 * @brief Get the number of devices in a devclass
1138 *
1139 * @param dc		the devclass to examine
1140 */
1141int
1142devclass_get_count(devclass_t dc)
1143{
1144	int count, i;
1145
1146	count = 0;
1147	for (i = 0; i < dc->maxunit; i++)
1148		if (dc->devices[i])
1149			count++;
1150	return (count);
1151}
1152
1153/**
1154 * @brief Get the maximum unit number used in a devclass
1155 *
1156 * @param dc		the devclass to examine
1157 */
1158int
1159devclass_get_maxunit(devclass_t dc)
1160{
1161	return (dc->maxunit);
1162}
1163
1164/**
1165 * @brief Find a free unit number in a devclass
1166 *
1167 * This function searches for the first unused unit number greater
1168 * that or equal to @p unit.
1169 *
1170 * @param dc		the devclass to examine
1171 * @param unit		the first unit number to check
1172 */
1173int
1174devclass_find_free_unit(devclass_t dc, int unit)
1175{
1176	if (dc == NULL)
1177		return (unit);
1178	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1179		unit++;
1180	return (unit);
1181}
1182
1183/**
1184 * @brief Set the parent of a devclass
1185 *
1186 * The parent class is normally initialised automatically by
1187 * DRIVER_MODULE().
1188 *
1189 * @param dc		the devclass to edit
1190 * @param pdc		the new parent devclass
1191 */
1192void
1193devclass_set_parent(devclass_t dc, devclass_t pdc)
1194{
1195	dc->parent = pdc;
1196}
1197
1198/**
1199 * @brief Get the parent of a devclass
1200 *
1201 * @param dc		the devclass to examine
1202 */
1203devclass_t
1204devclass_get_parent(devclass_t dc)
1205{
1206	return (dc->parent);
1207}
1208
1209struct sysctl_ctx_list *
1210devclass_get_sysctl_ctx(devclass_t dc)
1211{
1212	return (&dc->sysctl_ctx);
1213}
1214
1215struct sysctl_oid *
1216devclass_get_sysctl_tree(devclass_t dc)
1217{
1218	return (dc->sysctl_tree);
1219}
1220
1221/**
1222 * @internal
1223 * @brief Allocate a unit number
1224 *
1225 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1226 * will do). The allocated unit number is returned in @p *unitp.
1227
1228 * @param dc		the devclass to allocate from
1229 * @param unitp		points at the location for the allocated unit
1230 *			number
1231 *
1232 * @retval 0		success
1233 * @retval EEXIST	the requested unit number is already allocated
1234 * @retval ENOMEM	memory allocation failure
1235 */
1236static int
1237devclass_alloc_unit(devclass_t dc, int *unitp)
1238{
1239	int unit = *unitp;
1240
1241	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1242
1243	/* If we were given a wired unit number, check for existing device */
1244	/* XXX imp XXX */
1245	if (unit != -1) {
1246		if (unit >= 0 && unit < dc->maxunit &&
1247		    dc->devices[unit] != NULL) {
1248			if (bootverbose)
1249				printf("%s: %s%d already exists; skipping it\n",
1250				    dc->name, dc->name, *unitp);
1251			return (EEXIST);
1252		}
1253	} else {
1254		/* Unwired device, find the next available slot for it */
1255		unit = 0;
1256		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1257			unit++;
1258	}
1259
1260	/*
1261	 * We've selected a unit beyond the length of the table, so let's
1262	 * extend the table to make room for all units up to and including
1263	 * this one.
1264	 */
1265	if (unit >= dc->maxunit) {
1266		device_t *newlist;
1267		int newsize;
1268
1269		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1270		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1271		if (!newlist)
1272			return (ENOMEM);
1273		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1274		bzero(newlist + dc->maxunit,
1275		    sizeof(device_t) * (newsize - dc->maxunit));
1276		if (dc->devices)
1277			free(dc->devices, M_BUS);
1278		dc->devices = newlist;
1279		dc->maxunit = newsize;
1280	}
1281	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1282
1283	*unitp = unit;
1284	return (0);
1285}
1286
1287/**
1288 * @internal
1289 * @brief Add a device to a devclass
1290 *
1291 * A unit number is allocated for the device (using the device's
1292 * preferred unit number if any) and the device is registered in the
1293 * devclass. This allows the device to be looked up by its unit
1294 * number, e.g. by decoding a dev_t minor number.
1295 *
1296 * @param dc		the devclass to add to
1297 * @param dev		the device to add
1298 *
1299 * @retval 0		success
1300 * @retval EEXIST	the requested unit number is already allocated
1301 * @retval ENOMEM	memory allocation failure
1302 */
1303static int
1304devclass_add_device(devclass_t dc, device_t dev)
1305{
1306	int buflen, error;
1307
1308	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1309
1310	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1311	if (buflen < 0)
1312		return (ENOMEM);
1313	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1314	if (!dev->nameunit)
1315		return (ENOMEM);
1316
1317	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1318		free(dev->nameunit, M_BUS);
1319		dev->nameunit = NULL;
1320		return (error);
1321	}
1322	dc->devices[dev->unit] = dev;
1323	dev->devclass = dc;
1324	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1325
1326	return (0);
1327}
1328
1329/**
1330 * @internal
1331 * @brief Delete a device from a devclass
1332 *
1333 * The device is removed from the devclass's device list and its unit
1334 * number is freed.
1335
1336 * @param dc		the devclass to delete from
1337 * @param dev		the device to delete
1338 *
1339 * @retval 0		success
1340 */
1341static int
1342devclass_delete_device(devclass_t dc, device_t dev)
1343{
1344	if (!dc || !dev)
1345		return (0);
1346
1347	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1348
1349	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1350		panic("devclass_delete_device: inconsistent device class");
1351	dc->devices[dev->unit] = NULL;
1352	if (dev->flags & DF_WILDCARD)
1353		dev->unit = -1;
1354	dev->devclass = NULL;
1355	free(dev->nameunit, M_BUS);
1356	dev->nameunit = NULL;
1357
1358	return (0);
1359}
1360
1361/**
1362 * @internal
1363 * @brief Make a new device and add it as a child of @p parent
1364 *
1365 * @param parent	the parent of the new device
1366 * @param name		the devclass name of the new device or @c NULL
1367 *			to leave the devclass unspecified
1368 * @parem unit		the unit number of the new device of @c -1 to
1369 *			leave the unit number unspecified
1370 *
1371 * @returns the new device
1372 */
1373static device_t
1374make_device(device_t parent, const char *name, int unit)
1375{
1376	device_t dev;
1377	devclass_t dc;
1378
1379	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1380
1381	if (name) {
1382		dc = devclass_find_internal(name, 0, TRUE);
1383		if (!dc) {
1384			printf("make_device: can't find device class %s\n",
1385			    name);
1386			return (NULL);
1387		}
1388	} else {
1389		dc = NULL;
1390	}
1391
1392	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1393	if (!dev)
1394		return (NULL);
1395
1396	dev->parent = parent;
1397	TAILQ_INIT(&dev->children);
1398	kobj_init((kobj_t) dev, &null_class);
1399	dev->driver = NULL;
1400	dev->devclass = NULL;
1401	dev->unit = unit;
1402	dev->nameunit = NULL;
1403	dev->desc = NULL;
1404	dev->busy = 0;
1405	dev->devflags = 0;
1406	dev->flags = DF_ENABLED;
1407	dev->order = 0;
1408	if (unit == -1)
1409		dev->flags |= DF_WILDCARD;
1410	if (name) {
1411		dev->flags |= DF_FIXEDCLASS;
1412		if (devclass_add_device(dc, dev)) {
1413			kobj_delete((kobj_t) dev, M_BUS);
1414			return (NULL);
1415		}
1416	}
1417	dev->ivars = NULL;
1418	dev->softc = NULL;
1419
1420	dev->state = DS_NOTPRESENT;
1421
1422	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1423	bus_data_generation_update();
1424
1425	return (dev);
1426}
1427
1428/**
1429 * @internal
1430 * @brief Print a description of a device.
1431 */
1432static int
1433device_print_child(device_t dev, device_t child)
1434{
1435	int retval = 0;
1436
1437	if (device_is_alive(child))
1438		retval += BUS_PRINT_CHILD(dev, child);
1439	else
1440		retval += device_printf(child, " not found\n");
1441
1442	return (retval);
1443}
1444
1445/**
1446 * @brief Create a new device
1447 *
1448 * This creates a new device and adds it as a child of an existing
1449 * parent device. The new device will be added after the last existing
1450 * child with order zero.
1451 *
1452 * @param dev		the device which will be the parent of the
1453 *			new child device
1454 * @param name		devclass name for new device or @c NULL if not
1455 *			specified
1456 * @param unit		unit number for new device or @c -1 if not
1457 *			specified
1458 *
1459 * @returns		the new device
1460 */
1461device_t
1462device_add_child(device_t dev, const char *name, int unit)
1463{
1464	return (device_add_child_ordered(dev, 0, name, unit));
1465}
1466
1467/**
1468 * @brief Create a new device
1469 *
1470 * This creates a new device and adds it as a child of an existing
1471 * parent device. The new device will be added after the last existing
1472 * child with the same order.
1473 *
1474 * @param dev		the device which will be the parent of the
1475 *			new child device
1476 * @param order		a value which is used to partially sort the
1477 *			children of @p dev - devices created using
1478 *			lower values of @p order appear first in @p
1479 *			dev's list of children
1480 * @param name		devclass name for new device or @c NULL if not
1481 *			specified
1482 * @param unit		unit number for new device or @c -1 if not
1483 *			specified
1484 *
1485 * @returns		the new device
1486 */
1487device_t
1488device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1489{
1490	device_t child;
1491	device_t place;
1492
1493	PDEBUG(("%s at %s with order %d as unit %d",
1494	    name, DEVICENAME(dev), order, unit));
1495
1496	child = make_device(dev, name, unit);
1497	if (child == NULL)
1498		return (child);
1499	child->order = order;
1500
1501	TAILQ_FOREACH(place, &dev->children, link) {
1502		if (place->order > order)
1503			break;
1504	}
1505
1506	if (place) {
1507		/*
1508		 * The device 'place' is the first device whose order is
1509		 * greater than the new child.
1510		 */
1511		TAILQ_INSERT_BEFORE(place, child, link);
1512	} else {
1513		/*
1514		 * The new child's order is greater or equal to the order of
1515		 * any existing device. Add the child to the tail of the list.
1516		 */
1517		TAILQ_INSERT_TAIL(&dev->children, child, link);
1518	}
1519
1520	bus_data_generation_update();
1521	return (child);
1522}
1523
1524/**
1525 * @brief Delete a device
1526 *
1527 * This function deletes a device along with all of its children. If
1528 * the device currently has a driver attached to it, the device is
1529 * detached first using device_detach().
1530 *
1531 * @param dev		the parent device
1532 * @param child		the device to delete
1533 *
1534 * @retval 0		success
1535 * @retval non-zero	a unit error code describing the error
1536 */
1537int
1538device_delete_child(device_t dev, device_t child)
1539{
1540	int error;
1541	device_t grandchild;
1542
1543	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1544
1545	/* remove children first */
1546	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1547		error = device_delete_child(child, grandchild);
1548		if (error)
1549			return (error);
1550	}
1551
1552	if ((error = device_detach(child)) != 0)
1553		return (error);
1554	if (child->devclass)
1555		devclass_delete_device(child->devclass, child);
1556	TAILQ_REMOVE(&dev->children, child, link);
1557	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1558	kobj_delete((kobj_t) child, M_BUS);
1559
1560	bus_data_generation_update();
1561	return (0);
1562}
1563
1564/**
1565 * @brief Find a device given a unit number
1566 *
1567 * This is similar to devclass_get_devices() but only searches for
1568 * devices which have @p dev as a parent.
1569 *
1570 * @param dev		the parent device to search
1571 * @param unit		the unit number to search for.  If the unit is -1,
1572 *			return the first child of @p dev which has name
1573 *			@p classname (that is, the one with the lowest unit.)
1574 *
1575 * @returns		the device with the given unit number or @c
1576 *			NULL if there is no such device
1577 */
1578device_t
1579device_find_child(device_t dev, const char *classname, int unit)
1580{
1581	devclass_t dc;
1582	device_t child;
1583
1584	dc = devclass_find(classname);
1585	if (!dc)
1586		return (NULL);
1587
1588	if (unit != -1) {
1589		child = devclass_get_device(dc, unit);
1590		if (child && child->parent == dev)
1591			return (child);
1592	} else {
1593		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1594			child = devclass_get_device(dc, unit);
1595			if (child && child->parent == dev)
1596				return (child);
1597		}
1598	}
1599	return (NULL);
1600}
1601
1602/**
1603 * @internal
1604 */
1605static driverlink_t
1606first_matching_driver(devclass_t dc, device_t dev)
1607{
1608	if (dev->devclass)
1609		return (devclass_find_driver_internal(dc, dev->devclass->name));
1610	return (TAILQ_FIRST(&dc->drivers));
1611}
1612
1613/**
1614 * @internal
1615 */
1616static driverlink_t
1617next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1618{
1619	if (dev->devclass) {
1620		driverlink_t dl;
1621		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1622			if (!strcmp(dev->devclass->name, dl->driver->name))
1623				return (dl);
1624		return (NULL);
1625	}
1626	return (TAILQ_NEXT(last, link));
1627}
1628
1629/**
1630 * @internal
1631 */
1632static int
1633device_probe_child(device_t dev, device_t child)
1634{
1635	devclass_t dc;
1636	driverlink_t best = 0;
1637	driverlink_t dl;
1638	int result, pri = 0;
1639	int hasclass = (child->devclass != 0);
1640
1641	GIANT_REQUIRED;
1642
1643	dc = dev->devclass;
1644	if (!dc)
1645		panic("device_probe_child: parent device has no devclass");
1646
1647	/*
1648	 * If the state is already probed, then return.  However, don't
1649	 * return if we can rebid this object.
1650	 */
1651	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1652		return (0);
1653
1654	for (; dc; dc = dc->parent) {
1655		for (dl = first_matching_driver(dc, child);
1656		     dl;
1657		     dl = next_matching_driver(dc, child, dl)) {
1658			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1659			device_set_driver(child, dl->driver);
1660			if (!hasclass)
1661				device_set_devclass(child, dl->driver->name);
1662
1663			/* Fetch any flags for the device before probing. */
1664			resource_int_value(dl->driver->name, child->unit,
1665			    "flags", &child->devflags);
1666
1667			result = DEVICE_PROBE(child);
1668
1669			/* Reset flags and devclass before the next probe. */
1670			child->devflags = 0;
1671			if (!hasclass)
1672				device_set_devclass(child, 0);
1673
1674			/*
1675			 * If the driver returns SUCCESS, there can be
1676			 * no higher match for this device.
1677			 */
1678			if (result == 0) {
1679				best = dl;
1680				pri = 0;
1681				break;
1682			}
1683
1684			/*
1685			 * The driver returned an error so it
1686			 * certainly doesn't match.
1687			 */
1688			if (result > 0) {
1689				device_set_driver(child, 0);
1690				continue;
1691			}
1692
1693			/*
1694			 * A priority lower than SUCCESS, remember the
1695			 * best matching driver. Initialise the value
1696			 * of pri for the first match.
1697			 */
1698			if (best == 0 || result > pri) {
1699				best = dl;
1700				pri = result;
1701				continue;
1702			}
1703		}
1704		/*
1705		 * If we have an unambiguous match in this devclass,
1706		 * don't look in the parent.
1707		 */
1708		if (best && pri == 0)
1709			break;
1710	}
1711
1712	/*
1713	 * If we found a driver, change state and initialise the devclass.
1714	 */
1715	/* XXX What happens if we rebid and got no best? */
1716	if (best) {
1717		/*
1718		 * If this device was atached, and we were asked to
1719		 * rescan, and it is a different driver, then we have
1720		 * to detach the old driver and reattach this new one.
1721		 * Note, we don't have to check for DF_REBID here
1722		 * because if the state is > DS_ALIVE, we know it must
1723		 * be.
1724		 *
1725		 * This assumes that all DF_REBID drivers can have
1726		 * their probe routine called at any time and that
1727		 * they are idempotent as well as completely benign in
1728		 * normal operations.
1729		 *
1730		 * We also have to make sure that the detach
1731		 * succeeded, otherwise we fail the operation (or
1732		 * maybe it should just fail silently?  I'm torn).
1733		 */
1734		if (child->state > DS_ALIVE && best->driver != child->driver)
1735			if ((result = device_detach(dev)) != 0)
1736				return (result);
1737
1738		/* Set the winning driver, devclass, and flags. */
1739		if (!child->devclass)
1740			device_set_devclass(child, best->driver->name);
1741		device_set_driver(child, best->driver);
1742		resource_int_value(best->driver->name, child->unit,
1743		    "flags", &child->devflags);
1744
1745		if (pri < 0) {
1746			/*
1747			 * A bit bogus. Call the probe method again to make
1748			 * sure that we have the right description.
1749			 */
1750			DEVICE_PROBE(child);
1751#if 0
1752			child->flags |= DF_REBID;
1753#endif
1754		} else
1755			child->flags &= ~DF_REBID;
1756		child->state = DS_ALIVE;
1757
1758		bus_data_generation_update();
1759		return (0);
1760	}
1761
1762	return (ENXIO);
1763}
1764
1765/**
1766 * @brief Return the parent of a device
1767 */
1768device_t
1769device_get_parent(device_t dev)
1770{
1771	return (dev->parent);
1772}
1773
1774/**
1775 * @brief Get a list of children of a device
1776 *
1777 * An array containing a list of all the children of the given device
1778 * is allocated and returned in @p *devlistp. The number of devices
1779 * in the array is returned in @p *devcountp. The caller should free
1780 * the array using @c free(p, M_TEMP).
1781 *
1782 * @param dev		the device to examine
1783 * @param devlistp	points at location for array pointer return
1784 *			value
1785 * @param devcountp	points at location for array size return value
1786 *
1787 * @retval 0		success
1788 * @retval ENOMEM	the array allocation failed
1789 */
1790int
1791device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1792{
1793	int count;
1794	device_t child;
1795	device_t *list;
1796
1797	count = 0;
1798	TAILQ_FOREACH(child, &dev->children, link) {
1799		count++;
1800	}
1801
1802	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1803	if (!list)
1804		return (ENOMEM);
1805
1806	count = 0;
1807	TAILQ_FOREACH(child, &dev->children, link) {
1808		list[count] = child;
1809		count++;
1810	}
1811
1812	*devlistp = list;
1813	*devcountp = count;
1814
1815	return (0);
1816}
1817
1818/**
1819 * @brief Return the current driver for the device or @c NULL if there
1820 * is no driver currently attached
1821 */
1822driver_t *
1823device_get_driver(device_t dev)
1824{
1825	return (dev->driver);
1826}
1827
1828/**
1829 * @brief Return the current devclass for the device or @c NULL if
1830 * there is none.
1831 */
1832devclass_t
1833device_get_devclass(device_t dev)
1834{
1835	return (dev->devclass);
1836}
1837
1838/**
1839 * @brief Return the name of the device's devclass or @c NULL if there
1840 * is none.
1841 */
1842const char *
1843device_get_name(device_t dev)
1844{
1845	if (dev != NULL && dev->devclass)
1846		return (devclass_get_name(dev->devclass));
1847	return (NULL);
1848}
1849
1850/**
1851 * @brief Return a string containing the device's devclass name
1852 * followed by an ascii representation of the device's unit number
1853 * (e.g. @c "foo2").
1854 */
1855const char *
1856device_get_nameunit(device_t dev)
1857{
1858	return (dev->nameunit);
1859}
1860
1861/**
1862 * @brief Return the device's unit number.
1863 */
1864int
1865device_get_unit(device_t dev)
1866{
1867	return (dev->unit);
1868}
1869
1870/**
1871 * @brief Return the device's description string
1872 */
1873const char *
1874device_get_desc(device_t dev)
1875{
1876	return (dev->desc);
1877}
1878
1879/**
1880 * @brief Return the device's flags
1881 */
1882u_int32_t
1883device_get_flags(device_t dev)
1884{
1885	return (dev->devflags);
1886}
1887
1888struct sysctl_ctx_list *
1889device_get_sysctl_ctx(device_t dev)
1890{
1891	return (&dev->sysctl_ctx);
1892}
1893
1894struct sysctl_oid *
1895device_get_sysctl_tree(device_t dev)
1896{
1897	return (dev->sysctl_tree);
1898}
1899
1900/**
1901 * @brief Print the name of the device followed by a colon and a space
1902 *
1903 * @returns the number of characters printed
1904 */
1905int
1906device_print_prettyname(device_t dev)
1907{
1908	const char *name = device_get_name(dev);
1909
1910	if (name == 0)
1911		return (printf("unknown: "));
1912	return (printf("%s%d: ", name, device_get_unit(dev)));
1913}
1914
1915/**
1916 * @brief Print the name of the device followed by a colon, a space
1917 * and the result of calling vprintf() with the value of @p fmt and
1918 * the following arguments.
1919 *
1920 * @returns the number of characters printed
1921 */
1922int
1923device_printf(device_t dev, const char * fmt, ...)
1924{
1925	va_list ap;
1926	int retval;
1927
1928	retval = device_print_prettyname(dev);
1929	va_start(ap, fmt);
1930	retval += vprintf(fmt, ap);
1931	va_end(ap);
1932	return (retval);
1933}
1934
1935/**
1936 * @internal
1937 */
1938static void
1939device_set_desc_internal(device_t dev, const char* desc, int copy)
1940{
1941	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1942		free(dev->desc, M_BUS);
1943		dev->flags &= ~DF_DESCMALLOCED;
1944		dev->desc = NULL;
1945	}
1946
1947	if (copy && desc) {
1948		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
1949		if (dev->desc) {
1950			strcpy(dev->desc, desc);
1951			dev->flags |= DF_DESCMALLOCED;
1952		}
1953	} else {
1954		/* Avoid a -Wcast-qual warning */
1955		dev->desc = (char *)(uintptr_t) desc;
1956	}
1957
1958	bus_data_generation_update();
1959}
1960
1961/**
1962 * @brief Set the device's description
1963 *
1964 * The value of @c desc should be a string constant that will not
1965 * change (at least until the description is changed in a subsequent
1966 * call to device_set_desc() or device_set_desc_copy()).
1967 */
1968void
1969device_set_desc(device_t dev, const char* desc)
1970{
1971	device_set_desc_internal(dev, desc, FALSE);
1972}
1973
1974/**
1975 * @brief Set the device's description
1976 *
1977 * The string pointed to by @c desc is copied. Use this function if
1978 * the device description is generated, (e.g. with sprintf()).
1979 */
1980void
1981device_set_desc_copy(device_t dev, const char* desc)
1982{
1983	device_set_desc_internal(dev, desc, TRUE);
1984}
1985
1986/**
1987 * @brief Set the device's flags
1988 */
1989void
1990device_set_flags(device_t dev, u_int32_t flags)
1991{
1992	dev->devflags = flags;
1993}
1994
1995/**
1996 * @brief Return the device's softc field
1997 *
1998 * The softc is allocated and zeroed when a driver is attached, based
1999 * on the size field of the driver.
2000 */
2001void *
2002device_get_softc(device_t dev)
2003{
2004	return (dev->softc);
2005}
2006
2007/**
2008 * @brief Set the device's softc field
2009 *
2010 * Most drivers do not need to use this since the softc is allocated
2011 * automatically when the driver is attached.
2012 */
2013void
2014device_set_softc(device_t dev, void *softc)
2015{
2016	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2017		free(dev->softc, M_BUS_SC);
2018	dev->softc = softc;
2019	if (dev->softc)
2020		dev->flags |= DF_EXTERNALSOFTC;
2021	else
2022		dev->flags &= ~DF_EXTERNALSOFTC;
2023}
2024
2025/**
2026 * @brief Get the device's ivars field
2027 *
2028 * The ivars field is used by the parent device to store per-device
2029 * state (e.g. the physical location of the device or a list of
2030 * resources).
2031 */
2032void *
2033device_get_ivars(device_t dev)
2034{
2035
2036	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2037	return (dev->ivars);
2038}
2039
2040/**
2041 * @brief Set the device's ivars field
2042 */
2043void
2044device_set_ivars(device_t dev, void * ivars)
2045{
2046
2047	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2048	dev->ivars = ivars;
2049}
2050
2051/**
2052 * @brief Return the device's state
2053 */
2054device_state_t
2055device_get_state(device_t dev)
2056{
2057	return (dev->state);
2058}
2059
2060/**
2061 * @brief Set the DF_ENABLED flag for the device
2062 */
2063void
2064device_enable(device_t dev)
2065{
2066	dev->flags |= DF_ENABLED;
2067}
2068
2069/**
2070 * @brief Clear the DF_ENABLED flag for the device
2071 */
2072void
2073device_disable(device_t dev)
2074{
2075	dev->flags &= ~DF_ENABLED;
2076}
2077
2078/**
2079 * @brief Increment the busy counter for the device
2080 */
2081void
2082device_busy(device_t dev)
2083{
2084	if (dev->state < DS_ATTACHED)
2085		panic("device_busy: called for unattached device");
2086	if (dev->busy == 0 && dev->parent)
2087		device_busy(dev->parent);
2088	dev->busy++;
2089	dev->state = DS_BUSY;
2090}
2091
2092/**
2093 * @brief Decrement the busy counter for the device
2094 */
2095void
2096device_unbusy(device_t dev)
2097{
2098	if (dev->state != DS_BUSY)
2099		panic("device_unbusy: called for non-busy device %s",
2100		    device_get_nameunit(dev));
2101	dev->busy--;
2102	if (dev->busy == 0) {
2103		if (dev->parent)
2104			device_unbusy(dev->parent);
2105		dev->state = DS_ATTACHED;
2106	}
2107}
2108
2109/**
2110 * @brief Set the DF_QUIET flag for the device
2111 */
2112void
2113device_quiet(device_t dev)
2114{
2115	dev->flags |= DF_QUIET;
2116}
2117
2118/**
2119 * @brief Clear the DF_QUIET flag for the device
2120 */
2121void
2122device_verbose(device_t dev)
2123{
2124	dev->flags &= ~DF_QUIET;
2125}
2126
2127/**
2128 * @brief Return non-zero if the DF_QUIET flag is set on the device
2129 */
2130int
2131device_is_quiet(device_t dev)
2132{
2133	return ((dev->flags & DF_QUIET) != 0);
2134}
2135
2136/**
2137 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2138 */
2139int
2140device_is_enabled(device_t dev)
2141{
2142	return ((dev->flags & DF_ENABLED) != 0);
2143}
2144
2145/**
2146 * @brief Return non-zero if the device was successfully probed
2147 */
2148int
2149device_is_alive(device_t dev)
2150{
2151	return (dev->state >= DS_ALIVE);
2152}
2153
2154/**
2155 * @brief Return non-zero if the device currently has a driver
2156 * attached to it
2157 */
2158int
2159device_is_attached(device_t dev)
2160{
2161	return (dev->state >= DS_ATTACHED);
2162}
2163
2164/**
2165 * @brief Set the devclass of a device
2166 * @see devclass_add_device().
2167 */
2168int
2169device_set_devclass(device_t dev, const char *classname)
2170{
2171	devclass_t dc;
2172	int error;
2173
2174	if (!classname) {
2175		if (dev->devclass)
2176			devclass_delete_device(dev->devclass, dev);
2177		return (0);
2178	}
2179
2180	if (dev->devclass) {
2181		printf("device_set_devclass: device class already set\n");
2182		return (EINVAL);
2183	}
2184
2185	dc = devclass_find_internal(classname, 0, TRUE);
2186	if (!dc)
2187		return (ENOMEM);
2188
2189	error = devclass_add_device(dc, dev);
2190
2191	bus_data_generation_update();
2192	return (error);
2193}
2194
2195/**
2196 * @brief Set the driver of a device
2197 *
2198 * @retval 0		success
2199 * @retval EBUSY	the device already has a driver attached
2200 * @retval ENOMEM	a memory allocation failure occurred
2201 */
2202int
2203device_set_driver(device_t dev, driver_t *driver)
2204{
2205	if (dev->state >= DS_ATTACHED)
2206		return (EBUSY);
2207
2208	if (dev->driver == driver)
2209		return (0);
2210
2211	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2212		free(dev->softc, M_BUS_SC);
2213		dev->softc = NULL;
2214	}
2215	kobj_delete((kobj_t) dev, 0);
2216	dev->driver = driver;
2217	if (driver) {
2218		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2219		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2220			dev->softc = malloc(driver->size, M_BUS_SC,
2221			    M_NOWAIT | M_ZERO);
2222			if (!dev->softc) {
2223				kobj_delete((kobj_t) dev, 0);
2224				kobj_init((kobj_t) dev, &null_class);
2225				dev->driver = NULL;
2226				return (ENOMEM);
2227			}
2228		}
2229	} else {
2230		kobj_init((kobj_t) dev, &null_class);
2231	}
2232
2233	bus_data_generation_update();
2234	return (0);
2235}
2236
2237/**
2238 * @brief Probe a device and attach a driver if possible
2239 *
2240 * This function is the core of the device autoconfiguration
2241 * system. Its purpose is to select a suitable driver for a device and
2242 * then call that driver to initialise the hardware appropriately. The
2243 * driver is selected by calling the DEVICE_PROBE() method of a set of
2244 * candidate drivers and then choosing the driver which returned the
2245 * best value. This driver is then attached to the device using
2246 * device_attach().
2247 *
2248 * The set of suitable drivers is taken from the list of drivers in
2249 * the parent device's devclass. If the device was originally created
2250 * with a specific class name (see device_add_child()), only drivers
2251 * with that name are probed, otherwise all drivers in the devclass
2252 * are probed. If no drivers return successful probe values in the
2253 * parent devclass, the search continues in the parent of that
2254 * devclass (see devclass_get_parent()) if any.
2255 *
2256 * @param dev		the device to initialise
2257 *
2258 * @retval 0		success
2259 * @retval ENXIO	no driver was found
2260 * @retval ENOMEM	memory allocation failure
2261 * @retval non-zero	some other unix error code
2262 */
2263int
2264device_probe_and_attach(device_t dev)
2265{
2266	int error;
2267
2268	GIANT_REQUIRED;
2269
2270	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2271		return (0);
2272
2273	if (!(dev->flags & DF_ENABLED)) {
2274		if (bootverbose && device_get_name(dev) != NULL) {
2275			device_print_prettyname(dev);
2276			printf("not probed (disabled)\n");
2277		}
2278		return (0);
2279	}
2280	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2281		if (!(dev->flags & DF_DONENOMATCH)) {
2282			BUS_PROBE_NOMATCH(dev->parent, dev);
2283			devnomatch(dev);
2284			dev->flags |= DF_DONENOMATCH;
2285		}
2286		return (error);
2287	}
2288	error = device_attach(dev);
2289
2290	return (error);
2291}
2292
2293/**
2294 * @brief Attach a device driver to a device
2295 *
2296 * This function is a wrapper around the DEVICE_ATTACH() driver
2297 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2298 * device's sysctl tree, optionally prints a description of the device
2299 * and queues a notification event for user-based device management
2300 * services.
2301 *
2302 * Normally this function is only called internally from
2303 * device_probe_and_attach().
2304 *
2305 * @param dev		the device to initialise
2306 *
2307 * @retval 0		success
2308 * @retval ENXIO	no driver was found
2309 * @retval ENOMEM	memory allocation failure
2310 * @retval non-zero	some other unix error code
2311 */
2312int
2313device_attach(device_t dev)
2314{
2315	int error;
2316
2317	device_sysctl_init(dev);
2318	if (!device_is_quiet(dev))
2319		device_print_child(dev->parent, dev);
2320	if ((error = DEVICE_ATTACH(dev)) != 0) {
2321		printf("device_attach: %s%d attach returned %d\n",
2322		    dev->driver->name, dev->unit, error);
2323		/* Unset the class; set in device_probe_child */
2324		if (dev->devclass == 0)
2325			device_set_devclass(dev, 0);
2326		device_set_driver(dev, NULL);
2327		device_sysctl_fini(dev);
2328		dev->state = DS_NOTPRESENT;
2329		return (error);
2330	}
2331	dev->state = DS_ATTACHED;
2332	devadded(dev);
2333	return (0);
2334}
2335
2336/**
2337 * @brief Detach a driver from a device
2338 *
2339 * This function is a wrapper around the DEVICE_DETACH() driver
2340 * method. If the call to DEVICE_DETACH() succeeds, it calls
2341 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2342 * notification event for user-based device management services and
2343 * cleans up the device's sysctl tree.
2344 *
2345 * @param dev		the device to un-initialise
2346 *
2347 * @retval 0		success
2348 * @retval ENXIO	no driver was found
2349 * @retval ENOMEM	memory allocation failure
2350 * @retval non-zero	some other unix error code
2351 */
2352int
2353device_detach(device_t dev)
2354{
2355	int error;
2356
2357	GIANT_REQUIRED;
2358
2359	PDEBUG(("%s", DEVICENAME(dev)));
2360	if (dev->state == DS_BUSY)
2361		return (EBUSY);
2362	if (dev->state != DS_ATTACHED)
2363		return (0);
2364
2365	if ((error = DEVICE_DETACH(dev)) != 0)
2366		return (error);
2367	devremoved(dev);
2368	device_printf(dev, "detached\n");
2369	if (dev->parent)
2370		BUS_CHILD_DETACHED(dev->parent, dev);
2371
2372	if (!(dev->flags & DF_FIXEDCLASS))
2373		devclass_delete_device(dev->devclass, dev);
2374
2375	dev->state = DS_NOTPRESENT;
2376	device_set_driver(dev, NULL);
2377	device_set_desc(dev, NULL);
2378	device_sysctl_fini(dev);
2379
2380	return (0);
2381}
2382
2383/**
2384 * @brief Tells a driver to quiesce itself.
2385 *
2386 * This function is a wrapper around the DEVICE_QUIESCE() driver
2387 * method. If the call to DEVICE_QUIESCE() succeeds.
2388 *
2389 * @param dev		the device to quiesce
2390 *
2391 * @retval 0		success
2392 * @retval ENXIO	no driver was found
2393 * @retval ENOMEM	memory allocation failure
2394 * @retval non-zero	some other unix error code
2395 */
2396int
2397device_quiesce(device_t dev)
2398{
2399
2400	PDEBUG(("%s", DEVICENAME(dev)));
2401	if (dev->state == DS_BUSY)
2402		return (EBUSY);
2403	if (dev->state != DS_ATTACHED)
2404		return (0);
2405
2406	return (DEVICE_QUIESCE(dev));
2407}
2408
2409/**
2410 * @brief Notify a device of system shutdown
2411 *
2412 * This function calls the DEVICE_SHUTDOWN() driver method if the
2413 * device currently has an attached driver.
2414 *
2415 * @returns the value returned by DEVICE_SHUTDOWN()
2416 */
2417int
2418device_shutdown(device_t dev)
2419{
2420	if (dev->state < DS_ATTACHED)
2421		return (0);
2422	return (DEVICE_SHUTDOWN(dev));
2423}
2424
2425/**
2426 * @brief Set the unit number of a device
2427 *
2428 * This function can be used to override the unit number used for a
2429 * device (e.g. to wire a device to a pre-configured unit number).
2430 */
2431int
2432device_set_unit(device_t dev, int unit)
2433{
2434	devclass_t dc;
2435	int err;
2436
2437	dc = device_get_devclass(dev);
2438	if (unit < dc->maxunit && dc->devices[unit])
2439		return (EBUSY);
2440	err = devclass_delete_device(dc, dev);
2441	if (err)
2442		return (err);
2443	dev->unit = unit;
2444	err = devclass_add_device(dc, dev);
2445	if (err)
2446		return (err);
2447
2448	bus_data_generation_update();
2449	return (0);
2450}
2451
2452/*======================================*/
2453/*
2454 * Some useful method implementations to make life easier for bus drivers.
2455 */
2456
2457/**
2458 * @brief Initialise a resource list.
2459 *
2460 * @param rl		the resource list to initialise
2461 */
2462void
2463resource_list_init(struct resource_list *rl)
2464{
2465	STAILQ_INIT(rl);
2466}
2467
2468/**
2469 * @brief Reclaim memory used by a resource list.
2470 *
2471 * This function frees the memory for all resource entries on the list
2472 * (if any).
2473 *
2474 * @param rl		the resource list to free
2475 */
2476void
2477resource_list_free(struct resource_list *rl)
2478{
2479	struct resource_list_entry *rle;
2480
2481	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2482		if (rle->res)
2483			panic("resource_list_free: resource entry is busy");
2484		STAILQ_REMOVE_HEAD(rl, link);
2485		free(rle, M_BUS);
2486	}
2487}
2488
2489/**
2490 * @brief Add a resource entry.
2491 *
2492 * This function adds a resource entry using the given @p type, @p
2493 * start, @p end and @p count values. A rid value is chosen by
2494 * searching sequentially for the first unused rid starting at zero.
2495 *
2496 * @param rl		the resource list to edit
2497 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2498 * @param start		the start address of the resource
2499 * @param end		the end address of the resource
2500 * @param count		XXX end-start+1
2501 */
2502int
2503resource_list_add_next(struct resource_list *rl, int type, u_long start,
2504    u_long end, u_long count)
2505{
2506	int rid;
2507
2508	rid = 0;
2509	while (resource_list_find(rl, type, rid) != NULL)
2510		rid++;
2511	resource_list_add(rl, type, rid, start, end, count);
2512	return (rid);
2513}
2514
2515/**
2516 * @brief Add or modify a resource entry.
2517 *
2518 * If an existing entry exists with the same type and rid, it will be
2519 * modified using the given values of @p start, @p end and @p
2520 * count. If no entry exists, a new one will be created using the
2521 * given values.
2522 *
2523 * @param rl		the resource list to edit
2524 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2525 * @param rid		the resource identifier
2526 * @param start		the start address of the resource
2527 * @param end		the end address of the resource
2528 * @param count		XXX end-start+1
2529 */
2530void
2531resource_list_add(struct resource_list *rl, int type, int rid,
2532    u_long start, u_long end, u_long count)
2533{
2534	struct resource_list_entry *rle;
2535
2536	rle = resource_list_find(rl, type, rid);
2537	if (!rle) {
2538		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2539		    M_NOWAIT);
2540		if (!rle)
2541			panic("resource_list_add: can't record entry");
2542		STAILQ_INSERT_TAIL(rl, rle, link);
2543		rle->type = type;
2544		rle->rid = rid;
2545		rle->res = NULL;
2546	}
2547
2548	if (rle->res)
2549		panic("resource_list_add: resource entry is busy");
2550
2551	rle->start = start;
2552	rle->end = end;
2553	rle->count = count;
2554}
2555
2556/**
2557 * @brief Find a resource entry by type and rid.
2558 *
2559 * @param rl		the resource list to search
2560 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2561 * @param rid		the resource identifier
2562 *
2563 * @returns the resource entry pointer or NULL if there is no such
2564 * entry.
2565 */
2566struct resource_list_entry *
2567resource_list_find(struct resource_list *rl, int type, int rid)
2568{
2569	struct resource_list_entry *rle;
2570
2571	STAILQ_FOREACH(rle, rl, link) {
2572		if (rle->type == type && rle->rid == rid)
2573			return (rle);
2574	}
2575	return (NULL);
2576}
2577
2578/**
2579 * @brief Delete a resource entry.
2580 *
2581 * @param rl		the resource list to edit
2582 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2583 * @param rid		the resource identifier
2584 */
2585void
2586resource_list_delete(struct resource_list *rl, int type, int rid)
2587{
2588	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2589
2590	if (rle) {
2591		if (rle->res != NULL)
2592			panic("resource_list_delete: resource has not been released");
2593		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2594		free(rle, M_BUS);
2595	}
2596}
2597
2598/**
2599 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2600 *
2601 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2602 * and passing the allocation up to the parent of @p bus. This assumes
2603 * that the first entry of @c device_get_ivars(child) is a struct
2604 * resource_list. This also handles 'passthrough' allocations where a
2605 * child is a remote descendant of bus by passing the allocation up to
2606 * the parent of bus.
2607 *
2608 * Typically, a bus driver would store a list of child resources
2609 * somewhere in the child device's ivars (see device_get_ivars()) and
2610 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2611 * then call resource_list_alloc() to perform the allocation.
2612 *
2613 * @param rl		the resource list to allocate from
2614 * @param bus		the parent device of @p child
2615 * @param child		the device which is requesting an allocation
2616 * @param type		the type of resource to allocate
2617 * @param rid		a pointer to the resource identifier
2618 * @param start		hint at the start of the resource range - pass
2619 *			@c 0UL for any start address
2620 * @param end		hint at the end of the resource range - pass
2621 *			@c ~0UL for any end address
2622 * @param count		hint at the size of range required - pass @c 1
2623 *			for any size
2624 * @param flags		any extra flags to control the resource
2625 *			allocation - see @c RF_XXX flags in
2626 *			<sys/rman.h> for details
2627 *
2628 * @returns		the resource which was allocated or @c NULL if no
2629 *			resource could be allocated
2630 */
2631struct resource *
2632resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2633    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2634{
2635	struct resource_list_entry *rle = 0;
2636	int passthrough = (device_get_parent(child) != bus);
2637	int isdefault = (start == 0UL && end == ~0UL);
2638
2639	if (passthrough) {
2640		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2641		    type, rid, start, end, count, flags));
2642	}
2643
2644	rle = resource_list_find(rl, type, *rid);
2645
2646	if (!rle)
2647		return (NULL);		/* no resource of that type/rid */
2648
2649	if (rle->res)
2650		panic("resource_list_alloc: resource entry is busy");
2651
2652	if (isdefault) {
2653		start = rle->start;
2654		count = ulmax(count, rle->count);
2655		end = ulmax(rle->end, start + count - 1);
2656	}
2657
2658	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2659	    type, rid, start, end, count, flags);
2660
2661	/*
2662	 * Record the new range.
2663	 */
2664	if (rle->res) {
2665		rle->start = rman_get_start(rle->res);
2666		rle->end = rman_get_end(rle->res);
2667		rle->count = count;
2668	}
2669
2670	return (rle->res);
2671}
2672
2673/**
2674 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2675 *
2676 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2677 * used with resource_list_alloc().
2678 *
2679 * @param rl		the resource list which was allocated from
2680 * @param bus		the parent device of @p child
2681 * @param child		the device which is requesting a release
2682 * @param type		the type of resource to allocate
2683 * @param rid		the resource identifier
2684 * @param res		the resource to release
2685 *
2686 * @retval 0		success
2687 * @retval non-zero	a standard unix error code indicating what
2688 *			error condition prevented the operation
2689 */
2690int
2691resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2692    int type, int rid, struct resource *res)
2693{
2694	struct resource_list_entry *rle = 0;
2695	int passthrough = (device_get_parent(child) != bus);
2696	int error;
2697
2698	if (passthrough) {
2699		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2700		    type, rid, res));
2701	}
2702
2703	rle = resource_list_find(rl, type, rid);
2704
2705	if (!rle)
2706		panic("resource_list_release: can't find resource");
2707	if (!rle->res)
2708		panic("resource_list_release: resource entry is not busy");
2709
2710	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2711	    type, rid, res);
2712	if (error)
2713		return (error);
2714
2715	rle->res = NULL;
2716	return (0);
2717}
2718
2719/**
2720 * @brief Print a description of resources in a resource list
2721 *
2722 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2723 * The name is printed if at least one resource of the given type is available.
2724 * The format is used to print resource start and end.
2725 *
2726 * @param rl		the resource list to print
2727 * @param name		the name of @p type, e.g. @c "memory"
2728 * @param type		type type of resource entry to print
2729 * @param format	printf(9) format string to print resource
2730 *			start and end values
2731 *
2732 * @returns		the number of characters printed
2733 */
2734int
2735resource_list_print_type(struct resource_list *rl, const char *name, int type,
2736    const char *format)
2737{
2738	struct resource_list_entry *rle;
2739	int printed, retval;
2740
2741	printed = 0;
2742	retval = 0;
2743	/* Yes, this is kinda cheating */
2744	STAILQ_FOREACH(rle, rl, link) {
2745		if (rle->type == type) {
2746			if (printed == 0)
2747				retval += printf(" %s ", name);
2748			else
2749				retval += printf(",");
2750			printed++;
2751			retval += printf(format, rle->start);
2752			if (rle->count > 1) {
2753				retval += printf("-");
2754				retval += printf(format, rle->start +
2755						 rle->count - 1);
2756			}
2757		}
2758	}
2759	return (retval);
2760}
2761
2762/**
2763 * @brief Helper function for implementing DEVICE_PROBE()
2764 *
2765 * This function can be used to help implement the DEVICE_PROBE() for
2766 * a bus (i.e. a device which has other devices attached to it). It
2767 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2768 * devclass.
2769 */
2770int
2771bus_generic_probe(device_t dev)
2772{
2773	devclass_t dc = dev->devclass;
2774	driverlink_t dl;
2775
2776	TAILQ_FOREACH(dl, &dc->drivers, link) {
2777		DEVICE_IDENTIFY(dl->driver, dev);
2778	}
2779
2780	return (0);
2781}
2782
2783/**
2784 * @brief Helper function for implementing DEVICE_ATTACH()
2785 *
2786 * This function can be used to help implement the DEVICE_ATTACH() for
2787 * a bus. It calls device_probe_and_attach() for each of the device's
2788 * children.
2789 */
2790int
2791bus_generic_attach(device_t dev)
2792{
2793	device_t child;
2794
2795	TAILQ_FOREACH(child, &dev->children, link) {
2796		device_probe_and_attach(child);
2797	}
2798
2799	return (0);
2800}
2801
2802/**
2803 * @brief Helper function for implementing DEVICE_DETACH()
2804 *
2805 * This function can be used to help implement the DEVICE_DETACH() for
2806 * a bus. It calls device_detach() for each of the device's
2807 * children.
2808 */
2809int
2810bus_generic_detach(device_t dev)
2811{
2812	device_t child;
2813	int error;
2814
2815	if (dev->state != DS_ATTACHED)
2816		return (EBUSY);
2817
2818	TAILQ_FOREACH(child, &dev->children, link) {
2819		if ((error = device_detach(child)) != 0)
2820			return (error);
2821	}
2822
2823	return (0);
2824}
2825
2826/**
2827 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2828 *
2829 * This function can be used to help implement the DEVICE_SHUTDOWN()
2830 * for a bus. It calls device_shutdown() for each of the device's
2831 * children.
2832 */
2833int
2834bus_generic_shutdown(device_t dev)
2835{
2836	device_t child;
2837
2838	TAILQ_FOREACH(child, &dev->children, link) {
2839		device_shutdown(child);
2840	}
2841
2842	return (0);
2843}
2844
2845/**
2846 * @brief Helper function for implementing DEVICE_SUSPEND()
2847 *
2848 * This function can be used to help implement the DEVICE_SUSPEND()
2849 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2850 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2851 * operation is aborted and any devices which were suspended are
2852 * resumed immediately by calling their DEVICE_RESUME() methods.
2853 */
2854int
2855bus_generic_suspend(device_t dev)
2856{
2857	int		error;
2858	device_t	child, child2;
2859
2860	TAILQ_FOREACH(child, &dev->children, link) {
2861		error = DEVICE_SUSPEND(child);
2862		if (error) {
2863			for (child2 = TAILQ_FIRST(&dev->children);
2864			     child2 && child2 != child;
2865			     child2 = TAILQ_NEXT(child2, link))
2866				DEVICE_RESUME(child2);
2867			return (error);
2868		}
2869	}
2870	return (0);
2871}
2872
2873/**
2874 * @brief Helper function for implementing DEVICE_RESUME()
2875 *
2876 * This function can be used to help implement the DEVICE_RESUME() for
2877 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2878 */
2879int
2880bus_generic_resume(device_t dev)
2881{
2882	device_t	child;
2883
2884	TAILQ_FOREACH(child, &dev->children, link) {
2885		DEVICE_RESUME(child);
2886		/* if resume fails, there's nothing we can usefully do... */
2887	}
2888	return (0);
2889}
2890
2891/**
2892 * @brief Helper function for implementing BUS_PRINT_CHILD().
2893 *
2894 * This function prints the first part of the ascii representation of
2895 * @p child, including its name, unit and description (if any - see
2896 * device_set_desc()).
2897 *
2898 * @returns the number of characters printed
2899 */
2900int
2901bus_print_child_header(device_t dev, device_t child)
2902{
2903	int	retval = 0;
2904
2905	if (device_get_desc(child)) {
2906		retval += device_printf(child, "<%s>", device_get_desc(child));
2907	} else {
2908		retval += printf("%s", device_get_nameunit(child));
2909	}
2910
2911	return (retval);
2912}
2913
2914/**
2915 * @brief Helper function for implementing BUS_PRINT_CHILD().
2916 *
2917 * This function prints the last part of the ascii representation of
2918 * @p child, which consists of the string @c " on " followed by the
2919 * name and unit of the @p dev.
2920 *
2921 * @returns the number of characters printed
2922 */
2923int
2924bus_print_child_footer(device_t dev, device_t child)
2925{
2926	return (printf(" on %s\n", device_get_nameunit(dev)));
2927}
2928
2929/**
2930 * @brief Helper function for implementing BUS_PRINT_CHILD().
2931 *
2932 * This function simply calls bus_print_child_header() followed by
2933 * bus_print_child_footer().
2934 *
2935 * @returns the number of characters printed
2936 */
2937int
2938bus_generic_print_child(device_t dev, device_t child)
2939{
2940	int	retval = 0;
2941
2942	retval += bus_print_child_header(dev, child);
2943	retval += bus_print_child_footer(dev, child);
2944
2945	return (retval);
2946}
2947
2948/**
2949 * @brief Stub function for implementing BUS_READ_IVAR().
2950 *
2951 * @returns ENOENT
2952 */
2953int
2954bus_generic_read_ivar(device_t dev, device_t child, int index,
2955    uintptr_t * result)
2956{
2957	return (ENOENT);
2958}
2959
2960/**
2961 * @brief Stub function for implementing BUS_WRITE_IVAR().
2962 *
2963 * @returns ENOENT
2964 */
2965int
2966bus_generic_write_ivar(device_t dev, device_t child, int index,
2967    uintptr_t value)
2968{
2969	return (ENOENT);
2970}
2971
2972/**
2973 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
2974 *
2975 * @returns NULL
2976 */
2977struct resource_list *
2978bus_generic_get_resource_list(device_t dev, device_t child)
2979{
2980	return (NULL);
2981}
2982
2983/**
2984 * @brief Helper function for implementing BUS_DRIVER_ADDED().
2985 *
2986 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
2987 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
2988 * and then calls device_probe_and_attach() for each unattached child.
2989 */
2990void
2991bus_generic_driver_added(device_t dev, driver_t *driver)
2992{
2993	device_t child;
2994
2995	DEVICE_IDENTIFY(driver, dev);
2996	TAILQ_FOREACH(child, &dev->children, link) {
2997		if (child->state == DS_NOTPRESENT ||
2998		    (child->flags & DF_REBID))
2999			device_probe_and_attach(child);
3000	}
3001}
3002
3003/**
3004 * @brief Helper function for implementing BUS_SETUP_INTR().
3005 *
3006 * This simple implementation of BUS_SETUP_INTR() simply calls the
3007 * BUS_SETUP_INTR() method of the parent of @p dev.
3008 */
3009int
3010bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3011    int flags, driver_intr_t *intr, void *arg, void **cookiep)
3012{
3013	/* Propagate up the bus hierarchy until someone handles it. */
3014	if (dev->parent)
3015		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3016		    intr, arg, cookiep));
3017	return (EINVAL);
3018}
3019
3020/**
3021 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3022 *
3023 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3024 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3025 */
3026int
3027bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3028    void *cookie)
3029{
3030	/* Propagate up the bus hierarchy until someone handles it. */
3031	if (dev->parent)
3032		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3033	return (EINVAL);
3034}
3035
3036/**
3037 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3038 *
3039 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3040 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3041 */
3042struct resource *
3043bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3044    u_long start, u_long end, u_long count, u_int flags)
3045{
3046	/* Propagate up the bus hierarchy until someone handles it. */
3047	if (dev->parent)
3048		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3049		    start, end, count, flags));
3050	return (NULL);
3051}
3052
3053/**
3054 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3055 *
3056 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3057 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3058 */
3059int
3060bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3061    struct resource *r)
3062{
3063	/* Propagate up the bus hierarchy until someone handles it. */
3064	if (dev->parent)
3065		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3066		    r));
3067	return (EINVAL);
3068}
3069
3070/**
3071 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3072 *
3073 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3074 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3075 */
3076int
3077bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3078    struct resource *r)
3079{
3080	/* Propagate up the bus hierarchy until someone handles it. */
3081	if (dev->parent)
3082		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3083		    r));
3084	return (EINVAL);
3085}
3086
3087/**
3088 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3089 *
3090 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3091 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3092 */
3093int
3094bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3095    int rid, struct resource *r)
3096{
3097	/* Propagate up the bus hierarchy until someone handles it. */
3098	if (dev->parent)
3099		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3100		    r));
3101	return (EINVAL);
3102}
3103
3104/**
3105 * @brief Helper function for implementing BUS_CONFIG_INTR().
3106 *
3107 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3108 * BUS_CONFIG_INTR() method of the parent of @p dev.
3109 */
3110int
3111bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3112    enum intr_polarity pol)
3113{
3114
3115	/* Propagate up the bus hierarchy until someone handles it. */
3116	if (dev->parent)
3117		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3118	return (EINVAL);
3119}
3120
3121/**
3122 * @brief Helper function for implementing BUS_GET_RESOURCE().
3123 *
3124 * This implementation of BUS_GET_RESOURCE() uses the
3125 * resource_list_find() function to do most of the work. It calls
3126 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3127 * search.
3128 */
3129int
3130bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3131    u_long *startp, u_long *countp)
3132{
3133	struct resource_list *		rl = NULL;
3134	struct resource_list_entry *	rle = NULL;
3135
3136	rl = BUS_GET_RESOURCE_LIST(dev, child);
3137	if (!rl)
3138		return (EINVAL);
3139
3140	rle = resource_list_find(rl, type, rid);
3141	if (!rle)
3142		return (ENOENT);
3143
3144	if (startp)
3145		*startp = rle->start;
3146	if (countp)
3147		*countp = rle->count;
3148
3149	return (0);
3150}
3151
3152/**
3153 * @brief Helper function for implementing BUS_SET_RESOURCE().
3154 *
3155 * This implementation of BUS_SET_RESOURCE() uses the
3156 * resource_list_add() function to do most of the work. It calls
3157 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3158 * edit.
3159 */
3160int
3161bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3162    u_long start, u_long count)
3163{
3164	struct resource_list *		rl = NULL;
3165
3166	rl = BUS_GET_RESOURCE_LIST(dev, child);
3167	if (!rl)
3168		return (EINVAL);
3169
3170	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3171
3172	return (0);
3173}
3174
3175/**
3176 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3177 *
3178 * This implementation of BUS_DELETE_RESOURCE() uses the
3179 * resource_list_delete() function to do most of the work. It calls
3180 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3181 * edit.
3182 */
3183void
3184bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3185{
3186	struct resource_list *		rl = NULL;
3187
3188	rl = BUS_GET_RESOURCE_LIST(dev, child);
3189	if (!rl)
3190		return;
3191
3192	resource_list_delete(rl, type, rid);
3193
3194	return;
3195}
3196
3197/**
3198 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3199 *
3200 * This implementation of BUS_RELEASE_RESOURCE() uses the
3201 * resource_list_release() function to do most of the work. It calls
3202 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3203 */
3204int
3205bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3206    int rid, struct resource *r)
3207{
3208	struct resource_list *		rl = NULL;
3209
3210	rl = BUS_GET_RESOURCE_LIST(dev, child);
3211	if (!rl)
3212		return (EINVAL);
3213
3214	return (resource_list_release(rl, dev, child, type, rid, r));
3215}
3216
3217/**
3218 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3219 *
3220 * This implementation of BUS_ALLOC_RESOURCE() uses the
3221 * resource_list_alloc() function to do most of the work. It calls
3222 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3223 */
3224struct resource *
3225bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3226    int *rid, u_long start, u_long end, u_long count, u_int flags)
3227{
3228	struct resource_list *		rl = NULL;
3229
3230	rl = BUS_GET_RESOURCE_LIST(dev, child);
3231	if (!rl)
3232		return (NULL);
3233
3234	return (resource_list_alloc(rl, dev, child, type, rid,
3235	    start, end, count, flags));
3236}
3237
3238/**
3239 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3240 *
3241 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3242 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3243 */
3244int
3245bus_generic_child_present(device_t dev, device_t child)
3246{
3247	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3248}
3249
3250/*
3251 * Some convenience functions to make it easier for drivers to use the
3252 * resource-management functions.  All these really do is hide the
3253 * indirection through the parent's method table, making for slightly
3254 * less-wordy code.  In the future, it might make sense for this code
3255 * to maintain some sort of a list of resources allocated by each device.
3256 */
3257
3258/**
3259 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3260 *
3261 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3262 * parent of @p dev.
3263 */
3264struct resource *
3265bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3266    u_long count, u_int flags)
3267{
3268	if (dev->parent == 0)
3269		return (0);
3270	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3271	    count, flags));
3272}
3273
3274/**
3275 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3276 *
3277 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3278 * parent of @p dev.
3279 */
3280int
3281bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3282{
3283	if (dev->parent == 0)
3284		return (EINVAL);
3285	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3286}
3287
3288/**
3289 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3290 *
3291 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3292 * parent of @p dev.
3293 */
3294int
3295bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3296{
3297	if (dev->parent == 0)
3298		return (EINVAL);
3299	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3300}
3301
3302/**
3303 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3304 *
3305 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3306 * parent of @p dev.
3307 */
3308int
3309bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3310{
3311	if (dev->parent == 0)
3312		return (EINVAL);
3313	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3314}
3315
3316/**
3317 * @brief Wrapper function for BUS_SETUP_INTR().
3318 *
3319 * This function simply calls the BUS_SETUP_INTR() method of the
3320 * parent of @p dev.
3321 */
3322int
3323bus_setup_intr(device_t dev, struct resource *r, int flags,
3324    driver_intr_t handler, void *arg, void **cookiep)
3325{
3326	int error;
3327
3328	if (dev->parent != 0) {
3329		if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3330		    !debug_mpsafenet)
3331			flags &= ~INTR_MPSAFE;
3332		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3333		    handler, arg, cookiep);
3334		if (error == 0) {
3335			if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3336				device_printf(dev, "[GIANT-LOCKED]\n");
3337			if (bootverbose && (flags & INTR_MPSAFE))
3338				device_printf(dev, "[MPSAFE]\n");
3339			if (flags & INTR_FAST)
3340				device_printf(dev, "[FAST]\n");
3341		}
3342	} else
3343		error = EINVAL;
3344	return (error);
3345}
3346
3347/**
3348 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3349 *
3350 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3351 * parent of @p dev.
3352 */
3353int
3354bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3355{
3356	if (dev->parent == 0)
3357		return (EINVAL);
3358	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3359}
3360
3361/**
3362 * @brief Wrapper function for BUS_SET_RESOURCE().
3363 *
3364 * This function simply calls the BUS_SET_RESOURCE() method of the
3365 * parent of @p dev.
3366 */
3367int
3368bus_set_resource(device_t dev, int type, int rid,
3369    u_long start, u_long count)
3370{
3371	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3372	    start, count));
3373}
3374
3375/**
3376 * @brief Wrapper function for BUS_GET_RESOURCE().
3377 *
3378 * This function simply calls the BUS_GET_RESOURCE() method of the
3379 * parent of @p dev.
3380 */
3381int
3382bus_get_resource(device_t dev, int type, int rid,
3383    u_long *startp, u_long *countp)
3384{
3385	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3386	    startp, countp));
3387}
3388
3389/**
3390 * @brief Wrapper function for BUS_GET_RESOURCE().
3391 *
3392 * This function simply calls the BUS_GET_RESOURCE() method of the
3393 * parent of @p dev and returns the start value.
3394 */
3395u_long
3396bus_get_resource_start(device_t dev, int type, int rid)
3397{
3398	u_long start, count;
3399	int error;
3400
3401	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3402	    &start, &count);
3403	if (error)
3404		return (0);
3405	return (start);
3406}
3407
3408/**
3409 * @brief Wrapper function for BUS_GET_RESOURCE().
3410 *
3411 * This function simply calls the BUS_GET_RESOURCE() method of the
3412 * parent of @p dev and returns the count value.
3413 */
3414u_long
3415bus_get_resource_count(device_t dev, int type, int rid)
3416{
3417	u_long start, count;
3418	int error;
3419
3420	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3421	    &start, &count);
3422	if (error)
3423		return (0);
3424	return (count);
3425}
3426
3427/**
3428 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3429 *
3430 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3431 * parent of @p dev.
3432 */
3433void
3434bus_delete_resource(device_t dev, int type, int rid)
3435{
3436	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3437}
3438
3439/**
3440 * @brief Wrapper function for BUS_CHILD_PRESENT().
3441 *
3442 * This function simply calls the BUS_CHILD_PRESENT() method of the
3443 * parent of @p dev.
3444 */
3445int
3446bus_child_present(device_t child)
3447{
3448	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3449}
3450
3451/**
3452 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3453 *
3454 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3455 * parent of @p dev.
3456 */
3457int
3458bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3459{
3460	device_t parent;
3461
3462	parent = device_get_parent(child);
3463	if (parent == NULL) {
3464		*buf = '\0';
3465		return (0);
3466	}
3467	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3468}
3469
3470/**
3471 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3472 *
3473 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3474 * parent of @p dev.
3475 */
3476int
3477bus_child_location_str(device_t child, char *buf, size_t buflen)
3478{
3479	device_t parent;
3480
3481	parent = device_get_parent(child);
3482	if (parent == NULL) {
3483		*buf = '\0';
3484		return (0);
3485	}
3486	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3487}
3488
3489static int
3490root_print_child(device_t dev, device_t child)
3491{
3492	int	retval = 0;
3493
3494	retval += bus_print_child_header(dev, child);
3495	retval += printf("\n");
3496
3497	return (retval);
3498}
3499
3500static int
3501root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3502    void **cookiep)
3503{
3504	/*
3505	 * If an interrupt mapping gets to here something bad has happened.
3506	 */
3507	panic("root_setup_intr");
3508}
3509
3510/*
3511 * If we get here, assume that the device is permanant and really is
3512 * present in the system.  Removable bus drivers are expected to intercept
3513 * this call long before it gets here.  We return -1 so that drivers that
3514 * really care can check vs -1 or some ERRNO returned higher in the food
3515 * chain.
3516 */
3517static int
3518root_child_present(device_t dev, device_t child)
3519{
3520	return (-1);
3521}
3522
3523static kobj_method_t root_methods[] = {
3524	/* Device interface */
3525	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3526	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3527	KOBJMETHOD(device_resume,	bus_generic_resume),
3528
3529	/* Bus interface */
3530	KOBJMETHOD(bus_print_child,	root_print_child),
3531	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3532	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3533	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3534	KOBJMETHOD(bus_child_present,	root_child_present),
3535
3536	{ 0, 0 }
3537};
3538
3539static driver_t root_driver = {
3540	"root",
3541	root_methods,
3542	1,			/* no softc */
3543};
3544
3545device_t	root_bus;
3546devclass_t	root_devclass;
3547
3548static int
3549root_bus_module_handler(module_t mod, int what, void* arg)
3550{
3551	switch (what) {
3552	case MOD_LOAD:
3553		TAILQ_INIT(&bus_data_devices);
3554		kobj_class_compile((kobj_class_t) &root_driver);
3555		root_bus = make_device(NULL, "root", 0);
3556		root_bus->desc = "System root bus";
3557		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3558		root_bus->driver = &root_driver;
3559		root_bus->state = DS_ATTACHED;
3560		root_devclass = devclass_find_internal("root", 0, FALSE);
3561		devinit();
3562		return (0);
3563
3564	case MOD_SHUTDOWN:
3565		device_shutdown(root_bus);
3566		return (0);
3567	default:
3568		return (EOPNOTSUPP);
3569	}
3570
3571	return (0);
3572}
3573
3574static moduledata_t root_bus_mod = {
3575	"rootbus",
3576	root_bus_module_handler,
3577	0
3578};
3579DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3580
3581/**
3582 * @brief Automatically configure devices
3583 *
3584 * This function begins the autoconfiguration process by calling
3585 * device_probe_and_attach() for each child of the @c root0 device.
3586 */
3587void
3588root_bus_configure(void)
3589{
3590	device_t dev;
3591
3592	PDEBUG(("."));
3593
3594	TAILQ_FOREACH(dev, &root_bus->children, link) {
3595		device_probe_and_attach(dev);
3596	}
3597}
3598
3599/**
3600 * @brief Module handler for registering device drivers
3601 *
3602 * This module handler is used to automatically register device
3603 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3604 * devclass_add_driver() for the driver described by the
3605 * driver_module_data structure pointed to by @p arg
3606 */
3607int
3608driver_module_handler(module_t mod, int what, void *arg)
3609{
3610	int error;
3611	struct driver_module_data *dmd;
3612	devclass_t bus_devclass;
3613	kobj_class_t driver;
3614
3615	dmd = (struct driver_module_data *)arg;
3616	bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3617	error = 0;
3618
3619	switch (what) {
3620	case MOD_LOAD:
3621		if (dmd->dmd_chainevh)
3622			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3623
3624		driver = dmd->dmd_driver;
3625		PDEBUG(("Loading module: driver %s on bus %s",
3626		    DRIVERNAME(driver), dmd->dmd_busname));
3627		error = devclass_add_driver(bus_devclass, driver);
3628		if (error)
3629			break;
3630
3631		/*
3632		 * If the driver has any base classes, make the
3633		 * devclass inherit from the devclass of the driver's
3634		 * first base class. This will allow the system to
3635		 * search for drivers in both devclasses for children
3636		 * of a device using this driver.
3637		 */
3638		if (driver->baseclasses) {
3639			const char *parentname;
3640			parentname = driver->baseclasses[0]->name;
3641			*dmd->dmd_devclass =
3642				devclass_find_internal(driver->name,
3643				    parentname, TRUE);
3644		} else {
3645			*dmd->dmd_devclass =
3646				devclass_find_internal(driver->name, 0, TRUE);
3647		}
3648		break;
3649
3650	case MOD_UNLOAD:
3651		PDEBUG(("Unloading module: driver %s from bus %s",
3652		    DRIVERNAME(dmd->dmd_driver),
3653		    dmd->dmd_busname));
3654		error = devclass_delete_driver(bus_devclass,
3655		    dmd->dmd_driver);
3656
3657		if (!error && dmd->dmd_chainevh)
3658			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3659		break;
3660	case MOD_QUIESCE:
3661		PDEBUG(("Quiesce module: driver %s from bus %s",
3662		    DRIVERNAME(dmd->dmd_driver),
3663		    dmd->dmd_busname));
3664		error = devclass_quiesce_driver(bus_devclass,
3665		    dmd->dmd_driver);
3666
3667		if (!error && dmd->dmd_chainevh)
3668			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3669		break;
3670	default:
3671		error = EOPNOTSUPP;
3672		break;
3673	}
3674
3675	return (error);
3676}
3677
3678#ifdef BUS_DEBUG
3679
3680/* the _short versions avoid iteration by not calling anything that prints
3681 * more than oneliners. I love oneliners.
3682 */
3683
3684static void
3685print_device_short(device_t dev, int indent)
3686{
3687	if (!dev)
3688		return;
3689
3690	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3691	    dev->unit, dev->desc,
3692	    (dev->parent? "":"no "),
3693	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3694	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3695	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3696	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3697	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3698	    (dev->flags&DF_REBID? "rebiddable,":""),
3699	    (dev->ivars? "":"no "),
3700	    (dev->softc? "":"no "),
3701	    dev->busy));
3702}
3703
3704static void
3705print_device(device_t dev, int indent)
3706{
3707	if (!dev)
3708		return;
3709
3710	print_device_short(dev, indent);
3711
3712	indentprintf(("Parent:\n"));
3713	print_device_short(dev->parent, indent+1);
3714	indentprintf(("Driver:\n"));
3715	print_driver_short(dev->driver, indent+1);
3716	indentprintf(("Devclass:\n"));
3717	print_devclass_short(dev->devclass, indent+1);
3718}
3719
3720void
3721print_device_tree_short(device_t dev, int indent)
3722/* print the device and all its children (indented) */
3723{
3724	device_t child;
3725
3726	if (!dev)
3727		return;
3728
3729	print_device_short(dev, indent);
3730
3731	TAILQ_FOREACH(child, &dev->children, link) {
3732		print_device_tree_short(child, indent+1);
3733	}
3734}
3735
3736void
3737print_device_tree(device_t dev, int indent)
3738/* print the device and all its children (indented) */
3739{
3740	device_t child;
3741
3742	if (!dev)
3743		return;
3744
3745	print_device(dev, indent);
3746
3747	TAILQ_FOREACH(child, &dev->children, link) {
3748		print_device_tree(child, indent+1);
3749	}
3750}
3751
3752static void
3753print_driver_short(driver_t *driver, int indent)
3754{
3755	if (!driver)
3756		return;
3757
3758	indentprintf(("driver %s: softc size = %zd\n",
3759	    driver->name, driver->size));
3760}
3761
3762static void
3763print_driver(driver_t *driver, int indent)
3764{
3765	if (!driver)
3766		return;
3767
3768	print_driver_short(driver, indent);
3769}
3770
3771
3772static void
3773print_driver_list(driver_list_t drivers, int indent)
3774{
3775	driverlink_t driver;
3776
3777	TAILQ_FOREACH(driver, &drivers, link) {
3778		print_driver(driver->driver, indent);
3779	}
3780}
3781
3782static void
3783print_devclass_short(devclass_t dc, int indent)
3784{
3785	if ( !dc )
3786		return;
3787
3788	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3789}
3790
3791static void
3792print_devclass(devclass_t dc, int indent)
3793{
3794	int i;
3795
3796	if ( !dc )
3797		return;
3798
3799	print_devclass_short(dc, indent);
3800	indentprintf(("Drivers:\n"));
3801	print_driver_list(dc->drivers, indent+1);
3802
3803	indentprintf(("Devices:\n"));
3804	for (i = 0; i < dc->maxunit; i++)
3805		if (dc->devices[i])
3806			print_device(dc->devices[i], indent+1);
3807}
3808
3809void
3810print_devclass_list_short(void)
3811{
3812	devclass_t dc;
3813
3814	printf("Short listing of devclasses, drivers & devices:\n");
3815	TAILQ_FOREACH(dc, &devclasses, link) {
3816		print_devclass_short(dc, 0);
3817	}
3818}
3819
3820void
3821print_devclass_list(void)
3822{
3823	devclass_t dc;
3824
3825	printf("Full listing of devclasses, drivers & devices:\n");
3826	TAILQ_FOREACH(dc, &devclasses, link) {
3827		print_devclass(dc, 0);
3828	}
3829}
3830
3831#endif
3832
3833/*
3834 * User-space access to the device tree.
3835 *
3836 * We implement a small set of nodes:
3837 *
3838 * hw.bus			Single integer read method to obtain the
3839 *				current generation count.
3840 * hw.bus.devices		Reads the entire device tree in flat space.
3841 * hw.bus.rman			Resource manager interface
3842 *
3843 * We might like to add the ability to scan devclasses and/or drivers to
3844 * determine what else is currently loaded/available.
3845 */
3846
3847static int
3848sysctl_bus(SYSCTL_HANDLER_ARGS)
3849{
3850	struct u_businfo	ubus;
3851
3852	ubus.ub_version = BUS_USER_VERSION;
3853	ubus.ub_generation = bus_data_generation;
3854
3855	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3856}
3857SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3858    "bus-related data");
3859
3860static int
3861sysctl_devices(SYSCTL_HANDLER_ARGS)
3862{
3863	int			*name = (int *)arg1;
3864	u_int			namelen = arg2;
3865	int			index;
3866	struct device		*dev;
3867	struct u_device		udev;	/* XXX this is a bit big */
3868	int			error;
3869
3870	if (namelen != 2)
3871		return (EINVAL);
3872
3873	if (bus_data_generation_check(name[0]))
3874		return (EINVAL);
3875
3876	index = name[1];
3877
3878	/*
3879	 * Scan the list of devices, looking for the requested index.
3880	 */
3881	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3882		if (index-- == 0)
3883			break;
3884	}
3885	if (dev == NULL)
3886		return (ENOENT);
3887
3888	/*
3889	 * Populate the return array.
3890	 */
3891	udev.dv_handle = (uintptr_t)dev;
3892	udev.dv_parent = (uintptr_t)dev->parent;
3893	if (dev->nameunit == NULL)
3894		udev.dv_name[0] = '\0';
3895	else
3896		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3897
3898	if (dev->desc == NULL)
3899		udev.dv_desc[0] = '\0';
3900	else
3901		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3902	if (dev->driver == NULL || dev->driver->name == NULL)
3903		udev.dv_drivername[0] = '\0';
3904	else
3905		strlcpy(udev.dv_drivername, dev->driver->name,
3906		    sizeof(udev.dv_drivername));
3907	udev.dv_pnpinfo[0] = '\0';
3908	udev.dv_location[0] = '\0';
3909	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3910	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3911	udev.dv_devflags = dev->devflags;
3912	udev.dv_flags = dev->flags;
3913	udev.dv_state = dev->state;
3914	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3915	return (error);
3916}
3917
3918SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3919    "system device tree");
3920
3921int
3922bus_data_generation_check(int generation)
3923{
3924	if (generation != bus_data_generation)
3925		return (1);
3926
3927	/* XXX generate optimised lists here? */
3928	return (0);
3929}
3930
3931void
3932bus_data_generation_update(void)
3933{
3934	bus_data_generation++;
3935}
3936
3937int
3938bus_free_resource(device_t dev, int type, struct resource *r)
3939{
3940	if (r == NULL)
3941		return (0);
3942	return (bus_release_resource(dev, type, rman_get_rid(r), r));
3943}
3944