sched_4bsd.c revision 113339
1104964Sjeff/*-
2104964Sjeff * Copyright (c) 1982, 1986, 1990, 1991, 1993
3104964Sjeff *	The Regents of the University of California.  All rights reserved.
4104964Sjeff * (c) UNIX System Laboratories, Inc.
5104964Sjeff * All or some portions of this file are derived from material licensed
6104964Sjeff * to the University of California by American Telephone and Telegraph
7104964Sjeff * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8104964Sjeff * the permission of UNIX System Laboratories, Inc.
9104964Sjeff *
10104964Sjeff * Redistribution and use in source and binary forms, with or without
11104964Sjeff * modification, are permitted provided that the following conditions
12104964Sjeff * are met:
13104964Sjeff * 1. Redistributions of source code must retain the above copyright
14104964Sjeff *    notice, this list of conditions and the following disclaimer.
15104964Sjeff * 2. Redistributions in binary form must reproduce the above copyright
16104964Sjeff *    notice, this list of conditions and the following disclaimer in the
17104964Sjeff *    documentation and/or other materials provided with the distribution.
18104964Sjeff * 3. All advertising materials mentioning features or use of this software
19104964Sjeff *    must display the following acknowledgement:
20104964Sjeff *	This product includes software developed by the University of
21104964Sjeff *	California, Berkeley and its contributors.
22104964Sjeff * 4. Neither the name of the University nor the names of its contributors
23104964Sjeff *    may be used to endorse or promote products derived from this software
24104964Sjeff *    without specific prior written permission.
25104964Sjeff *
26104964Sjeff * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27104964Sjeff * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28104964Sjeff * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29104964Sjeff * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30104964Sjeff * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31104964Sjeff * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32104964Sjeff * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33104964Sjeff * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34104964Sjeff * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35104964Sjeff * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36104964Sjeff * SUCH DAMAGE.
37104964Sjeff *
38104964Sjeff * $FreeBSD: head/sys/kern/sched_4bsd.c 113339 2003-04-10 17:35:44Z julian $
39104964Sjeff */
40104964Sjeff
41104964Sjeff#include <sys/param.h>
42104964Sjeff#include <sys/systm.h>
43104964Sjeff#include <sys/kernel.h>
44104964Sjeff#include <sys/ktr.h>
45104964Sjeff#include <sys/lock.h>
46104964Sjeff#include <sys/mutex.h>
47104964Sjeff#include <sys/proc.h>
48104964Sjeff#include <sys/resourcevar.h>
49104964Sjeff#include <sys/sched.h>
50104964Sjeff#include <sys/smp.h>
51104964Sjeff#include <sys/sysctl.h>
52104964Sjeff#include <sys/sx.h>
53104964Sjeff
54107135Sjeff/*
55107135Sjeff * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
56107135Sjeff * the range 100-256 Hz (approximately).
57107135Sjeff */
58107135Sjeff#define	ESTCPULIM(e) \
59107135Sjeff    min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
60107135Sjeff    RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
61107135Sjeff#define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
62107135Sjeff#define	NICE_WEIGHT		1	/* Priorities per nice level. */
63107135Sjeff
64109145Sjeffstruct ke_sched {
65109145Sjeff	int	ske_cpticks;	/* (j) Ticks of cpu time. */
66109145Sjeff};
67109145Sjeff
68109145Sjeffstruct ke_sched ke_sched;
69109145Sjeff
70109145Sjeffstruct ke_sched *kse0_sched = &ke_sched;
71107126Sjeffstruct kg_sched *ksegrp0_sched = NULL;
72107126Sjeffstruct p_sched *proc0_sched = NULL;
73107126Sjeffstruct td_sched *thread0_sched = NULL;
74104964Sjeff
75104964Sjeffstatic int	sched_quantum;	/* Roundrobin scheduling quantum in ticks. */
76112535Smux#define	SCHED_QUANTUM	(hz / 10)	/* Default sched quantum */
77104964Sjeff
78104964Sjeffstatic struct callout schedcpu_callout;
79104964Sjeffstatic struct callout roundrobin_callout;
80104964Sjeff
81104964Sjeffstatic void	roundrobin(void *arg);
82104964Sjeffstatic void	schedcpu(void *arg);
83104964Sjeffstatic void	sched_setup(void *dummy);
84104964Sjeffstatic void	maybe_resched(struct thread *td);
85104964Sjeffstatic void	updatepri(struct ksegrp *kg);
86104964Sjeffstatic void	resetpriority(struct ksegrp *kg);
87104964Sjeff
88104964SjeffSYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
89104964Sjeff
90104964Sjeff/*
91104964Sjeff * Global run queue.
92104964Sjeff */
93104964Sjeffstatic struct runq runq;
94104964SjeffSYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)
95104964Sjeff
96104964Sjeffstatic int
97104964Sjeffsysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
98104964Sjeff{
99104964Sjeff	int error, new_val;
100104964Sjeff
101104964Sjeff	new_val = sched_quantum * tick;
102104964Sjeff	error = sysctl_handle_int(oidp, &new_val, 0, req);
103104964Sjeff        if (error != 0 || req->newptr == NULL)
104104964Sjeff		return (error);
105104964Sjeff	if (new_val < tick)
106104964Sjeff		return (EINVAL);
107104964Sjeff	sched_quantum = new_val / tick;
108104964Sjeff	hogticks = 2 * sched_quantum;
109104964Sjeff	return (0);
110104964Sjeff}
111104964Sjeff
112104964SjeffSYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
113104964Sjeff	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
114104964Sjeff	"Roundrobin scheduling quantum in microseconds");
115104964Sjeff
116104964Sjeff/*
117104964Sjeff * Arrange to reschedule if necessary, taking the priorities and
118104964Sjeff * schedulers into account.
119104964Sjeff */
120104964Sjeffstatic void
121104964Sjeffmaybe_resched(struct thread *td)
122104964Sjeff{
123104964Sjeff
124104964Sjeff	mtx_assert(&sched_lock, MA_OWNED);
125108338Sjulian	if (td->td_priority < curthread->td_priority && curthread->td_kse)
126111032Sjulian		curthread->td_flags |= TDF_NEEDRESCHED;
127104964Sjeff}
128104964Sjeff
129104964Sjeff/*
130104964Sjeff * Force switch among equal priority processes every 100ms.
131104964Sjeff * We don't actually need to force a context switch of the current process.
132104964Sjeff * The act of firing the event triggers a context switch to softclock() and
133104964Sjeff * then switching back out again which is equivalent to a preemption, thus
134104964Sjeff * no further work is needed on the local CPU.
135104964Sjeff */
136104964Sjeff/* ARGSUSED */
137104964Sjeffstatic void
138104964Sjeffroundrobin(void *arg)
139104964Sjeff{
140104964Sjeff
141104964Sjeff#ifdef SMP
142104964Sjeff	mtx_lock_spin(&sched_lock);
143104964Sjeff	forward_roundrobin();
144104964Sjeff	mtx_unlock_spin(&sched_lock);
145104964Sjeff#endif
146104964Sjeff
147104964Sjeff	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
148104964Sjeff}
149104964Sjeff
150104964Sjeff/*
151104964Sjeff * Constants for digital decay and forget:
152104964Sjeff *	90% of (p_estcpu) usage in 5 * loadav time
153104964Sjeff *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
154104964Sjeff *          Note that, as ps(1) mentions, this can let percentages
155104964Sjeff *          total over 100% (I've seen 137.9% for 3 processes).
156104964Sjeff *
157104964Sjeff * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
158104964Sjeff *
159104964Sjeff * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
160104964Sjeff * That is, the system wants to compute a value of decay such
161104964Sjeff * that the following for loop:
162104964Sjeff * 	for (i = 0; i < (5 * loadavg); i++)
163104964Sjeff * 		p_estcpu *= decay;
164104964Sjeff * will compute
165104964Sjeff * 	p_estcpu *= 0.1;
166104964Sjeff * for all values of loadavg:
167104964Sjeff *
168104964Sjeff * Mathematically this loop can be expressed by saying:
169104964Sjeff * 	decay ** (5 * loadavg) ~= .1
170104964Sjeff *
171104964Sjeff * The system computes decay as:
172104964Sjeff * 	decay = (2 * loadavg) / (2 * loadavg + 1)
173104964Sjeff *
174104964Sjeff * We wish to prove that the system's computation of decay
175104964Sjeff * will always fulfill the equation:
176104964Sjeff * 	decay ** (5 * loadavg) ~= .1
177104964Sjeff *
178104964Sjeff * If we compute b as:
179104964Sjeff * 	b = 2 * loadavg
180104964Sjeff * then
181104964Sjeff * 	decay = b / (b + 1)
182104964Sjeff *
183104964Sjeff * We now need to prove two things:
184104964Sjeff *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
185104964Sjeff *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
186104964Sjeff *
187104964Sjeff * Facts:
188104964Sjeff *         For x close to zero, exp(x) =~ 1 + x, since
189104964Sjeff *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
190104964Sjeff *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
191104964Sjeff *         For x close to zero, ln(1+x) =~ x, since
192104964Sjeff *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
193104964Sjeff *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
194104964Sjeff *         ln(.1) =~ -2.30
195104964Sjeff *
196104964Sjeff * Proof of (1):
197104964Sjeff *    Solve (factor)**(power) =~ .1 given power (5*loadav):
198104964Sjeff *	solving for factor,
199104964Sjeff *      ln(factor) =~ (-2.30/5*loadav), or
200104964Sjeff *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
201104964Sjeff *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
202104964Sjeff *
203104964Sjeff * Proof of (2):
204104964Sjeff *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
205104964Sjeff *	solving for power,
206104964Sjeff *      power*ln(b/(b+1)) =~ -2.30, or
207104964Sjeff *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
208104964Sjeff *
209104964Sjeff * Actual power values for the implemented algorithm are as follows:
210104964Sjeff *      loadav: 1       2       3       4
211104964Sjeff *      power:  5.68    10.32   14.94   19.55
212104964Sjeff */
213104964Sjeff
214104964Sjeff/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
215104964Sjeff#define	loadfactor(loadav)	(2 * (loadav))
216104964Sjeff#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
217104964Sjeff
218104964Sjeff/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
219104964Sjeffstatic fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
220104964SjeffSYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
221104964Sjeff
222104964Sjeff/*
223104964Sjeff * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
224104964Sjeff * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
225104964Sjeff * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
226104964Sjeff *
227104964Sjeff * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
228104964Sjeff *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
229104964Sjeff *
230104964Sjeff * If you don't want to bother with the faster/more-accurate formula, you
231104964Sjeff * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
232104964Sjeff * (more general) method of calculating the %age of CPU used by a process.
233104964Sjeff */
234104964Sjeff#define	CCPU_SHIFT	11
235104964Sjeff
236104964Sjeff/*
237104964Sjeff * Recompute process priorities, every hz ticks.
238104964Sjeff * MP-safe, called without the Giant mutex.
239104964Sjeff */
240104964Sjeff/* ARGSUSED */
241104964Sjeffstatic void
242104964Sjeffschedcpu(void *arg)
243104964Sjeff{
244104964Sjeff	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
245104964Sjeff	struct thread *td;
246104964Sjeff	struct proc *p;
247104964Sjeff	struct kse *ke;
248104964Sjeff	struct ksegrp *kg;
249104964Sjeff	int realstathz;
250104964Sjeff	int awake;
251104964Sjeff
252104964Sjeff	realstathz = stathz ? stathz : hz;
253104964Sjeff	sx_slock(&allproc_lock);
254104964Sjeff	FOREACH_PROC_IN_SYSTEM(p) {
255104964Sjeff		mtx_lock_spin(&sched_lock);
256104964Sjeff		p->p_swtime++;
257104964Sjeff		FOREACH_KSEGRP_IN_PROC(p, kg) {
258104964Sjeff			awake = 0;
259104964Sjeff			FOREACH_KSE_IN_GROUP(kg, ke) {
260104964Sjeff				/*
261104964Sjeff				 * Increment time in/out of memory and sleep
262104964Sjeff				 * time (if sleeping).  We ignore overflow;
263104964Sjeff				 * with 16-bit int's (remember them?)
264104964Sjeff				 * overflow takes 45 days.
265104964Sjeff				 */
266104964Sjeff				/*
267104964Sjeff				 * The kse slptimes are not touched in wakeup
268104964Sjeff				 * because the thread may not HAVE a KSE.
269104964Sjeff				 */
270104964Sjeff				if (ke->ke_state == KES_ONRUNQ) {
271104964Sjeff					awake = 1;
272104964Sjeff					ke->ke_flags &= ~KEF_DIDRUN;
273104964Sjeff				} else if ((ke->ke_state == KES_THREAD) &&
274104964Sjeff				    (TD_IS_RUNNING(ke->ke_thread))) {
275104964Sjeff					awake = 1;
276104964Sjeff					/* Do not clear KEF_DIDRUN */
277104964Sjeff				} else if (ke->ke_flags & KEF_DIDRUN) {
278104964Sjeff					awake = 1;
279104964Sjeff					ke->ke_flags &= ~KEF_DIDRUN;
280104964Sjeff				}
281104964Sjeff
282104964Sjeff				/*
283104964Sjeff				 * pctcpu is only for ps?
284104964Sjeff				 * Do it per kse.. and add them up at the end?
285104964Sjeff				 * XXXKSE
286104964Sjeff				 */
287109157Sjeff				ke->ke_pctcpu
288109157Sjeff				    = (ke->ke_pctcpu * ccpu) >>
289109145Sjeff				    FSHIFT;
290104964Sjeff				/*
291104964Sjeff				 * If the kse has been idle the entire second,
292104964Sjeff				 * stop recalculating its priority until
293104964Sjeff				 * it wakes up.
294104964Sjeff				 */
295109145Sjeff				if (ke->ke_sched->ske_cpticks == 0)
296104964Sjeff					continue;
297104964Sjeff#if	(FSHIFT >= CCPU_SHIFT)
298109157Sjeff				ke->ke_pctcpu += (realstathz == 100)
299109145Sjeff				    ? ((fixpt_t) ke->ke_sched->ske_cpticks) <<
300104964Sjeff				    (FSHIFT - CCPU_SHIFT) :
301109145Sjeff				    100 * (((fixpt_t) ke->ke_sched->ske_cpticks)
302109145Sjeff				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
303104964Sjeff#else
304109157Sjeff				ke->ke_pctcpu += ((FSCALE - ccpu) *
305109145Sjeff				    (ke->ke_sched->ske_cpticks *
306109145Sjeff				    FSCALE / realstathz)) >> FSHIFT;
307104964Sjeff#endif
308109145Sjeff				ke->ke_sched->ske_cpticks = 0;
309104964Sjeff			} /* end of kse loop */
310104964Sjeff			/*
311104964Sjeff			 * If there are ANY running threads in this KSEGRP,
312104964Sjeff			 * then don't count it as sleeping.
313104964Sjeff			 */
314104964Sjeff			if (awake) {
315104964Sjeff				if (kg->kg_slptime > 1) {
316104964Sjeff					/*
317104964Sjeff					 * In an ideal world, this should not
318104964Sjeff					 * happen, because whoever woke us
319104964Sjeff					 * up from the long sleep should have
320104964Sjeff					 * unwound the slptime and reset our
321104964Sjeff					 * priority before we run at the stale
322104964Sjeff					 * priority.  Should KASSERT at some
323104964Sjeff					 * point when all the cases are fixed.
324104964Sjeff					 */
325104964Sjeff					updatepri(kg);
326104964Sjeff				}
327104964Sjeff				kg->kg_slptime = 0;
328104964Sjeff			} else {
329104964Sjeff				kg->kg_slptime++;
330104964Sjeff			}
331104964Sjeff			if (kg->kg_slptime > 1)
332104964Sjeff				continue;
333104964Sjeff			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
334104964Sjeff		      	resetpriority(kg);
335104964Sjeff			FOREACH_THREAD_IN_GROUP(kg, td) {
336104964Sjeff				if (td->td_priority >= PUSER) {
337105127Sjulian					sched_prio(td, kg->kg_user_pri);
338104964Sjeff				}
339104964Sjeff			}
340104964Sjeff		} /* end of ksegrp loop */
341104964Sjeff		mtx_unlock_spin(&sched_lock);
342104964Sjeff	} /* end of process loop */
343104964Sjeff	sx_sunlock(&allproc_lock);
344104964Sjeff	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
345104964Sjeff}
346104964Sjeff
347104964Sjeff/*
348104964Sjeff * Recalculate the priority of a process after it has slept for a while.
349104964Sjeff * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
350104964Sjeff * least six times the loadfactor will decay p_estcpu to zero.
351104964Sjeff */
352104964Sjeffstatic void
353104964Sjeffupdatepri(struct ksegrp *kg)
354104964Sjeff{
355104964Sjeff	register unsigned int newcpu;
356104964Sjeff	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
357104964Sjeff
358104964Sjeff	newcpu = kg->kg_estcpu;
359104964Sjeff	if (kg->kg_slptime > 5 * loadfac)
360104964Sjeff		kg->kg_estcpu = 0;
361104964Sjeff	else {
362104964Sjeff		kg->kg_slptime--;	/* the first time was done in schedcpu */
363104964Sjeff		while (newcpu && --kg->kg_slptime)
364104964Sjeff			newcpu = decay_cpu(loadfac, newcpu);
365104964Sjeff		kg->kg_estcpu = newcpu;
366104964Sjeff	}
367104964Sjeff	resetpriority(kg);
368104964Sjeff}
369104964Sjeff
370104964Sjeff/*
371104964Sjeff * Compute the priority of a process when running in user mode.
372104964Sjeff * Arrange to reschedule if the resulting priority is better
373104964Sjeff * than that of the current process.
374104964Sjeff */
375104964Sjeffstatic void
376104964Sjeffresetpriority(struct ksegrp *kg)
377104964Sjeff{
378104964Sjeff	register unsigned int newpriority;
379104964Sjeff	struct thread *td;
380104964Sjeff
381104964Sjeff	mtx_lock_spin(&sched_lock);
382104964Sjeff	if (kg->kg_pri_class == PRI_TIMESHARE) {
383104964Sjeff		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
384104964Sjeff		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
385104964Sjeff		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
386104964Sjeff		    PRI_MAX_TIMESHARE);
387104964Sjeff		kg->kg_user_pri = newpriority;
388104964Sjeff	}
389104964Sjeff	FOREACH_THREAD_IN_GROUP(kg, td) {
390104964Sjeff		maybe_resched(td);			/* XXXKSE silly */
391104964Sjeff	}
392104964Sjeff	mtx_unlock_spin(&sched_lock);
393104964Sjeff}
394104964Sjeff
395104964Sjeff/* ARGSUSED */
396104964Sjeffstatic void
397104964Sjeffsched_setup(void *dummy)
398104964Sjeff{
399104964Sjeff	if (sched_quantum == 0)
400104964Sjeff		sched_quantum = SCHED_QUANTUM;
401104964Sjeff	hogticks = 2 * sched_quantum;
402104964Sjeff
403104964Sjeff	callout_init(&schedcpu_callout, 1);
404104964Sjeff	callout_init(&roundrobin_callout, 0);
405104964Sjeff
406104964Sjeff	/* Kick off timeout driven events by calling first time. */
407104964Sjeff	roundrobin(NULL);
408104964Sjeff	schedcpu(NULL);
409104964Sjeff}
410104964Sjeff
411104964Sjeff/* External interfaces start here */
412104964Sjeffint
413104964Sjeffsched_runnable(void)
414104964Sjeff{
415104964Sjeff        return runq_check(&runq);
416104964Sjeff}
417104964Sjeff
418104964Sjeffint
419104964Sjeffsched_rr_interval(void)
420104964Sjeff{
421104964Sjeff	if (sched_quantum == 0)
422104964Sjeff		sched_quantum = SCHED_QUANTUM;
423104964Sjeff	return (sched_quantum);
424104964Sjeff}
425104964Sjeff
426104964Sjeff/*
427104964Sjeff * We adjust the priority of the current process.  The priority of
428104964Sjeff * a process gets worse as it accumulates CPU time.  The cpu usage
429104964Sjeff * estimator (p_estcpu) is increased here.  resetpriority() will
430104964Sjeff * compute a different priority each time p_estcpu increases by
431104964Sjeff * INVERSE_ESTCPU_WEIGHT
432104964Sjeff * (until MAXPRI is reached).  The cpu usage estimator ramps up
433104964Sjeff * quite quickly when the process is running (linearly), and decays
434104964Sjeff * away exponentially, at a rate which is proportionally slower when
435104964Sjeff * the system is busy.  The basic principle is that the system will
436104964Sjeff * 90% forget that the process used a lot of CPU time in 5 * loadav
437104964Sjeff * seconds.  This causes the system to favor processes which haven't
438104964Sjeff * run much recently, and to round-robin among other processes.
439104964Sjeff */
440104964Sjeffvoid
441104964Sjeffsched_clock(struct thread *td)
442104964Sjeff{
443104964Sjeff	struct kse *ke;
444104964Sjeff	struct ksegrp *kg;
445104964Sjeff
446104964Sjeff	KASSERT((td != NULL), ("schedclock: null thread pointer"));
447104964Sjeff	ke = td->td_kse;
448104964Sjeff	kg = td->td_ksegrp;
449109145Sjeff	ke->ke_sched->ske_cpticks++;
450104964Sjeff	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
451104964Sjeff	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
452104964Sjeff		resetpriority(kg);
453104964Sjeff		if (td->td_priority >= PUSER)
454104964Sjeff			td->td_priority = kg->kg_user_pri;
455104964Sjeff	}
456104964Sjeff}
457104964Sjeff/*
458104964Sjeff * charge childs scheduling cpu usage to parent.
459104964Sjeff *
460104964Sjeff * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp.
461104964Sjeff * Charge it to the ksegrp that did the wait since process estcpu is sum of
462104964Sjeff * all ksegrps, this is strictly as expected.  Assume that the child process
463104964Sjeff * aggregated all the estcpu into the 'built-in' ksegrp.
464104964Sjeff */
465104964Sjeffvoid
466104964Sjeffsched_exit(struct ksegrp *kg, struct ksegrp *child)
467104964Sjeff{
468104964Sjeff	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu);
469104964Sjeff}
470104964Sjeff
471104964Sjeffvoid
472104964Sjeffsched_fork(struct ksegrp *kg, struct ksegrp *child)
473104964Sjeff{
474109145Sjeff	struct kse *ke;
475109145Sjeff
476104964Sjeff	/*
477104964Sjeff	 * set priority of child to be that of parent.
478104964Sjeff	 * XXXKSE this needs redefining..
479104964Sjeff	 */
480104964Sjeff	child->kg_estcpu = kg->kg_estcpu;
481109145Sjeff
482109145Sjeff	/* Set up scheduler specific data */
483109145Sjeff	ke = FIRST_KSE_IN_KSEGRP(kg);
484109145Sjeff	ke->ke_sched->ske_cpticks = 0;
485104964Sjeff}
486104964Sjeff
487104964Sjeffvoid
488104964Sjeffsched_nice(struct ksegrp *kg, int nice)
489104964Sjeff{
490104964Sjeff	kg->kg_nice = nice;
491104964Sjeff	resetpriority(kg);
492104964Sjeff}
493104964Sjeff
494105127Sjulian/*
495105127Sjulian * Adjust the priority of a thread.
496105127Sjulian * This may include moving the thread within the KSEGRP,
497105127Sjulian * changing the assignment of a kse to the thread,
498105127Sjulian * and moving a KSE in the system run queue.
499105127Sjulian */
500104964Sjeffvoid
501104964Sjeffsched_prio(struct thread *td, u_char prio)
502104964Sjeff{
503104964Sjeff
504104964Sjeff	if (TD_ON_RUNQ(td)) {
505105127Sjulian		adjustrunqueue(td, prio);
506105127Sjulian	} else {
507105127Sjulian		td->td_priority = prio;
508104964Sjeff	}
509104964Sjeff}
510104964Sjeff
511104964Sjeffvoid
512104964Sjeffsched_sleep(struct thread *td, u_char prio)
513104964Sjeff{
514104964Sjeff	td->td_ksegrp->kg_slptime = 0;
515104964Sjeff	td->td_priority = prio;
516104964Sjeff}
517104964Sjeff
518104964Sjeffvoid
519104964Sjeffsched_switchin(struct thread *td)
520104964Sjeff{
521113339Sjulian	td->td_oncpu = PCPU_GET(cpuid);
522104964Sjeff}
523104964Sjeff
524104964Sjeffvoid
525104964Sjeffsched_switchout(struct thread *td)
526104964Sjeff{
527104964Sjeff	struct kse *ke;
528104964Sjeff	struct proc *p;
529104964Sjeff
530104964Sjeff	ke = td->td_kse;
531104964Sjeff	p = td->td_proc;
532104964Sjeff
533104964Sjeff	KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
534104964Sjeff
535113339Sjulian	td->td_lastcpu = td->td_oncpu;
536105127Sjulian	td->td_last_kse = ke;
537113339Sjulian	td->td_oncpu = NOCPU;
538111032Sjulian	td->td_flags &= ~TDF_NEEDRESCHED;
539104964Sjeff	/*
540104964Sjeff	 * At the last moment, if this thread is still marked RUNNING,
541104964Sjeff	 * then put it back on the run queue as it has not been suspended
542104964Sjeff	 * or stopped or any thing else similar.
543104964Sjeff	 */
544104964Sjeff	if (TD_IS_RUNNING(td)) {
545104964Sjeff		/* Put us back on the run queue (kse and all). */
546104964Sjeff		setrunqueue(td);
547111585Sjulian	} else if (p->p_flag & P_THREADED) {
548104964Sjeff		/*
549104964Sjeff		 * We will not be on the run queue. So we must be
550104964Sjeff		 * sleeping or similar. As it's available,
551104964Sjeff		 * someone else can use the KSE if they need it.
552104964Sjeff		 */
553104964Sjeff		kse_reassign(ke);
554104964Sjeff	}
555104964Sjeff}
556104964Sjeff
557104964Sjeffvoid
558104964Sjeffsched_wakeup(struct thread *td)
559104964Sjeff{
560104964Sjeff	struct ksegrp *kg;
561104964Sjeff
562104964Sjeff	kg = td->td_ksegrp;
563104964Sjeff	if (kg->kg_slptime > 1)
564104964Sjeff		updatepri(kg);
565104964Sjeff	kg->kg_slptime = 0;
566104964Sjeff	setrunqueue(td);
567104964Sjeff	maybe_resched(td);
568104964Sjeff}
569104964Sjeff
570104964Sjeffvoid
571104964Sjeffsched_add(struct kse *ke)
572104964Sjeff{
573104964Sjeff	mtx_assert(&sched_lock, MA_OWNED);
574104964Sjeff	KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
575104964Sjeff	KASSERT((ke->ke_thread->td_kse != NULL),
576104964Sjeff	    ("runq_add: No KSE on thread"));
577104964Sjeff	KASSERT(ke->ke_state != KES_ONRUNQ,
578104964Sjeff	    ("runq_add: kse %p (%s) already in run queue", ke,
579104964Sjeff	    ke->ke_proc->p_comm));
580104964Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
581104964Sjeff	    ("runq_add: process swapped out"));
582104964Sjeff	ke->ke_ksegrp->kg_runq_kses++;
583104964Sjeff	ke->ke_state = KES_ONRUNQ;
584104964Sjeff
585104964Sjeff	runq_add(&runq, ke);
586104964Sjeff}
587104964Sjeff
588104964Sjeffvoid
589104964Sjeffsched_rem(struct kse *ke)
590104964Sjeff{
591104964Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
592104964Sjeff	    ("runq_remove: process swapped out"));
593104964Sjeff	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
594104964Sjeff	mtx_assert(&sched_lock, MA_OWNED);
595104964Sjeff
596104964Sjeff	runq_remove(&runq, ke);
597104964Sjeff	ke->ke_state = KES_THREAD;
598104964Sjeff	ke->ke_ksegrp->kg_runq_kses--;
599104964Sjeff}
600104964Sjeff
601104964Sjeffstruct kse *
602104964Sjeffsched_choose(void)
603104964Sjeff{
604104964Sjeff	struct kse *ke;
605104964Sjeff
606104964Sjeff	ke = runq_choose(&runq);
607104964Sjeff
608104964Sjeff	if (ke != NULL) {
609104964Sjeff		runq_remove(&runq, ke);
610104964Sjeff		ke->ke_state = KES_THREAD;
611104964Sjeff
612104964Sjeff		KASSERT((ke->ke_thread != NULL),
613104964Sjeff		    ("runq_choose: No thread on KSE"));
614104964Sjeff		KASSERT((ke->ke_thread->td_kse != NULL),
615104964Sjeff		    ("runq_choose: No KSE on thread"));
616104964Sjeff		KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
617104964Sjeff		    ("runq_choose: process swapped out"));
618104964Sjeff	}
619104964Sjeff	return (ke);
620104964Sjeff}
621104964Sjeff
622104964Sjeffvoid
623104964Sjeffsched_userret(struct thread *td)
624104964Sjeff{
625104964Sjeff	struct ksegrp *kg;
626104964Sjeff	/*
627104964Sjeff	 * XXX we cheat slightly on the locking here to avoid locking in
628104964Sjeff	 * the usual case.  Setting td_priority here is essentially an
629104964Sjeff	 * incomplete workaround for not setting it properly elsewhere.
630104964Sjeff	 * Now that some interrupt handlers are threads, not setting it
631104964Sjeff	 * properly elsewhere can clobber it in the window between setting
632104964Sjeff	 * it here and returning to user mode, so don't waste time setting
633104964Sjeff	 * it perfectly here.
634104964Sjeff	 */
635104964Sjeff	kg = td->td_ksegrp;
636104964Sjeff	if (td->td_priority != kg->kg_user_pri) {
637104964Sjeff		mtx_lock_spin(&sched_lock);
638104964Sjeff		td->td_priority = kg->kg_user_pri;
639104964Sjeff		mtx_unlock_spin(&sched_lock);
640104964Sjeff	}
641104964Sjeff}
642107126Sjeff
643107126Sjeffint
644107126Sjeffsched_sizeof_kse(void)
645107126Sjeff{
646109145Sjeff	return (sizeof(struct kse) + sizeof(struct ke_sched));
647107126Sjeff}
648107126Sjeffint
649107126Sjeffsched_sizeof_ksegrp(void)
650107126Sjeff{
651107126Sjeff	return (sizeof(struct ksegrp));
652107126Sjeff}
653107126Sjeffint
654107126Sjeffsched_sizeof_proc(void)
655107126Sjeff{
656107126Sjeff	return (sizeof(struct proc));
657107126Sjeff}
658107126Sjeffint
659107126Sjeffsched_sizeof_thread(void)
660107126Sjeff{
661107126Sjeff	return (sizeof(struct thread));
662107126Sjeff}
663107137Sjeff
664107137Sjefffixpt_t
665107137Sjeffsched_pctcpu(struct kse *ke)
666107137Sjeff{
667109157Sjeff	return (ke->ke_pctcpu);
668107137Sjeff}
669