sched_4bsd.c revision 105127
1104964Sjeff/*-
2104964Sjeff * Copyright (c) 1982, 1986, 1990, 1991, 1993
3104964Sjeff *	The Regents of the University of California.  All rights reserved.
4104964Sjeff * (c) UNIX System Laboratories, Inc.
5104964Sjeff * All or some portions of this file are derived from material licensed
6104964Sjeff * to the University of California by American Telephone and Telegraph
7104964Sjeff * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8104964Sjeff * the permission of UNIX System Laboratories, Inc.
9104964Sjeff *
10104964Sjeff * Redistribution and use in source and binary forms, with or without
11104964Sjeff * modification, are permitted provided that the following conditions
12104964Sjeff * are met:
13104964Sjeff * 1. Redistributions of source code must retain the above copyright
14104964Sjeff *    notice, this list of conditions and the following disclaimer.
15104964Sjeff * 2. Redistributions in binary form must reproduce the above copyright
16104964Sjeff *    notice, this list of conditions and the following disclaimer in the
17104964Sjeff *    documentation and/or other materials provided with the distribution.
18104964Sjeff * 3. All advertising materials mentioning features or use of this software
19104964Sjeff *    must display the following acknowledgement:
20104964Sjeff *	This product includes software developed by the University of
21104964Sjeff *	California, Berkeley and its contributors.
22104964Sjeff * 4. Neither the name of the University nor the names of its contributors
23104964Sjeff *    may be used to endorse or promote products derived from this software
24104964Sjeff *    without specific prior written permission.
25104964Sjeff *
26104964Sjeff * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27104964Sjeff * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28104964Sjeff * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29104964Sjeff * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30104964Sjeff * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31104964Sjeff * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32104964Sjeff * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33104964Sjeff * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34104964Sjeff * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35104964Sjeff * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36104964Sjeff * SUCH DAMAGE.
37104964Sjeff *
38104964Sjeff * $FreeBSD: head/sys/kern/sched_4bsd.c 105127 2002-10-14 20:34:31Z julian $
39104964Sjeff */
40104964Sjeff
41104964Sjeff#include <sys/param.h>
42104964Sjeff#include <sys/systm.h>
43104964Sjeff#include <sys/kernel.h>
44104964Sjeff#include <sys/ktr.h>
45104964Sjeff#include <sys/lock.h>
46104964Sjeff#include <sys/mutex.h>
47104964Sjeff#include <sys/proc.h>
48104964Sjeff#include <sys/resourcevar.h>
49104964Sjeff#include <sys/sched.h>
50104964Sjeff#include <sys/smp.h>
51104964Sjeff#include <sys/sysctl.h>
52104964Sjeff#include <sys/sx.h>
53104964Sjeff
54104964Sjeff
55104964Sjeffstatic int	sched_quantum;	/* Roundrobin scheduling quantum in ticks. */
56104964Sjeff#define	SCHED_QUANTUM	(hz / 10);	/* Default sched quantum */
57104964Sjeff
58104964Sjeffstatic struct callout schedcpu_callout;
59104964Sjeffstatic struct callout roundrobin_callout;
60104964Sjeff
61104964Sjeffstatic void	roundrobin(void *arg);
62104964Sjeffstatic void	schedcpu(void *arg);
63104964Sjeffstatic void	sched_setup(void *dummy);
64104964Sjeffstatic void	maybe_resched(struct thread *td);
65104964Sjeffstatic void	updatepri(struct ksegrp *kg);
66104964Sjeffstatic void	resetpriority(struct ksegrp *kg);
67104964Sjeff
68104964SjeffSYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
69104964Sjeff
70104964Sjeff/*
71104964Sjeff * Global run queue.
72104964Sjeff */
73104964Sjeffstatic struct runq runq;
74104964SjeffSYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)
75104964Sjeff
76104964Sjeffstatic int
77104964Sjeffsysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
78104964Sjeff{
79104964Sjeff	int error, new_val;
80104964Sjeff
81104964Sjeff	new_val = sched_quantum * tick;
82104964Sjeff	error = sysctl_handle_int(oidp, &new_val, 0, req);
83104964Sjeff        if (error != 0 || req->newptr == NULL)
84104964Sjeff		return (error);
85104964Sjeff	if (new_val < tick)
86104964Sjeff		return (EINVAL);
87104964Sjeff	sched_quantum = new_val / tick;
88104964Sjeff	hogticks = 2 * sched_quantum;
89104964Sjeff	return (0);
90104964Sjeff}
91104964Sjeff
92104964SjeffSYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
93104964Sjeff	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
94104964Sjeff	"Roundrobin scheduling quantum in microseconds");
95104964Sjeff
96104964Sjeff/*
97104964Sjeff * Arrange to reschedule if necessary, taking the priorities and
98104964Sjeff * schedulers into account.
99104964Sjeff */
100104964Sjeffstatic void
101104964Sjeffmaybe_resched(struct thread *td)
102104964Sjeff{
103104964Sjeff
104104964Sjeff	mtx_assert(&sched_lock, MA_OWNED);
105104964Sjeff	if (td->td_priority < curthread->td_priority)
106104964Sjeff		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
107104964Sjeff}
108104964Sjeff
109104964Sjeff/*
110104964Sjeff * Force switch among equal priority processes every 100ms.
111104964Sjeff * We don't actually need to force a context switch of the current process.
112104964Sjeff * The act of firing the event triggers a context switch to softclock() and
113104964Sjeff * then switching back out again which is equivalent to a preemption, thus
114104964Sjeff * no further work is needed on the local CPU.
115104964Sjeff */
116104964Sjeff/* ARGSUSED */
117104964Sjeffstatic void
118104964Sjeffroundrobin(void *arg)
119104964Sjeff{
120104964Sjeff
121104964Sjeff#ifdef SMP
122104964Sjeff	mtx_lock_spin(&sched_lock);
123104964Sjeff	forward_roundrobin();
124104964Sjeff	mtx_unlock_spin(&sched_lock);
125104964Sjeff#endif
126104964Sjeff
127104964Sjeff	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
128104964Sjeff}
129104964Sjeff
130104964Sjeff/*
131104964Sjeff * Constants for digital decay and forget:
132104964Sjeff *	90% of (p_estcpu) usage in 5 * loadav time
133104964Sjeff *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
134104964Sjeff *          Note that, as ps(1) mentions, this can let percentages
135104964Sjeff *          total over 100% (I've seen 137.9% for 3 processes).
136104964Sjeff *
137104964Sjeff * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
138104964Sjeff *
139104964Sjeff * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
140104964Sjeff * That is, the system wants to compute a value of decay such
141104964Sjeff * that the following for loop:
142104964Sjeff * 	for (i = 0; i < (5 * loadavg); i++)
143104964Sjeff * 		p_estcpu *= decay;
144104964Sjeff * will compute
145104964Sjeff * 	p_estcpu *= 0.1;
146104964Sjeff * for all values of loadavg:
147104964Sjeff *
148104964Sjeff * Mathematically this loop can be expressed by saying:
149104964Sjeff * 	decay ** (5 * loadavg) ~= .1
150104964Sjeff *
151104964Sjeff * The system computes decay as:
152104964Sjeff * 	decay = (2 * loadavg) / (2 * loadavg + 1)
153104964Sjeff *
154104964Sjeff * We wish to prove that the system's computation of decay
155104964Sjeff * will always fulfill the equation:
156104964Sjeff * 	decay ** (5 * loadavg) ~= .1
157104964Sjeff *
158104964Sjeff * If we compute b as:
159104964Sjeff * 	b = 2 * loadavg
160104964Sjeff * then
161104964Sjeff * 	decay = b / (b + 1)
162104964Sjeff *
163104964Sjeff * We now need to prove two things:
164104964Sjeff *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
165104964Sjeff *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
166104964Sjeff *
167104964Sjeff * Facts:
168104964Sjeff *         For x close to zero, exp(x) =~ 1 + x, since
169104964Sjeff *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
170104964Sjeff *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
171104964Sjeff *         For x close to zero, ln(1+x) =~ x, since
172104964Sjeff *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
173104964Sjeff *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
174104964Sjeff *         ln(.1) =~ -2.30
175104964Sjeff *
176104964Sjeff * Proof of (1):
177104964Sjeff *    Solve (factor)**(power) =~ .1 given power (5*loadav):
178104964Sjeff *	solving for factor,
179104964Sjeff *      ln(factor) =~ (-2.30/5*loadav), or
180104964Sjeff *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
181104964Sjeff *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
182104964Sjeff *
183104964Sjeff * Proof of (2):
184104964Sjeff *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
185104964Sjeff *	solving for power,
186104964Sjeff *      power*ln(b/(b+1)) =~ -2.30, or
187104964Sjeff *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
188104964Sjeff *
189104964Sjeff * Actual power values for the implemented algorithm are as follows:
190104964Sjeff *      loadav: 1       2       3       4
191104964Sjeff *      power:  5.68    10.32   14.94   19.55
192104964Sjeff */
193104964Sjeff
194104964Sjeff/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
195104964Sjeff#define	loadfactor(loadav)	(2 * (loadav))
196104964Sjeff#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
197104964Sjeff
198104964Sjeff/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
199104964Sjeffstatic fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
200104964SjeffSYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
201104964Sjeff
202104964Sjeff/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
203104964Sjeffstatic int	fscale __unused = FSCALE;
204104964SjeffSYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
205104964Sjeff
206104964Sjeff/*
207104964Sjeff * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
208104964Sjeff * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
209104964Sjeff * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
210104964Sjeff *
211104964Sjeff * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
212104964Sjeff *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
213104964Sjeff *
214104964Sjeff * If you don't want to bother with the faster/more-accurate formula, you
215104964Sjeff * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
216104964Sjeff * (more general) method of calculating the %age of CPU used by a process.
217104964Sjeff */
218104964Sjeff#define	CCPU_SHIFT	11
219104964Sjeff
220104964Sjeff/*
221104964Sjeff * Recompute process priorities, every hz ticks.
222104964Sjeff * MP-safe, called without the Giant mutex.
223104964Sjeff */
224104964Sjeff/* ARGSUSED */
225104964Sjeffstatic void
226104964Sjeffschedcpu(void *arg)
227104964Sjeff{
228104964Sjeff	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
229104964Sjeff	struct thread *td;
230104964Sjeff	struct proc *p;
231104964Sjeff	struct kse *ke;
232104964Sjeff	struct ksegrp *kg;
233104964Sjeff	int realstathz;
234104964Sjeff	int awake;
235104964Sjeff
236104964Sjeff	realstathz = stathz ? stathz : hz;
237104964Sjeff	sx_slock(&allproc_lock);
238104964Sjeff	FOREACH_PROC_IN_SYSTEM(p) {
239104964Sjeff		mtx_lock_spin(&sched_lock);
240104964Sjeff		p->p_swtime++;
241104964Sjeff		FOREACH_KSEGRP_IN_PROC(p, kg) {
242104964Sjeff			awake = 0;
243104964Sjeff			FOREACH_KSE_IN_GROUP(kg, ke) {
244104964Sjeff				/*
245104964Sjeff				 * Increment time in/out of memory and sleep
246104964Sjeff				 * time (if sleeping).  We ignore overflow;
247104964Sjeff				 * with 16-bit int's (remember them?)
248104964Sjeff				 * overflow takes 45 days.
249104964Sjeff				 */
250104964Sjeff				/*
251104964Sjeff				 * The kse slptimes are not touched in wakeup
252104964Sjeff				 * because the thread may not HAVE a KSE.
253104964Sjeff				 */
254104964Sjeff				if (ke->ke_state == KES_ONRUNQ) {
255104964Sjeff					awake = 1;
256104964Sjeff					ke->ke_flags &= ~KEF_DIDRUN;
257104964Sjeff				} else if ((ke->ke_state == KES_THREAD) &&
258104964Sjeff				    (TD_IS_RUNNING(ke->ke_thread))) {
259104964Sjeff					awake = 1;
260104964Sjeff					/* Do not clear KEF_DIDRUN */
261104964Sjeff				} else if (ke->ke_flags & KEF_DIDRUN) {
262104964Sjeff					awake = 1;
263104964Sjeff					ke->ke_flags &= ~KEF_DIDRUN;
264104964Sjeff				}
265104964Sjeff
266104964Sjeff				/*
267104964Sjeff				 * pctcpu is only for ps?
268104964Sjeff				 * Do it per kse.. and add them up at the end?
269104964Sjeff				 * XXXKSE
270104964Sjeff				 */
271104964Sjeff				ke->ke_pctcpu
272104964Sjeff				    = (ke->ke_pctcpu * ccpu) >> FSHIFT;
273104964Sjeff				/*
274104964Sjeff				 * If the kse has been idle the entire second,
275104964Sjeff				 * stop recalculating its priority until
276104964Sjeff				 * it wakes up.
277104964Sjeff				 */
278104964Sjeff				if (ke->ke_cpticks == 0)
279104964Sjeff					continue;
280104964Sjeff#if	(FSHIFT >= CCPU_SHIFT)
281104964Sjeff				ke->ke_pctcpu += (realstathz == 100) ?
282104964Sjeff				    ((fixpt_t) ke->ke_cpticks) <<
283104964Sjeff				    (FSHIFT - CCPU_SHIFT) :
284104964Sjeff				    100 * (((fixpt_t) ke->ke_cpticks) <<
285104964Sjeff				    (FSHIFT - CCPU_SHIFT)) / realstathz;
286104964Sjeff#else
287104964Sjeff				ke->ke_pctcpu += ((FSCALE - ccpu) *
288104964Sjeff				    (ke->ke_cpticks * FSCALE / realstathz)) >>
289104964Sjeff				    FSHIFT;
290104964Sjeff#endif
291104964Sjeff				ke->ke_cpticks = 0;
292104964Sjeff			} /* end of kse loop */
293104964Sjeff			/*
294104964Sjeff			 * If there are ANY running threads in this KSEGRP,
295104964Sjeff			 * then don't count it as sleeping.
296104964Sjeff			 */
297104964Sjeff			if (awake) {
298104964Sjeff				if (kg->kg_slptime > 1) {
299104964Sjeff					/*
300104964Sjeff					 * In an ideal world, this should not
301104964Sjeff					 * happen, because whoever woke us
302104964Sjeff					 * up from the long sleep should have
303104964Sjeff					 * unwound the slptime and reset our
304104964Sjeff					 * priority before we run at the stale
305104964Sjeff					 * priority.  Should KASSERT at some
306104964Sjeff					 * point when all the cases are fixed.
307104964Sjeff					 */
308104964Sjeff					updatepri(kg);
309104964Sjeff				}
310104964Sjeff				kg->kg_slptime = 0;
311104964Sjeff			} else {
312104964Sjeff				kg->kg_slptime++;
313104964Sjeff			}
314104964Sjeff			if (kg->kg_slptime > 1)
315104964Sjeff				continue;
316104964Sjeff			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
317104964Sjeff		      	resetpriority(kg);
318104964Sjeff			FOREACH_THREAD_IN_GROUP(kg, td) {
319104964Sjeff				if (td->td_priority >= PUSER) {
320105127Sjulian					sched_prio(td, kg->kg_user_pri);
321104964Sjeff				}
322104964Sjeff			}
323104964Sjeff		} /* end of ksegrp loop */
324104964Sjeff		mtx_unlock_spin(&sched_lock);
325104964Sjeff	} /* end of process loop */
326104964Sjeff	sx_sunlock(&allproc_lock);
327104964Sjeff	wakeup(&lbolt);
328104964Sjeff	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
329104964Sjeff}
330104964Sjeff
331104964Sjeff/*
332104964Sjeff * Recalculate the priority of a process after it has slept for a while.
333104964Sjeff * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
334104964Sjeff * least six times the loadfactor will decay p_estcpu to zero.
335104964Sjeff */
336104964Sjeffstatic void
337104964Sjeffupdatepri(struct ksegrp *kg)
338104964Sjeff{
339104964Sjeff	register unsigned int newcpu;
340104964Sjeff	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
341104964Sjeff
342104964Sjeff	newcpu = kg->kg_estcpu;
343104964Sjeff	if (kg->kg_slptime > 5 * loadfac)
344104964Sjeff		kg->kg_estcpu = 0;
345104964Sjeff	else {
346104964Sjeff		kg->kg_slptime--;	/* the first time was done in schedcpu */
347104964Sjeff		while (newcpu && --kg->kg_slptime)
348104964Sjeff			newcpu = decay_cpu(loadfac, newcpu);
349104964Sjeff		kg->kg_estcpu = newcpu;
350104964Sjeff	}
351104964Sjeff	resetpriority(kg);
352104964Sjeff}
353104964Sjeff
354104964Sjeff/*
355104964Sjeff * Compute the priority of a process when running in user mode.
356104964Sjeff * Arrange to reschedule if the resulting priority is better
357104964Sjeff * than that of the current process.
358104964Sjeff */
359104964Sjeffstatic void
360104964Sjeffresetpriority(struct ksegrp *kg)
361104964Sjeff{
362104964Sjeff	register unsigned int newpriority;
363104964Sjeff	struct thread *td;
364104964Sjeff
365104964Sjeff	mtx_lock_spin(&sched_lock);
366104964Sjeff	if (kg->kg_pri_class == PRI_TIMESHARE) {
367104964Sjeff		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
368104964Sjeff		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
369104964Sjeff		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
370104964Sjeff		    PRI_MAX_TIMESHARE);
371104964Sjeff		kg->kg_user_pri = newpriority;
372104964Sjeff	}
373104964Sjeff	FOREACH_THREAD_IN_GROUP(kg, td) {
374104964Sjeff		maybe_resched(td);			/* XXXKSE silly */
375104964Sjeff	}
376104964Sjeff	mtx_unlock_spin(&sched_lock);
377104964Sjeff}
378104964Sjeff
379104964Sjeff/* ARGSUSED */
380104964Sjeffstatic void
381104964Sjeffsched_setup(void *dummy)
382104964Sjeff{
383104964Sjeff	if (sched_quantum == 0)
384104964Sjeff		sched_quantum = SCHED_QUANTUM;
385104964Sjeff	hogticks = 2 * sched_quantum;
386104964Sjeff
387104964Sjeff	callout_init(&schedcpu_callout, 1);
388104964Sjeff	callout_init(&roundrobin_callout, 0);
389104964Sjeff
390104964Sjeff	/* Kick off timeout driven events by calling first time. */
391104964Sjeff	roundrobin(NULL);
392104964Sjeff	schedcpu(NULL);
393104964Sjeff}
394104964Sjeff
395104964Sjeff/* External interfaces start here */
396104964Sjeffint
397104964Sjeffsched_runnable(void)
398104964Sjeff{
399104964Sjeff        return runq_check(&runq);
400104964Sjeff}
401104964Sjeff
402104964Sjeffint
403104964Sjeffsched_rr_interval(void)
404104964Sjeff{
405104964Sjeff	if (sched_quantum == 0)
406104964Sjeff		sched_quantum = SCHED_QUANTUM;
407104964Sjeff	return (sched_quantum);
408104964Sjeff}
409104964Sjeff
410104964Sjeff/*
411104964Sjeff * We adjust the priority of the current process.  The priority of
412104964Sjeff * a process gets worse as it accumulates CPU time.  The cpu usage
413104964Sjeff * estimator (p_estcpu) is increased here.  resetpriority() will
414104964Sjeff * compute a different priority each time p_estcpu increases by
415104964Sjeff * INVERSE_ESTCPU_WEIGHT
416104964Sjeff * (until MAXPRI is reached).  The cpu usage estimator ramps up
417104964Sjeff * quite quickly when the process is running (linearly), and decays
418104964Sjeff * away exponentially, at a rate which is proportionally slower when
419104964Sjeff * the system is busy.  The basic principle is that the system will
420104964Sjeff * 90% forget that the process used a lot of CPU time in 5 * loadav
421104964Sjeff * seconds.  This causes the system to favor processes which haven't
422104964Sjeff * run much recently, and to round-robin among other processes.
423104964Sjeff */
424104964Sjeffvoid
425104964Sjeffsched_clock(struct thread *td)
426104964Sjeff{
427104964Sjeff	struct kse *ke;
428104964Sjeff	struct ksegrp *kg;
429104964Sjeff
430104964Sjeff	KASSERT((td != NULL), ("schedclock: null thread pointer"));
431104964Sjeff	ke = td->td_kse;
432104964Sjeff	kg = td->td_ksegrp;
433104964Sjeff	ke->ke_cpticks++;
434104964Sjeff	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
435104964Sjeff	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
436104964Sjeff		resetpriority(kg);
437104964Sjeff		if (td->td_priority >= PUSER)
438104964Sjeff			td->td_priority = kg->kg_user_pri;
439104964Sjeff	}
440104964Sjeff}
441104964Sjeff/*
442104964Sjeff * charge childs scheduling cpu usage to parent.
443104964Sjeff *
444104964Sjeff * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp.
445104964Sjeff * Charge it to the ksegrp that did the wait since process estcpu is sum of
446104964Sjeff * all ksegrps, this is strictly as expected.  Assume that the child process
447104964Sjeff * aggregated all the estcpu into the 'built-in' ksegrp.
448104964Sjeff */
449104964Sjeffvoid
450104964Sjeffsched_exit(struct ksegrp *kg, struct ksegrp *child)
451104964Sjeff{
452104964Sjeff	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu);
453104964Sjeff}
454104964Sjeff
455104964Sjeffvoid
456104964Sjeffsched_fork(struct ksegrp *kg, struct ksegrp *child)
457104964Sjeff{
458104964Sjeff	/*
459104964Sjeff	 * set priority of child to be that of parent.
460104964Sjeff	 * XXXKSE this needs redefining..
461104964Sjeff	 */
462104964Sjeff	child->kg_estcpu = kg->kg_estcpu;
463104964Sjeff}
464104964Sjeff
465104964Sjeffvoid
466104964Sjeffsched_nice(struct ksegrp *kg, int nice)
467104964Sjeff{
468104964Sjeff	kg->kg_nice = nice;
469104964Sjeff	resetpriority(kg);
470104964Sjeff}
471104964Sjeff
472105127Sjulian/*
473105127Sjulian * Adjust the priority of a thread.
474105127Sjulian * This may include moving the thread within the KSEGRP,
475105127Sjulian * changing the assignment of a kse to the thread,
476105127Sjulian * and moving a KSE in the system run queue.
477105127Sjulian */
478104964Sjeffvoid
479104964Sjeffsched_prio(struct thread *td, u_char prio)
480104964Sjeff{
481104964Sjeff
482104964Sjeff	if (TD_ON_RUNQ(td)) {
483105127Sjulian		adjustrunqueue(td, prio);
484105127Sjulian	} else {
485105127Sjulian		td->td_priority = prio;
486104964Sjeff	}
487104964Sjeff}
488104964Sjeff
489104964Sjeffvoid
490104964Sjeffsched_sleep(struct thread *td, u_char prio)
491104964Sjeff{
492104964Sjeff	td->td_ksegrp->kg_slptime = 0;
493104964Sjeff	td->td_priority = prio;
494104964Sjeff}
495104964Sjeff
496104964Sjeffvoid
497104964Sjeffsched_switchin(struct thread *td)
498104964Sjeff{
499104964Sjeff	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
500104964Sjeff}
501104964Sjeff
502104964Sjeffvoid
503104964Sjeffsched_switchout(struct thread *td)
504104964Sjeff{
505104964Sjeff	struct kse *ke;
506104964Sjeff	struct proc *p;
507104964Sjeff
508104964Sjeff	ke = td->td_kse;
509104964Sjeff	p = td->td_proc;
510104964Sjeff
511104964Sjeff	KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
512104964Sjeff
513104964Sjeff	td->td_lastcpu = ke->ke_oncpu;
514105127Sjulian	td->td_last_kse = ke;
515104964Sjeff	ke->ke_oncpu = NOCPU;
516104964Sjeff	ke->ke_flags &= ~KEF_NEEDRESCHED;
517104964Sjeff	/*
518104964Sjeff	 * At the last moment, if this thread is still marked RUNNING,
519104964Sjeff	 * then put it back on the run queue as it has not been suspended
520104964Sjeff	 * or stopped or any thing else similar.
521104964Sjeff	 */
522104964Sjeff	if (TD_IS_RUNNING(td)) {
523104964Sjeff		/* Put us back on the run queue (kse and all). */
524104964Sjeff		setrunqueue(td);
525104964Sjeff	} else if (p->p_flag & P_KSES) {
526104964Sjeff		/*
527104964Sjeff		 * We will not be on the run queue. So we must be
528104964Sjeff		 * sleeping or similar. As it's available,
529104964Sjeff		 * someone else can use the KSE if they need it.
530104964Sjeff		 * (If bound LOANING can still occur).
531104964Sjeff		 */
532104964Sjeff		kse_reassign(ke);
533104964Sjeff	}
534104964Sjeff}
535104964Sjeff
536104964Sjeffvoid
537104964Sjeffsched_wakeup(struct thread *td)
538104964Sjeff{
539104964Sjeff	struct ksegrp *kg;
540104964Sjeff
541104964Sjeff	kg = td->td_ksegrp;
542104964Sjeff	if (kg->kg_slptime > 1)
543104964Sjeff		updatepri(kg);
544104964Sjeff	kg->kg_slptime = 0;
545104964Sjeff	setrunqueue(td);
546104964Sjeff	maybe_resched(td);
547104964Sjeff}
548104964Sjeff
549104964Sjeffvoid
550104964Sjeffsched_add(struct kse *ke)
551104964Sjeff{
552104964Sjeff	mtx_assert(&sched_lock, MA_OWNED);
553104964Sjeff	KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
554104964Sjeff	KASSERT((ke->ke_thread->td_kse != NULL),
555104964Sjeff	    ("runq_add: No KSE on thread"));
556104964Sjeff	KASSERT(ke->ke_state != KES_ONRUNQ,
557104964Sjeff	    ("runq_add: kse %p (%s) already in run queue", ke,
558104964Sjeff	    ke->ke_proc->p_comm));
559104964Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
560104964Sjeff	    ("runq_add: process swapped out"));
561104964Sjeff	ke->ke_ksegrp->kg_runq_kses++;
562104964Sjeff	ke->ke_state = KES_ONRUNQ;
563104964Sjeff
564104964Sjeff	runq_add(&runq, ke);
565104964Sjeff}
566104964Sjeff
567104964Sjeffvoid
568104964Sjeffsched_rem(struct kse *ke)
569104964Sjeff{
570104964Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
571104964Sjeff	    ("runq_remove: process swapped out"));
572104964Sjeff	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
573104964Sjeff	mtx_assert(&sched_lock, MA_OWNED);
574104964Sjeff
575104964Sjeff	runq_remove(&runq, ke);
576104964Sjeff	ke->ke_state = KES_THREAD;
577104964Sjeff	ke->ke_ksegrp->kg_runq_kses--;
578104964Sjeff}
579104964Sjeff
580104964Sjeffstruct kse *
581104964Sjeffsched_choose(void)
582104964Sjeff{
583104964Sjeff	struct kse *ke;
584104964Sjeff
585104964Sjeff	ke = runq_choose(&runq);
586104964Sjeff
587104964Sjeff	if (ke != NULL) {
588104964Sjeff		runq_remove(&runq, ke);
589104964Sjeff		ke->ke_state = KES_THREAD;
590104964Sjeff
591104964Sjeff		KASSERT((ke->ke_thread != NULL),
592104964Sjeff		    ("runq_choose: No thread on KSE"));
593104964Sjeff		KASSERT((ke->ke_thread->td_kse != NULL),
594104964Sjeff		    ("runq_choose: No KSE on thread"));
595104964Sjeff		KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
596104964Sjeff		    ("runq_choose: process swapped out"));
597104964Sjeff	}
598104964Sjeff	return (ke);
599104964Sjeff}
600104964Sjeff
601104964Sjeffvoid
602104964Sjeffsched_userret(struct thread *td)
603104964Sjeff{
604104964Sjeff	struct ksegrp *kg;
605104964Sjeff	/*
606104964Sjeff	 * XXX we cheat slightly on the locking here to avoid locking in
607104964Sjeff	 * the usual case.  Setting td_priority here is essentially an
608104964Sjeff	 * incomplete workaround for not setting it properly elsewhere.
609104964Sjeff	 * Now that some interrupt handlers are threads, not setting it
610104964Sjeff	 * properly elsewhere can clobber it in the window between setting
611104964Sjeff	 * it here and returning to user mode, so don't waste time setting
612104964Sjeff	 * it perfectly here.
613104964Sjeff	 */
614104964Sjeff	kg = td->td_ksegrp;
615104964Sjeff	if (td->td_priority != kg->kg_user_pri) {
616104964Sjeff		mtx_lock_spin(&sched_lock);
617104964Sjeff		td->td_priority = kg->kg_user_pri;
618104964Sjeff		mtx_unlock_spin(&sched_lock);
619104964Sjeff	}
620104964Sjeff}
621