kern_sx.c revision 179025
1/*-
2 * Copyright (c) 2007 Attilio Rao <attilio@freebsd.org>
3 * Copyright (c) 2001 Jason Evans <jasone@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice(s), this list of conditions and the following disclaimer as
11 *    the first lines of this file unmodified other than the possible
12 *    addition of one or more copyright notices.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice(s), this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
24 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
27 * DAMAGE.
28 */
29
30/*
31 * Shared/exclusive locks.  This implementation attempts to ensure
32 * deterministic lock granting behavior, so that slocks and xlocks are
33 * interleaved.
34 *
35 * Priority propagation will not generally raise the priority of lock holders,
36 * so should not be relied upon in combination with sx locks.
37 */
38
39#include "opt_adaptive_sx.h"
40#include "opt_ddb.h"
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: head/sys/kern/kern_sx.c 179025 2008-05-15 20:10:06Z attilio $");
44
45#include <sys/param.h>
46#include <sys/ktr.h>
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/sleepqueue.h>
51#include <sys/sx.h>
52#include <sys/systm.h>
53
54#ifdef ADAPTIVE_SX
55#include <machine/cpu.h>
56#endif
57
58#ifdef DDB
59#include <ddb/ddb.h>
60#endif
61
62#if !defined(SMP) && defined(ADAPTIVE_SX)
63#error "You must have SMP to enable the ADAPTIVE_SX option"
64#endif
65
66CTASSERT(((SX_ADAPTIVESPIN | SX_RECURSE) & LO_CLASSFLAGS) ==
67    (SX_ADAPTIVESPIN | SX_RECURSE));
68
69/* Handy macros for sleep queues. */
70#define	SQ_EXCLUSIVE_QUEUE	0
71#define	SQ_SHARED_QUEUE		1
72
73/*
74 * Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file.  We
75 * drop Giant anytime we have to sleep or if we adaptively spin.
76 */
77#define	GIANT_DECLARE							\
78	int _giantcnt = 0;						\
79	WITNESS_SAVE_DECL(Giant)					\
80
81#define	GIANT_SAVE() do {						\
82	if (mtx_owned(&Giant)) {					\
83		WITNESS_SAVE(&Giant.lock_object, Giant);		\
84		while (mtx_owned(&Giant)) {				\
85			_giantcnt++;					\
86			mtx_unlock(&Giant);				\
87		}							\
88	}								\
89} while (0)
90
91#define GIANT_RESTORE() do {						\
92	if (_giantcnt > 0) {						\
93		mtx_assert(&Giant, MA_NOTOWNED);			\
94		while (_giantcnt--)					\
95			mtx_lock(&Giant);				\
96		WITNESS_RESTORE(&Giant.lock_object, Giant);		\
97	}								\
98} while (0)
99
100/*
101 * Returns true if an exclusive lock is recursed.  It assumes
102 * curthread currently has an exclusive lock.
103 */
104#define	sx_recurse		lock_object.lo_data
105#define	sx_recursed(sx)		((sx)->sx_recurse != 0)
106
107static void	assert_sx(struct lock_object *lock, int what);
108#ifdef DDB
109static void	db_show_sx(struct lock_object *lock);
110#endif
111static void	lock_sx(struct lock_object *lock, int how);
112static int	unlock_sx(struct lock_object *lock);
113
114struct lock_class lock_class_sx = {
115	.lc_name = "sx",
116	.lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE,
117	.lc_assert = assert_sx,
118#ifdef DDB
119	.lc_ddb_show = db_show_sx,
120#endif
121	.lc_lock = lock_sx,
122	.lc_unlock = unlock_sx,
123};
124
125#ifndef INVARIANTS
126#define	_sx_assert(sx, what, file, line)
127#endif
128
129void
130assert_sx(struct lock_object *lock, int what)
131{
132
133	sx_assert((struct sx *)lock, what);
134}
135
136void
137lock_sx(struct lock_object *lock, int how)
138{
139	struct sx *sx;
140
141	sx = (struct sx *)lock;
142	if (how)
143		sx_xlock(sx);
144	else
145		sx_slock(sx);
146}
147
148int
149unlock_sx(struct lock_object *lock)
150{
151	struct sx *sx;
152
153	sx = (struct sx *)lock;
154	sx_assert(sx, SA_LOCKED | SA_NOTRECURSED);
155	if (sx_xlocked(sx)) {
156		sx_xunlock(sx);
157		return (1);
158	} else {
159		sx_sunlock(sx);
160		return (0);
161	}
162}
163
164void
165sx_sysinit(void *arg)
166{
167	struct sx_args *sargs = arg;
168
169	sx_init(sargs->sa_sx, sargs->sa_desc);
170}
171
172void
173sx_init_flags(struct sx *sx, const char *description, int opts)
174{
175	int flags;
176
177	MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK |
178	    SX_NOPROFILE | SX_ADAPTIVESPIN)) == 0);
179
180	flags = LO_RECURSABLE | LO_SLEEPABLE | LO_UPGRADABLE;
181	if (opts & SX_DUPOK)
182		flags |= LO_DUPOK;
183	if (opts & SX_NOPROFILE)
184		flags |= LO_NOPROFILE;
185	if (!(opts & SX_NOWITNESS))
186		flags |= LO_WITNESS;
187	if (opts & SX_QUIET)
188		flags |= LO_QUIET;
189
190	flags |= opts & (SX_ADAPTIVESPIN | SX_RECURSE);
191	sx->sx_lock = SX_LOCK_UNLOCKED;
192	sx->sx_recurse = 0;
193	lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags);
194}
195
196void
197sx_destroy(struct sx *sx)
198{
199
200	KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held"));
201	KASSERT(sx->sx_recurse == 0, ("sx lock still recursed"));
202	sx->sx_lock = SX_LOCK_DESTROYED;
203	lock_destroy(&sx->lock_object);
204}
205
206int
207_sx_slock(struct sx *sx, int opts, const char *file, int line)
208{
209	int error = 0;
210
211	MPASS(curthread != NULL);
212	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
213	    ("sx_slock() of destroyed sx @ %s:%d", file, line));
214	WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line);
215	error = __sx_slock(sx, opts, file, line);
216	if (!error) {
217		LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line);
218		WITNESS_LOCK(&sx->lock_object, 0, file, line);
219		curthread->td_locks++;
220	}
221
222	return (error);
223}
224
225int
226_sx_try_slock(struct sx *sx, const char *file, int line)
227{
228	uintptr_t x;
229
230	for (;;) {
231		x = sx->sx_lock;
232		KASSERT(x != SX_LOCK_DESTROYED,
233		    ("sx_try_slock() of destroyed sx @ %s:%d", file, line));
234		if (!(x & SX_LOCK_SHARED))
235			break;
236		if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, x + SX_ONE_SHARER)) {
237			LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line);
238			WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line);
239			curthread->td_locks++;
240			return (1);
241		}
242	}
243
244	LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line);
245	return (0);
246}
247
248int
249_sx_xlock(struct sx *sx, int opts, const char *file, int line)
250{
251	int error = 0;
252
253	MPASS(curthread != NULL);
254	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
255	    ("sx_xlock() of destroyed sx @ %s:%d", file, line));
256	WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file,
257	    line);
258	error = __sx_xlock(sx, curthread, opts, file, line);
259	if (!error) {
260		LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse,
261		    file, line);
262		WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line);
263		curthread->td_locks++;
264	}
265
266	return (error);
267}
268
269int
270_sx_try_xlock(struct sx *sx, const char *file, int line)
271{
272	int rval;
273
274	MPASS(curthread != NULL);
275	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
276	    ("sx_try_xlock() of destroyed sx @ %s:%d", file, line));
277
278	if (sx_xlocked(sx) && (sx->lock_object.lo_flags & SX_RECURSE) != 0) {
279		sx->sx_recurse++;
280		atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
281		rval = 1;
282	} else
283		rval = atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED,
284		    (uintptr_t)curthread);
285	LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line);
286	if (rval) {
287		WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
288		    file, line);
289		curthread->td_locks++;
290	}
291
292	return (rval);
293}
294
295void
296_sx_sunlock(struct sx *sx, const char *file, int line)
297{
298
299	MPASS(curthread != NULL);
300	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
301	    ("sx_sunlock() of destroyed sx @ %s:%d", file, line));
302	_sx_assert(sx, SA_SLOCKED, file, line);
303	curthread->td_locks--;
304	WITNESS_UNLOCK(&sx->lock_object, 0, file, line);
305	LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line);
306	__sx_sunlock(sx, file, line);
307	lock_profile_release_lock(&sx->lock_object);
308}
309
310void
311_sx_xunlock(struct sx *sx, const char *file, int line)
312{
313
314	MPASS(curthread != NULL);
315	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
316	    ("sx_xunlock() of destroyed sx @ %s:%d", file, line));
317	_sx_assert(sx, SA_XLOCKED, file, line);
318	curthread->td_locks--;
319	WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line);
320	LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file,
321	    line);
322	if (!sx_recursed(sx))
323		lock_profile_release_lock(&sx->lock_object);
324	__sx_xunlock(sx, curthread, file, line);
325}
326
327/*
328 * Try to do a non-blocking upgrade from a shared lock to an exclusive lock.
329 * This will only succeed if this thread holds a single shared lock.
330 * Return 1 if if the upgrade succeed, 0 otherwise.
331 */
332int
333_sx_try_upgrade(struct sx *sx, const char *file, int line)
334{
335	uintptr_t x;
336	int success;
337
338	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
339	    ("sx_try_upgrade() of destroyed sx @ %s:%d", file, line));
340	_sx_assert(sx, SA_SLOCKED, file, line);
341
342	/*
343	 * Try to switch from one shared lock to an exclusive lock.  We need
344	 * to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that
345	 * we will wake up the exclusive waiters when we drop the lock.
346	 */
347	x = sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS;
348	success = atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | x,
349	    (uintptr_t)curthread | x);
350	LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line);
351	if (success)
352		WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
353		    file, line);
354	return (success);
355}
356
357/*
358 * Downgrade an unrecursed exclusive lock into a single shared lock.
359 */
360void
361_sx_downgrade(struct sx *sx, const char *file, int line)
362{
363	uintptr_t x;
364
365	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
366	    ("sx_downgrade() of destroyed sx @ %s:%d", file, line));
367	_sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line);
368#ifndef INVARIANTS
369	if (sx_recursed(sx))
370		panic("downgrade of a recursed lock");
371#endif
372
373	WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line);
374
375	/*
376	 * Try to switch from an exclusive lock with no shared waiters
377	 * to one sharer with no shared waiters.  If there are
378	 * exclusive waiters, we don't need to lock the sleep queue so
379	 * long as we preserve the flag.  We do one quick try and if
380	 * that fails we grab the sleepq lock to keep the flags from
381	 * changing and do it the slow way.
382	 *
383	 * We have to lock the sleep queue if there are shared waiters
384	 * so we can wake them up.
385	 */
386	x = sx->sx_lock;
387	if (!(x & SX_LOCK_SHARED_WAITERS) &&
388	    atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) |
389	    (x & SX_LOCK_EXCLUSIVE_WAITERS))) {
390		LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
391		return;
392	}
393
394	/*
395	 * Lock the sleep queue so we can read the waiters bits
396	 * without any races and wakeup any shared waiters.
397	 */
398	sleepq_lock(&sx->lock_object);
399
400	/*
401	 * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single
402	 * shared lock.  If there are any shared waiters, wake them up.
403	 */
404	x = sx->sx_lock;
405	atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) |
406	    (x & SX_LOCK_EXCLUSIVE_WAITERS));
407	if (x & SX_LOCK_SHARED_WAITERS)
408		sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0,
409		    SQ_SHARED_QUEUE);
410	sleepq_release(&sx->lock_object);
411
412	LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
413}
414
415/*
416 * This function represents the so-called 'hard case' for sx_xlock
417 * operation.  All 'easy case' failures are redirected to this.  Note
418 * that ideally this would be a static function, but it needs to be
419 * accessible from at least sx.h.
420 */
421int
422_sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file,
423    int line)
424{
425	GIANT_DECLARE;
426#ifdef ADAPTIVE_SX
427	volatile struct thread *owner;
428#endif
429	uint64_t waittime = 0;
430	uintptr_t x;
431	int contested = 0, error = 0;
432
433	/* If we already hold an exclusive lock, then recurse. */
434	if (sx_xlocked(sx)) {
435		KASSERT((sx->lock_object.lo_flags & SX_RECURSE) != 0,
436	    ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n",
437		    sx->lock_object.lo_name, file, line));
438		sx->sx_recurse++;
439		atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
440		if (LOCK_LOG_TEST(&sx->lock_object, 0))
441			CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx);
442		return (0);
443	}
444
445	if (LOCK_LOG_TEST(&sx->lock_object, 0))
446		CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__,
447		    sx->lock_object.lo_name, (void *)sx->sx_lock, file, line);
448
449	while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) {
450		lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
451		    &waittime);
452#ifdef ADAPTIVE_SX
453		/*
454		 * If the lock is write locked and the owner is
455		 * running on another CPU, spin until the owner stops
456		 * running or the state of the lock changes.
457		 */
458		x = sx->sx_lock;
459		if (!(x & SX_LOCK_SHARED) &&
460		    (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) {
461			x = SX_OWNER(x);
462			owner = (struct thread *)x;
463			if (TD_IS_RUNNING(owner)) {
464				if (LOCK_LOG_TEST(&sx->lock_object, 0))
465					CTR3(KTR_LOCK,
466					    "%s: spinning on %p held by %p",
467					    __func__, sx, owner);
468				GIANT_SAVE();
469				while (SX_OWNER(sx->sx_lock) == x &&
470				    TD_IS_RUNNING(owner))
471					cpu_spinwait();
472				continue;
473			}
474		}
475#endif
476
477		sleepq_lock(&sx->lock_object);
478		x = sx->sx_lock;
479
480		/*
481		 * If the lock was released while spinning on the
482		 * sleep queue chain lock, try again.
483		 */
484		if (x == SX_LOCK_UNLOCKED) {
485			sleepq_release(&sx->lock_object);
486			continue;
487		}
488
489#ifdef ADAPTIVE_SX
490		/*
491		 * The current lock owner might have started executing
492		 * on another CPU (or the lock could have changed
493		 * owners) while we were waiting on the sleep queue
494		 * chain lock.  If so, drop the sleep queue lock and try
495		 * again.
496		 */
497		if (!(x & SX_LOCK_SHARED) &&
498		    (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) {
499			owner = (struct thread *)SX_OWNER(x);
500			if (TD_IS_RUNNING(owner)) {
501				sleepq_release(&sx->lock_object);
502				continue;
503			}
504		}
505#endif
506
507		/*
508		 * If an exclusive lock was released with both shared
509		 * and exclusive waiters and a shared waiter hasn't
510		 * woken up and acquired the lock yet, sx_lock will be
511		 * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS.
512		 * If we see that value, try to acquire it once.  Note
513		 * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS
514		 * as there are other exclusive waiters still.  If we
515		 * fail, restart the loop.
516		 */
517		if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) {
518			if (atomic_cmpset_acq_ptr(&sx->sx_lock,
519			    SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS,
520			    tid | SX_LOCK_EXCLUSIVE_WAITERS)) {
521				sleepq_release(&sx->lock_object);
522				CTR2(KTR_LOCK, "%s: %p claimed by new writer",
523				    __func__, sx);
524				break;
525			}
526			sleepq_release(&sx->lock_object);
527			continue;
528		}
529
530		/*
531		 * Try to set the SX_LOCK_EXCLUSIVE_WAITERS.  If we fail,
532		 * than loop back and retry.
533		 */
534		if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
535			if (!atomic_cmpset_ptr(&sx->sx_lock, x,
536			    x | SX_LOCK_EXCLUSIVE_WAITERS)) {
537				sleepq_release(&sx->lock_object);
538				continue;
539			}
540			if (LOCK_LOG_TEST(&sx->lock_object, 0))
541				CTR2(KTR_LOCK, "%s: %p set excl waiters flag",
542				    __func__, sx);
543		}
544
545		/*
546		 * Since we have been unable to acquire the exclusive
547		 * lock and the exclusive waiters flag is set, we have
548		 * to sleep.
549		 */
550		if (LOCK_LOG_TEST(&sx->lock_object, 0))
551			CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
552			    __func__, sx);
553
554		GIANT_SAVE();
555		sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
556		    SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
557		    SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE);
558		if (!(opts & SX_INTERRUPTIBLE))
559			sleepq_wait(&sx->lock_object, 0);
560		else
561			error = sleepq_wait_sig(&sx->lock_object, 0);
562
563		if (error) {
564			if (LOCK_LOG_TEST(&sx->lock_object, 0))
565				CTR2(KTR_LOCK,
566			"%s: interruptible sleep by %p suspended by signal",
567				    __func__, sx);
568			break;
569		}
570		if (LOCK_LOG_TEST(&sx->lock_object, 0))
571			CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
572			    __func__, sx);
573	}
574
575	GIANT_RESTORE();
576	if (!error)
577		lock_profile_obtain_lock_success(&sx->lock_object, contested,
578		    waittime, file, line);
579	return (error);
580}
581
582/*
583 * This function represents the so-called 'hard case' for sx_xunlock
584 * operation.  All 'easy case' failures are redirected to this.  Note
585 * that ideally this would be a static function, but it needs to be
586 * accessible from at least sx.h.
587 */
588void
589_sx_xunlock_hard(struct sx *sx, uintptr_t tid, const char *file, int line)
590{
591	uintptr_t x;
592	int queue;
593
594	MPASS(!(sx->sx_lock & SX_LOCK_SHARED));
595
596	/* If the lock is recursed, then unrecurse one level. */
597	if (sx_xlocked(sx) && sx_recursed(sx)) {
598		if ((--sx->sx_recurse) == 0)
599			atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
600		if (LOCK_LOG_TEST(&sx->lock_object, 0))
601			CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx);
602		return;
603	}
604	MPASS(sx->sx_lock & (SX_LOCK_SHARED_WAITERS |
605	    SX_LOCK_EXCLUSIVE_WAITERS));
606	if (LOCK_LOG_TEST(&sx->lock_object, 0))
607		CTR2(KTR_LOCK, "%s: %p contested", __func__, sx);
608
609	sleepq_lock(&sx->lock_object);
610	x = SX_LOCK_UNLOCKED;
611
612	/*
613	 * The wake up algorithm here is quite simple and probably not
614	 * ideal.  It gives precedence to shared waiters if they are
615	 * present.  For this condition, we have to preserve the
616	 * state of the exclusive waiters flag.
617	 */
618	if (sx->sx_lock & SX_LOCK_SHARED_WAITERS) {
619		queue = SQ_SHARED_QUEUE;
620		x |= (sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS);
621	} else
622		queue = SQ_EXCLUSIVE_QUEUE;
623
624	/* Wake up all the waiters for the specific queue. */
625	if (LOCK_LOG_TEST(&sx->lock_object, 0))
626		CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue",
627		    __func__, sx, queue == SQ_SHARED_QUEUE ? "shared" :
628		    "exclusive");
629	atomic_store_rel_ptr(&sx->sx_lock, x);
630	sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0, queue);
631	sleepq_release(&sx->lock_object);
632}
633
634/*
635 * This function represents the so-called 'hard case' for sx_slock
636 * operation.  All 'easy case' failures are redirected to this.  Note
637 * that ideally this would be a static function, but it needs to be
638 * accessible from at least sx.h.
639 */
640int
641_sx_slock_hard(struct sx *sx, int opts, const char *file, int line)
642{
643	GIANT_DECLARE;
644#ifdef ADAPTIVE_SX
645	volatile struct thread *owner;
646#endif
647	uint64_t waittime = 0;
648	int contested = 0;
649	uintptr_t x;
650	int error = 0;
651
652	/*
653	 * As with rwlocks, we don't make any attempt to try to block
654	 * shared locks once there is an exclusive waiter.
655	 */
656	for (;;) {
657		x = sx->sx_lock;
658
659		/*
660		 * If no other thread has an exclusive lock then try to bump up
661		 * the count of sharers.  Since we have to preserve the state
662		 * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the
663		 * shared lock loop back and retry.
664		 */
665		if (x & SX_LOCK_SHARED) {
666			MPASS(!(x & SX_LOCK_SHARED_WAITERS));
667			if (atomic_cmpset_acq_ptr(&sx->sx_lock, x,
668			    x + SX_ONE_SHARER)) {
669				if (LOCK_LOG_TEST(&sx->lock_object, 0))
670					CTR4(KTR_LOCK,
671					    "%s: %p succeed %p -> %p", __func__,
672					    sx, (void *)x,
673					    (void *)(x + SX_ONE_SHARER));
674				break;
675			}
676			continue;
677		}
678		lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
679		    &waittime);
680
681#ifdef ADAPTIVE_SX
682		/*
683		 * If the owner is running on another CPU, spin until
684		 * the owner stops running or the state of the lock
685		 * changes.
686		 */
687		if (sx->lock_object.lo_flags & SX_ADAPTIVESPIN) {
688			x = SX_OWNER(x);
689			owner = (struct thread *)x;
690			if (TD_IS_RUNNING(owner)) {
691				if (LOCK_LOG_TEST(&sx->lock_object, 0))
692					CTR3(KTR_LOCK,
693					    "%s: spinning on %p held by %p",
694					    __func__, sx, owner);
695				GIANT_SAVE();
696				while (SX_OWNER(sx->sx_lock) == x &&
697				    TD_IS_RUNNING(owner))
698					cpu_spinwait();
699				continue;
700			}
701		}
702#endif
703
704		/*
705		 * Some other thread already has an exclusive lock, so
706		 * start the process of blocking.
707		 */
708		sleepq_lock(&sx->lock_object);
709		x = sx->sx_lock;
710
711		/*
712		 * The lock could have been released while we spun.
713		 * In this case loop back and retry.
714		 */
715		if (x & SX_LOCK_SHARED) {
716			sleepq_release(&sx->lock_object);
717			continue;
718		}
719
720#ifdef ADAPTIVE_SX
721		/*
722		 * If the owner is running on another CPU, spin until
723		 * the owner stops running or the state of the lock
724		 * changes.
725		 */
726		if (!(x & SX_LOCK_SHARED) &&
727		    (sx->lock_object.lo_flags & SX_ADAPTIVESPIN)) {
728			owner = (struct thread *)SX_OWNER(x);
729			if (TD_IS_RUNNING(owner)) {
730				sleepq_release(&sx->lock_object);
731				continue;
732			}
733		}
734#endif
735
736		/*
737		 * Try to set the SX_LOCK_SHARED_WAITERS flag.  If we
738		 * fail to set it drop the sleep queue lock and loop
739		 * back.
740		 */
741		if (!(x & SX_LOCK_SHARED_WAITERS)) {
742			if (!atomic_cmpset_ptr(&sx->sx_lock, x,
743			    x | SX_LOCK_SHARED_WAITERS)) {
744				sleepq_release(&sx->lock_object);
745				continue;
746			}
747			if (LOCK_LOG_TEST(&sx->lock_object, 0))
748				CTR2(KTR_LOCK, "%s: %p set shared waiters flag",
749				    __func__, sx);
750		}
751
752		/*
753		 * Since we have been unable to acquire the shared lock,
754		 * we have to sleep.
755		 */
756		if (LOCK_LOG_TEST(&sx->lock_object, 0))
757			CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
758			    __func__, sx);
759
760		GIANT_SAVE();
761		sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
762		    SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
763		    SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE);
764		if (!(opts & SX_INTERRUPTIBLE))
765			sleepq_wait(&sx->lock_object, 0);
766		else
767			error = sleepq_wait_sig(&sx->lock_object, 0);
768
769		if (error) {
770			if (LOCK_LOG_TEST(&sx->lock_object, 0))
771				CTR2(KTR_LOCK,
772			"%s: interruptible sleep by %p suspended by signal",
773				    __func__, sx);
774			break;
775		}
776		if (LOCK_LOG_TEST(&sx->lock_object, 0))
777			CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
778			    __func__, sx);
779	}
780	if (error == 0)
781		lock_profile_obtain_lock_success(&sx->lock_object, contested,
782		    waittime, file, line);
783
784	GIANT_RESTORE();
785	return (error);
786}
787
788/*
789 * This function represents the so-called 'hard case' for sx_sunlock
790 * operation.  All 'easy case' failures are redirected to this.  Note
791 * that ideally this would be a static function, but it needs to be
792 * accessible from at least sx.h.
793 */
794void
795_sx_sunlock_hard(struct sx *sx, const char *file, int line)
796{
797	uintptr_t x;
798
799	for (;;) {
800		x = sx->sx_lock;
801
802		/*
803		 * We should never have sharers while at least one thread
804		 * holds a shared lock.
805		 */
806		KASSERT(!(x & SX_LOCK_SHARED_WAITERS),
807		    ("%s: waiting sharers", __func__));
808
809		/*
810		 * See if there is more than one shared lock held.  If
811		 * so, just drop one and return.
812		 */
813		if (SX_SHARERS(x) > 1) {
814			if (atomic_cmpset_ptr(&sx->sx_lock, x,
815			    x - SX_ONE_SHARER)) {
816				if (LOCK_LOG_TEST(&sx->lock_object, 0))
817					CTR4(KTR_LOCK,
818					    "%s: %p succeeded %p -> %p",
819					    __func__, sx, (void *)x,
820					    (void *)(x - SX_ONE_SHARER));
821				break;
822			}
823			continue;
824		}
825
826		/*
827		 * If there aren't any waiters for an exclusive lock,
828		 * then try to drop it quickly.
829		 */
830		if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
831			MPASS(x == SX_SHARERS_LOCK(1));
832			if (atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1),
833			    SX_LOCK_UNLOCKED)) {
834				if (LOCK_LOG_TEST(&sx->lock_object, 0))
835					CTR2(KTR_LOCK, "%s: %p last succeeded",
836					    __func__, sx);
837				break;
838			}
839			continue;
840		}
841
842		/*
843		 * At this point, there should just be one sharer with
844		 * exclusive waiters.
845		 */
846		MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS));
847
848		sleepq_lock(&sx->lock_object);
849
850		/*
851		 * Wake up semantic here is quite simple:
852		 * Just wake up all the exclusive waiters.
853		 * Note that the state of the lock could have changed,
854		 * so if it fails loop back and retry.
855		 */
856		if (!atomic_cmpset_ptr(&sx->sx_lock,
857		    SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS,
858		    SX_LOCK_UNLOCKED)) {
859			sleepq_release(&sx->lock_object);
860			continue;
861		}
862		if (LOCK_LOG_TEST(&sx->lock_object, 0))
863			CTR2(KTR_LOCK, "%s: %p waking up all thread on"
864			    "exclusive queue", __func__, sx);
865		sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0,
866		    SQ_EXCLUSIVE_QUEUE);
867		sleepq_release(&sx->lock_object);
868		break;
869	}
870}
871
872#ifdef INVARIANT_SUPPORT
873#ifndef INVARIANTS
874#undef	_sx_assert
875#endif
876
877/*
878 * In the non-WITNESS case, sx_assert() can only detect that at least
879 * *some* thread owns an slock, but it cannot guarantee that *this*
880 * thread owns an slock.
881 */
882void
883_sx_assert(struct sx *sx, int what, const char *file, int line)
884{
885#ifndef WITNESS
886	int slocked = 0;
887#endif
888
889	if (panicstr != NULL)
890		return;
891	switch (what) {
892	case SA_SLOCKED:
893	case SA_SLOCKED | SA_NOTRECURSED:
894	case SA_SLOCKED | SA_RECURSED:
895#ifndef WITNESS
896		slocked = 1;
897		/* FALLTHROUGH */
898#endif
899	case SA_LOCKED:
900	case SA_LOCKED | SA_NOTRECURSED:
901	case SA_LOCKED | SA_RECURSED:
902#ifdef WITNESS
903		witness_assert(&sx->lock_object, what, file, line);
904#else
905		/*
906		 * If some other thread has an exclusive lock or we
907		 * have one and are asserting a shared lock, fail.
908		 * Also, if no one has a lock at all, fail.
909		 */
910		if (sx->sx_lock == SX_LOCK_UNLOCKED ||
911		    (!(sx->sx_lock & SX_LOCK_SHARED) && (slocked ||
912		    sx_xholder(sx) != curthread)))
913			panic("Lock %s not %slocked @ %s:%d\n",
914			    sx->lock_object.lo_name, slocked ? "share " : "",
915			    file, line);
916
917		if (!(sx->sx_lock & SX_LOCK_SHARED)) {
918			if (sx_recursed(sx)) {
919				if (what & SA_NOTRECURSED)
920					panic("Lock %s recursed @ %s:%d\n",
921					    sx->lock_object.lo_name, file,
922					    line);
923			} else if (what & SA_RECURSED)
924				panic("Lock %s not recursed @ %s:%d\n",
925				    sx->lock_object.lo_name, file, line);
926		}
927#endif
928		break;
929	case SA_XLOCKED:
930	case SA_XLOCKED | SA_NOTRECURSED:
931	case SA_XLOCKED | SA_RECURSED:
932		if (sx_xholder(sx) != curthread)
933			panic("Lock %s not exclusively locked @ %s:%d\n",
934			    sx->lock_object.lo_name, file, line);
935		if (sx_recursed(sx)) {
936			if (what & SA_NOTRECURSED)
937				panic("Lock %s recursed @ %s:%d\n",
938				    sx->lock_object.lo_name, file, line);
939		} else if (what & SA_RECURSED)
940			panic("Lock %s not recursed @ %s:%d\n",
941			    sx->lock_object.lo_name, file, line);
942		break;
943	case SA_UNLOCKED:
944#ifdef WITNESS
945		witness_assert(&sx->lock_object, what, file, line);
946#else
947		/*
948		 * If we hold an exclusve lock fail.  We can't
949		 * reliably check to see if we hold a shared lock or
950		 * not.
951		 */
952		if (sx_xholder(sx) == curthread)
953			panic("Lock %s exclusively locked @ %s:%d\n",
954			    sx->lock_object.lo_name, file, line);
955#endif
956		break;
957	default:
958		panic("Unknown sx lock assertion: %d @ %s:%d", what, file,
959		    line);
960	}
961}
962#endif	/* INVARIANT_SUPPORT */
963
964#ifdef DDB
965static void
966db_show_sx(struct lock_object *lock)
967{
968	struct thread *td;
969	struct sx *sx;
970
971	sx = (struct sx *)lock;
972
973	db_printf(" state: ");
974	if (sx->sx_lock == SX_LOCK_UNLOCKED)
975		db_printf("UNLOCKED\n");
976	else if (sx->sx_lock == SX_LOCK_DESTROYED) {
977		db_printf("DESTROYED\n");
978		return;
979	} else if (sx->sx_lock & SX_LOCK_SHARED)
980		db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock));
981	else {
982		td = sx_xholder(sx);
983		db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td,
984		    td->td_tid, td->td_proc->p_pid, td->td_name);
985		if (sx_recursed(sx))
986			db_printf(" recursed: %d\n", sx->sx_recurse);
987	}
988
989	db_printf(" waiters: ");
990	switch(sx->sx_lock &
991	    (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) {
992	case SX_LOCK_SHARED_WAITERS:
993		db_printf("shared\n");
994		break;
995	case SX_LOCK_EXCLUSIVE_WAITERS:
996		db_printf("exclusive\n");
997		break;
998	case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS:
999		db_printf("exclusive and shared\n");
1000		break;
1001	default:
1002		db_printf("none\n");
1003	}
1004}
1005
1006/*
1007 * Check to see if a thread that is blocked on a sleep queue is actually
1008 * blocked on an sx lock.  If so, output some details and return true.
1009 * If the lock has an exclusive owner, return that in *ownerp.
1010 */
1011int
1012sx_chain(struct thread *td, struct thread **ownerp)
1013{
1014	struct sx *sx;
1015
1016	/*
1017	 * Check to see if this thread is blocked on an sx lock.
1018	 * First, we check the lock class.  If that is ok, then we
1019	 * compare the lock name against the wait message.
1020	 */
1021	sx = td->td_wchan;
1022	if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx ||
1023	    sx->lock_object.lo_name != td->td_wmesg)
1024		return (0);
1025
1026	/* We think we have an sx lock, so output some details. */
1027	db_printf("blocked on sx \"%s\" ", td->td_wmesg);
1028	*ownerp = sx_xholder(sx);
1029	if (sx->sx_lock & SX_LOCK_SHARED)
1030		db_printf("SLOCK (count %ju)\n",
1031		    (uintmax_t)SX_SHARERS(sx->sx_lock));
1032	else
1033		db_printf("XLOCK\n");
1034	return (1);
1035}
1036#endif
1037